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Abstract. In attribute-based signatures, each signer receives a signing
key from the authority, which is associated with the signer’s attribute,
and using the signing key, the signer can issue a signature on any message
under a predicate, if his attribute satisfies the predicate. One of the
ultimate goals in this area is to support a wide class of predicates, such
as the class of arbitrary circuits, with practical efficiency from a simple
assumption, since these three aspects determine the usefulness of the
scheme. We present an attribute-based signature scheme which allows
us to use an arbitrary circuit as the predicate with practical efficiency
from the symmetric external Diffie-Hellman assumption. We achieve this
by combining the efficiency of Groth-Sahai proofs, which allow us to
prove algebraic equations efficiently, and the expressiveness of Groth-
Ostrovsky-Sahai proofs, which allow us to prove any NP relation via
circuit satisfiability.

Keywords: attribute-based signatures, Groth-Sahai proofs, Groth-
Ostrovsky-Sahai proofs

1 Introduction

1.1 Attribute-Based Signatures

In an ordinary digital signature scheme, a signer has a signing key and publicizes
its corresponding verification key. The verification is performed with respect to
such a public key, and hence during the verification process, those who made
the signature is uniquely determined. In other words, digital signatures provide
nothing for privacy or anonymity requirements.

The concept of attribute-based signatures is introduced by Maji, Prab-
hakaran, and Rosulek [21], in order to relax this firm correspondence between
a signer and a signature. In an attribute-based signature scheme, there is an
attribute authority, and each signer receives from the authority a signing key
associated with his attribute. Once a signer receives a signing key, he is able to
issue a signature on any message, under a predicate satisfied by his attribute.
The signature is anonymous, that is, the signature tells a verifier that the party
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who generates the signature has an attribute satisfying the predicate, but fur-
ther information on the signer’s identity or attribute is completely hidden from
the verifier.

One of the active lines of research on attribute-based signatures is to support
a larger class of predicates with practical efficiency. The state-of-the-art results
along this line is the scheme by Okamoto and Takashima for non-monotone span
programs from bilinear groups [24] and the scheme by Tang, Li, and Liang for
any circuits from multilinear maps [27]. The ultimate goal in this line is achieving
a large class of predicate, such as the class of arbitrary circuits, while keeping the
scheme practically efficient and relying on a simple assumption, since these three
aspects determine the usefulness of the scheme in practice. However, neither of
above two schemes and in fact neither of any existing scheme does not achieve
this ultimate goal.

Bellare and Fuchsbauer proposed a versatile cryptographic primitive called
policy-based signatures [2]. They showed a generic construction of an attribute-
based signature scheme from a policy-based signature scheme. There are two
ways of instantiating their generic construction. Namely, the one is an instanti-
ation with NIZK for general NP languages such as the Groth-Ostrovsky-Sahai
proof system [13], and the other is an instantiation with NIZK for specific alge-
braic equations such as the Groth-Sahai proof system [14]. Although the authors
of [2] did not explicitly mention (they only dealt with monotone predicates), the
former may be extended to support the class of arbitrary circuits. However,
it suffers from a large overhead of the signature size due to a Karp reduction
to an NP-complete problem. The latter can be instantiated efficiently, but the
supported class is restricted to conjunctions and disjunctions of pairing-product
equations.

In summary, it still remains open whether it is possible to construct an
attribute-based signature scheme that supports circuit predicates with practical
efficiency from simple assumptions.

1.2 Efficient Non-interactive Zero-knowledge

In this section we review non-interactive zero-knowledge (NIZK) proofs, which
can be useful building blocks for constructing attribute-based signatures.

NIZK proofs allow us to prove that a secret information satisfies a public
condition without revealing the secret beyond the truth of the condition. This
primitive is extremely useful and widely studied in the area of cryptography. It
has been an important research topic to expand the class of the predicate that
proof systems support, as well as to improve the efficiency of proof systems.

Recent developments in zero-knowledge proofs include the proof system by
Groth, Ostrovsky, and Sahai [13] and the one by Groth and Sahai [14]. The
former can prove any NP relation via circuit satisfiability, but it suffers from
large overhead due to a Karp reduction. The latter is very efficient, but the class
of the relation is restricted to algebraic equations, and hence it cannot treat
arbitrary NP relation in general.
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A natural question is whether it is possible to construct a proof system which
is as expressive as the Groth-Ostrovsky-Sahai proof system, and is at the same
time as efficient as the Groth-Sahai proof system. In this paper, we investigate a
case study of a fusion of Groth-Ostrovsky-Sahai and Groth-Sahai proofs in case
of attribute-based signatures, and show that by this idea, we can construct a
practical attribute-based signature for circuits from bilinear maps.

1.3 Our Contribution

In this paper, we present an attribute-based signature scheme for arbitrary cir-
cuits of unbounded size and depth with practical efficiency, from a simple as-
sumption over bilinear groups. Our attribute-based signature scheme satisfies
perfect privacy and adaptive unforgeability. The scheme is based on a witness
indistinguishable and extractable non-interactive proof system and an existen-
tially unforgeable signature scheme. All the building blocks can be instantiated
solely from the symmetric external Diffie-Hellman (SXDH) assumption [14, 16],
and thus we can obtain a perfectly private and adaptively unforgeable scheme
from the same assumption.

Our scheme is fairly practical. The signature size grows as around one kilobyte
per each gate, which is comparable to the existing schemes such as the schemes
by Maji et al. [21] and the scheme by Okamoto and Takashima [24]. We note
that Maji et al.’s schemes and the Okamoto-Takashima scheme are less expres-
sive than ours, namely, Maji et al.’s schemes support monotone span programs,
while the Okamoto-Takashima scheme supports non-monotone span programs.
In addition, our scheme drastically improves efficiency when we compare it with
related schemes of Bellare and Fuchsbauer [2] and Tang, Li, and Liang [27]. As
stated above, the former scheme is a generic construction of attribute-based sig-
natures from policy-based signatures and the latter scheme is an attribute-based
signature scheme for circuits from multilinear maps.

It would be interesting to note the contrast between our scheme and its en-
cryption counterparts, namely, the attribute-based encryption schemes for cir-
cuits [11, 9, 12]. We highlight that our scheme only requires a simple and popular
bilinear map assumption, namely the SXDH assumption to prove its security,
whereas the encryption counterparts require powerful lattice assumptions or mul-
tilinear maps. This is reminiscent of the fact that an identity-based signature
scheme can be constructed only from a standard digital signature scheme [22,
17, 3], while identity-based encryption requires a very strong assumption [5].

1.4 Technique

The basic idea behind our construction is simple: to sign anonymously, a signer
receives a signature on his attribute from the authority, and proves the knowledge
of this signature together with a proof that shows the signed attribute satisfies
a public circuit. The signature that the signer receives works as a certificate,
which certifies the signer having the attribute, and forbids the third party from
signing in the name of his attribute.
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To implement this idea, we need to overcome two difficulties. The first dif-
ficulty is (1) simultaneously and efficiently proving circuit satisfiability of the
attribute and the validity of the certificate on that attribute. The other difficulty
is (2) binding the proof from the first part to a message to be signed. In the fol-
lowing we give more detailed explanations on these difficulties and our idea for
overcoming them.

(1) Proving circuit satisfiability and certificate validity. The first diffi-
culty is expressing circuit satisfiability of an attribute in zero-knowledge, while
keeping the entire proof system efficient. We need to prove not only circuit satis-
fiability of an attribute, but also validity of a certificate. The Groth-Ostrovsky-
Sahai proof system enables us to prove circuit satisfiability, but its direct use
does not allow us to prove the validity of the certificate efficiently, since, if we
were to use the Groth-Ostrovsky-Sahai proof system, we must represent validity
of a certificate in a circuit via a Karp reduction, which is highly inefficient.

Nevertheless, our starting point is still the technique of Groth, Ostrovsky,
and Sahai [13]. In this technique, to prove circuit satisfiability, the prover first
computes commitments to assignments to each wire, and then proves that for
each gate the incoming wires u and v and the outgoing wire w satisfy the NAND
relation ¬(u ∧ v) = w.

We instantiate this idea with Groth-Sahai proofs. We need Groth-Sahai
proofs, rather than a simple adoption of the Groth-Ostrovsky-Sahai proof sys-
tem because we need to handle not only Boolean relations (for the NAND gates
as above), but also algebraic equations at the same time. The need for algebraic
equations comes from the necessity to certifying attributes. As stated above, the
authority signs on attributes to certify that each signer can sign in the name
of his attribute. Hence we need to prove the validity of the certificate, and for
this purpose we employ Groth-Sahai proofs, together with structure-preserving
signatures [1].

Therefore, we need to translate the idea of the Groth-Ostrovsky-Sahai proof
system into the Groth-Sahai proof system. Namely, we need to translate the
NAND relation ¬(u∧ v) = w into a bilinear equation, which is what the Groth-
Sahai proofs can prove. We do this by arithmetizing the relation. That is, let u
and v be the assignments to incoming wires then w be the assignment to the
outgoing wire, and the prover proves the equation 1 − u · v = w to prove the
NAND relation.

(2) Binding the proof to a message. The other difficulty is binding the proof
to a single message in order to resist chosen-message attacks. Although we want
to prove knowledge of certificates to sign anonymously, this dose not suffice for
resisting chosen-message attacks. This is because the proof is not bound to the
message, and hence the adversary can reuse the signature (the proof) on some
message to a signature on another message.

To overcome this difficulty, we introduce an OR-proof technique, following
Maji et al. [21]. In this technique, the signer proves the knowledge of the certifi-
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cate or a signature on a dummy attribute, which is an extra attribute unused
in the real protocol, and differs message by message.

The point is that different messages have different dummy attributes. To be
more specific, an (attribute-based) signature on messageM proves the knowledge
of a signature on some attribute or a signature on a dummy attribute x, while
a signature on a different message M∗ proves the knowledge of a signature on
an attribute or a signature on another dummy attribute x∗. By this means,
if an adversary sees a signature on M and forges a signature on M∗, then a
reduction extracts a witness from the forgery and obtains a signature on x∗ of
the underlying signature scheme. With this x∗ the reduction reduces the forgery
for the attribute-based signature scheme to a forgery for the underlying signature
scheme.

1.5 Related Work

Maji et al. [20, 21] introduced the notion of attribute-based signatures, and pre-
sented three constructions which have perfect privacy and adaptive unforgeabil-
ity. The first two schemes combine a digital signature scheme and Groth-Sahai
proofs. These two schemes are instantiated respectively with the Boneh-Boyen
signature scheme [4] and with the Waters signature scheme [29]. The third con-
struction is proven secure in the generic group model. Following Maji et al.’s
results, Li and Kim [19], Siamak and Safavi-Naini [26], and Li et al. [18] pre-
sented attribute-based signature schemes, which are proven secure only in the
selective model of unforgeability. Another drawback of these schemes is relatively
narrow class of the supported predicates. Namely Li and Kim’s scheme [19] only
supports conjunction predicates, while Siamak and Safavi-Naini’s scheme [26]
and Li et al.’s scheme [18] support threshold predicates. Escala, Herranz, and
Morillo presented an attribute-based signature with adaptive unforgeability [8].
Okamoto and Takashima presented an attribute-based signature scheme which
is adaptively unforgeable and supports non-monotone span programs as predi-
cates [24]. Recently, Herranz et al. [15], followed by Chen et al. [6], presented
attribute-based signature schemes with constant-size signatures for threshold
predicates. The former has selective unforgeability while the latter has adap-
tive unforgeability. Wang and Chen [28] presented an attribute-based signature
scheme from a lattice assumption with selective unforgeability. Tang, Li, and
Liang [27] presented an attribute-based signature scheme for bounded-depth cir-
cuits from multilinear maps. Most recently, Mridul and Pandit presented various
attribute-based signature schemes such as for Boolean formulas or for regular
languages from q-type assumptions [23].

Escala, Herranz, and Morillo presented a traceable attribute-based signa-
ture scheme (under the name of “revocable” attribute-based signatures) [8],
which allows a trusted authority to identify who made a signatures. Okamoto
and Takashima presented a decentralized attribute-based signature scheme [25],
which removes the necessity of any trusted setup in the system. Following these
works, El Kaafarani, Ghadafi, and Khader presented a decentralized traceable
attribute-based signature scheme [7]. Ghadafi revisited the security notion of
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decentralized traceable attribute-based signatures, and introduced, among other
things, a new security notion of non-frameability [10].

As for attribute-based encryption for circuits, Gorbunov, Vaikuntanathan,
and Wee [11] presented the first attribute-based encryption scheme for circuits.
After that, Garg et al. [9] presented an attribute-based encryption scheme for
circuits from multilinear maps. Recently, Gorbunov, Vaikuntanathan, and Wee
presented a predicate encryption scheme for circuits from a class of learning-
with-errors assumptions [12].

2 Preliminary

We say that a function f : N→ R is negligible if for all c ∈ N there exists x0 ∈ N
such that f(x) ≤ x−c for all x ≥ x0.

Representation of circuit. Here we explain notation for circuits, especially
how we identify a circuit. Let C be a circuit with L-bit input and N gates.
We assume C is entirely represented by NAND gates. We distinguish the input
wires, the internal wires, and the output wire by indices 1, . . ., L, L + 1, . . .,
L+N , where 1, . . ., L are the input wires, L+ 1, . . ., L+N − 1 are the internal
wires, and L+N is the output wire. The topology of the circuit is specified by
two functions I1, I2 : {L + 1, . . . , L + N} → {1, . . . , L + N − 1}. They map a
non-input wire to its first and second incoming wires in which these three wires
are connected by a NAND gate. We require that I1(i) < i and I2(i) < i.

Bilinear groups. Let G be a probabilistic polynomial-time algorithm that on
input 1k outputs a group description gk = (p,G1,G2,GT , e, g, g̃) where p is a
prime, G1 and G2 are multiplicative groups generated by g and g̃, respectively,
GT is a multiplicative group of order p, and e : G1×G2 → GT is a non-degenerate
efficiently computable bilinear map.

We say that the decision Diffie-Hellman assumption on G1 holds if for any
probabilistic polynomial-time adversary A

|Pr[gk = (p,G1,G2, e, g, g̃)← G(1k);x, y ← Zp : A(gk, gx, gy, gxy) = 1]

− Pr[gk = (p,G1,G2, e, g, g̃)← G(1k);x, y, z ← Zp : A(gk, gx, gy, gz) = 1]|

is negligible. The decision Diffie-Hellman assumption on G2 is defined similarly.
Namely, we say the decision Diffie-Hellman assumption holds on G2 if

|Pr[gk = (p,G1,G2, e, g, g̃)← G(1k);x, y ← Zp : A(gk, g̃x, g̃y, g̃xy) = 1]

− Pr[gk = (p,G1,G2, e, g, g̃)← G(1k);x, y, z ← Zp : A(gk, g̃x, g̃y, g̃z) = 1]|

is negligible. We say that the symmetric external Diffie-Hellman (SXDH) as-
sumption holds if the decision Diffie-Hellman assumptions on both G1 and G2

hold.
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Groth-Sahai and Groth-Ostrovsky-Sahai proofs. A non-interactive proof
system for the NP relation R ⊂ {0, 1}∗ × {0, 1}∗ is defined by following three
algorithms (WISetup,WIProve,WIVerify): the setup algorithm WISetup takes as
input the security parameter 1k and outputs a common reference string crs; the
proof algorithm takes as input the common reference string crs, a statement x,
and a witness w, and outputs a proof π; the verification algorithm WIVerify takes
as input the common reference string crs, the statement x, and the proof π, and
outputs 1 or 0 which indicate validity of the proof. As a correctness condition,
we require that for all k ∈ N, (x,w) ∈ R, and crs ← WISetup(1k), it holds that
WIVerify(crs, x,WIProve(crs, x, w)) = 1.

We require a proof system to be perfectly witness indistinguishable (WI) and
perfectly extractable. A proof system is perfectly witness indistinguishable if for
any crs←WISetup(1k), x ∈ {0, 1}∗, w0 ∈ {0, 1}∗, w1 ∈ {0, 1}∗ such that (x,w0),
(x,w1) ∈ R, the two distributions WIProve(crs, x, w0) and WIProve(crs, x, w1)
distributes identically. The proof system is perfectly extractable if there are two
algorithms ExtSetup and Extract that satisfy the following two properties: (1) for
any probabilistic polynomial-time adversary A,

|Pr[crs←WISetup(1k) : A(crs) = 1]

− Pr[(crs, ek)← ExtSetup(1k) : A(crs) = 1]|

is negligible, and (2) for any probabilistic polynomial-time adversary A,

Pr[(crs, ek)← ExtSetup(1k); (x, π)← A(crs);

w ← Extract(crs, ek, x, π) : WIVerify(crs, x, π) = 1 and (x,w) 6∈ R] = 0.

The Groth-Sahai proof system [14] is a proof system which can prove sat-
isfiability of a set of algebraic equations called pairing-product equations in a
witness-indistinguishable and extractable manner under the SXDH assumption.
In particular the Groth-Sahai proof system can prove satisfiability of a set of
pairing-product equations, which are the equation of the form

n∏
i=1

e(Ai,Yi)
m∏
j=1

e(Xj ,Bj)
n∏
i=1

m∏
j=1

e(Xi,Yj)γi,j = T

in which Ai ∈ G1, Bj ∈ G2, γi,j ∈ Zp, and T ∈ GT are public constants, and
Xi ∈ G1 and Yj ∈ G2 are private variables (witness). To prove the knowledge of
a satisfying assignment, the prover first computes commitments to each witness
(we call this the Groth-Sahai commitment), and then computes proofs demon-
strating the witness satisfies the equations. The commitment consists of the two
group elements in the same group as the witness. For proving a pairing-product
equation, Groth-Sahai proofs require eight group elements, in particular four el-
ements in G1 and four elements in G2, for each equation. In the case that n = 0
and thus the equation to be proved has the form

m∏
j=1

e(Xj ,Bj) = T,
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it only requires two group elements in G2. See [14] for further detail.

Groth-Ostrovsky-Sahai proofs are the proof system which can prove satisfi-
ability of a circuit which solely consists of NAND gates. The proof algorithm
proceeds with a similar way to the Groth-Sahai proofs. Namely, the prover first
computes commitments to the assignments to the wires, and then proves each
triple (u, v, w) of wires connected by a NAND gate satisfies the NAND relation
¬(u ∧ v) = w. See [13] for further detail.

Structure-preserving signatures. A signature scheme consists of the fol-
lowing three algorithms (Kg,Sign,Verify): the key generation algorithm takes as
input a security parameter 1k and outputs a pair (vk, sk) of the verification key
and the signing key; the signing algorithm Sign takes as input the signing key
sk and a message m and outputs a signature θ; the verification algorithm Verify
takes as input the verification key vk, the message m, and the signature θ, and
outputs 1 or 0 indicating validity of the signature. As the correctness condition,
it is required to hold that for all k ∈ N, (vk, sk) ← Kg(1k), and m ∈ {0, 1}∗, it
Verify(vk,m,Sign(sk,m)) = 1.

A signature scheme (Kg,Sign,Verify) is said to be existentially unforge-
able, if the probability Pr[(vk, sk) ← Kg(1k); (m∗, θ∗) ← ASign(sk,·)(vk) :
Verify(vk,m∗, θ∗) = 1 ∧ m∗ is not queried] is negligible for all probabilistic
polynomial-time adversaries A.

Our scheme can be instantiated using any structure-preserving signature
scheme. For concreteness, we employ the recent scheme by Kiltz, Pan, and Wee
(KPW) [16], which is efficient and based on the SXDH assumption. For com-
pleteness, we describe the KPW signature scheme below. In the description, for
a matrix A = (ai,j) ∈ Zpn×m we denote by [A]1

[A]1 =


ga1,1 · · · ga1,m

...
. . .

...

gan,1 · · · gan,m

 ∈ G1
n×m,

and similarly for [A]2 ∈ G2
n×m with generator g̃, and [A]T with generator e(g, g̃).

For two matrices A and B, we denote e([A]1, [B]2) = [AB]T .

Kg(gk, 1L). Given a description gk = (p,G1,G2,GT , e, g, g̃) of bilinear groups
and a message length L, choose a, b ← Zp, K ← Zp(L+1)×2, let A =
(1|a)> ∈ Zp2×1, B = (1|b)> ∈ Zp2×1, choose K0, K1 ← Zp2×2, let
C ← KA, C0 ← K0A, C1 ← K1A, P0 ← B>K0, P1 ← B>K1. Let
vkSign ← ([C0]2, [C1]2, [C]2, [A]2) and skSign ← (vkSign,K, [P0]1, [P1]1, [B]1),
and output (vkSign, skSign).
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Sign(skSign, [m]1). Given a signing key skSign ← (vkSign,K, [P0]1, [P1]1, [B]1) and
a message [m]1 ∈ G1

L, choose r ← Zp2 and τ ← Zp, compute

θ1 ← [(1|m>)K + r>(P0 + τP1)]1 ∈ G1
1×2,

θ2 ← [r>B>]1 ∈ G1
1×2,

θ3 ← [r>B>τ ]1 ∈ G1
1×2,

θ4 ← [τ ]2 ∈ G2.

Let θ ← (θ1, θ2, θ3, θ4) and output θ.

Verify(vkSign, θ). Given the verification key vkSign = ([C0]2, [C1]2, [C]2, [A]2), a
message [m]1 ∈ G1

L, and a signature θ = (θ1, θ2, θ3, θ4), check

e(θ1, [A]2) = e([(1|m)]1, [C]2)e(θ2, [C0]2)e(θ3, [C1]2),

e(θ2, θ4) = e(θ3, [1]2).

If they hold, output 1. Otherwise output 0.

Collision-resistant hash functions. A collision-resistant hash function fam-
ily is defined as a pair (H,Hash) of two algorithms: the hash key generation
algorithm H is a probabilistic polynomial-time algorithm that on input security
parameter 1k outputs a hash key hk; the hash algorithm Hash is a determinis-
tic polynomial-time algorithm that on input the hash key hk and a message M
outputs a hash value h; a collision-resistant hash function family is required to
satisfy that for all probabilistic polynomial-time algorithms A the probability
Pr[hk← H(1k); (M,M ′)← A(hk) : Hash(hk,M) = Hash(hk,M ′)] is negligible in
k. We assume that the length of the hash value h is determined by the security
parameter 1k and denote `H = `H(k).

Attribute-based signatures. An attribute-based signature scheme is defined
by the following four algorithms:

AttrSetup(1k, 1`)→ (pp,msk). The setup algorithm takes as input the security
parameter 1k and the length ` of attributes, and outputs the public param-
eter pp and the master secret key msk.

AttrGen(pp,msk, x)→ skx. The signing key generation algorithm takes as input
the public parameter pp, the master secret key msk, and the attribute x, and
outputs the signing key skx for x.

AttrSign(pp, skx,M,C)→ σ. The signing algorithm takes as input the public
parameter pp, the signing key skx, the message M , and the circuit C, and
outputs the signature σ.

AttrVerify(pp,M,C, σ)→ 1/0. The verification algorithm takes as input the pub-
lic parameter pp, the message M , the circuit C, and the signature σ, and
outputs 1 or 0 indicating the validity of the signature.
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As the correctness condition, it is required to satisfy that for all
k, ` ∈ N, (pp,msk) ← AttrSetup(1k, 1`), x ∈ {0, 1}`, skx ←
AttrGen(pp,msk, x), M ∈ {0, 1}∗, and C such that C(x) = 1, it holds that
AttrVerify(pp,M,C,AttrSign(pp, skx,M,C)) = 1.

We define two security notions for attribute-based signatures. The first notion
is privacy, which requires the signature to not leak any information on the signer’s
identity and attribute beyond the fact that the attribute satisfies the predicate.
The other notion is unforgeability, which requires any collusion of signers is
unable to forge a new signature with a predicate which is not satisfied by any
attribute in the collusion even if they see signatures on messages of their choice.

Definition 1. An attribute-based signature scheme is perfectly private, if for all
k, ` ∈ N, (pp,msk) ← AttrSetup(1k, 1`), x0, x1 ∈ {0, 1}`, C such that C(x0) =
C(x1) = 1, sk0 ← AttrGen(pp,msk, x0), sk1 ← AttrGen(pp,msk, x1), and
M ∈ {0, 1}∗, the distribution AttrSign(pp, sk0,M,C) and AttrSign(pp, sk1,M,C)
distributes identically.

Definition 2. An attribute-based signature scheme is adaptively unforgeable if
the probability that the adversary wins in the following experiment is negligible
in k:

1. The experiment sets up a public parameter and a master secret key as
(pp,msk)← AttrSetup(1k, 1`). Then the experiment sends the adversary pp.

2. The adversary is allowed to access the key reveal oracle and the signing or-
acle: the former, given a query x, returns skx ← AttrGen(pp,msk, x); the
latter, given a query (M,C), returns σ ← AttrSign(pp, sk,M,C) with arbi-
trary sk← AttrGen(pp,msk, x) such that C(x) = 1.

3. The adversary halts with output (M∗, C∗, σ∗).
4. The adversary wins if the following three conditions hold: (i)

AttrVerify(pp,M∗, C∗, σ∗) = 1, (ii) the adversary did not query x such that
C∗(x) = 1, and (iii) the adversary did not query (M∗, C∗) to the signing
oracle.

3 Attribute-Based Signatures for Circuits

In this section we present our attribute-based signature scheme. We assume
the input length ` is longer than or equal to the output length `H of the hash
function, i.e., ` ≥ `H. If it does not, we can simply think of a circuit that ignores
the extra inputs.

Before presenting the concrete scheme, we explain an overview of the scheme.
As stated in the introduction, the basic idea is that the authority issues a

signature (a certificate) on an attribute to certify that the corresponding signer
is allowed to sign in the name of his attribute. This corresponds to the AttrGen
algorithm, which computes a structure-preserving signature on the given at-
tribute.

To sign anonymously, the signer proves the knowledge of the certificate re-
ceived from the authority, as well as proves that the certified attribute satisfies
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the public circuit. To do this, the signer computes commitments to all the as-
signments to each wire. Then for each triple (u, v, w) which are connected by
a NAND gate, the signer proves that the triple satisfies the NAND relation
1− u · v = w. This is implemented by Eqs. (2), (5), and (6).

Since we are instantiating our scheme with a Type III pairing, for each wire
we need two commitments in both G1 and G2. This is because we need to take
a pairing of two wire assignments (Eqs. (5) and (6)) for proving the NAND
relation of the three wires. This further requires the signer to prove that two
commitments are commitments to the same message. This is done by proving
Eqs. (3) and (4), which ensure that the exponents of Wi and W̃i are identical.

Lastly, the OR-proof technique is implemented by modifying the circuit C
into Ĉ as in Eq. (1). This circuit ensures that the input (X2, . . . , Xl+1) is either
a satisfying assignment of C or the hash value h. Eq. (2) ensures that θ is a
valid signature on (X2, . . . , Xl+1). They constitute a proof of knowledge of a
signature on an attribute or a signature on the dummy attribute determined by
the message.

The full description of our scheme is as follows.

AttrSetup(1k, 1`). Given a security parameter 1k and an input size 1` for cir-
cuit, generate bilinear group parameter gk = (p,G1,G2,GT , e, g, g̃)← G(1k),
a witness indistinguishable common reference string crs ← WISetup(gk), a
verification key and a signing key (vkSign, skSign) ← Kg(gk, 1`+1) and a hash
key hk ← H(1k). Set pp = (`, crs, vkSign, hk) and msk ← skSign, and output
(pp,msk).

AttrGen(pp,msk, x). Parse x as (x1, . . . , x`). Generate a structure-preserving sig-
nature θ on the message

(g0, gx1 , . . . , gx`) ∈ G1
`+1.

Set skx ← (x, θ) and output skx.
AttrSign(pp, skx,M,C). Parse skx into ((x1, . . . , x`), θ) and proceed as follows:

1. Let h← Hash(hk, 〈M,C〉). Expand the circuit C into a larger circuit Ĉ
with `+ 1-bit input as

Ĉ(X1, X2, . . . , X`+1) = 1

⇐⇒
(
X1 = 0 ∧ C(X2, . . . , X`+1) = 1

)
∨
(
X1 = 1 ∧X2‖ · · · ‖X`H+1

= h
)

(1)

where the hash value h is hard-wired into Ĉ. Let N be the number of
gates in Ĉ and I1 and I2 be the functions that specify the topology of
Ĉ.

2. Let X1 ← 0, X2 ← x1, . . ., X`+1 ← x`, and then compute the assignment
to each non-input wires in Ĉ: for all i = (`+ 1) + 1, . . ., (`+ 1) + (N − 1)

Xi ← 1−XI1(i) ·XI2(i).
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3. For all i = 1, . . ., (`+ 1) + (N − 1), let

Wi ← gXi , W̃i ← g̃Xi .

4. Compute a Groth-Sahai commitment comθ to θ.
5. For all i = 1, . . ., (`+ 1) + (N − 1), compute Groth-Sahai commitments

comWi
to Wi and comW̃i

to W̃i.
6. Generate a proof πSign for the verification equation

Verify(vkSign, (W1, . . . ,W`+1), θ) = 1. (2)

7. For all i = 1, . . ., `+ 1, generate proofs πi proving the equation

e(g, W̃i) = e(Wi, g̃). (3)

8. For all i = (`+ 1) + 1, . . ., (`+ 1) + (N − 1), generate proofs πi proving
the equations

e(g, W̃i) = e(Wi, g̃), (4)

e(WI1(i), W̃I2(i))e(Wi, g̃) = e(g, g̃). (5)

9. Generate a proofs π(`+1)+N proving

e(WI1((`+1)+N), W̃I2((`+1)+N)) = 1. (6)

10. Let

σ = (comθ, comW1
, . . . , comW(`+1)+(N−1)

,

comW̃1
, . . . , comW̃(`+1)+(N−1)

,

πSign, π1, . . . , π(`+1)+N )

and output σ.
AttrVerify(pp,M,C, σ). Verify the proofs with respect to the circuit Ĉ in Eq. (1)

and its topology I1, I2 defined by given M and C. Output 1 if all the proofs
are verified as valid. Otherwise output 0.

Theorem 1. Provided the proof system is perfectly witness indistinguishable,
the above attribute-based signature scheme is perfectly private. Provided the proof
system is perfectly extractable and perfectly witness indistinguishable, the signa-
ture scheme is existentially unforgeable, and the hash function family is collision
resistant, the above attribute-based signature scheme is adaptively unforgeable.

Proof. Perfect privacy directly followed from witness indistinguishability of the
proof system.

For adaptive unforgeability, the proof proceeds with the following sequence
of games:

Game 1. This game is identical to the experiment for adaptive unforgeability.
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Game 2. In this game, the behavior of the signing oracle is modified as fol-
lows. Given a signing query (M,C), the experiment computes the hash value
h← Hash(hk, 〈M,C〉), let (h1‖ · · · ‖h`H)← h, compute a signature θ on the
message

(g1, gh1 , . . . , gh`H , 1, . . . , 1) ∈ G2
`+1

with the master secret key msk = skSign, and then use θ as the witness to
compute a signature σ.

Game 3. In this game, the common reference string crs in pp is switched to the
extractable common reference string crs generated by the ExtSetup algorithm
as (crs, ek)← ExtSetup(1k).

We denote by succi the event that the adversary wins in Game i. We hereafter
bound Pr[succ1] to be negligible. From the triangle inequality,

Pr[succ1] = Pr[succ1]− Pr[succ2] + Pr[succ2]− Pr[succ3] + Pr[succ3]

≤ |Pr[succ1]− Pr[succ2]|+ |Pr[succ2]− Pr[succ3]|+ Pr[succ3].

We bound these three terms. The first term |Pr[succ1]− Pr[succ2]| is negligible,
due to the witness indistinguishability of the Groth-Sahai proof system. The
second term |Pr[succ2] − Pr[succ3]| is also negligible, because the two types of
common reference string are indistinguishable.

For the last term, we introduce an event coll. The event coll denotes the event
that Hash(hk, 〈M∗, C∗〉) collides to some of Hash(hk, 〈M,C〉) where (M,C) is one
of the signing queries. Now we have that

Pr[succ3] = Pr[succ3 ∧ coll] + Pr[succ3 ∧ ¬coll].

The probability Pr[succ3 ∧ coll] is negligible due to the collision-resistance of
the hash function. For a formal proof, we construct a simulator that attacks the
collision resistance of the hash function family.

Setup. The simulator receives a hash key hk from the experiment. The simu-
lator then generates an extractable common reference string as (crs, ek) ←
ExtSetup(1k) and verification and signing keys (vkSign, skSign)← Kg(1k), and
then sets pp← (`, crs, vk, hk) and sends pp to the adversary.

Key reveal query. When the adversary requests the signing key for x =
(x1, . . . , x`), the simulator runs the signing algorithm to obtain a signature
θ ← Sign(skSign, (g

0, gx1 , . . . , gx`)). The simulator responds with skx = (x, θ).
Signing query. When the adversary requests a signature on M under a cir-

cuit C, the simulator computes the hash value h ← Hash(hk, 〈M,C〉),
lets (h1‖ · · · ‖h`H) ← h, then further computes the signature θ ←
Sign(skSign, (g

1, gh1 , . . . , gh`H , 1, . . . , 1)), the circuit Ĉ as in Eq. (1), and proof
π using θ as the witness. The simulator responds with σ = π.

Forgery. When the adversary outputs a tuple (M∗, C∗, σ∗), the simulator
searches for a signing query (M,C) that satisfies Hash(hk, 〈M,C〉) =
Hash(hk, 〈M∗, C∗〉). If it is found and the winning condition (i)–(iii) in Defi-
nition 2 is satisfied, the simulator outputs (〈M,C〉, 〈M∗, C∗〉) as a collision.
Otherwise, the simulator outputs (⊥,⊥).
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The simulator successfully outputs a collision, if the event succ3 ∧ coll occurs.
In particular, whenever the simulator outputs (〈M,C〉, 〈M∗, C∗〉), we have that
〈M,C〉 6= 〈M∗, C∗〉. This is because the winning condition forbids the adversary
to output M∗ and C∗ which are queried to the signing oracle, and thus (M,C)
differs from (M∗, C∗). Hence Pr[succ3 ∧ coll] is negligible.

For Pr[succ3 ∧ ¬coll], we construct a simulator that attacks the existential
unforgeability of the underlying signature scheme. The construction of the sim-
ulator is as follows.

Setup. The simulator is given a verification key vkSign of the signature scheme.
The simulator sets up the extractable common reference string of the
proof system as (crs, ek) ← ExtSetup(1k). The simulator sends pp =
(`, crs, vkSign, hk) to the adversary.

Key reveal query. When the adversary requests the signing key for an at-
tribute x = (x1, . . . , x`), the simulator requests, to its signing oracle, a sig-
nature on the message

(g0, gx1 , . . . , gx`) ∈ G1
`+1.

Then the simulator receives a signature θ. The simulator sends skx = θ to
the adversary.

Signing query. When the adversary requests a signature on a message
M under the circuit C, the simulator computes the hash value h =
(h1‖ · · · ‖h`H) ← Hash(hk, 〈M,C〉), then requests a signature on the mes-
sage

(g1, gh1 , . . . , gh`H , 1, . . . , 1) ∈ G1
`+1

to its signing oracle. The simulator receives a signature θ. The simulator
computes a proof π using the signature θ as the witness. The simulator
sends σ = π to the adversary.

Forgery. When the adversary outputs a forgery (M∗, C∗, σ∗), the simulator
extracts the witness

θ, W1, . . ., W(`+1)+(N−1), W̃1, . . ., W̃(`+1)+(N−1).

Due to the extractability of the Groth-Sahai proof system, we can assume
that the witness satisfies Eqs. (2)–(6).
Now below we argue that the pair

((W1, . . . ,W`+1), θ)

constitutes a legitimate forgery for the underlying signature scheme. We have
three cases to be dealt with.
1. Assume that (W1, . . . ,W`+1) is of the form

(gX1 , . . . gX`+1) ∈ G2
`+1 where X1 = 0 and X2, . . ., X`+1 ∈ {0, 1}.

In this case, due to Eqs. (3)–(6), we have that Ĉ(X1, . . . , X`+1) = 1, and
hence we also have that C(X2, . . . X`+1) = 1. Because the experiment
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forbids the adversary to query such (X2, . . . , X`+1) as a key reveal query,
we can conclude that the simulator has not queried (g0, gX2 , . . . gX`+1)
to its signing oracle. Hence, due to the equation Eq. (2), the pair
((g0, gX2 , . . . , gX`+1), θ) constitutes a legitimate forgery to the signature
scheme.

2. Assume that (W1, . . . ,W`+1) is of the form

(gX1 , . . . , gX`+1) ∈ G2
`+1

where X1 = 1, X2, . . ., X`H+1 ∈ {0, 1}, X`H+2 = · · · = X`+1 = 0

In this case, due to Eqs. (3)–(6), we have that (X2‖ · · · ‖X`H+1) =
Hash(hk, 〈C∗,M∗〉). Since we are now considering the event ¬coll,
we have that the adversary has not queried (C,M) such that
Hash(hk, 〈C,M〉) = Hash(hk, 〈C∗,M∗〉) to the signing oracle. Therefore
the simulator has not queried (g1, gX2 , · · · gX`H , 1, . . . , 1) to its signing
oracle, and thus ((g1, gX2 , · · · gX`H , 1, . . . , 1), θ) constitutes a legitimate
forgery.

3. Assume that (W1, . . . ,W`+1) is neither of the above two forms. In this
case, the simulator does not issue any query of this form at all, and thus
((W1, . . . , X`+1), θ) is a legitimate forgery.

In any case, the pair ((W1, . . . , X`+1), θ) constitutes the forgery, and thus
the simulator outputs this pair as a forgery.

The above construction shows that whenever the event succ3 ∧¬coll occurs, the
simulator succeeds in producing the forgery of the signature scheme. It implies
that Pr[succ3 ∧ ¬coll] is negligible. ut

4 Performance

In this section we compare our scheme with the Maji et al. (MPR11) schemes [21]
and the Okamoto-Takashima (OT11) scheme [24]. Table 1 shows a brief compar-
ison among the existing schemes and our scheme. In the table the three MPR11
schemes (1)–(3) are respectively the Boneh-Boyen signature based scheme, the
Waters signature based scheme, and the scheme proven secure in the generic
group model. For the first two schemes, we show the performance in the SXDH
setting. Our scheme is instantiated with the Kiltz-Pan-Wee structure-preserving
signature scheme from the SXDH assumption [16] and the Groth-Sahai proof
system in the SXDH setting [14]. We also note that all the five schemes in the
table are instantiated in prime order groups.

Table 2 shows a detailed calculation of the signature size of our scheme. The
center and right columns respectively show the number of the group elements of
G1 and G2 that is required for each component of a signature.

As the table shows, our scheme achieves a comparable performance with the
existing schemes, while the class of supported predicates is drastically wider
than the existing schemes. In addition, the assumption from which the scheme
is proven secure is also comparable with or in some case identical to the existing
schemes.
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Table 1. Comparison among pairing-based attribute-based signature schemes.

Scheme Signature size Assumption Predicate

MPR11 (1) [21] 36s+ 2t+ 24ks q-SDH, SXDH Monotone span program

MPR11 (2) [21] 28s+ 2t+ 12k + 8 SXDH Monotone span program

MPR11 (3) [21] s+ t+ 2 Generic group Monotone span program

OT11 [24] 9s+ 11 DLIN Non-monotone span program

Ours 12`+ 20N + 26 SXDH Non-monotone circuit

k: The security parameter
s× t: The size of the monotone span program
`: The input length of the circuit
N : The number of the gate in the circuit

Table 2. Signature size of our scheme.

G1 G2

comθ 12 2

comWi 2(`+N)

comW̃i
2(`+N)

πSign 4 8

π1, . . ., π`+1 4(`+ 1) 4(`+ 1)

π(`+1)+1, . . ., π(`+1)+(N−1) 8(N − 1) 8(N − 1)

π(`+1)+N 4 4

Total 6`+ 10N + 16 6`+ 10N + 10

`: The input length of the circuit
N : The number of the gates in the circuit
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