Reducing Depth in Constrained PRFs: From
Bit-Fixing to NC'*

Nishanth Chandran!** Srinivasan Raghuraman®*** Dhinakaran
Vinayagamurthy?

1 Microsoft Research, India
2 CSAIL, Massachusetts Institute of Technology
3 University of Waterloo

Abstract. The candidate construction of multilinear maps by Garg,
Gentry, and Halevi (Eurocrypt 2013) has lead to an explosion of new
cryptographic constructions ranging from attribute-based encryption
(ABE) for arbitrary polynomial size circuits, to program obfuscation,
and to constrained pseudorandom functions (PRFs). Many of these con-
structions require x-linear maps for large . In this work, we focus on
the reduction of x in certain constructions of access control primitives
that are based on k-linear maps; in particular, we consider the case of
constrained PRFs and ABE. We construct the following objects:

— A constrained PRF for arbitrary circuit predicates based on (n +
Lor — 1)—linear maps (where n is the input length and for denotes
the OR-depth of the circuit).

— For circuits with a specific structure, we also show how to construct
such PRF's based on (n+ £fanp — 1)—linear maps (where £anp denotes
the AND-depth of the circuit).

We then give a black-box construction of a constrained PRF for NC*
predicates, from any bit-fixing constrained PRF that fixes only one
of the input bits to 1; we only require that the bit-fixing PRF have
certain key homomorphic properties. This construction is of independent
interest as it sheds light on the hardness of constructing constrained
PRF's even for “simple” predicates such as bit-fixing predicates.

Instantiating this construction with the bit-fixing constrained PRF from
Boneh and Waters (Asiacrypt 2013) gives us a constrained PRF for
NC! predicates that is based only on n-linear maps, with no dependence
on the predicate. In contrast, the previous constructions of constrained
PRFs (Boneh and Waters, Asiacrypt 2013) required (n + ¢ + 1)—linear
maps for circuit predicates (where £ is the total depth of the circuit)
and n-linear maps even for bit-fixing predicates.

* Research done while all authors were at Microsoft Research, India
** Email: nichandr@microsoft.com.
*** Email: srirag@mit.edul
T Email: dvinayag@uwaterloo.edu.

mailto:nichandr@microsoft.com
mailto:srirag@mit.edu
mailto:dvinayag@uwaterloo.edu

We also show how to extend our techniques to obtain a similar
improvement in the case of ABE and construct ABE for arbitrary
circuits based on (for + 1)—linear (respectively ({anp + 1)—linear) maps.

1 Introduction

The breakthrough work on multilinear maps [GGHI3a] has found tremendous
applications in various areas of cryptography. It has lead to attribute-based
encryption (ABE) for all polynomial size circuits |[GGH™13c|, indistinguisha-
bility obfuscation and functional encryption for general circuits [GGH™13b],
constrained pseudorandom functions [BW13|], and so on. Many of these con-
structions require k-linear maps for large k. Larger leads to more inefficient
schemes and stronger hardness assumptions. In this work, we are interested in
exploring the reduction of in such constructions — specifically, we consider the
case of constrained PRFs and ABE.

Constrained Pseudorandom Functions. A pseudorandom function (PRF) is a
keyed function, Fy(zx), that is computationally indistinguishable from a truly
random function, even to an adversary who has oracle access to the func-
tion (but has no knowledge about the key k). Constrained PRFs (introduced
in [BWIBIBGIT4/KPTZ13]), allow the owner of k to give out a constrained key
kg, for a predicate f, such that any user who has k; can evaluate Fy(z) iff
f(x) = 1. The security requirement on all points x, such that f(z) = 0 is the
same as that of standard PRFs.

Boneh and Waters [BW13] show how to construct constrained PRFs for
bit-fixing predicates using an n—linear map (where n is the input length to
the PRF), and also how to construct constrained PRFs for arbitrary circuit
predicates using an (n-+¢+1)—linear map (where ¢ is the total depth of the circuit
predicate). Constrained PRFs can be used to construct broadcast encryption
with small ciphertext length, identity-based key exchange, and policy-based key
distribution.

Attribute Based Encryption. Attribute based encryption (ABE) [SW05] allows
a more fine-grained access policy to be embedded into public-key encryption.
In more detail, in ABE schemes, there is a master authority who owns sk and
publishes public parameters as well as a relation R(z,y). A user who encrypts
a message m, creates a ciphertext under some string x (that can specify some
policy), to obtain Encpi(m,x). The master authority can give a user a secret
key sk,. Now, this user can use sk, to decrypt Enc,i(m,x) and obtain m iff
R(z,y) = 1; otherwise, the user obtains no information about m. ABE, for the
class of relations R € NC' can be constructed based on bilinear maps [GPSW06].
Recently, the work of |[GGH™13c| shows how to construct ABE for arbitrary
circuits based on (¢ + 1)—linear maps (where ¢ is the depth of the relation R
when expressed as a boolean circuit), while [GVWT3] also show how to construct
ABE for arbitrary circuits based on the Learning with Errors (LWE) hardness
problem.

1.1 Owur Results

In this work, we show the following results:

— We construct constrained PRFs for arbitrary circuit predicates using an
(n + for — 1)—linear map, where n is the input length to the PRF and
Lor denotes the OR-depth of the constraint f when expressed as a boolean
circuit (informally, the OR~depth of a circuit is defined to be the maximum
number of OR gates from input wires to the output wire along any path in
the circuit). We believe that the reduction in linearity is important even in
cases when it is not an asymptotic improvement as lower linearity results in
a weaker hardness assumption.

— Next, we construct constrained PRFs for circuit predicates using an (n +
fanp — 1)—linear map, where £anp denotes the AND-depth of the constraint
f (informally, the AND-depth of a circuit is defined to be the maximum
number of AND gates from input wires to the output wire along any path in
the circuit). Although in this construction, we require the circuit to be of a
specific structure, we show that for several circuits, our construction reduces
the number of levels of multilinear map needed.

— Then, we show (in a black-box manner) how to convert any bit-fixing con-

strained PRF that fixes only one bi to 1 into a constrained PRF for NC!
circuits; we only require that the bit-fixing PRF have certain additive key-
homomorphic properties. We believe this construction to be of independent
interest as the only known (non-trivial) constructions of constrained PRFs
are based on multilinear maps.
By instantiating this construction with the bit-fixing constrained PRF of
Boneh and Waters [BW13], we obtain a constrained PRF for all predicates
f € NC' using an n—linear map. In particular, the number of levels in our
construction has no dependence on f.

— Finally, we show how to extend our techniques to construct ABE schemes
from lesser levels of multi-linear maps.

Similar to [BW13], all our constructions are based on the xk-Multilinear Deci-
sional Diffie-Hellman (xk-MDDH) assumption and achieve selective security (i.e.,
the adversary must commit to the challenge query at the beginning of the se-
curity game); as in [BWI3|, we can achieve standard security via complexity
leveraging. We remark that our techniques can be extended to the construc-
tions of verifiable constrained PRFs [Fucl4/CRV14], thereby leading to a similar
lowering of «.

Other related works. The work of [FKPR14] considers the prefix-fixing con-
strained PRF from the classical GGM construction [GGMSG], and shows how
to avoid an exponential (in n) loss in security when going from selective secu-
rity to adaptive security. Their work also shows that any “simple”’ reduction,

4 By symmetry, we can also start with a bit-fixing constrained PRF that fixes only
one bit to 0.

that proves full security of the bit-fixing constrained PRF of [BW13], from a
non-interactive hardness assumption, must incur an exponential security loss.
The work of [HKKW14] shows how to construct adaptively secure constrained
PRFs for circuits from indistinguishability obfuscation in the random oracle
model. More recently, key-homomorphic constrained PRFs were constructed
in [BVISIBFP™15|. Similar to us, Banerjee et al. [BEPT15] also observe that
[BW13] is “key-homomorphic”.

Security of multilinear maps. After the initial work of Garg et al. [GGHI13al,
Coron, Lepoint and Tibouchi proposed a multilinear maps construction over the
integers [CLT13] also based on ideal lattices. But, Cheon, Han, Lee, Ryu and
Stehlé [CHL™15] proposed an attack which completely broke the CLT scheme
by recovering the secret parameters of the scheme in polynomial time. Coron et
al. [CLT15] proposed another candidate construction. This was broken recently
by Cheon et al. [CLRI5] and Minaud et al. [MFI5]. Hu and Jia [HJ15] also
recently showed that the k-MDDH assumption in [GGH13a] does not hold when
encodings of zero are provided. Independent of these, Gentry, Gorbunov and
Halevi [GGHI5] proposed a multilinear maps construction based on random
lattices but with the map defined with respect to a directed acyclic graph.

We do not rely on the security of any specific multilinear maps scheme.
Since we do not give low-level encodings of zero in our construction, any
scheme [GGH13aJCLT13ICLT15] which is secure under the ~~-MDDH assumption
can be used to instantiate our constructions.

1.2 Our Techniques

Our starting point is the constrained PRF construction of [BW13] for arbitrary
circuit predicates. We first view this construction differently as follows. Let the
PRF in [BW13] be denoted by PRF, i¢(u,x), where u is the key of the PRF,
x, an n-bit string, is the input to the PRF, and PRF,, denotes that the PRF
output is at the (n+ £)—level of the multilinear map (where ¢ denotes the depth
of the constraint f). Now, in order to give out a constrained key for f, we first
pick a random value r,, for every wire w in the circuit. Let j denote the depth of
this wire in the circuit. Now, for a given a such that f(z) = 1, the idea is to give
a key that will enable the user to compute PRF, 4 ;(r,,x) for all wires w in the
circuit that evaluate to 1 on . Doing this inductively will allow the compution of
PRF, +¢(u, x). Let w be an output to some gate in the circuit and let A(w), B(w)
be the input wires corresponding to this gate. If this gate is an AND (respectively
OR) gate, we give a key, that will allow a user to compute PRF,,;(ry,z) from
the values PRF,, 1 j_1(7a(w),) AND (respectively OR) PRF,1;_1(7B(w), T)-

Free AND construction. Our first observation is that for AND gates, one must be
able to compute the PRF value corresponding to w wire iff one has the PRF val-
ues corresponding to both A(w) and B(w). Now, suppose the PRF under consid-
eration is “additively homomorphic” in some sense. Then, we observe that given
PRF, 1 j—1(TA(w),®) and PRF,, ;1 (7B(w),), one can compute PRF, 1 j 1 (7, x),

without the need for additional keys and without jumping a level in the multi-
linear map as long as we set r4(,) and rp(,) to be random additive shares of
7. Now, this ensures that AND gates are “free” in the circuit. The OR gates
are handled exactly as in the case of [BW13]. This leads to a construction that
only makes use of a (n + for — 1)—linear map.

While this is the main change made to the construction, the proof of security
now requires attention. At a very high level, [BWI3] could embed a part of the
“hard problem” from the hardness assumption at every layer of the circuit as
they give out keys for all gates in the circuits. In our case, we do not have that
luxury. In particular, since we do not give any keys for AND gates, the structure
of the hard problem may be distorted after multiple evaluations of AND gates.
In order to overcome this, we must carefully give out the keys at OR levels to
“reset” the problem to be of our preferred form. This enables us to then prove
security.

Free OR construction. Now, suppose we turn our attention towards the OR
gates alone. Note, that one must be able to compute the PRF value corre-
sponding to wire w iff one has the PRF values corresponding to either A(w) or
B(w). Now, suppose we set 1, = 74(w) = I'B(w), then this enables the computa-
tion of PRF,,4;j_1(7w,) from either PRF, ;;_1(ra(w),z) or PRF, ;i 1(rBew),),
without the need for additional keys and without jumping a level in the multi-
linear map. However, doing this naively would lead to a similar “backtracking
attack” as the attack described by |[GGH13c| in the context of ABE. In more
detail, note that if A(w) = 0 and B(w) = 1, one can indeed (rightly) compute
PRF, 1 j_1(rw,) from PRF, ;1 (rB(w),) as both B(w) and w are 1. However,
this also enables the (unauthorized) computation of PRF,,;_1(74¢w),), and if
this wire had a fan-out greater than 1, this would lead to an attack on the secu-
rity of the PRF. Here, we show that if the circuit had a specific structure, then
such a construction can still be made to work. We show that several circuits can
be converted to this form (with a polynomial blowup) that results in a reduction
in the number of multilinear levels needed. We remark that for the construction
(and proof) to succeed, one must carefully select the random key values on the
circuit for the constrained key , starting backwards, from the output wire in the
circuit.

NC! construction. While we obtain our construction of constrained PRF for
NC! circuits by combining the above two techniques, we note that the proof of
security is tricky and requires the simulator to carefully set the random keys in
the simulation. In particular, let * be the challenge input to the PRF. Now,
suppose, the simulator must give out a constrained key for a circuit f such that
f(z*) = 0. The simulator must choose all the random keys of the PRFs on
each wire in such a way that for all wires that evaluate to 1 on x*, the key is
either chosen randomly by the simulator or can be computed from values that
are chosen randomly by the simulator. We show that this can be indeed done by
the simulator, thus resulting in the proof of security.

We then show how to generalize this construction to obtain a constrained
PRF for NC! circuits from any constrained PRF for bit-fixing predicates
that fixes only one bit and has certain additively homomorphic properties. We
believe this construction to be of independent interest as till date, constrained
PRFs for any non-trivial predicate, are known only based on multilinear maps.

Finally, we show how to extend our Free AND/OR techniques to the case of
ABE. This gives an ABE based on (¢or + 1)—linear and ({anp + 1) —linear maps
respectively, improving upon the (£+ 1)—linear map construction of [GGH™13c].

1.3 Organization

In Section[2] we define constrained PRFs and ABE as well as state the hardness
assumption that we make. We also present circuit notation that is used in the rest
of the paper. In Section 3] we describe our (n+£¢or —1)—linear map construction
of constrained PRF for arbitrary circuits. We outline our (n + fanp — 1)—linear
map construction in Section [d] We present our n—linear map construction of
constrained PRF for NC! circuits in Section [5 and the black-box construction
of constrained PRF for NC* circuits from bit-fixing constrained PRFs in Section
[6l We show how to extend our results to the setting of ABE in the full version
of this paper [CRV15].

2 Preliminaries

2.1 Definitions

Constrained Pseudorandom Functions. A pseudorandom function (PRF) F' : Kx
X —), is a deterministic polynomial (in security parameter A) time algorithm,
that on input a key k& € K and an input = € X, outputs F(k,z) € Y. F has a
setup algorithm Setup(1%) that on input A, outputs a key k € K.

Definition 1. A PRF F : K x X — Y s said to be constrained with respect
to a set system S C X if there is an additional key space K., and there exist
algorithms (F.Constrain, F.Evaluate) such that

— F.Constrain(k,S) is a randomized polynomial time algorithm that takes as
input a PRF key k € K and the description of a set S € S. It outputs
a constrained key ks € K. which enables the evaluation of F(k,x) for all
x € S and no other x;

— F.Evaluate(kg,x) is a deterministic polynomial time algorithm that takes as
input a constrained key kg € K. and an input x € X. If kg is the output of
F.Constrain(k, S) for some k € K, then F.Evaluate(ks,z) outputs F(k,x) if
x € S and L otherwise, where L& Y. We will use the shorthand F(kg,x)
for F.Evaluate(kg,x).

The security of constrained PRFs informally states that given several con-
strained keys, as well as the output of the PRF on several points of the adver-
sary’s choice, the PRF looks random at all points that the adversary could not
have computed himself. Let F': L x X — Y be a constrained PRF with respect
to a set system S. Define two experiments Exp, and Exp;. For b € {0,1}, Exp,
proceeds as follows:

1. First, a random key k € K is chosen, and two sets C,V C X are initialized
to (). C will keep track of points on which the adversary will be challenged
and V will keep track of points on which the adversary can compute the
PRF himself. The experiments will maintain the invariant that C NV = ().

2. The adversary is given access to the following oracles:

— F.Constrain: Given a set S € S, if SN C = 0, the oracle returns
F.Constrain(k, S) and updates V < V U S; otherwise, it returns L.

— F.Evaluate: Given an input z € X, if ¢ C, the oracle returns F(k,x)
and updates V < V U z; otherwise, it returns L.

— Challenge: Given x € X where « ¢ V, if b = 0, the oracle returns F'(k, x);
if b = 1, the oracle returns a random (consistent) y € V. C is updated
as C < CUuz.

The adversary finally outputs a bit & € {0,1}.
4. For b € {0,1}, define W}, to be the event that that b’ = 1 in experiment Exp,.
The adversary’s advantage Adv 4 rs(A) is defined to be | Pr[Wy] — Pr[W1]|.

©w

Definition 2. A constrained PRF F : K x X — Y, is said to be secure, if for
all PPT adversaries A, we have that Adva ps(X), is negligible in .

Remark. When constructing constrained pseudorandom functions, it will be
more convenient to work with the definition where the adversary is allowed to
issue only a single challenge query. A standard hybrid argument shows that this
definition is equivalent to the one where an adversary is allowed to issue mul-
tiple challenge queries. A constrained PRF is selectively secure if the adversary
commits to this single challenge query at the beginning of the experiment.

Attribute-based Encryption. An attribute-based encryption (ABE) scheme has
the following algorithms:

— Setup(1*,n,¢): This algorithm takes as input the security parameter A, the
length n of input descriptors in the ciphertext, and a bound ¢ on the circuit
depth. It outputs the public parameters PP and the master secret key M SK.

— Encrypt(PP,z, M): This algorithm takes as input the public parameters,
x € {0,1}™ (representing the assignment of boolean variables) and a message
M. Tt outputs a ciphertext CT'.

— KeyGen(M SK, f): This algorithm takes as input the master secret key and
a circuit f. It outputs a secret key SK.

— Decrypt(SK,CT): This algorithm takes as input a secret key and ciphertext
and outputs either M or L.

The correctness of the ABE requires that for all messages M, for all z €
{0,1}™, for all depth ¢ circuits f, with f(x) = 1, if Encrypt(PP, z, M) outputs
CT, and KeyGen(M SK, f) outputs SK, where PP and M SK were obtained as
the output of Setup(1*,7,£), then Decrypt(SK,CT) = M. The security of an
ABE scheme is defined through the following game between a challenger Chall
and adversary Adv as described below:

— Setup. Chall runs Setup(1*, n, £) and gives PP to Adv; it keeps SK to itself.

— Phase 1. Adv makes any polynomial number of queries for circuit descrip-
tions f of its choice. Chall returns KeyGen(MSK, f).

— Challenge. Adv submits two equal length messages My and M; as well as
an x* € {0,1} such that for all f queried in Phase 1, f(z*) = 0. Chall flips
a bit b and returns CT* = Encrypt(PP, z*, M}) to Adv.

— Phase 2. Phase 1 is repeated with the restriction that f(z*) = 0 for all
queried f.

— Guess. Adv outputs a bit b’.

Definition 3. The advantage of Adv in the above game is defined to be | Pr[t/ =
b — %| An ABE for circuits is secure if for all PPT adversaries Adv, the advan-
tage of Adv is negligible in the security parameter \. An ABE scheme is said to
be selectively secure, if Adv commits to x* at the beginning of the security game.

2.2 Assumptions

Leveled multilinear groups. We assume the existence of a group generator G,
which takes as input a security paramter 1* and a positive integer x to indicate
the number of levels. G(1*, k) outputs a sequence of groups G = (Gq,...,G,)
each of large prime order p > 2*. In addition, we let g; be a canonical generator
of G; that is known from the group’s description. We let g = g;. We assume the
existence of a set of multilinear maps {e; ; : G; x G; = G, 4j[i,j > 1;i+j < k}.
The map e; ; satisfies the following relation: e; ;(g¢, g;?) = gf_fj,Va, b€ Z,. When
the context is obvious, we will drop the subscripts ¢,j. For example, we may
simply write e(gf,g?) = gﬁj. We define the s-Multilinear Decisional Diffie-
Hellman (k-MDDH) assumption [GGHI13a] as follows:

Assumption 21 (k-Multilinear Decisional Diffie-Hellman: k-MDDH) The -
Multilinear Decisional Diffie-Hellman (k-MDDH) problem is as follows: A
challenger Tuns G(1*, k) to generate groups and generators of order p. Then
it picks random ci,...,ch41 € Z,. The assumption states that given g =

g1, G, ..., g%+, it is hard to distinguish the element T = g,li_ljd”“] “

a random group element in G, with better than negligible advantage in \.

from

2.3 Circuit Notation

We will consider layered circuits, where a gate atE| depth j will receive both of its
inputs from wires at depth j—1. We also assume that all NOT gates are restricted

® When the term depth is used, it is synonymous to the notion of tot-depth described
ahead.

to the input level. Similar to [BW13], we restrict ourselves to monotonic circuits
where gates are either AND or OR gates of two inputsﬂ

Formally, our circuits will be a five tuple f = (n,q, A, B,GateType). We let
n be the number of inputs and ¢ be the number of gates. We define inputs = [n],
Wires = [n 4 ¢] and Gates = [n + ¢]\[n]. The wire n + ¢ is designated as the
output wire, outputwire. A : Gates — Wires\{outputwire} is a function where
A(w) identifies w’s first incoming wire and B : Gates — Wires\{outputwire} is a
function where B(w) identifies w’s second incoming wire. Finally, GateType :
Gates — {AND,OR} is a function that identifies a gate as either an AND
gate or an OR gate. We let w > B(w) > A(w). Also, define three functions:
tot-depth(w), AND-depth(w), and OR-depth(w) that are all 1, when w € inputs,
and in general are equal to the number of gates (respectively AND and OR gates)
on the shortest path to an input wire plus one. We let f(x) be the evaluation of
f on the input z € {0,1}", and f,,(x) be the value of the wire w on the input x.

3 A Free-AND Circuit-predicate Construction

We show how to construct a constrained PRF for arbitrary polynomial size
circuit predicates, without giving any keys for AND gates, based on kK =
(n + for — 1)—linear maps, where {or denotes the OR~depth of the circuit. The
starting point of our construction is the constrained PRF construction of [BW13]
which is based on the ABE for circuits [GGHT13c]. [BW13] works with layered
circuits. For ease of exposition, we assume a layered circuit where all gates in a
particular layer are of the same type (either AND or OR). Circuits have a single
output OR gate. Also a layer of gates is not followed by another layer of the
same type. We stress that these are only for the purposes of exposition and can
be removed as outlined later on in the section.

3.1 Construction

F Setup(1*,n, foRr):

The setup algorithm takes as input the security parameter A, the bit length, n,
of PRF inputs and for, the maximum OR—dept}ﬂ of the circuit. The algorithm
runs G(1*, k = n + for — 1) and outputs a sequence of groups G = (G, ..., G,)
of prime order p with canonical generators g1, ..., g,, where g = g;. It chooses
random exponents u € Z, and (d1,0,d1,1),---,(dn,0,dn1) € ZZQ) and computes
Dy g = g%ms for m € [n] and B € {0,1}. It then sets the key of the PRF as:

k= (vavgla cee 7gnvu7d1,07d1,17 .. '7dn,07dn,17D1,07D1,17 .. ~>Dn¢07Dn,1)

The PRF is F(k,x) = g Mmetn dm'zm, where z,, is the m'" bit of x € {0, 1}™.

5 These restrictions are mostly useful for exposition and do not impact functionality.
" We can define OR-depth of a circuit which is in our specified form as the number of
layers comprising of OR gates, plus 1.

F.Constrain(k, f = (n,q, A, B,GateType)):

The constrain algorithm takes as input the key k£ and a circuit description f.
The circuit has n 4+ ¢ wires with n input wires, ¢ gates and the wire n + ¢
designated as the output wire.

To generate a constrained key ky, the key generation algorithm chooses ran-
dom ry,...,7, € Zp, where we think of the random value r,, as being associated
with the wire w. For each w € [n + ¢ — 1]\[n], if GateType(w) = AND, it sets
Tw = TA(w) + TB(w) (Where + denotes addition in the group Z,); otherwise, it
chooses ry, € Z, at random. Finally, it sets 7,4, = u.

The first part of the constrained key is given out as simply all D; g for i € [n]
and 8 € {0,1}. Next, the algorithm generates key components. The structure
of the key components depends on whether w is an input wire or an output
of an OR gate. For AND gates, we do not need to give out any keys. The key
components in each case are described below.

— Input wire. By convention, if w € [n], then it corresponds to the w-th input.
The key component is: K, = g'dw:1,

— OR gate. Let j = OR-depth(w). The algorithm chooses random a.,, by, € Zy.
Then, the algorithm creates key components:

_ _a, __ b, _ Tw— 0w T A(w) _ Tw—bw TB(w)
Kw,l =g waKw,Q =g w7Kw,3 _gj_l aKw,4_gj_1

The constrained key k; consists of all these key components along with
{D; g} for i € [n] and B € {0,1}.

F.Evaluate(ky, z):

The evaluate algorithm takes as input a constrained key k; for the circuit f
and an input = € {0,1}". The algorithm first checks that f(z) = 1, and if not,
it aborts. Consider the wire w at OR-depth j. If f,,(z) = 1, then, the algorithm

Tw Hme[n] A,z

computes E, = g, . If fu(xz) = 0, then nothing is computed
for that wire. The algorithm proceeds iteratively starting with computing F,
and proceeds, in order, to compute E,,. Computing these values in order
ensures that the computation on a lower-depth wire that evaluates to 1 will

be defined, before the compution on a higher-depth wire. Since 7,4, = u,
[.
Enig= 925;”:_["1] ™. We show how to compute F,, for all w where f,,(z) = 1,

case-wise, according to whether the wire is an input, an OR gate or an AND

dm T
gate. Define D = D(z) = g};[mel T which is computable through pairings.

— Input wire. Suppose f,,(x) = 1. Through pairing operations, the algorithm

mem\{w} Im.zm

computes 97111 . It then computes:

I A dm,x rw] o A
E,—e (Kw,gn:nie[n]\{u} m) —gn me(n) m

— OR gate. Let j = OR-depth(w). The computation is performed if f,(z) = 1.
Note that in this case, at least one of f4(,)(z) and fp,)(x) must be 1. If

fa@)(x) =1, the algorithm computes:
Ew = e(EA(w)7 Kw,l) : e(Kva D)

_ TA(w) nvne[n] dm@m Aoy Tw=Aw T A(w) Hme[n] dnlwmm,
=€ (gn+jf2 9 “el9i1 , 9n

Tw [Imen) dm.em
= gn+j—1€[]
Otherwise, we have fp(,)(z) = 1 and the algorithm computes £, from
EB(w), Kw,2, K4 in a similar manner.
— AND gate. Let j = OR-depth(w). The computation is performed if f,(z) =
1. Note that in this case, fa(w)(2z) = fB(w)(2) = 1. The algorithm computes:

o o TA(w) Hme[n] dm,mm TB(w) Hme[n] dm,:cm o Tw Hme[n] dm,zm
Eyw = Eaw) EBw) = 9ntj-1 “Intj-1 = Intj-1

The procedures above are evaluated in order for all w for which f,(z) = 1.

dm Tm
Thus, the algorithm computes E,+q = gzggﬁ’;} T = F(k, x).

3.2 Proof of Pseudorandomness

The correctness of the constrained PRF is verifiable in a straightforward manner.
The security proof is in the selective security model (where the adversary com-
mits to the challenge input z* at the beginning of the game). To get full security,
the proof will use the standard complexity leveraging technique of guessing the
challenge x*; this guess will cause a loss of a 1/2"-factor in the reduction.

Theorem 1. If there exists a PPT adversary A that breaks the pseudorandom-
ness of our circuit-predicate construction for n-bit inputs with advantage €(\),
then there exzists a PPT algorithm B that breaks the k = (n+for—1)— Multilinear
Decisional Diffie-Hellman assumption with advantage e(\)/2™.

Proof. The algorithm B first receives a k = (n + for — 1)-MDDH challenge
consisting of the group sequence description G and g = g1, ¢, ..., g% along

melr+1] Em

with T', where T is either g,g or a random group element in G.

Setup:

It chooses an z* € {0,1}" uniformly at random. Next, it chooses random
Z1y-.-12n € Zyp and sets Dy, 3 = g“* when x5, = B and g otherwise, for
m € [n] and 8 € {0,1}. This corresponds to setting d,, g = ¢, when 2, =
and z,, otherwise. It then implicitly sets w = cn41 - cpy2 - ... Cntror- The setup

is executed as in the construction.

Constrain:

Suppose a query is made for a secret key for a circuit f = (n,q, A, B, GateType).
If f(x*) = 1, then B aborts. Otherwise, B generates key components for every
wire w, case-wise, according to whether w is an input wire or an OR gate as
described below.

Input wire. By convention, if w € [n], then it corresponds to the w-th input. If

xy, = 1, then B chooses n,, = r,, at random. The key component is:

K, = (Dw,l)rw = gTu)dw’l

If 27, = 0, then B implicitly sets ry, = cp41+7w, where 1, € Z,, is a randomly
chosen element. The key component is:

K, = (gcn+1 ,gnw)zw — grwdw,l

OR gate. Suppose that w € Gates and that GateType(w) = OR. In addition, let
Jj = OR-depth(w). In order to show that B can simulate all the key components,
we shall additionally show the following property:

Property 1. For any gate w € Gates, B will be able to compute g;w, where
j = OR-depth(w).

We will prove the above property through induction on the OR-depth j;
doing this will enable us to prove that B can compute all the key components
required to give out the constrained key . The base case of the input wires
(j = 1) follows as we know that for an input wire w, B can compute g™, where
Ty is of the form 7, or ¢,+1 + Mw. We now proceed to show the computation of
the key-components. In each case, we show that property [1] is satisfied.

CASE 1: If f,(z*) = 1, then B chooses ¥y, = au, ¢ = by and ny, = 7y
at random. Then, B creates key components:

Tw —Qw T A

— 40w — bw — (w) _ Tw—bwTrpw)
Kyi1=9"" Ky2=9", Ky3= 9;°4 WiVES 9;°1

By virtue of of property|[I] since OR-depth(A(w)) = OR-depth(B(w)) = j—1,

by the induction hypothesis, we know that B can compute g;f(l’” and ¢ 2.

J—1

Hence, B can compute the above key-components, as the remaining exponents
were all chosen at random by B. Further, since r,, was chosen at random, note
that g;” can be be computed for this wire, and hence property [1| holds for this

wire as well (at OR-depth 7).

CASE 2: If f,,(z*) = 0, then B implicitly sets r., = ¢pq1 - ... - Coyj + N, Where
Nw € Zp is a randomly chosen element. Since 7,, was chosen at random, note
that g7 can be be computed for this wire (since gm T can be computed
using j pairings of g°», n+1 < m < n+ j), and hence property [1| holds for this
wire as well. For computing the key-components, the choices of a,, and b, are

done more carefully.

1. Suppose the level before the current level consists of the inputs. B would
know the values of 14(,) and 7p(.), since for input wires, these values are
always chosen at random. In this case, B implicitly sets a,, = cn+j + ¢ and
by = Cntj + dw, Where Yy, ¢ € Zy are randomly chosen elements. Then, B
creates key components:

_ ntjitw w _ o CntitPw _ buw
Kw,1—gc +it¥ =g¢° ,Kw,g—gc +it¢ = g,

Nw—Cntj NA(w) ~Pw (Cnt1 - Cnti—1+NA(w)) T — 0w T A(w)
K, .

3 =951 =951)

Koy = g;]i)l_cn+j'n5(w)_¢w(cn+1'~~<'Cn+j71+nB(w)) _ g;il_b'w'TB(w)
B is able to create the last two key components due to a cancellation. Since
Jaw)(@*) = fw)(z*) = 0, B would have set 74(y) = Cng1 .. Cpnyj1 +
NA(w) a0 TB(w) = Cng1 "+ Cnyj—1 + NB(w). Further, g;’fll"“'c"“’l can be

computed using j — 1 pairings of g, n+1<m <n+j— 1.

. Suppose the level before the current level consists of AND gates. Since
Ja)(x*) = 0, we have two cases: either one of f4(aqw)) (") and fp(a(w)) (z*)
is zero, or both of them are zero. B sets a., = cp4; + 1, in the former case,
and a, = %cnﬂ- + 1, in the latter case, where v, € Z, is a randomly cho-
sen element. Similarly, since fp(.)(2*) = 0, we have two cases: either one of
Jfawy) (@) and fp(p(w))(z*) must be zero, or both of them must be zero.
B sets by, = cptj + ¢y in the former case, and b, = %cnﬂ» + ¢y in the
latter case, where ¢, € Z, is a randomly chosen element. Then, B creates
key components:

w ™ Qw* w w_bw' w
Koi=g" Koz =g"" Koz =g;"; """ Koa=g2y """
We now show that these components can indeed be computed in every case.
Note that the first two components can be computed in every case. Consider
K, 3 (a similar argument holds for K, 4).
(a) Consider the first case, where one of fa(acw))(z*) and fpa(w))(z*) is
zero. In particular, without loss of generality, assume that fa(a(w)) (x*) =
0 and fg(a(w))(z*) = 1. Hence, B must have set rs(A(w)) = Cag1 ... -
Cntj—1 FNA(Aw)) a0d TB(A(w)) = NB(A(w))- Since A(w) is an AND gate,
we would have TA(w) = TA(Aw)) TTB(A(w)) = Cnt1°- - -"Cntj—1TNA(A(w)) T
NB(A(w))- Hence, we have:
K _ Nw—Cntji(MA(A(w) TNB(A(w))) = %w(Cnt1 o Cntj—1FNA(A(w) TNB(Aw)))
w,3 — Yj-1
Tw = 0w T A(w)

= gj—l

which can be computed as follows. We know the values of 74(4(w)) and
NB(A(w))- Further, gjﬁ*ll""'c"“’l can be computed using j — 1 pairings of
g™, n+1<m <n+j—1. Hence the key component can be computed.

(b) Consider the second case, where fa(a(w)) (") = fB(aw))(z*) = 0. Hence,

B must have set TA(A(w)) = Cn4l -+ Cntj—1 T NA(A(w)) and TB(A(w)) =
Cngl - Cngj—1 FNB(Aw))- Since A(w) is an AND gate, we would have
TAw) = TAA@)) T TB(Aw) = 26nt1 -+ Cnj—1 FNaA@w) +1B(AW))-
Hence, we have:
K _ Nw—3cnti(Maa@) FIBA(w)) —Pw (2nt1 e Crg i~ 1N A(A(w) B (A(w)))
w,3 = G511
= g;il_aw'rA(w)

which can be computed as outlined in the former case.

Thus, the four key components can be given out in every case.

AND gate. We now discuss the case of the AND gate. Suppose that w € Gates
and that GateType(w) = AND. In addition, let j = OR-depth(w). B implicitly
sets w = T A(w) + T B(w)- Note that we need not choose any a,, or b. In fact, 7,
is being chosen because the key components being given out for the OR gates
involve 7 4(4), etc., which may potentially be from AND gates. Clearly, property

. T T . .
holds here as well, i.e., g;* = g, - g;°™ can be be computed for this wire,
T A(w) TB(w)

since g; and g, can be computed by virtue of of property

Finally, we set, for the output wire w = n+ ¢, n, = 0, so that r, = v in B’s
internal view. It is easy to see that a,, and b,, have the same distribution in the
real game and the game executed by B. In the real game, they are chosen at
random and in the game executed by B, they are either chosen at random or are
values offset by some random values 1, and ¢, respectively. For w € [n+q—1],
ry also has the same distribution in the real game and the game executed by
B. This is true, since in the real game, they are chosen so that randomness on
the input wires of an AND gate add up to the randomness on its output wire,
and they are chosen at random for an OR gate, while in the game executed by
B, they are chosen in the exact same way, where being “chosen at random” is
either truly satisfied or are fixed values are offset by random #,, values. Now, we
look at r5,44. In the real game, it is a fixed value u, and in the game executed
by B, by setting n,4+q = 0, "ntq = Cng1 - Cnt2 ... Cnrror = U internally. Hence,
they too have the same distribution. Hence all the parameters in the real game
and game executed by B have the identical distribution.

Evaluate:

Suppose a query is made for a secret key for an input « € {0,1}"™. If z = 2*, then

B aborts. Otherwise, B identifies an arbitrary ¢ such that x; # «}. Through for

pairings of g, n +1 < m < n + loR, it computes H = g = gz;:rl entlor
d

me[n]\{t} M, Tm

Then, through pairing of Dy, . Vm € [n]\{t}, it computes g,lzl_l

dvn.zr,,,, . .
and raises it to dy,, = 2 to get H' = grl:[_"f["] ©™ . Finally, it computes
Ao o . .
H” =e(H,H') = gzggf_["i] "™ = F(k,x) and outputs it. Eventually, A will

issue a challenge input z. If £ = 2*, B will return the value T" and output the
same bit as A does as its guess. If Z # x*, B outputs a random bit as its guess.

This completes the description of the adversary B. We first note that in the
case where T is part of a MDDH tuple, the real game and game executed by B
have the identical distribution. Secondly, in both cases (i.e., whether or not 7' is
part of the MDDH tuple), as long as B does not abort, once again, the real game
and game executed by B have the identical distribution, except for the output
of B on the challenge query z*. We now analyze the probability that B’s guess
was correct. Let ¢’ denote B’s output and let § denote whether T" is an MDDH

tuple or not, 4,9’ € {0,1}. Now

Pr[¢’ = §|abort] Pr[abort] + Pr[¢’ = d|abort] Pr[abort]

-
—
S
I

=
|

= %(1 —27™) + Pr[¢’ = d]abort] - (27)
= %(1 — 27 + (; +e> (27 = % +e-(277)

The set of equations shows that the advantage of B is €(A)/2". This completes the
proof of the theorem, which establishes the pseudorandomness property of the
construction. Hence, the constrained PRF construction for the circuit-predicate
case is secure under the x~-MDDH assumption.

Removing the restrictions. The restriction that GateType(n + ¢q) = OR enables
us to set randomness as we do in the scheme above. But this restriction can be
easily removed by setting the randomness corresponding to the last level of OR
gates (or the input wires in case there is no OR gate in the circuit) appropriately
so that r,4, ends up being u.

The restriction that a layer of gates cannot follow another layer of the same
type of gates can also be overcome. The case of several consecutive layers of OR
gates poses no threat since we move up one level in the multilinear maps for
layers of OR gates and hence the current proof method works as is. The case
of several consecutive layers of AND gates can be handled by even more careful
choices of the randomness a,, and b,,. When we had only one layer of AND gate
(before a layer of OR gates), for an OR gate at OR-depth j, we set a, to be
either 1-¢,4; 41y, or % - Cn+j + 1 depending on whether TAw) =1 Cng1-...-
Cntj—11tTAAw)) TNB(A(w)) OF TA(w) = 2 Cng1° -+ Cntj—1 TNA(A(w)) TTB(Aw))-
Similarly, we set b,, in accordance with 7 p(,,). Now, when there are more than one
layers of AND gates consecutively, for an OR gate at OR-depth j just after these
AND gates, we set a,, (resp. b(w)) to be cni; + 1y, where k is the coefficient
of Cpy1 - ... Cagjo1 N T4qw) (T€Sp. Tp(w)). We present an illustration of this
technique in in the full version [CRV15)].

Regarding the first assumption, any layered circuit can be trivially converted
into a “homogeneous” layered circuit by “splitting” each layer in the layered
circuit into two layers: one with only AND gates and the other with only OR
gates. This doubles the depth of the circuit. But if we are a bit more careful and
do the splitting such that the odd layers are split into an AND-layer followed
by an OR-layer and the even layers are split into an OR-layer followed by an
AND-layer, the resulting circuit will have layers of the form (AND-OR)-(OR-
AND)-(AND-OR)----. Now, we can merge the consecutive OR layers into a
single OR layer (because our scheme supports gates with arbitrary fan-in) with
just a polynomial increase in the number of wires. So, we can convert a layered
circuit of depth d into a layered circuit with each layer consisting of only AND
or OR gates with depth d + 1 but with the OR-depth of the circuit being d/2
now. So even in the worst case we get improvements in parameters using our
scheme.

4 A Free-OR Circuit-predicate Construction

In this section, we show how to construct a constrained random function for
polynomial size circuit predicates of a specific form, without giving any keys for
the OR gates. Once again, we base our construction on multilinear maps and
on the k-MDDH assumption; however x in our construction will only depend
on n (the size of the input to the PRF) and now, the AND-depth of the circuit
(informally, this is the maximum number of AND gates from input wires to the
output wire along any path). Once again, the starting point of our construction
is the constrained PRF construction of Boneh and Waters [BWI3| which is
based on the attribute-based encryption construction for circuits [GGH™13c].
We restrict the class of boolean circuits to be of a specific form. We assume
layered circuits and that all gates in a particular layer are of the same type
(either AND or OR). We assume that a layer of gates is not followed by another
layer of the same type of gates. We also assume that all AND gates have a fanout
of 18]

We introduce here a “gadget” which we call a “FANOUT-gate”. This is done
in order to deal with OR gates in the circuit that have a fanout greater than
1. To this end, we assume that a FANOUT-gate is placed just after the OR
gate under consideration. We view such OR gates also to have a fanout of 1 and
without loss of generality assume that the FANOUT-gate alone has a fanout
greater than 1. However, we do not treat the FANOUT-gate while calculating
the total depth of the circuit, etc. It is merely a construct which allows us to
deal only with OR gates having fanout 1.

4.1 Construction

The setup and the PRF construction is identical to the construction in Section
We now outline the constrain and evaluate algorithms.

F.Constrain(k, f = (n,q, A, B,GateType)):

The constrain algorithm takes as input the key k£ and a circuit description f. The
circuit has n+q wires with n input wires, ¢ gates and the wire n+q designated as
the output wire. Assume that all gates have fanout 1 and that FANOUT-gates
have been inserted at places where the gates have a fanout greater than 1.

To generate a constrained key ky, the key generation algorithm sets r,, 4 = u,
where we think of the random value r,, as being associated with the wire w.
Hence, in notation, if a gate w has fanout greater than 1, then, notation-wise,
rw would have mutliple values: one associated with each of the fanout wires of

8 This can always be ensured for circuits that have alternating AND and OR layers.
Suppose there is an AND gate with fanout A > 1. We simply replace it with A AND
gates having the same inputs and now we have A wires with the required output
as before. Note that this process would have forced us to make the fanout of gates
driving the AND gate to be A times as large, but since a gate driving an AND gate
would only be an OR gate by our imposed circuit structure, this blows up the size
of the circuit by only a polynomial factor.

the FANOUT-gate and one associated with the wire leading out of the gate w
itself. We introduce notation for the same below.

[] rﬁ; !
rql; : rﬁ;z
R

Fig.1. FANOUT-gate

Consider a FANOUT-gate placed after wire w, as shown in Figure [I} We
denote by rL the randomness on the wire going as input to the FANOUT-
gate (the actual output wire of the gate under consideration) and by 7R the
randomness on the ith fanout wire of the FANOUT-gate (there would be as
many of these as the fanout of the gate w), where i € [A] and A is the fanout
of the wire w.

We now describe how the randomness for each wire is set. For each w €
[n + ¢]\[n], if GateType(w) = OR, it sets 74(w) = rB(w) = Tw, Otherwise, it
chooses 74(,) and 7p(,) at random. The case of FANOUT-gates is handled as
follows. Note that the above description already takes care of setting randomness
on all the fanout wires of the FANOUT-gate. The randomness for the input wire
to the FANOUT-gate (the output wire of the gate with fanout greater than 1)
is chosen at random. Note that this completely describes how randomness on all
wires in the circuit are chosen.

The first part of the constrained key is given out as simply all D, g for i € [n]
and 8 € {0,1}. Next, the algorithm generates key components. The structure
of the key components depends on whether w is an input wire or an output of
an AND gate. For OR gates, we do not need to give out any keys, hence the
name Free-OR. But, we also need to give out special key components for the
FANOUT-gates. The key components in each case are described below.

— Input wire
By convention, if w € [n], then it corresponds to the w-th input. The key
component is:
Kw — grwdw,1

— AND gate
Suppose that w € Gates and that GateType(w) = AND. In addition, let
j = AND-depth(w). The algorithm chooses random a.,, by, € Z,. Then, the
algorithm creates key components:

 aw _ bw _ Tw—Guw ' TA(w) —bw TB(w)
Kw,l =g 7Kw,2 =g aKw,3 =951

— FANOUT-gate

Suppose that w € Gates, GateType(w) = OR and that the fanout of w is
greater than 1. In addition, let j = AND-depth(w). In this case, a FANOUT-
gate would have been placed after w. Let r5 denote the randomness on the
wire going as input to the FANOUT-gate (the actual output wire of the gate
under consideration) and let 7R denote the randomness on the ith fanout
wire of the FANOUT-gate (there would be as many of these as the fanout
of the gate w). The keys given out are:

(5-t)
j—1

Kw,w’,i = gj_
for all ¢ € [A], where A is the fanout of the gate w.

The constrained key k; consists of all these key components along with
{D; s} for i € [n] and § € {0, 1}.

F.Evaluate(ky, x):
The evaluate algorithm takes as input a constrained key k; for the circuit
f = (n,q, A, B,GateType) and an input = € {0,1}". The algorithm first checks
that f(z) =1, and if not, it aborts.

Consider the wire w at AND-depth j. If f, () = 1, then, the algorithm

computes E,, = gZiP_”{E["] dmiam g fw(x) = 0, then nothing needs to be com-
puted for that wire. The algorithm proceeds iteratively starting with computing
E; and proceeds, in order, to compute F, 4. Computing these values in order
ensures that the computation on a lower-depth wire that evaluates to 1 will
be defined before the computation for a higher-depth wire. Since 7,1, = u,

_ u Hme[n] d'mw-"%n
En+q - gn-‘rfAND—l : . i
We show how to compute E,, for all w where f,,(z) = 1, case-wise, according

to whether the wire is an input, an OR gate, an AND gate or a fanout wire of a

dm,x N
FANOUT-gate. Define D = D(z) = g,lzlma"] ©™ which is computable through
n pairing operations.

— Input wire
By convention, if w € [n], then it corresponds to the w-th input. Sup-
pose f,(z) = 1. Through pairing operations, the algorithm computes

men\{w} dm,zm

n—

. It then computes:

Inetn\ (wy dmozm Tw [Tmen) dm,am
Ew:e(Kw e\ (w} >:g eln)

»9n—1 n

— OR gate
Consider a wire w € Gates with GateType(w) = OR. The computation is
performed if f,(x) = 1. Note that in this case, at least one of f4(,)(x) and
IB(w) () must be 1. Hence, we must have been able to evaluate at least one
of Eyw) and Ep(,). Since, for an OR gate, r4(w) = B(w) = Tw, We have
Ew = E () = EB(w), Which can now be computed.

— AND gate
Consider a wire w € Gates with GateType(w) = AND. In addition, let j =
AND-depth(w). The computation is performed if f,,(z) = 1. Note that in
this case, both f4()(7) and fp()(z) must be 1. The algorithm computes:

By = e(Epw), Kw1) - e(Epw), Kw2) - e(Kuw,3, D)

_ TA(w) Hme[n] d""’v«’”m Ay . 7B (w) Hme[n] dmvwm (298 .
= €\ Yn+tj—2 9 €\Intj—2 9

e T A(w) — 0w T A(w) —bw TB(w) unme[n] iz,
951 ydn

Tw H'nLG[n] dm,wm
n+j—1
— FANOUT-gate

Let r- denote the randomness on the wire going as input to the FANOUT-
gate (the actual output wire of the gate under consideration) and let rR:*
denote the randomness on the ith fanout wire of the FANOUT-gate (there
would be as many of these as the fanout of the gate w). The computation is
performed if f,,(x) = 1. In coherence with the previous notation, we define
the quantities E- and ER*. Note that the EL would have been computed.
It then computes:

R,i L i e dm.zm
Ew’ =e (Kw,w/,i; D) ’ Ew = Yn+j-1

The procedures above are evaluated in order for all w for which f,,(z) = 1.

A,
Thus, the algorithm computes E, 44 = gZEff?"] o= F(k,x).

5 Combining the Free-AND and Free-OR Techniques

In this section, we show that for the case of NC!, we can indeed combine the
Free-AND and Free-OR techniques to obtain a construction that has Free-ANDs
and Free-ORs. While the main reason that the technique works is that for NC*
circuits we can consider only boolean formulas, proving that our construction is
secure is non-trivial (and different from the case of ABE).

5.1 An NC!-predicate Construction

We construct a constrained PRF for arbitrary NC! circuit predicates, without
giving any keys for AND as well as OR gates. Again, we base our construction
on the k-MDDH assumption; however k in our construction will only depend on
n (the size of the input to the PRF) and not on the circuit in any way. We will
be dealing with circuits of the form described in Section

5.2 Construction

F.Setup(1*,17):
The setup algorithm that defines the master secret key and the PRF is identical

to the setup algorithm from Section [3] with k = n instead of n + for — 1.

F.Constrain(k, f = (n,q, A, B,GateType)):

The algorithm sets 44 = u. For each w € [n + ¢]\[n], if GateType(w) = OR,
it sets Ta(w) = TBw) = Tw, otherwise, it chooses r4(,) at random and sets
TB(w) = Tw =T A(w)- Since the fanout of all gates is 1, for any wire w € [n+q]\[n],
r4 would have been uniquely set. However, since the same inputs may be re-used
in multiple gates, for any wire w € [n], r, may have multiple values (as many
as the fanout of the input wire), i.e., different randomness values for each use
of the input wire (to different gates). Note that this procedure sets randomness
on all wires in the circuit. The first part of the constrained key (ky) is given
out as simply all D; g for i € [n] and f € {0,1}. The remaining key com-
ponents are: K,, ; = g"widw:1 Vi € [A], where A is the fanout of the input wire w.

F.Evaluate(ky, x):

The evaluate algorithm takes as input a constrained key %y and an in-
put x € {0,1}". The algorithm first checks that f(xr) = 1, and if not, it
aborts. Consider the wire w. If f,(z) = 1, then, we show how to computeﬂ

rw 1 dm,:
E, =g, "M case-wise, according to whether the wire is an input, an

OR gate or an AND gate.
dm Tom
— Input wire. Through pairing operations, compute g,l:[_’"‘f[”]\{w) ™. Then

H'rnE[n]\{w} o Tw,i H'nLE[n] A\ .
n—1 = 9gn Vi € [A]a

compute: Fy,; = e (Kwﬂ',g
where A is the fanout of the input wire w.

— OR gate. In this case, at least one of fa(,) () and fp(.)(z) must be 1.
Hence, we can evaluate at least one of E4(,) and Ep(,). Since, for an OR
gate, T A(w) = TB(w) = Tws» Bw = EA(w) = EB(w), can now be computed.

— AND gate. In this case, fa(w) (%) = fpw)(r) = 1. The algorithm computes:

ra(w) [mepn) dm,om . gTB(w) [T dmem gTw [Lncin) dm.om
n

Eyw = Esw) - EBw) = gn = gn

The procedures above are evaluated, in order, for all w for which f,,(z) = 1.
u dm,x
Thus, the algorithm computes E, ¢ = gn ety dmom F(k,x).

5.3 Proof of Pseudorandomness

The correctness of the constrained PRF is verifiable in a straightforward manner.

To show pseudorandomness, given an algorithm A that breaks security of the

constrained PRF, we will construct algorithm B that breaks security of the

x = n—MDDH assumption. B receives a k—MDDH challenge consisting of the

9 For input wires w € [n], we have E,; = g:f”’inme["] drem o all § € [4], where
A is the fanout of the input wire w. This feature has been present in our Free-OR
construction as well. We pay attention to it specifically in this construction because
of the absence of fanout for any wire other than the input wires.

group sequence description G and g = ¢1,9, ..., g%t along with T, where T

. . * c . . .
is either g, ™<"*""™ or a random group element in G,. The security proof is

in the selective security model (where the adversary commits to the challenge
input z* at the beginning of the game). To get full security, the proof will use
the standard complexity leveraging technique of guessing the challenge x*; this
guess will cause a loss of a 1/2™-factor in the reduction. We formally show:

Theorem 2. If there exists a PPT adversary A that breaks the pseudorandom-
ness property of our NCl-predicate construction for n-bit inputs with advantage
€(X), then there exists a PPT algorithm B that breaks the x = n—Multilinear
Decisional Diffie-Hellman assumption with advantage e(\)/2™.

Proof. The algorithm B first receives a Kk = n—MDDH challenge consisting of
the group sequence description G and g = g1, g%, ..., g%+ along with T', where

me[r+1] Cm

T is either g,g or a random group element in G,.

Setup:
It chooses an z* € {0,1}" uniformly at random. Next, it chooses random
21y .., %n € Ly and sets D, g = ¢° if x¥ = B and g® otherwise, for m € [n]

and 8 € {0,1}. It then implicitly sets u = ¢,41. The setup is executed as in the
construction.

Constrain:
Suppose a query is made for a secret key for a circuit f = (n,q, A, B,GateType).
If f(x*) =1, then B aborts.

Otherwise, B sets the randomness on each wire in the circuit in the follow-
ing way. It sets, for the output wire w = n + ¢, r, = v = ¢,41. For each
w € [n+ q]\[n], if GateType(w) = OR, it sets 74(y) = rBw) = Tw. SUppose
GateType(w) = AND. If f,(2*) = 1, then fau(2*) = fpw)(z*) = 1 and B
chooses 74(,,) at random and sets rp(,) = Tw — Ta(w). Suppose fy(z*) = 0.
Then we know that at least one of f4(,)(7*) and fp(,)(z*) must be zero. If
Ja@)(@*) = 0, it chooses 7p(,) at random and sets 74(,) = 7w — T'B(w), While
if faqw)(z*) = 1 and hence fge,)(z*) = 0, it chooses r4(,) at random and
sets TB(w) = Tw — TA(w)- As we shall see later, such a choice of randomness
is critical for the security proof. Since the fanout of all gates is 1, for any wire
w € [n+q]\[n], r», would have been uniquely set. However, since the same inputs
may be re-used in multiple gates, for any wire w € [n], r, may have multiple
values (as many as the fanout of the input wire), i.e., different randomness values
for each use of the input wire (to different gates), which we denote by 7, ; for
all i € [A], where A is the fanout of the input wire w. Note that this procedure
sets randomness on all wires in the circuit.

To show that B can indeed compute all the key components, our proof will
follow a similar structure to the Free-OR case (Section [i]). We shall prove that
for all wires in the circuit, B can compute g". To prove this, we shall prove
the above statement, both when the wire w is such that f,,(z*) = 1 (Lemma
2), and when the wire w is such that f,(z*) = 0 (Lemma [3]). To prove Lemma

we shall first prove the following fact (Lemma : consider all wires in the
circuit that evaluate to 1 on #* and consider those wires among these that have
maximum total depth; then, these wires must all be input wires to AND gates.

Lemma 1. Define:

- Si={w:wen+q A fulx*) =1}

— Gmaxtot-depth _ fy, .y € Sy A tot-depth(w) > tot-depth(w') Vu' € Sy}
Then w is an input wire to an AND gate Yw € ST t0rderth,

Proof. This fact is very easy to easy. Clearly, w # n+gq, since fp44(z*) = 0 while
fw(x*) = 1. Hence there exist layers of gates after the one containing w. Suppose
w is an input wire to an OR gate. Since f,,(z*) = 1, for some OR gate w’ in the
next layer of gates, f,s(z*) = 1. Hence, 3w’ € S; such that tot-depth(w) <
tot-depth(w’) which contradicts the fact that w € Sorderth,

Lemma 2. For any wire w € [n+ q|, if fu(z*) =1, then ry is known.

Proof. We prove this by observing the randomness we have set on each wire,
from the output wire to the input wires. From Lemmal [} we know that the first
such wire we would see would be an input to an AND gate. For an input wire
A(w), of an AND gate, satisfying f4,)(z*) = 1, first consider the case when
fuw(x*) = lm In this case, B explicitly chooses all random values associated with
this gate and hence B chose 7 4., When f,,(2*) = 0, note that B carefully chose
the randomness on the input wires which may potentially evaluate to 1 on x* at
random (and set the value on the other input wire B(w) based on this). Hence,
if fa(w)(@*) =1, 7 4(w) is known to B. This forms the base case for the induction.
Now, consider any other wire A(w) such that fs(,) = 1. Now, if A(w) were an
input to an AND gate, then by the same argument as above, 74, is known
to B. Suppose, A(w) were an input to an OR gate w and f4(y)(z*) = 1, then
fw(z*) = 1. By the induction hypothesis, r, is known. We know that since w is
an OR gate, 7 4(w) = mw and hence 74, is known. This completes the proof.

Lemma 3. For any wire w € [n+ q|, if fu(z*) =0, then g™ is known.

Proof. We can prove this by observing the randomness we have set on each wire,
from the output wire to the input wires. The statement is true for the output
wire w = n + ¢, since g°*+! is known. This forms the base case. We can now
argue inductively.

— Case 1: If w is an input to an OR gate w’, then 7, = ry. If fur(2*) = 1,
then by Lemma[2] 7, is known and hence g™ is known. If f,(z*) = 0, then
by the induction hypothesis, ¢"»’ is known and hence g™ is known.

10 1t is true that the first such wire when we go from output to input level would be
an AND gate with f,,(z*) = 0. However, the discussion on the case of f,(z*) =1 is
more a general one for all AND gates in the circuit.

— Case 2: If w is an input to an AND gate w’, then f,/(z*) = 0. Now, by the
induction hypothesis, g™« is known. If w = A(w’), then rp(,) was chosen
at random and is known, and hence g™ = ¢"+' "B’ is known. Suppose
w = B(w'). If fau(2*) =0, r, was chosen at random and is known, and
hence g™ is known. If f4(,)(2*) = 1, then 74, was chosen at random
and is known, and hence g™ = g™’ " A" is known.

Finally, B generates key components for input wires w € [n]. By convention,
if w € [n], then it corresponds to the w-th input. If =}, = 1, then r,,; is known,
from Lemma [2] for all i € [A], where A is the fanout of the input wire w. The
key components are: K, ; = (Dy 1) = greidwt for all i € [A]. If ¥, = 0,
then g™ is known, from Lemma 3} for all i € [A]. The key components are:
Ky = (ghwi)* = greidwr for all i € [A].

Evaluate:
Suppose a query is made for a secret key for an input = € {0,1}". If
x = x*, then B aborts. Otherwise, B identifies an arbitrary ¢ such that

me[n]\{t} dT"a"Em

x; # xy. Through pairing of D,, 5, Vm € [n]\{t}, it computes 97111

[. .
and raises it to dy,, = 2 to get H = g}:[ff["] ©™. Finally, it computes

d7n‘z7n . .

H = e(U H) = gﬁinme[”l = F(k,z) and outputs it. Eventually, A will
issue a challenge input z. If £ = z*, B will return the value T' and output
the same bit as A does as its guess. If & # x*, B outputs a random bit as its guess.

This completes the description of the adversary B. We first note that in the
case where T is part of a MDDH tuple, the real game and game executed by B
have the identical distribution. Secondly, in both cases (i.e., whether or not 7' is
part of the MDDH tuple), as long as B does not abort, once again, the real game
and game executed by B have the identical distribution, except for the output of
B on the challenge query z*. Similar to the analysis in Section[3] the probability
that B’s guess was correct can be shown to be e(X)/2™.

6 From Bit-fixing PRFs to NC' PRFs

In this section, we show that from any constrained PRF scheme supporting
bit-fixing predicates that has certain additive homomorphic properties (let this
be Fut), we can construct a constrained PRF scheme supporting NC' circuit
predicates (Fnc1) in a black-box manner. We will be dealing with circuits of the
form described in Section It is sufficient if the PRF is able to fix a single bit
to just one of the possibilities (i.e., either fixing the bits only to 0 or only to 1).
The homomorphic properties that we require from the bit-fixing scheme are:

1. The PRF must have an additive key-homomorphism property. In other
words, there exists a public algorithm Fy¢.KeyEval, such that, for all ky, ko €
KC, Fue.KeyEval outputs Fue(ky + k2,) on inputs Fue(k,) and Fye(ks, x).

2. Let Fps.Constrain(k, i) be the constrain algorithm that takes in a key and
the position of the bit to be fixed to 1IE| An additive key-homomorphism
property should also exist among the constrained keys, that is, there exists
a public algorithm, Fu¢.AddKeys, such tha@ for all k1, ke € K and index 1,

Fur.AddKeys(Fys.Constrain(kq, ©), Fue.Constrain(ks, i)) = Fps.Constrain(k1+ka, ©)

6.1 Construction

We follow the same template as in our NC!-predicate construction in Section

We observe that the component K, ; at the input level can be replaced
with a constrained key from any bit-fixing scheme which satisfies the properties
mentioned above. Fys, Fyci denote the bit-fixing and NC! schemes respectively.

FNCl.Setup(lA, 1m):
The setup algorithm runs Fue.Setup(1*,1") to get the PRF Fyr and key k. It
sets the key as k. The keyed pseudo-random function is defined as Fp¢(k, x).

Fnci.Constrain(k, f = (n,q, A, B,GateType)):

The constrain algorithm sets up randomness on the wires of the circuit using
the procedure in the construction in Section [5.1] and computes key components
for the input wires as K,, = be.Constrain(rw,w)lﬂ The constrained key kg
consists of all these key components.

Fnci.Evaluate(ky, z):

The algorithm first checks that f(x) = 1, and if not, it aborts. As in the
construction in Section for every wire w, if f,(x) = 1, then, the algo-
rithm computes Fue(ry,x). The algorithm proceeds iteratively and computes
Fof(1ntq,) = Foe(k,x). Fue(rw,x) can be computed, case-wise, according to
whether the wire is an input, an OR gate or an AND gate.

— Input wire
If fu(x) =1, it computes Fps(ry, z) = Fps.Eval(Ky,).

— OR gate
If fu(z) = 1, at least one of fu,)(x) and fp(,)(2) must be 1. Hence, we
must have been able to evaluate at least one of Fus (1 4(w),) and Fps(rp(w), T)-
Since, TA(w) = ’I“B(w) = Tw, be(Tw,l‘) = be(TA(w),$> = be(TB(w)7.'L‘), which
can be computed.

— AND gate
If fo(r) =1, faw)(®) = fea)(z) = 1. Hence, we must have been able

' By symmetry, the construction also works if the constrain algorithm fixes a bit to 0.

12 We note here that Fu.Constrain(k, i) could, in general, be a randomized algorithm
and in this case, we require the distributions on the left and the right of the equality
to be computationally indistinguishable. For ease of exposition, we assume that
Fue.Constrain(k, 7) is deterministic and state our results accordingly.

13 As in Section the fanout of the input wires can be easily incorporated.

to evaluate both Fu(ra(w), =) and Fue(rpw),z). The algorithm computes
be(Tw,:Z?) = be.KeyEvaI(be(rA(w),x), be(’l”B(w)l‘)), since, TA(w) + TB(w) =
Tow-

The procedures above are evaluated, in order, for all w for which f,(z) = 1.
Thus, the algorithm computes Fps (7544,) = Foe(k, z).

6.2 Proof of Pseudorandomness

The correctness of the scheme is straightforward from the key-homomorphism
property of the bit-fixing PRF scheme. We now prove the security.

Theorem 3. If there exists a PPT adversary A that breaks the selective security
of our construction for n-bit inputs supporting NC* -predicates with an advantage
€(X), then there exists a PPT algorithm B that breaks the selective security of
the underlying bit-fixing predicate construction with the same advantage e(\).

Proof. Let A be the adversary which breaks the selective security of our NC*
construction. We will construct an adversary B which will use A to break the
selective security of the bit-fixing construction Fp¢. Thus, B plays a dual role:
one as an adversary in the security game breaking the bit-fixing construction
and also as a challenger in the security game breaking the NC! construction.

— First A provides its challenge z* to B which in turn forwards it to its chal-
lenger. B receives the public parameters of the bit-fixing scheme from its
challenger along with either Fps(k,2*) or a random value which it forwards
to A. B is going to answer queries as though the PRF evaluated by the NC*
construction is the same as that evaluated by the bit-fixing construction Fy¢
used by the challenger. When A asks a query f to NC'.Constrain oracle with
f(x*) =0, B follows a procedure similar to the one in Section

e 3 carefully sets the randomness on all wires in the circuit as in the proof
in Section By virtue of this careful setting, the same properties
hold: for any wire w € [n + ¢|, if fi,(z*) = 1, then r, is known, and
if fu,(z*) = 0, then r,, would either be known or of the form k + > r,
where each r is known. Note that 7,44 = k which is the key of PRF used
by B as well as B’s challenger.

e To give out keys for the input wires, B does the following. For
those wires w with f,(z*) = 1, r, is known and hence B ob-
tains K,, = Fp.Constrain(ry,w) by running Fps.Constrain(ry,, w) by
itself. For wires w with f,(z*) = 0, if r, is known, then B
obtains K,, = Fys.Constrain(r,,w) by running Fp.Constrain(ry,, w)
by itself. Otherwise, r, is of the form k + > r, where each r is

known. For each r, B obtains K , = Fps.Constrain(r,w) by running

Fuf.Constrain(r, w) by itself. Through repeated use of Fu¢.AddKeys, and

by virtue of the homomorphism property of the constrained keys, B

obtains K-, = Fpr.Constrain (3 r,w). B then queries its challenger

for the constrained key fixing the wth bit, i.e., it obtains Kj , =

Fur.Constrain(k, w) by querying its challenger. Finally, through the use
of Fpr.AddKeys (Klng, K) B obtains K,, = Fys.Constrain (1, w).

Srw)

e When answering A’s queries to NC!.Constrain, it is important to note
that B does not query for any predicate that allows it to evaluate F'(k, x*)
by itself. We achieve this because all queries by B to the challenger,
Fuf.Constrain(k, w), fix the wth bit to 1, while if the query were made,
fw(x*) =0, i.e., the wth bit of z* is 0.

— When A outputs a bit b’, B outputs the same.

In the above game, if A breaks the selective security of the NC' construction
with an advantage of €(A) then B breaks the underlying bit-fixing construction
with the same advantage.

References

BFP*15.

BGI14.

BV15.

BW13.

CHL*15.

CLRI15.

CLT13.

CLT15.

CRV14.

CRV15.

FKPR14.

Abhishek Banerjee, Georg Fuchsbauer, Chris Peikert, Krzysztof Pietrzak,
and Sophie Stevens. Key-homomorphic constrained pseudorandom func-
tions. In T'CC, pages 31-60, 2015.

Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional Signatures
and Pseudorandom Functions. In Public Key Cryptography, pages 501—
519, 2014.

Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-
homomorphic prfs from standard lattice assumptions - or: How to secretly
embed a circuit in your PRF. In TCC(II), pages 1-30, 2015.

Dan Boneh and Brent Waters. Constrained Pseudorandom Functions and
Their Applications. In ASTACRYPT (2), pages 280-300, 2013.

Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and
Damien Stehlé. Cryptanalysis of the multilinear map over the integers.
In EUROCRYPT I, pages 3—12, 2015.

Jung Hee Cheon, Changmin Lee, and Hansol Ryu. Cryptanalysis of the
new clt multilinear maps. Cryptology ePrint Archive, Report 2015/934,
2015.

Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical
multilinear maps over the integers. In CRYPTO I, pages 476-493, 2013.
Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. New mul-
tilinear maps over the integers. In CRYPTO I, pages 267-286, 2015.
Nishanth Chandran, Srinivasan Raghuraman, and Dhinakaran Vinayaga-
murthy. Constrained pseudorandom functions: Verifiable and delegatable.
IACR Cryptology ePrint Archive, 2014:522, 2014.

Nishanth Chandran, Srinivasan Raghuraman, and Dhinakaran Vinayaga-
murthy. Reducing depth in constrained prfs: From bit-fixing to NC*. JACR
Cryptology ePrint Archive, 2015:829, 2015.

Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Van-
ishree Rao. Adaptive security of constrained prfs. In Advances in Cryp-
tology - ASIACRYPT 201/ - 20th International Conference on the Theory
and Application of Cryptology and Information Security, Kaoshiung, Tai-
wan, R.0.C., December 7-11, 201/, Proceedings, Part II, pages 82-101,
2014.

Fucl4.

GGH13a.

GGH™13Db.

GGH%*13c.

GGHI15.
GGMS6.

GPSWO06.

GVW13.
HJ15.

HKKW14.

KPTZ13.

MF15.

SWO05.

Georg Fuchsbauer. Constrained Verifiable Random Functions. In SCN,
pages 95-114, 2014.

Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In Advances in Cryptology - EUROCRYPT 2013, 32nd
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Athens, Greece, May 26-30, 2018. Proceedings, pages
1-17, 2013.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sa-
hai, and Brent Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. In 54th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 40—49, 2013.

Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Wa-
ters. Attribute-based encryption for circuits from multilinear maps. In
Advances in Cryptology - CRYPTO 2018 - 33rd Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part
11, pages 479-499, 2013.

Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multi-
linear maps from lattices. In T'CC II, pages 498-527, 2015.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to Construct
Random Functions. J. ACM, 33(4):792-807, 1986.

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
Based Encryption for Fine-grained Access Control of Encrypted Data. In
ACM Conference on Computer and Communications Security, pages 89—
98, 2006.

Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-
Based Encryption for Circuits. In STOC, pages 545-554, 2013.

Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. IACR Cryptology
ePrint Archive, 2015:301, 2015.

Dennis Hofheinz, Akshay Kamath, Venkata Koppula, and Brent Waters.
Adaptively secure constrained pseudorandom functions. TACR Cryptology
ePrint Archive, 2014:720, 2014.

Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In 2013
ACM SIGSAC Conference on Computer and Communications Security,
CCS’18, Berlin, Germany, November 4-8, 2013, pages 669-684, 2013.
Brice Minaud and Pierre-Alain Fouque. Cryptanalysis of the new multilin-
ear map over the integers. Cryptology ePrint Archive, Report 2015/941,
2015.

Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. In EU-
ROCRYPT, pages 457473, 2005.

	Reducing Depth in Constrained PRFs: From Bit-Fixing to NC1

