
Hybrid Encryption in a Multi-User Setting,
Revisited?

Federico Giacon1, Eike Kiltz1, and Bertram Poettering2

1 Ruhr University Bochum
{federico.giacon,eike.kiltz}@rub.de
2 Royal Holloway, University of London

bertram.poettering@rhul.ac.uk

Abstract. This paper contributes to understanding the interplay of
security notions for PKE, KEMs, and DEMs, in settings with multiple
users, challenges, and instances. We start analytically by first studying
(a) the tightness aspects of the standard hybrid KEM+DEM encryption
paradigm, (b) the inherent weak security properties of all deterministic
DEMs due to generic key-collision attacks in the multi-instance setting,
and (c) the negative effect of deterministic DEMs on the security of
hybrid encryption.
We then switch to the constructive side by (d) introducing the concept
of an augmented data encapsulation mechanism (ADEM) that promises
robustness against multi-instance attacks, (e) proposing a variant of
hybrid encryption that uses an ADEM instead of a DEM to alleviate the
problems of the standard KEM+DEM composition, and (f) constructing
practical ADEMs that are secure in the multi-instance setting.

Keywords: hybrid encryption, multi-user security, tightness

1 Introduction

Hybrid encryption and its security. Public-key encryption (PKE) is typi-
cally implemented following a hybrid paradigm: To encrypt a message, first a ran-
domized key encapsulation mechanism (KEM) is used to establish—independently
of the message—a fresh session key that the receiver is able to recover using
its secret key; then a deterministic data encapsulation mechanism (DEM) is
used with the session key to encrypt the message. Both KEM and DEM output
individual ciphertexts, and the overall PKE ciphertext is just their concatenation.
Benefits obtained from deconstructing PKE into the two named components
include easier implementation, deployment, and analysis. An independent reason
that, in many cases, makes separating asymmetric from symmetric techniques
actually necessary is that asymmetric cryptographic components can typically
deal only with messages of limited length (e.g., 2048 bit messages in RSA-based
? The full version can be found in the IACR eprint archive as article 2017/843.

https://eprint.iacr.org/2017/843

systems) or of specific structure (e.g., points on an elliptic curve). The paradigm
of hybrid encryption, where the message-processing components are strictly
separated from the asymmetric ones, side-steps these disadvantages.

Hybrid encryption was first studied on a formal basis in [11]. (Implicitly the
concept emerged much earlier, for instance in PGP email encryption.) The central
result on the security of this paradigm is that combining a secure KEM with
a secure DEM yields a secure PKE scheme. Various configurations of sufficient
definitions of ‘secure’ for the three components have been proposed [11,18,16],
with the common property that the corresponding security reductions are tight.

Multi-user security of PKE and KEMs. Classic security definitions for
PKE, like IND-CPA and IND-CCA, formalize notions of confidentiality of a
single message encrypted to a single user. (For public-key primitives, we iden-
tify (receiving) users with public keys.) This does not well-reflect real-world
requirements where, in principle, billions of senders might use the same encryp-
tion algorithm to send, concurrently and independently of each other, related
or unrelated messages to billions of receivers. Correspondingly, for adequately
capturing security aspects of PKE that is deployed at large scale, generalizations
of IND-CPA/CCA have been proposed that formalize indistinguishability in the
face of multiple users and multiple challenge queries [4] (the goal of the adversary
is to break confidentiality of one message, not necessarily of all messages). On
the one hand, fortunately, these generalized notions turn out to be equivalent
to the single-user single-challenge case [4] (thus supporting the relevance of the
latter). On the other hand, and unfortunately, all known proofs of this statement
use reductions that are not tight, losing a factor of n · qe where n is the number
of users and qe the allowed number of challenge queries per user. Of course this
does not mean that PKE schemes with tightly equivalent single- and multi-user
security cannot exist, and indeed [4,17,19,20,1,15,12] expose examples of schemes
with tight reductions between the two worlds.

The situation for KEMs is the same as for PKE: While the standard security
definitions [11,16] consider exclusively the single-user single-challenge case, natural
multi-user multi-challenge variants have been considered and can be proven—up
to a security loss with factor n · qe—equivalent to the standard notions.

Multi-instance security of DEMs. Besides scaled versions of security notions
for PKE and KEMs, we also consider similarly generalized variants of DEM
security. More specifically, we formalize a new3 security notion for DEMs that
assumes multiple independently generated instances and allows for one challenge
encapsulation per instance. (For secret key primitives, we identify instances with
secret keys.) The single-challenge restriction is due to the fact that overall we are
interested in KEM+DEM composition and, akin to the single-instance case [11],
a one-time notion for the DEM is sufficient (and, as we show, necessary) for
proving security of the hybrid. As for PKE and KEMs, the multi-instance security

3 We are not aware of prior work that explicitly develops multi-instance security models
for DEMs; however, [22] (and others) discuss the multi-instance security of symmetric
encryption, and [7] considers the multi-instance security of (nonce-based) AE.

of a DEM is closely coupled to its single-instance security; however, generically,
if N is the number of instances, the corresponding reduction loses a factor of N .

A couple of works [22,8] observe that DEMs that possess a specific technical
property4 indeed have a lower security in the multi-instance setting than in the
single-instance case. This is shown via attacks that assume a number of instances
that is so large that, with considerable probability, different instances use the
same encapsulation key; such key collisions can be detected, and message contents
can be recovered. Note that, strictly speaking, the mentioned type of attack
does not imply that the reduction of multi-instance to single-instance security is
necessarily untight, as the attacks crucially depend on the DEM key size which is
a parameter that does not appear in above tightness bounds. We finally point out
that the attacks described in [22,8] are not general but target only specific DEMs.
In this paper we show that the security of any (deterministic) DEM degrades as
the number of considered instances increases.

1.1 Our Contributions

This paper contributes to understanding the interplay of security notions for PKE,
KEMs, and DEMs, in settings with multiple users, challenges, and instances. We
start analytically by first studying (a) the tightness aspects of the standard hybrid
KEM+DEM encryption paradigm, (b) the inherent weak security properties of
deterministic DEMs in the multi-instance setting, and (c) the negative effect of
deterministic DEMs on the security of hybrid encryption. We then switch to the
constructive side by (d) introducing the concept of an augmented data encap-
sulation mechanism (ADEM) that promises robustness against multi-instance
attacks, (e) proposing a variant of hybrid encryption that uses an ADEM instead
of a DEM to alleviate the problems of the standard KEM+DEM composition,
and (f) constructing secure practical ADEMs. We proceed with discussing some
of these results in more detail, in the order in which they appear in the paper.
Standard KEM+DEM Hybrid Encryption. In Section 3 we define syntax
and security properties of PKE, KEMs, and DEMs; we also recall hybrid encryp-
tion. Besides unifying the notation of algorithms and security definitions, the main
contribution of this section is to provide a new multi-instance security notion for
DEMs that matches the requirements of KEM+DEM hybrid encryption in the
multi-user multi-challenge setting. That is, hybrid encryption is secure, tightly, if
KEM and DEM are simultaneously secure (in our sense). We further show that
any attack on the multi-instance security of the DEM tightly implies an attack
on the multi-user multi-challenge security of the hybrid scheme. This implication
is particularly relevant in the light of the results of Section 4, discussed next.
Generic Key-Collision Attacks on Deterministic DEMs. In Section 4 we
study two attacks that target arbitrary (deterministic) DEMs, leveraging on the
4 The cited work is not too clear about this property; loosely speaking the condition
seems to be that colliding ciphertexts of the same message under random keys can
be used as evidence that also the keys are colliding. One example for a DEM with
this property is CBC encryption.

multi-instance setting and exploiting the tightness gap between single-instance
and multi-instance security. Concretely, inspired by the key-collision attacks (also
known as birthday-bound attacks) from [22,8,7], in Section 4.1 and Section 4.2
we describe two attacks against arbitrary DEMs that break indistinguishability
or even recover encryption keys with success probability N2/ |K|, where N is the
number of instances and K is the DEM’s key space. (The reason for specifying
two attacks instead of just one is that deciding which one is preferable may
depend on the particular DEM.) As mentioned above, in hybrid encryption these
attacks carry over to the overall PKE.

What are the options to thwart the described attacks on DEMs? One way
to avoid key-collision attacks in practice is of course to increase the key length
of the DEM. This requires the extra burden of also changing the KEM (it has
to output longer keys) and hence might not be a viable option. (Observe that
leaving the KEM as-is but expanding its key to, say, double length using a PRG
is not going to work as our generic DEM attacks would immediately kick in
against that construction as well.) Another way to go would be to randomize
the DEM. Drawbacks of this approach are that randomness might be a scarce
resource (in particular on embedded systems, but also on desktop computers
there is a price to pay for requesting randomness5), and that randomized schemes
necessarily have longer ciphertexts than deterministic ones. In Sections 5 to 7
we explore an alternative technique to overcome key-collision attacks in hybrid
encryption without requiring further randomness and without requiring changing
the KEM. We describe our approach in the following.
KEM+ADEM Hybrid Encryption. In Section 5 we introduce the concept of
an augmented data encapsulation mechanism (ADEM). It is a variant of a DEM
that takes an additional input: the tag. The intuition is that ADEMs are safer
to use for hybrid encryption than regular DEMs, in particular in the presence
of session-key collisions: Even if two keys collide, security is preserved if the
corresponding tags are different. Importantly, the two generic DEM attacks from
Section 4 do not apply to ADEMs. In Section 5 we further consider augmented
hybrid encryption, which constructs PKE from a KEM and an ADEM by using
the KEM ciphertext as ADEM tag. The corresponding security reduction is tight.
Practical ADEM Constructions. Sections 6 and 7 are dedicated to the
construction of practical ADEMs. The two constructions in Section 6 are based
on the well-known counter mode encryption, instantiated with an ideal random
function and using the tag as initial counter value. We prove tight, beyond-
birthday security bounds of the form N/ |K| for the multi-instance security of
our ADEMs. That is, our constructions provably do not fall prey to key collision
attacks, in particular not the ones from [22,8] and Section 4. Unfortunately, as
they are based on counter mode, the two schemes per se are not secure against
5 Obtaining entropy from a modern operating system kernel involves either file access
or system calls; both options are considerably more costly than, say, doing an
AES computation. While some modern CPUs have built-in randomness generators,
the quality of the latter is difficult to assess and relying exclusively on them thus
discouraged (see https://plus.google.com/+TheodoreTso/posts/SDcoemc9V3J).

https://plus.google.com/+TheodoreTso/posts/SDcoemc9V3J

active adversaries. This is remedied in Section 7 where we show that an augmented
message authentication code6 (AMAC) can be used to generically strengthen a
passively-secure ADEM to become secure against active adversaries. (We define
AMACs and give a tightly secure construction in the same section.)

2 Notation

If S is a finite set, s $← S denotes the operation of picking an element of S
uniformly at random and assigning the result to variable s. For a randomized
algorithm A we write y $← A(x1, x2, . . .) to denote the operation of running A
with inputs x1, x2, . . . and assigning the output to variable y. Further, we write
[A(x1, x2, . . .)] for the set of values that A outputs with positive probability. We
denote the concatenation of strings with ‖ and the XOR of same-length strings
with ⊕. If a ≤ b are natural numbers, we write [a .. b] for the range {a, . . . , b}.

We say a sequence v1, . . . , vn has a (two-)collision if there are indices 1 ≤
i < j ≤ n such that vi = vj . More generally, the sequence has a k-collision if
there exist 1 ≤ i1 < . . . < ik ≤ n such that vi1 = . . . = vik . We use predicate
Collk[] to indicate k-collisions. For instance, Coll2[1, 2, 3, 2] evaluates to true
and Coll3[1, 2, 3, 2] evaluates to false.

Let L be a finite set of cardinality L = |L|. Sometimes we want to refer to
the elements of L in an arbitrary but circular way, i.e., such that indices x and
x+ L resolve to the same element. We do this by fixing an arbitrary bijection
J·KL : Z/LZ → L and extending the domain of J·KL to the set Z in the natural
way. This makes expressions like Ja + bKL, for a, b ∈ N, well-defined. We use
the shortcut notation Ja � lKL to refer to the span {Ja+ 1KL, . . . , Ja+ lKL} of
length l. In particular we have Ja� 1KL = {Ja+ 1KL}.

Our security definitions are based on games played between a challenger and
an adversary. These games are expressed using program code and terminate
when the main code block executes ‘return’; the argument of the latter is the
output of the game. We write Pr[G⇒ 1] or Pr[G⇒ true] or just Pr[G] for the
probability that game G terminates by executing a ‘return’ instruction with a
value interpreted as true. Further, if E is some game-internal event, we write Pr[E]
for the probability this event occurs. (Note the game is implicit in this notation.)

3 Traditional KEM/DEM Composition and Its Weakness

We define PKE, KEMs, and DEMs, and give security definitions that consider
multi-user, multi-challenge, and multi-instance attacks. Using the techniques from
[4] we show that the multi notions are equivalent to their single counterparts, up
to a huge tightness loss. We show that hybrid encryption enjoys tight security
6 The notion of an augmented MAC appeared recently in an unrelated context: An
AMAC according to [3] is effectively keyed Merkle–Damgård hashing with an unkeyed
output transform applied at the end. Importantly, while the notion of [3] follows the
classic MAC syntax, ours does not (for having a separate tag input).

also in the multi settings. We finally show how (multi-instance) attacks on the
DEM can be leveraged to attacks on the PKE.

3.1 Syntax and Security of PKE, KEMs, and DEMs

Public-key encryption. A public-key encryption scheme PKE = (P.gen,P.enc,
P.dec) is a triple of algorithms together with a message spaceM and a ciphertext
space C. The randomized key-generation algorithm P.gen returns a pair (pk, sk)
consisting of a public key and a secret key. The randomized encryption algorithm
P.enc takes a public key pk and a message m ∈ M to produce a ciphertext
c ∈ C. Finally, the deterministic decryption algorithm P.dec takes a secret key sk
and a ciphertext c ∈ C, and outputs either a message m ∈ M or the special
symbol ⊥ /∈M to indicate rejection. The correctness requirement is that for all
(pk, sk) ∈ [P.gen], m ∈M, and c ∈ [P.enc(pk,m)], we have P.dec(sk, c) = m.

We adapt results from [4] to our notation, giving a game-based security defini-
tion for public-key encryption that formalizes multi-user multi-challenge indistin-
guishability: For a scheme PKE, to any adversary A and any number of users n
we associate the distinguishing advantage Advmuc-ind

PKE,A,n := |Pr[MUC-IND0
A,n] −

Pr[MUC-IND1
A,n]|, where the two games are specified in Figure 1. Note that if qe

resp. qd specify upper bounds on the number of Oenc and Odec queries per user,
then the single-user configurations (n, qe, qd) = (1, 1, 0) and (n, qe, qd) = (1, 1,∞)
correspond to standard definitions of IND-CPA and IND-CCA security for PKE.

Game MUC-INDb
A,n

00 for all j ∈ [1 .. n]:
01 (pkj , skj) $← P.gen
02 Cj ← ∅
03 b′ $← A(pk1, . . . , pkn)
04 return b′

Oracle Oenc(j, m0, m1)
05 c $← P.enc(pkj , mb)
06 Cj ← Cj ∪ {c}
07 return c

Oracle Odec(j, c)
08 if c ∈ Cj : return ⊥
09 m← P.dec(skj , c)
10 return m

Fig. 1: PKE security games MUC-INDbA,n, b ∈ {0, 1}, modeling multi-user multi-
challenge indistinguishability for n users.

The following states that the multi-user multi-challenge notion is equivalent
to the traditional single-user single-challenge case—up to a tightness loss linear
in both the number of users and the number of challenges. The proof is in [4].

Lemma 1 ([4]). For any public-key encryption scheme PKE, any number of
users n, and any adversary A that poses at most qe-many Oenc and qd-many
Odec queries per user, there exists an adversary B such that Advmuc-ind

PKE,A,n ≤
n · qe ·Advmuc-ind

PKE,B,1, where B poses at most one Oenc and qd-many Odec queries.
Further, the running time of B is at most that of A plus the time needed to
perform nqe-many P.enc operations and nqd-many P.dec operations.

Key encapsulation. A key-encapsulation mechanism KEM = (K.gen,K.enc,
K.dec) for a finite session-key space K is a triple of algorithms together with a
ciphertext space C. The randomized key-generation algorithm K.gen returns a pair
(pk, sk) consisting of a public key and a secret key. The randomized encapsulation
algorithm K.enc takes a public key pk to produce a session key K ∈ K and a
ciphertext c ∈ C. Finally, the deterministic decapsulation algorithm K.dec takes
a secret key sk and a ciphertext c ∈ C, and outputs either a session key K ∈ K
or the special symbol ⊥ /∈ K to indicate rejection. The correctness requirement is
that for all (pk, sk) ∈ [K.gen] and (K, c) ∈ [K.enc(pk)] we have K.dec(sk, c) = K.

Like for PKE schemes we give a security definition for KEMs that formal-
izes multi-user multi-challenge indistinguishability: For a scheme KEM, to any
adversary A and any number of users n we associate the distinguishing advan-
tage Advmuc-ind

KEM,A,n := |Pr[MUC-IND0
A,n]− Pr[MUC-IND1

A,n]|, where the two games
are specified in Figure 2. Note that if qe resp. qd specify upper bounds on the
number of Oenc and Odec queries per user, then the single-user configurations
(n, qe, qd) = (1, 1, 0) and (n, qe, qd) = (1, 1,∞) correspond precisely to standard
definitions of IND-CPA and IND-CCA security for KEMs.

Game MUC-INDb
A,n

00 for all j ∈ [1 .. n]:
01 (pkj , skj) $← K.gen
02 Cj ← ∅
03 b′ $← A(pk1, . . . , pkn)
04 return b′

Oracle Oenc(j)
05 (K0, c) $← K.enc(pkj)
06 K1 $← K
07 Cj ← Cj ∪ {c}
08 return (Kb, c)

Oracle Odec(j, c)
09 if c ∈ Cj : return ⊥
10 K ← K.dec(skj , c)
11 return K

Fig. 2: KEM security games MUC-INDbA,n, b ∈ {0, 1}, modeling multi-user multi-
challenge indistinguishability for n users.

Akin to the PKE case, our KEMmulti-user multi-challenge notion is equivalent
to its single-user single-challenge relative—again up to a tightness loss linear in
the number of users and challenges. The proof can be found in the full version [14].

Lemma 2. For any key-encapsulation mechanism KEM, any number of users n,
and any adversary A that poses at most qe-many Oenc and qd-many Odec queries
per user, there exists an adversary B such that Advmuc-ind

KEM,A,n ≤ n · qe ·Advmuc-ind
KEM,B,1,

where B poses at most one Oenc and qd-many Odec queries. Further, the running
time of B is at most that of A plus the time needed to perform nqe-many K.enc
operations and nqd-many K.dec operations.

Data encapsulation. A data-encapsulation mechanism DEM = (D.enc,D.dec)
for a message spaceM is a pair of deterministic algorithms associated with a
finite key space K and a ciphertext space C. The encapsulation algorithm D.enc
takes a key K ∈ K and a message m ∈ M, and outputs a ciphertext c ∈ C.
The decapsulation algorithm D.dec takes a key K ∈ K and a ciphertext c ∈ C,
and outputs either a message m ∈M or the special symbol ⊥ /∈M to indicate

rejection. The correctness requirement is that for all K ∈ K and m ∈M we have
D.dec(K,D.enc(K,m)) = m.

As a security requirement for DEMs we formalize a multi-instance variant of
the standard one-time indistinguishability notion: In our model the adversary
can request one challenge encapsulation for each of a total of N independent
keys; decapsulation queries are not restricted and can be asked multiple times
for the same key. The corresponding games are in Figure 3. Note that lines 05
and 09 ensure that the adversary cannot ask for decapsulations with respect to a
key before having a challenge message encapsulated with it. (This matches the
typical situation as it emerges in a KEM/DEM hybrid.) For a scheme DEM, to
any adversary A and any number of instances N we associate the distinguishing
advantage Advmiot-ind

DEM,A,N := |Pr[MIOT-IND0
A,N] − Pr[MIOT-IND1

A,N]|. Note that
if Qd specifies a global upper bound on the number of Odec queries, then the
single-instance configurations (N,Qd) = (1, 0) and (N,Qd) = (1,∞) correspond
to standard definitions of OT-IND-CPA and OT-IND-CCA security for DEMs.

Game MIOT-INDb
A,N

00 for all j ∈ [1 .. N]:
01 Kj

$← K
02 Cj ← ∅
03 b′ $← A
04 return b′

Oracle Oenc(j, m0, m1)
05 if Cj 6= ∅: return ⊥
06 c← D.enc(Kj , mb)
07 Cj ← Cj ∪ {c}
08 return c

Oracle Odec(j, c)
09 if Cj = ∅: return ⊥
10 if c ∈ Cj : return ⊥
11 m← D.dec(Kj , c)
12 return m

Fig. 3: DEM security games MIOT-INDbA,N , b ∈ {0, 1}, modeling multi-instance
one-time indistinguishability for N instances.

Similarly to the cases of PKE and KEMs, our multi-instance notion for DEMs
is equivalent to its single-instance counterpart, with a tightness loss of N . The
proof can be found in the full version [14].

Lemma 3. For any data-encapsulation mechanism DEM, any number of in-
stances N , and any adversary A that poses at most Qd-many Odec queries in
total, there exists an adversary B such that Advmiot-ind

DEM,A,N ≤ N ·Advmiot-ind
DEM,B,1, where

B poses at most one Oenc and Qd-many Odec queries. Further, the running
time of B is at most that of A plus the time needed to perform N-many D.enc
operations and Qd-many D.dec operations.

3.2 Hybrid Encryption

The main application of KEMs and DEMs is the construction of public key
encryption: To obtain a (hybrid) PKE scheme, a KEM is used to establish a
session key and a DEM is used with this key to protect the confidentiality of the
message [11]. The details of this construction are in Figure 4. It requires that the
session key space of the KEM and the key space of the DEM coincide.

Proc P.gen
00 (pk, sk) $← K.gen
01 return (pk, sk)

Proc P.enc(pk, m)
02 (K, c1) $← K.enc(pk)
03 c2 ← D.enc(K, m)
04 return 〈c1, c2〉

Proc P.dec(sk, 〈c1, c2〉)
05 K ← K.dec(sk, c1)
06 if K = ⊥: return ⊥
07 m← D.dec(K, c2)
08 return m

Fig. 4: Hybrid construction of scheme PKE from schemes KEM and DEM. We
write 〈c1, c2〉 for the encoding of two ciphertext components into one.

The central composability result for hybrid encryption [11] says that if the
KEM and DEM components are strong enough then also their combination is
secure, with tight reduction. In Theorem 1 we give a generalized version of this
claim: it considers multiple users and challenges, and implies the result from [11]
as a corollary. Note that also our generalization allows for a tight reduction. The
proof can be found in the full version [14].

Theorem 1. Let PKE be the hybrid public-key encryption scheme constructed
from a key-encapsulation mechanism KEM and a data-encapsulation mecha-
nism DEM as in Figure 4. Then for any number of users n and any PKE
adversary A that poses at most qe-many Oenc and qd-many Odec queries per user,
there exist a KEM adversary B and a DEM adversary C such that

Advmuc-ind
PKE,A,n ≤ 2Advmuc-ind

KEM,B,n + Advmiot-ind
DEM,C,nqe .

The running time of B is at most that of A plus the time required to run nqe DEM
encapsulations and nqe DEM decapsulations. The running time of C is similar to
the running time of A plus the time required to run nqe KEM encapsulations, nqe
KEM decapsulations, and nqe DEM decapsulations. B poses at most qe-many
Oenc and qd-many Odec queries per user, and C poses at most nqe-many Oenc
and nqd-many Odec queries in total.

Theorem 1 bounds the distinguishing advantage of adversaries against hybrid
PKE conditioned on its KEM and DEM components being secure. Note that from
this result it cannot be deduced that deploying an insecure DEM (potentially in
combination with a secure KEM) necessarily leads to insecure PKE. We show in
Theorem 2 that also the latter implication holds. To ease the analysis, instead
of requiring MUC-IND-like properties of the KEM, we rather assume that it has
uniformly distributed session keys. Formally this means that for all public keys pk
the distribution of [(K, c) $← K.enc(pk); output K] is identical with the uniform
distribution on key space K. The proof can be found in the full version [14].

Theorem 2. For a key-encapsulation mechanism KEM and a data-encapsulation
mechanism DEM let PKE be the corresponding hybrid encryption scheme. If KEM
has uniform keys in K, any attack on DEM can be converted to an attack on PKE.
More precisely, for any n, qe and any DEM adversary A that poses in total at
most nqe-many Odec queries, there exists an adversary B such that

Advmiot-ind
DEM,A,nqe ≤ Advmuc-ind

PKE,B,n + nqe
2

2 |K| .

The running time of B is about that of A, and B poses at most qe-many Oenc
queries per user and Qd-many Odec queries in total.

4 Deterministic DEMs and Their Multi-Instance Security

We give two generic key-collision attacks on the multi-instance security of (deter-
ministic) DEMs. They have different attack goals (indistinguishability vs. key
recovery) and succeed with slightly different probabilities. More precisely, in
both cases the leading term of the success probability comes from the birthday
bound and evaluates to roughly N2/ |K|, and is thus much larger than the N/ |K|
that intuition might expect. By Theorem 2 the attacks can directly be lifted to
ones targeting the multi-user multi-challenge security of a corresponding hybrid
encryption scheme, achieving the same advantage.

4.1 A Passive Multi-Instance Distinguishing Attack on DEMs

We describe an attack against multi-instance indistinguishability that applies
generically to all DEMs. Notably, the attack is fully passive, i.e., the adversary
does not pose any query to its Odec oracle. As technical requirements we assume
a finite message space and a number of instances such that the inequalities
N2 ≤ 2 |K| and |M| ≥ 3 |K|+N − 1 are fulfilled. We consider these conditions
extremely mild, since in practiceM is very large and the value N can be chosen
arbitrarily low by simply discarding some inputs.

For any value N ∈ N the details of our adversary A = AN are in Fig-
ure 5a. It works as follows: It starts by picking uniformly at random messages
m0,m

1
1, . . . ,m

N
1 ∈M such that m1

1, . . . ,m
N
1 are pairwise distinct. (Note the cor-

responding requirement N ≤ |M| follows from above condition.) The adversary
then asks for encapsulations of these messages in a way such that it obtains either
N encapsulations of m0 (if executed in game MIOT-IND0), or one encapsulation
of each message mj

1 (if executed in game MIOT-IND1). If any two of the received
ciphertexts collide, the adversary outputs 1; otherwise it outputs 0. The following
theorem makes statements about advantage and running time of this adversary.

Theorem 3. For a finite message spaceM, let DEM be a DEM with key space K.
Suppose that N2 ≤ 2 |K| and |M| ≥ 3 |K|+N − 1. Then adversary A from Fig-
ure 5a breaks the N -instance indistinguishability of DEM, achieving the advantage

Advmiot-ind
DEM,A,N ≥

N(N − 1)
12 |K| .

Its running time is O(N logN), and it poses N -many Oenc and no Odec queries.

We remark that, more generally, the bound on |M| can be relaxed to |M| ≥
2 |K| (1 + δ) +N − 1 for some δ ≥ 0 to obtain Advmiot-ind

DEM,A,N ≥ δ
δ+1 ·

N(N−1)
4|K| .

Proof. The task of collecting N ciphertexts and checking for the occurrence of a
collision can be completed in O(N logN) operations. In the following we first
assess the performance of the adversary when executed in games MIOT-IND0 and
MIOT-IND1; then we combine the results.
Case MIOT-IND0. Adversary A receives N encapsulations of the same mes-
sage m0, created with N independent keys K1, . . . ,KN . If two of these keys
collide then the corresponding (deterministic) encapsulations collide as well and
A returns 1. Since N(N − 1) < N2 ≤ 2 |K| by the birthday bound we obtain

Pr[MIOT-IND0
A,N] ≥ N(N − 1)

4 |K| .

Case MIOT-IND1. Adversary A receives encapsulations c1, . . . , cN of uniformly
distributed (but distinct) messages m1

1, . . . ,m
N
1 . Denote with Kj the key used to

compute cj , letMj :=M\{m1
1, . . . ,m

j−1
1 }, and let further Cj := D.enc(Kj ,Mj)

denote the image of Mj under (injective) function D.enc(Kj , ·). Observe this
setup implies |Cj | = |Mj | and |C1| > . . . > |CN |. If further follows that each
ciphertext cj is uniformly distributed in set Cj .

We aim at establishing an upper-bound on the collision probability of cipher-
texts c1, . . . , cN . The maximum collision probability is attained in the worst-case
C1 ⊃ . . . ⊃ CN , in which it is bounded by the collision probability of choosing
N values uniformly from a set of cardinality |CN | = |M| −N + 1. Using again
the birthday bound and |M| ≥ 3 |K|+N − 1 we obtain

Pr[MIOT-IND1
A,N] ≤ 1

2 ·
N(N − 1)
|M| −N + 1 ≤

N(N − 1)
6 |K| .

Combining the two bounds yields the equation in our statement.

Adversary AN

00 m0
$←M

01 for all j ∈ [1 .. N]:
02 mj

1
$←M\ {m1

1, . . . , mj−1
1 }

03 cj ← Oenc(j, m0, mj
1)

04 return 1 iff Coll2[c1, . . . , cN]

(a) MIOT-IND adversary, Theorem 3.

Adversary AN

00 for all i ∈ [1 .. N]:
01 Ki

$← K \ {K1, . . . , Ki−1}
02 ci ← D.enc(Ki, m0)
03 for all j ∈ [1 .. N]:
04 c′j ← Oenc(j, m0)
05 if ∃(i, j) ∈ [1 .. N]2 s.t. ci = c′j :
06 return (Ki, j)
07 return ⊥

(b) MIOT-KR adversary, Theorem 4.

Fig. 5: Adversaries against: (a) multi-instance indistinguishability and (b) multi-
instance key recovery. Both ask for N encapsulations (resp. lines 03 and line 04)
but do not use their decapsulation oracle.

4.2 A Passive Multi-Instance Key-Recovery Attack on DEMs
We give a generic attack on DEMs that aims at recovering keys rather than
distinguishing encapsulations. Like in Section 4.1 the attack is passive. It is
inspired by work of Zaverucha [22] and Chatterjee et al. [8]. However, our results
are more general than theirs for not restricted to one specific DEM.

To formalize the notion of resilience against key recovery we correspondingly
adapt the MIOT-IND game from Figure 3 and obtain the MIOT-KR game specified
in Figure 6. The N -instance advantage of an adversary A is then defined as
Advmiot-kr

DEM,A,N := Pr[MIOT-KRA,N]. The following theorem shows that for virtually
all practical DEMs (including those based on CBC mode, CTR mode, OCB, etc.,
and even one-time pad encryption) there exist adversaries achieving a considerable
key recovery advantage, conditioned on the DEM key space being small enough.
Concretely, the adversaries we propose encapsulate 2N times the same message
(N times with random but known keys, and N times with random but unknown
keys) and detect collisions of ciphertexts.7 As any ciphertext collision stems (in
practice) from a collision of keys, this method allows for key recovery.8

Game MIOT-KRA,N

00 for all j ∈ [1 .. N]:
01 Kj

$← K
02 Cj ← ∅
03 (K, i) $← A
04 return 1 iff K = Ki

Oracle Oenc(j, m)
05 if Cj 6= ∅: return ⊥
06 c← D.enc(Kj , m)
07 Cj ← Cj ∪ {c}
08 return c

Oracle Odec(j, c)
09 if Cj = ∅: return ⊥
10 if c ∈ Cj : return ⊥
11 m← D.dec(Kj , c)
12 return m

Fig. 6: DEM security game MIOT-KRA,N modeling resilience against key recovery,
for N instances.

Theorem 4. Fix a DEM and denote its key space with K and its message space
with M. Let m0 ∈ M be any fixed message. Fixing N ∈ N as a parameter,
consider the adversary A = AN specified in Figure 5b. We then have

Advmiot-kr
DEM,A,N ≥ p(m0) ·min

{
1
2 ,

N2

2 |K|

}
,

where p(m0) denotes the collision probability
p(m0) := Pr

K1,K2
$←K

[K1 = K2 | D.enc(K1,m0) = D.enc(K2,m0)] .

7 While our setup is formally meaningful, in practice it would correspond to N parties,
for a huge number N , encapsulating the same message m0. This might feel rather
unrealistic. However, we argue that a close variant of the attack might very well have
the potential for practicality: All widely deployed DEMs are online, i.e., compute
ciphertexts ‘left-to-right’. For such DEMs, for our attack to be successful, it suffices
that the N parties encapsulate (different) messages that have a common prefix, for
instance a standard protocol header.

8 The efficiency of this attack can likely be improved, on a heuristic basis, by deploying
dedicated data structures like rainbow tables.

Its running time is O(N logN), and it poses N -many Oenc and no Odec queries.

We further prove that in the case of DEMs based on one-time pad encryption
we have p(m0) = 1 for any m0. Further, in the case of CBC-based encapsulation
there exists a message m0 such that p(m0) = |B| /(|B|+ |K| − 1), where B is the
block space of the blockcipher and the latter is modeled as an ideal cipher.

Note that the performance of our attack crucially depends on the choice
of message m0, and that there does not seem to be a general technique for
identifying good candidates. In particular, (artificial) DEMs can be constructed
where p(m0) is small for some m0 but large for others, or where p(m0) is small
even for very long messages m0. However, in many practical schemes the choice
of m0 is not determinant. After the proof we consider two concrete examples.

Proof. The running time of A is upper bounded by the search for collisions in
line 05, since all other operations require at most linear time inN . We estimate the
time bound: The list c1, . . . , cN is sorted, requiring time O(N logN). Searching an
element in the ordered list requires O(logN) time. Repeating for all N searches
requires O(N logN). Combining these observations yields our statement.

We claim that the probability that the adversary does not output ⊥ (in
symbols, AN ; ⊥) is lower bounded by:

Pr[AN ; ⊥] ≥ 1−
(

1− N

|K|

)N
. (1)

Since the DEM is deterministic, the probability to find any collision in line 05 is
larger than the probability that any of the distinct N keys generated in lines 00–02
collides with one of the N keys K̃1, . . . , K̃N used by the MIOT-KR game to
encapsulate. We compute the latter probability. Let K ∈ {K̃1, . . . , K̃N}. We
know that K is uniform in K. Since K1, . . . ,KN are distinct and independently
chosen we can write: Pr[K ∈ {K1, . . . ,KN}] = N/|K|. Moreover, since the
keys K̃1, . . . , K̃N are generated independently of each other, Equation (1) follows.

Let now (i, j) be the indices for which the condition in line 05 is triggered, i.e.,
ci = c′j and AN outputs Ki. We can write:

Advmiot-kr
DEM,A,N = Pr[AN ; ⊥] · Pr[Ki = K̃j | AN ; ⊥]

≥
(

1−
(

1− N

|K|

)N)
· p(m0) .

Applying known inequalities to the previous formula we obtain:

Advmiot-kr
DEM,A,N ≥ p(m0) ·

(
1−

(
1− N

|K|

)N)
≥ p(m0) ·min

{
1
2 ,

N2

2 |K|

}
.

We compute p(m0) for two specific DEMs (one-time pad and CBC mode) and
choices of m0. We formalize the argument for CBC by considering single-block
messages. We note that one can apply the same argument to other modes of
operation, e.g., CTR. For notational simplicity we omit the description of the
probability space, that is, uniform choice of K1,K2 ∈ K.

One-time pad. The one-time pad DEM encapsulation is given by combining
a key K ∈ K = {0, 1}k with a message m ∈ M = {0, 1}k using the XOR
operation. In this case, if two ciphertexts for the same message collide, the
same key must have been used to encapsulate. Thus p(m0) = 1 for all m0.

CBC with an ideal cipher. CBC-based DEM encapsulation consists of en-
crypting the message using a blockcipher in CBC mode with the zero ini-
tialization vector (IV). In the following analysis we assume an idealized
blockcipher (ideal cipher model) represented by E. Note that since the IV is
zero, encapsulating a single-block message m0 under the key K is equivalent
to enciphering m0 with EK . Let B be the block space. First we observe that
for any single-block message m0 we have

Pr[EK1(m0) = EK2(m0)]
= Pr[K1 = K2] + Pr[K1 6= K2] Pr[EK1(m0) = EK2(m0) | K1 6= K2]
= |K|−1 + (1− |K|−1) |B|−1

.

We then use the previous equality to compute p(m0) from its definition:

p(m0) = Pr[K1 = K2]
Pr[EK1(m0) = EK2(m0)]

= |K|−1

|K|−1 + (1− |K|−1) |B|−1 = |B|
|B|+ |K| − 1 .

As an example, if |B| ≥ |K| then p(m0) > 1/2 for any single-block messagem0.

5 Augmented Data Encapsulation

In the previous sections we showed that all deterministic DEMs, including those
that are widely used in practice, might be less secure than expected in the
face of multi-instance attacks. We further showed that, in the setting of hybrid
encryption, attacks on DEMs can be leveraged to attacks on the overall PKE.
Given that the KEM+DEM paradigm is so important in practice, we next
address the question of how this situation can be remedied. One option would of
course be to increase the DEM key size (recall that good success probabilities
in Theorems 3 and 4 are achieved only for not too large key spaces); however,
increasing key sizes might not be a viable option in practical systems. (Potential
reasons for this include that blockciphers like AES are slower with long keys
than with short keys, and that ciphers like 3DES do not support key lengths
that have a comfortable ‘multi-instance security margin’ in the first place.) A
second option would be to augment the input given to the DEM encapsulation
routine by an additional value. This idea was already considered in [22, p. 16]
where, with the intuition of increasing the ‘entropy’ available to the DEM, it was
proposed to use a KEM ciphertext as an initialization vector (IV) of a symmetric
encryption mode. However, [22] does not contain any formalization or security
analysis of this idea, and so it cannot be taken as granted that this strategy

actually works. (And indeed, we show in Section 6.3 that deriving the starting
value of blockcipher-based counter mode encryption from a KEM ciphertext is
not ameliorating the situation for attacks based on indistinguishability.)

We formally explore the additional-input proposal for the DEM in this
section. More precisely, we study two approaches of defining an augmented data
encapsulation mechanism (ADEM), where we call the additional input the tag.
The syntax is the same in both cases, but the security properties differ: either
(a) the DEM encapsulator receives as the tag an auxiliary random (but public)
string, or (b) the encapsulator receives as additional input a nonce (a ‘number
used once’). In both cases the decapsulation oracle operates with respect to the
tag also used for encapsulation. After formalizing this we prove the following
results: First, if the tag space is large enough, ADEMs that expect a nonce can
safely replace ADEMs that expect a uniform tag. Second, ADEMs that expect a
uniform tag can be constructed from ADEMs that expect a nonce by applying a
random oracle to the latter. Our third result is that the augmented variant of
hybrid encryption remains (tightly) secure.

Augmented data encapsulation. An augmented data encapsulation mecha-
nism ADEM = (A.enc,A.dec) for a message spaceM is a pair of deterministic
algorithms associated with a finite key space K, a tag space T , and a ciphertext
space C. The encapsulation algorithm A.enc takes a key K ∈ K, a tag t ∈ T , and
a message m ∈M, and outputs a ciphertext c ∈ C. The decapsulation algorithm
A.dec takes a key K ∈ K, a tag t ∈ T , and a ciphertext c ∈ C, and outputs
either a message m ∈M or the special symbol ⊥ /∈M to indicate rejection. The
correctness requirement is that for all K ∈ K and t ∈ T and m ∈ M we have
A.dec(K, t,A.enc(K, t,m)) = m.

Augmented data encapsulation with uniform tags. The first security
notion we formalize assumes that each encapsulation operation uses a fresh
and uniformly picked tag (note this imposes the technical requirement that
the tag space be finite). More precisely, while the tag may become public after
the encapsulation operation has completed, it may not be disclosed to the
adversary before fixing the message to be encapsulated. We formalize this notion
of uniform-tag multi-instance one-time indistinguishability for ADEMs via the
games specified in Figure 7. For a scheme ADEM, to any adversary A and any
number of instances N we associate the distinguishing advantage Advu-miot-ind

ADEM,A,N :=
|Pr[U-MIOT-IND0

A,N]− Pr[U-MIOT-IND1
A,N]|.

Augmented data encapsulation with nonces. Our second security notion
for ADEMs requires the tag provided to each encapsulation operation to be unique
(across all instances). The tag can be generated using any possible method (e.g.,
using some global type of counter). We formalize the corresponding security notion
of nonce-based multi-instance one-time indistinguishability for ADEMs via the
games specified in Figure 8. For a scheme ADEM, to any adversary A and any
number of instances N we associate the distinguishing advantage Advn-miot-ind

ADEM,A,N :=
|Pr[N-MIOT-IND0

A,N]− Pr[N-MIOT-IND1
A,N]|.

Game U-MIOT-INDb
A,N

00 for all j ∈ [1 .. N]:
01 (Kj , tj) $← K× T
02 Cj ← ∅
03 b′ $← A
04 return b′

Oracle Oenc(j, m0, m1)
05 if Cj 6= ∅: return ⊥
06 c← A.enc(Kj , tj , mb)
07 Cj ← Cj ∪ {c}
08 return (tj , c)

Oracle Odec(j, c)
09 if Cj = ∅: return ⊥
10 if c ∈ Cj : return ⊥
11 m← A.dec(Kj , tj , c)
12 return m

Fig. 7: ADEM security games U-MIOT-INDbA,N , b ∈ {0, 1}, for N instances. The
tags in line 11 are the same as the ones in line 06.

Game N-MIOT-INDb
A,N

00 T ← ∅
01 for all j ∈ [1 .. N]:
02 Kj

$← K
03 Cj ← ∅
04 b′ $← A
05 return b′

Oracle Oenc(j, t, m0, m1)
06 if Cj 6= ∅: return ⊥
07 if t ∈ T : return ⊥
08 T ← T ∪ {t}; tj ← t
09 c← A.enc(Kj , tj , mb)
10 Cj ← Cj ∪ {c}
11 return c

Oracle Odec(j, c)
12 if Cj = ∅: return ⊥
13 if c ∈ Cj : return ⊥
14 m← A.dec(Kj , tj , c)
15 return m

Fig. 8: ADEM security games N-MIOT-INDbA,N , b ∈ {0, 1}, for N instances. The
tags in line 14 are the same as the ones in line 09.

5.1 Relations Between ADEMs with Uniform and Nonce Tags

The two types of ADEMs we consider here can be constructed from each other.
More concretely, the following lemma shows that if the tag space is large enough,
ADEMs that expect a nonce can safely replace ADEMs that expect a uniform
tag. The proof can be found in the full version [14].

Lemma 4. Let ADEM be an augmented data encapsulation mechanism. If the
cardinality of its tag space T is large enough and ADEM is secure with non-
repeating tags, then it is also secure with random tags. More precisely, for any
number of instances N and any adversary A there exist an adversary B that makes
the same amount of queries such that Advu-miot-ind

ADEM,A,N ≤ Advn-miot-ind
ADEM,B,N+N2/(2 |T |).

The running time of the two adversaries is similar.

The following simple lemma shows that ADEMs that expect a nonce can
be constructed from ADEMs that expect a uniform tag by using each nonce
to obtain a uniform, independent value from a random oracle. The proof is
immediate since all queries to the random oracle have different input, thus the
corresponding output is uniformly random and independently generated.

Lemma 5. Let ADEM = (A.enc,A.dec) be an augmented data encapsulation
mechanism with tag space T . Let H : T ′ → T denote a hash function, where T ′ is
another tag space. Define ADEM′ = (A.enc′,A.dec′) such that A.enc′(K, t,m) :=
A.enc(K,H(t),m) and A.dec′(K, t, c) := A.dec(K,H(t), c). Then if H is modeled
as a random oracle and if ADEM is secure with random tags in T , then ADEM′ is
secure with non-repeating tags in T ′. Formally, for any number of instances N and
any adversary A there exists an adversary B with Advu-miot-ind

ADEM,A,N = Advn-miot-ind
ADEM′,B,N .

5.2 Augmented Hybrid Encryption
A KEM and an ADEM can be combined to obtain a PKE scheme: the KEM
establishes a session key and a first ciphertext component, and the ADEM is used
on input the session key and the first ciphertext component (as tag) to protect the
confidentiality of the message, creating a second ciphertext component. Figure 9
details this augmented hybrid encryption. It requires that the session key space
of the KEM and the key space of the ADEM coincide. Further, the ciphertext
space of the KEM needs to be a subset of the tag space of the ADEM.

Proc P.gen
00 (pk, sk) $← K.gen
01 return (pk, sk)

Proc P.enc(pk, m)
02 (K, c1) $← K.enc(pk)
03 c2 ← A.enc(K, c1, m)
04 return 〈c1, c2〉

Proc P.dec(sk, 〈c1, c2〉)
05 K ← K.dec(sk, c1)
06 if K = ⊥: return ⊥
07 m← A.dec(K, c1, c2)
08 return m

Fig. 9: Augmented hybrid construction of scheme PKE from schemes KEM and
ADEM. We write 〈c1, c2〉 for the encoding of two ciphertext components into one.

The claim is that augmented hybrid encryption is more robust against attacks
involving multiple users and challenges than standard hybrid encryption (see
Figure 4). The security condition posed on the ADEM requires that it be secure
when operated with nonces, and the security property posed on the KEM requires
that it be both indistinguishable and have non-repeating ciphertexts (i.e., invoking
the encapsulation twice on any public keys does virtually never result in colliding
ciphertexts). Technically, the latter property is implied by indistinguishability.
However, to obtain better bounds, we formalize it as a statistical condition: To
any scheme KEM we assign the maximum ciphertext-collision probability

p := max
pk1,pk2

Pr[(K1, c1) $← K.enc(pk1); (K2, c2) $← K.enc(pk2) : c1 = c2] ,

where the maximum is over all pairs pk1, pk2 of (potentially coinciding) public
keys. Note that practical KEMs (ElGamal, RSA-based, Cramer–Shoup, . . .)
have much larger ciphertexts than session keys9, so that the ciphertext-collision
probability will always be negligible in practice. We proceed with a security claim
for augmented hybrid encryption. The proof can be found in the full version [14].
Lemma 6. Let PKE be the hybrid public-key encryption scheme constructed
from a key-encapsulation mechanism KEM and an augmented data-encapsulation
mechanism ADEM as in Figure 9. Let p be the maximum ciphertext-collision
probability of KEM over all possible public keys. Then for any n and any PKE
adversary A that poses at most qe-many Oenc and qd-many Odec queries per user,
there exist a KEM adversary B and an ADEM adversary C such that

Advmuc-ind
PKE,A,n ≤ 2Advmuc-ind

KEM,B,n + Advn-miot-ind
ADEM,C,N + 2

(
N

2

)
p ,

9 This is no coincidence but caused by generic attacks against cyclic groups, RSA, etc.

where N = nqe. The running time of B is at most that of A plus the time
required to run nqe ADEM encapsulations and nqe ADEM decapsulations. The
running time of C is similar to that of A plus the time required to run nqe KEM
encapsulations, nqe KEM decapsulations, and nqe ADEM decapsulations. B poses
at most qe-many Oenc and qd-many Odec queries per user, and C poses at most
nqe-many Oenc and nqd-many Odec queries in total.

6 Constructions of Augmented Data Encapsulation

We construct two augmented data-encapsulation mechanisms and analyze their
security. The schemes are based on operating a function in counter mode. If
the function is instantiated with an ideal random function then the ADEMs
are secure beyond the birthday bound. (We also show that if the function is
instead instantiated with an idealized blockcipher, i.e., a random permutation,
the schemes’ security may degrade.) Practical candidates for instantiating the
ideal random function are for instance the compression functions of standard-
ized Merkle–Damgård hash functions, e.g., of SHA2.10,11 Another possibility is
deriving the random function from an ideal cipher as in [21].

6.1 Counter-Mode Encryption

Many practical DEMs are based on operating a blockcipher E in counter mode
(CTR). Here, in brief, the encapsulation key is used as the blockcipher key,
a sequence of message-independent input blocks is enciphered under that key,
and the output blocks are XOR-ed into the message. More concretely, if under
some key K a message m shall be encapsulated that, without requiring padding,
evenly splits into blocks v1‖ . . . ‖vl, then the DEM ciphertext is the concatenation
w1‖ . . . ‖wl where wi = vi ⊕ EK(i).

In the context of this paper, three properties of this construction are worth
pointing out: (a) the ‘counting’ component of CTR mode serves a single purpose:
preventing that two inputs to the blockcipher coincide; (b) any ‘starting value’
for the counter can be used; (c) security analyses of CTR mode typically model
E as a pseudorandom function (as opposed to a pseudorandom permutation)12.

In Figure 10 we detail three ways of turning the principles of CTR mode into a
DEM encapsulation routine. In all cases the underlying primitive is, syntactically,
a function F : K × B → D that takes a key K ∈ K and maps some finite input
space B into some finite group (D,⊕). (Intuitively, B serves as a space of input
blocks derived from a counter, and D as a space of pads that can be XORed into
message blocks; note that if F is instantiated with a blockcipher we have B = D,
but we explicitly allow other instantiations.) The most basic encapsulation routine
10 These compression functions are regularly modeled as having random behavior [2,13].
11 The idea to construct a DEM from a hash function’s compression function already

appeared in the OMD schemes from [9].
12 Technically, the PRP/PRF switching lemma [5] measures the price one has to pay

for pursuing this modeling approach.

based on CTR mode that we consider, and the one closest to our sketch above,
is CTR0enc. Note that this DEM further assumes a bijection J·KL : Z/LZ → L
with L = B. (Intuitively, this bijection turns a counter that is cyclic with period
length L into input blocks for F ; see Section 2 for notation.) We finally point
out that all three variants of CTR mode that we formalize exclusively work with
fixed-length multi-block messages (i.e.,M = Dl). This choice, that we made for
simplicity of exposition, is not really a restriction as ‘any-length’ CTR mode
encryption can be simulated from ‘block-wise’ CTR mode encryption.

Proc CTR0enc(K, m)
00 (v1, . . . , vl)← m
01 for all i ∈ [1 .. l]:
02 wi ← vi ⊕ F (K, JiKL)
03 c← (w1, . . . , wl)
04 return c

Proc CTR+enc(K, t, m)
05 (v1, . . . , vl)← m
06 for all i ∈ [1 .. l]:
07 wi ← vi ⊕ F (K, Jt + iKL)
08 c← (w1, . . . , wl)
09 return c

Proc CTR‖enc(K, t, m)
10 (v1, . . . , vl)← m
11 for all i ∈ [1 .. l]:
12 wi ← vi ⊕ F (K, t‖JiKL)
13 c← (w1, . . . , wl)
14 return c

Fig. 10: Encapsulation algorithms of the CTR0 DEM, the CTR+ ADEM, and the
CTR‖ ADEM, for multi-block messages. In CTR0enc and CTR+enc we assume
J·KL : Z/LZ→ L with L = B, and in CTR‖enc we assume J·KL : Z/LZ→ L and T
such that B = T × L. The corresponding decapsulation routines is immediate.

The two remaining procedures in Figure 10 are ADEM encapsulation routines.
The first one, CTR+enc, is the natural variant of CTR0enc where the tag space
is T = [1 .. L] and the tag specifies the starting value of the counter. The second,
CTR‖enc, concatenates tag and counter. Here, the tag space T and parameter
space L have to be arranged such that B = T × L.

We analyze the security of CTR+ and CTR‖ in the upcoming sections. Scheme
CTR0 is not an ADEM and falls prey to our earlier attacks.

6.2 Security of Function-Based Counter Mode

We establish upper bounds on the advantage of U-MIOT-IND adversaries against
the CTR+ and CTR‖ ADEMs.

Counter Mode with Tag-Controlled Starting Value We limit the maxi-
mum amount of blocks in an encapsulation query to a fixed value `. Prerequisites
to our statement on CTR+ are two conditions on the number of instances relative
to K and T = [1 .. L]. The bound is namely N ≤ min

{
|K|1/2

, (|T | /(2`))1/(1+δ)},
for some arbitrary constant δ such that 1/N ≤ δ ≤ 1. Despite this restriction we
consider our statement to be reflecting real-world applications: As an extreme
example we see that the values |K| = |T | = 2128, N = 256, ` = 256, q = 264

and δ = 2/7 fit above condition, yielding a maximum advantage of around 2−61.

Theorem 5. Suppose N ≤ min
{
|K|1/2

, (|T | /(2`))1/(1+δ)}, for some 1/N ≤
δ ≤ 1, and suppose that F is modeled as a random oracle (using oracle F). Then

for any adversary A against N -instance uniform-tag indistinguishability of CTR+
that poses at most q queries to F, no decapsulation queries, and encapsulates
messages of length at most ` blocks we have:

Advu-miot-ind
CTR+,A,N ≤

1
3
N

|K|
+ 4`− 2
|T |

+ 2q
|K|

(
1 + 1

δ

)
.

The core of the proof exploits that the outputs of (random oracle) F that
are used to encapsulate are uniformly distributed in D and independent of each
other. This requires forcing the inputs to be distinct in L. We give further insight
on some non-standard techniques the we use in the analysis in the proof.

Proof (of Theorem 5). The definition of the games G0,b
A,N , G1,b

A,N , G2,b
A,N and G3,b

A,N
are found in Figure 11. Except for some bookkeeping, game G0,b

A,N is equivalent to
game U-MIOT-INDbA,N , where b ∈ {0, 1}. For j ∈ [1 .. N] we define Tj = Jtj � `KL.

Game G1. In game G1,b
A,N we implicitly generate pairs of colliding keys. We loop

over all pairs (j1, j2) such that 1 ≤ j1 < j2 ≤ N . If both indices were not
previously paired (matched[j1] = matched[j2] = false) and the corresponding
keys collide (Kj1 = Kj2) then the two indices are marked as paired. Moreover,
if the corresponding tag ranges collide (Tj1 ∩ Tj2 6= ∅) the flag bad1 in line 10
is raised and the game aborts. We claim that

|Pr[G0,b
A,N]− Pr[G1,b

A,N]| ≤ Pr[bad1] ≤ 2`− 1
|T |

. (2)

To prove (2), we want to compute the probability Pr[bad1]. Let mpairs be
the number of colliding key pairs in game G1,b

A,N , i.e., 2mpairs entries of flag
matched are set to 1 at the end of the game. Then, for every 0 ≤ i ≤ bN/2c,
Pr[bad1 | mpairs = i] ≤ (2` − 1)i/ |T |. This follows from the independent
choices of the values Kj , tj for each instance j ∈ [1 .. N], and because for each
pair of indices j1, j2 ∈ [1 .. N], j1 6= j2, and for any choice of tj1 there are
exactly 2`−1 possible values of tj2 such that Tj1∩Tj2 6= ∅. The sets {mpairs =
i}, i ∈ 0, . . . , bN/2c, partition the probability space, thus:

Pr[bad1] =
bN/2c∑
i=0

Pr[bad1 | mpairs = i] Pr[mpairs = i]

≤2`− 1
|T |

bN/2c∑
i=0

iPr[mpairs = i] = 2`− 1
|T |

bN/2c∑
i=1

Pr[mpairs ≥ i] . (3)

The last equality follows since the expected value of any random variable m
with values in N can be written as

∑∞
i=0 iPr[m = i] =

∑∞
i=1 Pr[m ≥ i]. We

show by induction that the terms of the sum are:

pi := Pr[mpairs ≥ i] ≤
(
N2

2 |K|

)i
. (4)

To prove (4), we consider a slightly different event. We say that key Ki is bad if
Kj = Ki for some 1 ≤ i < j. Letmbadkeys be the random variable counting the
number of bad keys. Since every colliding key pair implies at least one bad key,
then it can be shown that Pr[mpairs ≥ i] ≤ Pr[mbadkeys ≥ i] ≤ (N2/2 |K|)i.
For more details we refer to the full version [14].
Finally we prove (2) by combining (3) and (4), and by observing that from
our hypothesis N2/ |K| ≤ 1:

Pr[bad1] ≤ 2`− 1
|T |

bN/2c∑
i=1

(
N2

2 |K|

)i
≤ 2`− 1
|T |

∞∑
i=1

1
2i = 2`− 1

|T |
. (5)

Game G2. Game G2,b
A,N is equivalent to G1,b

A,N , with the exception that it raises
flag bad2 in line 12 and aborts if any three keys collide. By the generalized
birthday bound, and since N2/ |K| ≤ 1, we obtain

|Pr[G1,b
A,N]− Pr[G2,b

A,N]| ≤ Pr[bad2] ≤ 1
6
N3

|K|2
≤ 1

6
N

|K|
. (6)

Game G3. Game G3,b
A,N is equivalent to G2,b

A,N , with the exception that the game
raises flag bad3 in line 23 and aborts if A makes a query (K, v) to F for
which there exists an index j ∈ [1 .. N] such that K = Kj and v ∈ Tj . In the
following we fix minters to be the random variable that counts the maximum
number of sets T1, . . . , TN whose intersection is non-empty.
Fix a query (K, v) to F. For each i ∈ [1 .. N] we have Pr[∃j ∈ [1 .. N] : v ∈
Tj ∧K = Kj | minters = i] ≤ i/ |K|, because in the worst case v belongs to
exactly minters of the sets T1, . . . , TN . This bound yields

Pr[∃j ∈ [1 .. N] : v ∈ Tj ∧K = Kj]

=
N∑
i=1

Pr[∃j ∈ [1 .. N] : v ∈ Tj ∧K = Kj | minters = i] · Pr[minters = i]

≤
N∑
i=1

i

|K|
· Pr[minters = i] = 1

|K|
·
N∑
i=1

Pr[minters ≥ i] . (7)

Some probabilistic considerations allow us to write Pr[minters ≥ i + 1] ≤
N i+1`i/ |T |i (details in the full version [14]). For all i ≥ 1/δ we can write
Ni+1`i

|T |i ≤
(
N1+δ`
|T |

)i
≤ 1

2i . Thus we can split the sum (7) into

1
|K|
·
N∑
i=1

Pr[minters ≥ i] ≤
1
|K|

(b1/δc∑
i=1

Pr[minters ≥ i] +
∞∑

i=b1/δc+1

1
2i−1

)

≤ 1
|K|

(
1
δ

+ 1
)
.

Since minters is constant for all q queries to F, a union bound gives us

|Pr[G2,b
A,N]− Pr[G3,b

A,N]| ≤ Pr[bad3] ≤ q

|K|

(
1
δ

+ 1
)
. (8)

Game G0,b
A,N – Game G3,b

A,N

00 for all j ∈ [1 .. N]:
01 matched[j]← false
02 (Kj , tj) $← K× T
03 for all j1 ∈ [1 .. N]:
04 for all j2 ∈ [j1 + 1 .. N]:
05 if (Kj1 = Kj2):
06 if ¬matched[j1] ∧ ¬matched[j2]:
07 matched[j1]← true
08 matched[j2]← true
09 if Jtj1 � `KL ∩ Jtj2 � `KL 6= ∅:
10 bad1 ← true; abort |G1

11 if Coll3[K1, . . . , KN]:
12 bad2 ← true; abort |G2

13 b′ $← A
14 return b′

Oracle Oenc(j, m0, m1)
15 (v1, . . . , vl)← mb

16 for all i ∈ [1 .. l]:
17 wi ← vi ⊕ F(Kj , Jtj + iKL)
18 c← (w1, . . . , wl)
19 return (tj , c)

Oracle F(K, v)
20 for all j ∈ [1 .. N]:
21 if (K = Kj) ∧ (v ∈ Jtj � `KL):
22 if T[K, v] 6= ⊥:
23 bad3 ← true; abort |G3

24 if T[K, v] = ⊥:
25 T[K, v] $← D
26 return T[K, v]

Fig. 11: The security game G0,b
A,N for CTR+ in the random oracle model, and

games G1,b
A,N , G2,b

A,N , and G3,b
A,N . Adversary A can query the oracle Oenc at most

once for the same index j.

The theorem follows by combining the bounds in (2), (6), (8) for both b = 0
and b = 1 and the fact that game G3,b

A,N is independent of the bit b.

Counter Mode with Tag Prefix We have the following security statement
on CTR‖. Note it is slightly better than the one for CTR+.

Theorem 6. Suppose N ≤ min
{
|K|1/2

, (|T | /2)1/(1+δ)}, for some 1/N ≤ δ ≤
1, and suppose that F is modeled as a random oracle (using oracle F). Then for
any adversary A against N-instance uniform-tag indistinguishability of CTR‖
that poses at most q queries to F and no decapsulation queries we have:

Advu-miot-ind
CTR‖,A,N ≤

1
3
N

|K|
+ 1
|T |

+ 2q
|K|

(
1 + 1

δ

)
.

Proof. We refer to Figure 12 for the definition of the games G0,b
A,N , G1,b

A,N , G2,b
A,N

and G3,b
A,N . Except for some bookkeeping, game G0,b

A,N is equivalent to the security
game U-MIOT-INDbA,N , with b ∈ {0, 1}.

Game G1. Game G1,b
A,N is equivalent to G0,b

A,N , except when any three keys collide.
By the generalized birthday bound, and since N2/ |K| ≤ 1, we obtain

|Pr[G0,b
A,N]− Pr[G1,b

A,N]| ≤ Pr[bad1] ≤ 1
6
N3

|K|2
≤ 1

6
N

|K|
. (9)

Game G2. In game G2,b
A,N we abort when two events occur simultaneously: a key

2-collision and collision of the corresponding tags. The probability to abort

is by the generalized birthday bound, the independence of the two events,
and the condition N2/ |K| ≤ 1:

|Pr[G1,b
A,N]− Pr[G2,b

A,N]| ≤ Pr[bad2] ≤ N2

2 |K|
1
|T |
≤ 1

2
1
|T |

. (10)

Game G3. Game G3,b
A,N is equivalent to G2,b

A,N , with the exception that the game
raises flag bad3 in line 16 if some specific condition is met. To get an upper
bound on the probability to distinguish G2,b

A,N and G3,b
A,N we compute the

probability that the adversary explicitly queries F for an input (K, v‖JiKL)
such that for some j ∈ [1 .. N], K = Kj and v = tj . This leads to the equation:

|Pr[G2,b
A,N]− Pr[G3,b

A,N]| ≤ Pr[bad3] ≤ q

|K|

(
1
δ

+ 1
)
. (11)

Fix a query (K, v‖JiKL) to F. Since the adversary knows all possible values
of v used by Oenc after each call, the adversary must only guess the key.
Assume that there are at most mcoll keys that use the same tag value v. Then
the probability that flag bad3 is triggered during this query is in the worst
case mcoll/ |T |. We compute the probability of this event as follows.

Pr[∃j ∈ [1 .. N] : v = tj ∧K = Kj]

=
N∑
i=1

Pr[∃j ∈ [1 .. N] : v = tj ∧K = Kj | mcoll = i] · Pr[mcoll = i]

≤
N∑
i=1

i

|K|
· Pr[mcoll = i] = 1

|K|
·
N∑
i=1

Pr[mcoll ≥ i] . (12)

The last equality follows since the expected value of any random variable m
with values in N can be written as

∑∞
i=0 iPr[m = i] =

∑∞
i=1 Pr[m ≥ i].

Now we estimate the probability Pr[mcoll ≤ i]. Assume that i ≥ 1/δ. Then
from the generalized birthday bound and the condition N ≤ (|T | /2)1/(1+δ)

we can write:

Pr[mcoll ≥ i+ 1] ≤ N i+1

(i+ 1)! |T |i
≤
(
N1+δ

|T |

)i
≤ 1

2i .

Considering this observation we split the sum in Equation (12) into

1
|K|
·
N∑
i=1

Pr[mcoll ≥ i] ≤
1
|K|

(b1/δc∑
i=1

Pr[mcoll ≥ i] +
∞∑

i=b1/δc+1

1
2i−1

)

≤ 1
|K|

(
1
δ

+ 1
)
.

Since mcoll is constant for all queries to F, a union bound yields our claim:

Pr[bad3] ≤ q

|K|

(
1
δ

+ 1
)
.

Game G0,b
A,N – Game G3,b

A,N

00 for all j ∈ [1 .. N]:
01 (Kj , tj) $← K× T
02 if Coll3[K1, . . . , KN]:
03 bad1 ← true; abort |G1

04 if ∃(j1, j2) ∈ [1 .. N]2 s.t.
(Kj1 = Kj2) ∧ (tj1 = tj2):

05 bad2 ← true; abort |G2

06 b′ $← A
07 return b′

Oracle Oenc(j, m0, m1)
08 (v1, . . . , vl)← mb

09 for all i ∈ [1 .. l]:
10 wi ← vi ⊕ F(Kj , tj‖JiKL)
11 c← (w1, . . . , wl)
12 return (tj , c)

Oracle F(K, v‖JiKL)
13 for all j ∈ [1 .. N]:
14 if (K = Kj) ∧ (v = tj):
15 if T[K, v‖JiKL] 6= ⊥:
16 bad3 ← true; abort |G3

17 if T[K, v‖JiKL] = ⊥:
18 T[K, v‖JiKL] $← D
19 return T[K, v‖JiKL]

Fig. 12: The security game G0,b
A,N for CTR‖ in the random oracle model, and

games G1,b
A,N , G2,b

A,N , and G3,b
A,N . Adversary A can query the oracle Oenc at most

once for the same index j.

The theorem follows by combining the bounds in (9), (10), (11) for both b = 0
and b = 1 and the fact that game G3,b

A,N is independent of b.

Adversary AN,`

00 v0
$← B

01 m0 ← v0‖ . . . ‖v0
02 for all j ∈ [1 .. N]:
03 for all i ∈ [1 .. `]:
04 vj

i
$← B

05 mj
1 ← vj

1‖ . . . ‖vj
`

06 cj ← Oenc(m0, mj
1)

07 (wj
1, . . . , wj

`)← cj

08 if Coll2[wj
1, . . . , wj

`]:
09 return 1
10 return 0

Fig. 13: Definition of adversary AN,` against U-MIOT-IND security of CTR+
instantiated with a permutation F (K, ·). In line 01 message m0 is made of `
identical blocks.

6.3 On the Security of Permutation-Based Counter Mode

In above Theorem 5 we assessed the security of the CTR+ ADEM, defined
with respect to a function F : K × B → D. The analysis modeled F as an ideal
random function and showed that using sets K and B of moderate size (e.g., of
cardinality 2128) is sufficient to let CTR+ achieve security. We next show that if

F is instead instantiated with a blockcipher and modeled as an ideal family of
permutations, then the minimum cardinality of B = D for achieving security is
considerably increased (e.g., to values around 2256).

Our argument involves the analysis of a U-MIOT-IND adversary A that is
specified in Figure 13. Effectively, the idea of the attack is exploiting the tightness
gap of the PRP/PRF switching lemma [5] via the multi-instance setting. More
concretely, the adversary repeats the following multiple times (once for each
instance): It asks either for the encapsulation of a message comprised of identical
blocks, or for the encapsulation of a message consisting of uniformly-generated
blocks. The adversary outputs 1 if any two blocks that form the ciphertext
collide. If the ciphertext is the encapsulation of the identical-block message then
the adversary does not find a collision, since F (K, ·) is a permutation for each
key K ∈ K and is evaluated on distinct input values. Otherwise the ciphertext
blocks are random, and one can thus find a collision.

The theorem uses the technical condition that N`(`−1)/ |T | ≤ 4, where ` is a
parameter that determines the length of the encapsulated messages, measured in
blocks. Note that adversaries that could process values N, ` that are too large to
fulfill this bound will reach at least the same advantage as adversaries considered
by the theorem, simply by refraining from posing queries. The stated lower-bound
is roughly N`2/ |T | and effectively induced by N applications of the PRP/PRF
switching lemma. Note that if the above condition is met with equality, the
adversary’s advantage is at least 1/2. Further, if |T | = |B| = 2128, ` = 240 (this
corresponds to a message length of 16 terabytes) and we have N = 248 instances,
the success probability of A is about 1/8, or larger.

Theorem 7. Consider CTR+ instantiated with a family of permutations F (K, ·)
over B, and let N ≥ 2. Assume moreover that N`(`− 1) ≤ 4 · |T |. Then for the
adversary A in Figure 13 it holds:

Advu-miot-ind
CTR+,A,N ≥

N`(`− 1)
8 · |T | .

The adversary has a running time of O(N` log `), makes N queries to Oenc for
messages of length at most ` and makes no Odec queries.

Proof. We start with the analysis of the running time of A: It is predominantly
determined by the search for collisions among ` blocks for each of the N iterations
of the main loop, hence the bound of O(N` log `) on the time. We now compute
the probability that the adversary outputs 1 depending on the game bit b.
Case U-MIOT-IND0. For each instance j ∈ [1 .. N] the adversary obtains an
encapsulation of a sequence of identical blocks. All blocks composing cj must be
distinct, since for each key K, function F (K, ·) is a permutation over B. Therefore
the output of this game is always 0 and we have Pr[U-MIOT-IND0

A,N] = 0.

Case U-MIOT-IND1. Let p be the probability that there is a collision between `
random variables that are uniformly distributed in the set B. We show that
for each j ∈ [1 .. N] the probability of A to output 1 when running the j-th

iteration of the loop is p. From the definition of Oenc we can write wji =
vji ⊕ F (Kj , Jtj + iKL) for each i ∈ [1 .. `], where Kj and tj are the key-tag pairs
generated by the game U-MIOT-IND1

A,N . The elements vj1, . . . , v
j
` are generated

uniformly in B and independently of Kj , tj , their index, and from each other.
Hence the elements wj1, . . . , w

j
` are also uniformly distributed in B and mutually

independent, even in the presence of colliding keys among K1, . . . ,KN . Since
all blocks vji with i ∈ [1 .. `] and j ∈ [1 .. N] are independently random, the
probability that the adversary outputs 1 is:

Pr[U-MIOT-IND1
A,N] = 1− (1− p)N . (13)

Since `(` − 1) ≤ 2 |B| = 2 |T | by our hypotheses we can use the birthday
bound to bound the probability p as p ≥ `(` − 1)/(4 · |B|). With some simple
algebra, and since N`(`− 1) ≤ 4 |T | = 4 |B|, we can bound Equation (13) as:

Pr[U-MIOT-IND1
A,N] ≥ min

{
1
2 ,
Np

2

}
≥ N`(`− 1)

8 · |B| = N`(`− 1)
8 · |T | .

7 ADEMs Secure Against Active Adversaries

In the preceding section we proposed two ADEMs and proved them multi-
instance secure against passive adversaries. However, the constructions are based
on counter mode encryption and obviously vulnerable in settings with active
adversaries that manipulate ciphertexts on the wire. In this section we alleviate
the situation by constructing ADEMs that remain secure in the presence of active
attacks. Concretely, in line with the encrypt-then-MAC approach [6], we show
that an ADEM that is secure against active adversaries can be built from one that
is secure against passive adversaries by tamper-protecting its ciphertexts using
a message authentication code (MAC). More precisely, with the goal of tightly
achieving multi-instance security, we use an augmented message authentication
code6 (AMAC) where the generation and verification algorithms depend on an
auxiliary input: the tag. In the combined construction, the same tag is used
for both ADEM and AMAC. As before, using KEM ciphertexts as tags is a
reasonable choice. We conclude the section by constructing a (tightly) secure
AMAC based on a hash function.

7.1 Augmented Message Authentication

Augmented message authentication. An augmented message authentication
code AMAC = (M.mac,M.vrf) for a message spaceM is a pair of deterministic
algorithms associated with a finite key space K, a tag space T , and a code space C.
The algorithm M.mac takes a key K ∈ K, a tag t ∈ T , and a message m ∈ M,
and outputs a code c ∈ C. The verification algorithm M.vrf takes a key K ∈ K,
a tag t ∈ T , a message m ∈ M, and a code c ∈ C, and outputs either true

or false. The correctness requirement is that for all K ∈ K, t ∈ T , m ∈M and
c ∈ [M.mac(K, t,m)] we have M.vrf(K, t,m, c) = true.
Augmented message authentication with nonces. We give a game-based
authenticity model for AMACs.13 In our model, for each of a total of N inde-
pendent keys the adversary can request one MAC code computation but many
verifications. The restriction is that for each key the MAC query has to precede
all verification queries, and that always the same tag is used. Further, in line with
the definition of nonce-based security for ADEMs, we require the tag provided
in each MAC computation request to be unique (across all instances). We for-
malize the corresponding security notion of (strong) nonce-based multi-instance
one-time unforgeability for AMACs via the game specified in Figure 14. For a
scheme AMAC, to any adversary A and any number of instances N we associate
the advantage Advn-miot-uf

AMAC,A,N := Pr[N-MIOT-UFA,N].

Game N-MIOT-UFA,N

00 forged← 0
01 T ← ∅
02 for all j ∈ [1 .. N]:
03 Kj

$← K
04 Cj ← ∅
05 run A
06 return forged

Oracle Omac(j, t, m)
07 if Cj 6= ∅: return ⊥
08 if t ∈ T : return ⊥
09 T ← T ∪ {t}; tj ← t
10 c← M.mac(Kj , tj , m)
11 Cj ← Cj ∪ {(m, c)}
12 return c

Oracle Ovrf(j, m, c)
13 if Cj = ∅: return ⊥
14 if (m, c) ∈ Cj : return ⊥
15 if M.vrf(Kj , tj , m, c):
16 forged← 1
17 return true
18 return false

Fig. 14: AMAC security game N-MIOT-UFA,N , modeling nonce-based multi-
instance one-time unforgeability for N instances. The tags in line 15 are the same
as the ones in line 10.

7.2 The ADEM-Then-AMAC Construction

Let ADEM and AMAC be an ADEM and an AMAC, respectively. Following
the generic encrypt-then-MAC [6] composition technique, and assuming ADEM
is secure against passive adversaries, we combine the two schemes to obtain
the augmented data-encapsulation mechanism ADEM′, which we prove secure
against active adversaries. More formally, if ADEM = (A.enc,A.dec) and AMAC =
(M.mac,M.vrf) have key spaces Kdem and Kmac, respectively, then the key space
of ADEM′ is Kdem ×Kmac, and its algorithms are as in Figure 15. Note that the
13 In principle we could give two security definitions: one using uniform tags and one

using nonce tags. In this paper we formalize only the latter, not the former, for mainly
two reasons: (a) the nonce-based notion is not required for our results; (b) in the
nonce setting it is not clear how to prove a result similar to the one of Theorem 8. The
reason for (b) is that to simulate an encapsulation query for a U-MIOT-IND adversary
using an AMAC oracle one must specify the tag that is also used to generate the
DEM ciphertext, but this is only given as an output of the AMAC oracle.

tag space is the same for all three schemes (and that the message spaces have to
be sufficiently compatible to each other).

Proc A.enc′(K, t, m)
00 (Kdem, Kmac)← K
01 cdem ← A.enc(Kdem, t, m)
02 cmac ← M.mac(Kmac, t, cdem)
03 c← (cdem, cmac)
04 return c

Proc A.dec′(K, t, c)
05 (Kdem, Kmac)← K
06 (cdem, cmac)← c
07 if M.vrf(Kmac, t, cdem, cmac):
08 m← A.dec(Kdem, t, cdem)
09 return m
10 return ⊥

Fig. 15: Construction of ADEM′ from ADEM and AMAC.

The proof of the following theorem can be found in the full version [14].

Theorem 8. Let ADEM′ be constructed from ADEM and AMAC as described.
Then for any number of instances N and any ADEM adversary A that poses at
most Qd-many Odec queries, there exist an AMAC adversary B and an ADEM
adversary C such that

Advn-miot-ind
ADEM′,A,N ≤ 2Advn-miot-uf

AMAC,B,N + Advn-miot-ind
ADEM,C,N .

The running time of B is at most that of A plus the time required to run N -many
ADEM encapsulations and Qd-many ADEM decapsulations. The running time
of C is the same as the running time of A. Moreover, B poses at most Qd-many
Ovrf queries, and C poses no Odec query.

7.3 A Multi-Instance Secure AMAC

A random oracle directly implies a multi-instance secure AMAC, with a straight-
forward construction: the MAC code of a message is computed by concatenating
key, tag, and message, and hashing the result. We formalize this as follows. Let T
be a tag space andM a message space. Let K and C be arbitrary finite sets. Let
H : K × T ×M→ C be a hash function. Define function M.mac and a predicate
M.vrf such that for all K, t,m, c we have M.mac(K, t,m) = H(K, t,m), and
M.vrf(K, t,m, c) = true iff H(K, t,m) = c. Let finally AMAC = (M.mac,M.vrf).

Note that hash functions based on the Merkle–Damgård design, like SHA256,
do not serve directly as random oracles due to generic length-extension attacks [10],
and indeed the ADEM′ scheme from Figure 15 is not secure if its AMAC is derived
from such a function. Fortunately, Merkle–Damgård hashing can be modified to
achieve indifferentiability from a random oracle [10]. Further, more recent hash
functions like SHA3 are naturally resilient against length-extension attacks.

The proof of the following theorem can be found in the full version [14].

Theorem 9. Let K, T ,M, C and AMAC = (M.mac,M.vrf) be as above. If H
behaves like a (non-programmable) random oracle, for any number of instances N
and any adversary A we obtain

Advn-miot-uf
AMAC,A,N ≤

q

|K|
+
(

1
|K|

+ 1
|C|

)
Qv ,

where q is the number of direct calls to the random oracle by the adversary,
and Qv is the number of calls to the oracle Ovrf. Note that the bound does not
depend on the number of Omac queries.

Acknowledgments

We are grateful to Krzysztof Pietrzak and the anonymous reviewers for their
valuable comments. The authors were partially supported by ERC Project ERCC
(FP7/615074) and by DFG SPP 1736 Big Data.

References

1. Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based en-
cryption with almost tight security. In: Iwata, T., Cheon, J.H. (eds.) Advances in
Cryptology – ASIACRYPT 2015, Part I. Lecture Notes in Computer Science, vol.
9452, pp. 521–549. Springer, Heidelberg (Nov / Dec 2015)

2. Bellare, M.: New proofs for NMAC and HMAC: Security without collision resistance.
Journal of Cryptology 28(4), 844–878 (Oct 2015)

3. Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC and
its multi-user security. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryptology
– EUROCRYPT 2016, Part I. Lecture Notes in Computer Science, vol. 9665, pp.
566–595. Springer, Heidelberg (May 2016)

4. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
Security proofs and improvements. In: Preneel, B. (ed.) Advances in Cryptology –
EUROCRYPT 2000. Lecture Notes in Computer Science, vol. 1807, pp. 259–274.
Springer, Heidelberg (May 2000)

5. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y. (ed.) Advances in Cryptology – CRYPTO’94. Lecture Notes in Com-
puter Science, vol. 839, pp. 341–358. Springer, Heidelberg (Aug 1994)

6. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) Advances
in Cryptology – ASIACRYPT 2000. Lecture Notes in Computer Science, vol. 1976,
pp. 531–545. Springer, Heidelberg (Dec 2000)

7. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption:
AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology –
CRYPTO 2016, Part I. Lecture Notes in Computer Science, vol. 9814, pp. 247–276.
Springer, Heidelberg (Aug 2016)

8. Chatterjee, S., Koblitz, N., Menezes, A., Sarkar, P.: Another look at tightness II:
Practical issues in cryptography. Cryptology ePrint Archive, Report 2016/360
(2016)

9. Cogliani, S., Maimuţ, D.S., Naccache, D., do Canto, R.P., Reyhanitabar, R., Vaude-
nay, S., Vizár, D.: OMD: A compression function mode of operation for authenticated
encryption. In: Joux, A., Youssef, A.M. (eds.) SAC 2014: 21st Annual International
Workshop on Selected Areas in Cryptography. Lecture Notes in Computer Science,
vol. 8781, pp. 112–128. Springer, Heidelberg (Aug 2014)

10. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited:
How to construct a hash function. In: Shoup, V. (ed.) Advances in Cryptology
– CRYPTO 2005. Lecture Notes in Computer Science, vol. 3621, pp. 430–448.
Springer, Heidelberg (Aug 2005)

11. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

12. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryptology – EURO-
CRYPT 2016, Part I. Lecture Notes in Computer Science, vol. 9665, pp. 1–27.
Springer, Heidelberg (May 2016)

13. Gazi, P., Pietrzak, K., Tessaro, S.: Generic security of NMAC and HMAC with
input whitening. In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology – ASI-
ACRYPT 2015, Part II. Lecture Notes in Computer Science, vol. 9453, pp. 85–109.
Springer, Heidelberg (Nov / Dec 2015)

14. Giacon, F., Heuer, F., Poettering, B.: Hybrid encryption in a multi-user setting,
revisited. Cryptology ePrint Archive, Report 2017/843 (2017)

15. Gong, J., Chen, J., Dong, X., Cao, Z., Tang, S.: Extended nested dual system
groups, revisited. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.)
PKC 2016: 19th International Conference on Theory and Practice of Public Key
Cryptography, Part I. Lecture Notes in Computer Science, vol. 9614, pp. 133–163.
Springer, Heidelberg (Mar 2016)

16. Herranz, J., Hofheinz, D., Kiltz, E.: Some (in)sufficient conditions for secure hybrid
encryption. Inf. Comput. 208(11), 1243–1257 (2010)

17. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012.
Lecture Notes in Computer Science, vol. 7417, pp. 590–607. Springer, Heidelberg
(Aug 2012)

18. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) Advances in Cryptology – CRYPTO 2007. Lecture Notes in
Computer Science, vol. 4622, pp. 553–571. Springer, Heidelberg (Aug 2007)

19. Libert, B., Joye, M., Yung, M., Peters, T.: Concise multi-challenge CCA-secure
encryption and signatures with almost tight security. In: Sarkar, P., Iwata, T. (eds.)
Advances in Cryptology – ASIACRYPT 2014, Part II. Lecture Notes in Computer
Science, vol. 8874, pp. 1–21. Springer, Heidelberg (Dec 2014)

20. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans - tightly
secure constant-size simulation-sound QA-NIZK proofs and applications. In: Iwata,
T., Cheon, J.H. (eds.) Advances in Cryptology – ASIACRYPT 2015, Part I. Lecture
Notes in Computer Science, vol. 9452, pp. 681–707. Springer, Heidelberg (Nov / Dec
2015)

21. Patarin, J.: Security in O(2n) for the xor of two random permutations—proof with
the standard H technique. Cryptology ePrint Archive, Report 2013/368 (2013)

22. Zaverucha, G.: Hybrid encryption in the multi-user setting. Cryptology ePrint
Archive, Report 2012/159 (2012)

	 Hybrid Encryption in a Multi-User Setting, Revisited

