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Abstract. In the setting of secure multiparty computation, a set of mu-
tually distrusting parties wish to securely compute a joint function. It is
well known that if the communication model is asynchronous, meaning
that messages can be arbitrarily delayed by an unbounded (yet finite)
amount of time, secure computation is feasible if and only if at least two-
thirds of the parties are honest, as was shown by Ben-Or, Canetti, and
Goldreich [STOC’93] and by Ben-Or, Kelmer, and Rabin [PODC’94].
The running-time of all currently known protocols depends on the func-
tion to evaluate. In this work we present the first asynchronous MPC
protocol that runs in constant time.
Our starting point is the asynchronous MPC protocol of Hirt, Nielsen,
and Przydatek [Eurocrypt’05, ICALP’08]. We integrate threshold fully
homomorphic encryption in order to reduce the interactions between the
parties, thus completely removing the need for the expensive king-slaves
approach taken by Hirt et al.. Initially, assuming an honest majority,
we construct a constant-time protocol in the asynchronous Byzantine
agreement (ABA) hybrid model. Using a concurrent ABA protocol that
runs in constant expected time, we obtain a constant expected time
asynchronous MPC protocol, secure facing static malicious adversaries,
assuming t < n/3.

Keywords: multiparty computation; asynchronous communication;
threshold FHE; constant-time protocols; Byzantine agreement.

1 Introduction

1.1 Background

In the setting of secure multiparty computation, a set of mutually distrusting
parties wish to jointly and securely compute a function of their inputs. This
computation should be such that each party receives its correct output, and
none of the parties learn anything beyond their prescribed output. The standard
definition today [14, 26] formalizes the above requirements (and others) in the
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following general way. Consider an ideal world in which an external trusted party
is willing to help the parties carry out their computation. An ideal computation
takes place in this ideal world by having the parties simply send their inputs to
the trusted party, who then computes the desired function and passes each party
its prescribed output. The security of a real protocol is established by comparing
the outcome of the protocol to the outcome of an ideal computation. Specifically,
a real protocol that is run by the parties is secure, if an adversary controlling a
coalition of corrupted parties can do no more harm in a real execution than in
the ideal execution.

One of the most important parameters for designing a protocol is the com-
munication model. In the synchronous communication model, messages that are
sent are guaranteed to be delivered within a known and finite time frame. As
a result, the computation can proceed in rounds, such that if a party failed to
receive a particular message in some round, within the expected time frame, the
receiver knows that the sender did not transmit the message. Impressive feasibil-
ity results are known in this model [27, 8, 17, 38], stating that every functionality
can be securely computed, assuming that a majority of the parties are honest.
Furthermore, under suitable cryptographic assumptions, the computation can
be done using constant-round protocols [4, 31, 2, 24, 28, 33].

The asynchronous model of communication is arguably more appropriate
for modeling the real world. In this model the adversary has a stronger control
over the communication channels and can impose an arbitrary unbounded (yet
finite) delay on the arrival of each message. In particular, an honest party cannot
distinguish between a corrupted party that refuses to send messages and an
honest party whose messages are delayed.

This inherent limitation was taken into account by Ben-Or et al. [9] by adjust-
ing the ideal-world computation. Since messages from t parties might never be
delivered during the execution of the protocol, the trusted party cannot compute
the function on all inputs. Therefore, the ideal-world adversary gets to decide
on a core set of n − t input providers (t of which might be corrupted) and the
trusted party computes the function on their inputs (and default values for the
rest). Next, the trusted party sends to each party the output of the computation
along with the identities of the parties in the core set. It immediately follows
that a secure protocol implies agreement in the asynchronous setting, since the
core set must be agreed upon as part of the protocol, and therefore is feasible in
the standard model if and only if t < n/3 [9, 10]. Asynchronous protocols that
are secure assuming t < n/2 are only known in weaker models that assume either
a synchronous broadcast round [6] or some form of non-equivocation [3]. More-
over, the running-time1 of all currently known asynchronous protocols depends
on the function to be computed and no constant-time protocols were known.

In this work we study the following question.

Do there exist asynchronous secure multiparty protocols which run in
constant time?

1 The running time is measured by the elapsed time of the protocol while normalizing
the maximal delay imposed on a message to 1.



1.2 Our Result

Our main result is a feasibility result of an asynchronous secure multiparty pro-
tocol that runs in constant time in a hybrid model where the parties have access
to an ideal asynchronous Byzantine agreement (ABA) functionality.

The main tools that we use are threshold fully homomorphic encryption
(TFHE) and threshold signatures (TSIG). A fully homomorphic encryption
scheme (FHE) is an encryption scheme that enables an evaluation of a function
over a tuple of ciphertexts to obtain an encrypted result. TFHE is essentially a
distributed version of FHE, where the decryption key is secret shared amongst
the parties. In order to decrypt a ciphertext, each party locally uses its share
of the decryption key and computes a share of the plaintext. The plaintext can
then be reconstructed given t + 1 decryption shares. Similarly, in a threshold
signature scheme, the signing key is secret shared and t+ 1 shares are required
in order to sign a message. We note that both of these computational assumption
can be based on the standard learning with errors (LWE) problem, see Asharov
et al. [2], Bendlin and Damg̊ard [11] and Bendlin et al. [12].

Theorem 1 (informal). Assume that TFHE and TSIG schemes exist, and
that the cryptographic keys have been pre-distributed. Then any efficiently com-
putable function f can be securely computed in the asynchronous setting facing
static malicious adversaries, assuming an honest majority and given access to
an ABA ideal functionality. The time complexity of the protocol is O(1), the
communication complexity is independent of the multiplication-depth of the cir-
cuit representing f and the number of (concurrent) invocations of the ABA ideal
functionality is n.

Using the concurrent ABA protocol of Ben-Or and El-Yaniv [7], which runs
in constant expected time2 and is resilient for t < n/3, we obtain the following
corollary.

Corollary 1 (informal). Assume that TFHE and TSIG schemes exist, then
any function can be securely computed in the asynchronous setting using a con-
stant expected time protocol, in the presence of static malicious adversaries, for
t < n/3.

1.3 Overview of the Protocol

The basis of our technique is the protocol of Cramer et al. [20] (designed for
the synchronous setting), which is based on threshold additively homomorphic
encryption (TAHE)3 and is designed in a hybrid model where the encryption
keys are pre-distributed before the protocol begins. Initially, each party encrypts
its input and broadcasts the ciphertext. Next, the circuit is homomorphically
evaluated, where addition gates are computed locally and multiplication gates

2 Following the impossibility result of [22], asynchronous agreement protocols cannot
be computed in constant time.

3 Which essentially means that ciphertexts can be added but not multiplied.



are computed interactively. Finally, a threshold decryption protocol is executed,
and the parties learn the output.

Hirt et al. [29, 30] adopted the protocol of [20] into the asynchronous setting
by introducing the king-slaves paradigm. Initially, each party sends its encrypted
input to all the parties, and the core set is decided upon using an agreement on
a common subset (ACS) protocol, which incorporates n instances of ABA. Next,
n copies of the circuit are interactively evaluated. In each evaluation one of the
parties acts as king while all other parties act as slaves. The role of the slaves
is to help the king with the computation of multiplication gates. At the end of
each such evaluation, the slaves send their decryption shares to the king which
recovers the output. The evaluations of the circuit are executed asynchronously,
i.e., one king may finish its computation while another king hasn’t started yet,
therefore each party must hold a state for each evaluation of the circuit.

The time complexity of the protocols of Hirt et al. [29, 30] depends on the
depth of the circuit to compute. In this work, we use a TFHE instead of TAHE
in order to reduce the running time. This adjustment not only yields better
time complexity and better communication complexity, but also enables a design
without the expensive king-slave paradigm, since each party can locally and non-
interactively evaluate the entire circuit. As a consequence, the description of
the new protocol is greatly simplified, and also results with a better memory
complexity compared to [29, 30], since the parties do not need to store a local
state for each of the n evaluations of the circuit.

Our protocol consists of three stages. The input stage, in which the core set
of input providers is determined, follows in the lines of Hirt et al. [29, 30]. In
the computation and threshold decryption stage, each party homomorphically
evaluates the circuit non-interactively and obtains an encrypted output c̃. Next,
the party uses its share of the decryption key to compute a decryption share and
send it to all other parties. Once a party receives t + 1 valid decryption shares
it can recover the output. During these stages, the validity of each message
sent by some party must be proven. This is done by running a sub-protocol
which produces a certificate for the message (which is essentially a signature
produced by n− t parties). Therefore, a party must remain active and assist in
constructions of certificates even after it obtained its output. The termination
stage ensures a safe termination of all the parties and follows Bracha [13]. Once
a party obtained its output it sends it to all other parties. When a party receives
t+ 1 consisting values it can safely set its output to this value (even if it did not
complete the computation and threshold decryption stage) and once receiving
outputs from n− t parties, terminate.

1.4 Additional Related Work

Ben-Or et al. [9] were the first to define asynchronous secure multiparty compu-
tation. They constructed a BGW-alike [8] asynchronous protocol that is secure
in the presence of malicious adversaries when t < n/4; the authors showed that
this threshold is tight when considering perfect correctness. Ben-Or et al. [10]
constructed a protocol with statistical correctness that is secure in the presence



of malicious adversaries, for t < n/3. This threshold is also tight following the
lower bound of Toueg [41], stating that asynchronous Byzantine agreement is
impossible if t ≥ n/3, even in the PKI model.

Following the feasibility results of [9, 10] great improvements have been made
regarding the communication complexity. Two main approaches have been used,
the first is in the information-theoretic model and does not rely on cryptographic
assumptions [40, 37, 5, 35, 36, 19] while the second is in the computational model
and is based on threshold additively homomorphic encryption, these protocols
appear in [29, 30, 18] and rely on a preprocessing phase for key distribution.

In order to achieve security for an honest majority, the model must be weak-
ened in some sense. Beerliová-Trub́ıniová et al. [6] allowed a limited usage of syn-
chronous Byzantine agreement and adjusted the protocol from [30] to the case
where t < n/2. Backes et al. [3] augmented the model with a non-equivocation
oracle, and constructed a protocol that is secure assuming an honest majority.

In an independent work, Choudhury and Patra [18] suggested using TFHE in
order to reduce the time complexity, but did not proceed in this route since they
considered concrete efficiency. We note that in this work we focus on feasibility
results rather than concrete efficiency of the protocols.

A comparison of the asynchronous MPC protocols appears in Table 1.

Paper Organization

The cryptographic primitives are defined in Section 2 and followed by the descrip-
tion of the UC security model in Section 3. Certificates are defined in Section 4
and then in Section 5 we present our asynchronous MPC protocol. The security
proof is given in Section 6.

2 Preliminaries

In this section we present the definitions of the cryptographic schemes that are
used in our protocol.

2.1 Threshold Fully Homomorphic Encryption

Definition 1. A homomorphic encryption (HE) scheme consists of 4 PPT algo-
rithms:

– Key generation: (dk, ek) ← Gen(1κ); outputs a pair of keys: the secret
decryption key dk and the public encryption (and evaluation) key ek.

– Encryption: c← Encek(m); using ek, encrypt a plaintext m into a cipher-
text c.

– Decryption: m = Decdk(c); using dk, decrypt the ciphertext c to into a
plaintext m.

– Homomorphic evaluation: c = Evalek(C, c1, . . . , c`); using ek, evaluate a
circuit C over a tuple of ciphertexts (c1, . . . , c`) to produce a ciphertext c.



Paper Resilience Correctness Timea Communicationb Assumptionsc Hybrid Modeld

[9] t < n/4 Perfect O(cM ) O(cM · n6)
[10] t < n/3 Statistical O(cM ) Ω(cM · n11)
[40] t < n/4 Perfect O(cM ) Ω(cM · n5)
[37] t < n/4 Statistical O(cM ) O(cM · n4 + n5)
[29] t < n/3 Computational O(cM ) O(cM · n3κ) TAHE, TSIG KeyDist
[5] t < n/4 Perfect O(cM ) O(cM · n3)
[30] t < n/3 Computational O(cM ) O(cM · n2κ+ n3κ) TAHE, TSIG KeyDist
[35] t < n/3 Statistical O(cM ) O(cM · n5)
[36] t < n/4 Statistical O(cM ) O(cM · n2 + n4)
[36] t < n/4 Perfect O(cM ) O(cM · n2 + n3)
[6] t < n/2 Computational O(cM ) O(cM · n4κ) TAHE, TSIG KeyDist, Bcast
[19] t < n/4 Statistical O(cM ) O(cM · n+ n3)
[3] t < n/2 Computational O(cM ) O(cM · n3κ) AHE, TSIG KeyDist, NEQ
[3] t < n/2 Computational O(cM ) O(cM · n2κ+ n3κ) TAHE, TSIG KeyDist, NEQ
[18] t < n/3 Computational O(cM ) O(cM · nκ+ n3κ) TSHE KeyDist

This work t < n/3 Computational O(1) O(n3κ) TFHE, TSIG KeyDist

a Time complexity is measured in the ABA-hybrid model.
b cM denotes the number of multiplication gates. Input, output and addition gates are

ignored.
c TSIG is a threshold digital signature scheme, AHE is an additively homomorphic en-

cryption scheme, TAHE is a threshold additively homomorphic encryption scheme,
TSHE is a threshold somewhat homomorphic encryption scheme, TFHE is a thresh-
old fully homomorphic encryption scheme.

d KeyDist stands for key distribution for a threshold cryptosystem, NEQ stands for
transferable non-equivocation mechanism, Bcast stands for synchronous broadcast.

Table 1: Comparison of asynchronous MPC protocols.

We say that a HE scheme is correct for circuits in a circuit class C if for every
C ∈ C and every series of inputs m1, . . . ,m` ∈ {0, 1}∗ it holds that

Pr [Decdk (Evalek (C,Encek(m1), . . . ,Encek(m`))) 6= C (m1, . . . ,m`)] ≤ negl(κ).

Semantic security of HE schemes is defined in the standard way, see [25].

Definition 2. A family of HE schemes {Π(d) = (Gen(d),Enc(d),Dec,Eval(d)) |
d ∈ N+} is leveled fully homomorphic if for every d ∈ N+, the following holds:

– Correctness: Π(d) correctly evaluates the set of all boolean circuits of depth
at most d.

– Compactness: There exists a polynomial s such that the common decryp-
tion algorithm can be expressed as a circuit of size at most s(κ) and is inde-
pendent of d.

In our protocol for computing a function f , the depth d of the circuit C repre-
senting f is known in advance. We remove the notation (d) from the schemes



throughout the paper for clarity. We also require the FHE scheme to have a
threshold decryption, informally this means that Gen generates the public key
ek as well as a te-secret sharing of the secret key (dk1, . . . , dkn), such that de-
crypting c using dki produces a sharemi of the plaintextm. We will use te = t+1.

Definition 3. A threshold homomorphic encryption scheme is a homomorphic
encryption scheme augmented with the following properties:

– The key generation algorithm is parameterized by (te, n) and outputs
(dk, ek) ← Gen(te,n)(1

κ), where dk is represented using a (te, n)-threshold
secret sharing of the secret key (dk1, . . . , dkn).

– Given a ciphertext c and a share of the secret key dki, the share-decryption
algorithm outputs di = DecSharedki(c) such that (d1, . . . , dn) forms a (te, n)-
threshold secret sharing of the plaintext m = Decdk(c). We denote the
reconstruction algorithm that receives te decryption shares {di} by m =
DecRecon({di}).

2.2 Threshold Signatures

A threshold signature scheme is a signature scheme in which the signing key is
shared amongst n parties using a ts-threshold secret-sharing scheme. Using ts
shares of the signing key it is possible to sign on any message, however using
less than ts shares it is infeasible to forge a signature. We will use ts = n− t.

Definition 4 (Threshold Signature Scheme). A threshold signature scheme
is a signature scheme (SigGen,Sign,Vrfy) augmented with the following proper-
ties

– The signature key generation algorithm is parameterized by (ts, n) and out-
puts (sk, vk) ← SigGen(ts,n)(1

κ), where sk is represented using a (ts, n)-
threshold secret sharing of the secret signing key (sk1, . . . , skn).

– Given a plaintext m and a share of the secret key ski, the share-signing algo-
rithm outputs σi ← SignShareski(m) such that (σ1, . . . , σn) forms a (ts, n)-
threshold secret sharing of the signature σ ← Signsk(m).

For a security definition of threshold signatures see, for example, [1].

3 The Security Model

3.1 The UC Framework

In this section we present a high-level description of the security model. We follow
the UC framework of Canetti [14], which is based on the real/ideal paradigm,
i.e., comparing what an adversary can do in the real execution of the protocol to
what it can do in an ideal model where an uncorrupted trusted party (an ideal
functionality) assists the parties. Informally, a protocol is secure if whatever an
adversary can do in the real protocol (where no trusted party exists) can be done
in the ideal computation.



The real world. An execution of a protocol π in the real model consists of n
interactive Turing machines (ITMs) P1, . . . , Pn representing the parties, along
with two additional ITMs, an adversary A, describing the behavior of the cor-
rupted parties and an environment Z, representing the external environment in
which the protocol operates. The environment gives inputs to the honest parties,
receives their outputs, and can communicate with the adversary at any point
during the execution. The adversary controls the operations of the corrupted
parties and the delivery of messages between the parties.

In more details, each ITM is initialized with the security parameter κ and
random coins, where the environment may receive an additional auxiliary input.
We consider static corruptions, meaning that the set of corrupted parties is fixed
before the protocol begins and is known to A and Z. The protocol proceeds
by a sequence of activations, where the environment is activated first and at
each point a single ITM is active. The environment can either activate one of
the parties with input or activate the adversary by sending it a message. Once
a party is activated it can perform a local computation, write on its output
tape or send messages to other parties. After the party completes its operations
the control is returned to the environment. Once the adversary is activated it
can send messages on behalf of the corrupted parties or send a message to the
environment. In addition, A controls the communication between the parties,
and so it can read the content of the messages sent between the parties and
is responsible for delivering each message to its recipient. Once A delivers a
message to some party, this party is activated. We assume that the adversary
cannot omit, change or inject messages, however it can decide which message
will be delivered and when.4 The protocol completes once Z stops activating
other parties and outputs a single bit.

If the adversary is fail-stop, it always instructs the corrupted parties to follow
the protocol, with the exception that they can halt prematurely and stop sending
messages. If the adversary is malicious, it may instruct the corrupted parties to
deviate from the protocol arbitrarily.

Let REALπ,A,Z(κ, z, r) denote Z’s output on input z and security parameter κ,
after interacting with adversaryA and parties P1, . . . , Pn running protocol π with
random tapes r = (r1, . . . , rn, rA, rZ) as described above. Let REALπ,A,Z(κ, z)
denote the random variable REALπ,A,Z(κ, z, r), when the vector r is uniformly
chosen.

The ideal model. A computation in the ideal model consists of n dummy parties
P1, . . . , Pn, an ideal adversary (simulator) S, an environment Z, and an ideal
functionality F . The environment gives inputs to the honest (dummy) parties,
receives their outputs, and can communicate with the ideal adversary at any
point during the execution. The dummy parties act as channels between the
environment and the ideal functionality, meaning that they send the inputs re-
ceived from Z to F , and transfer the output they receive from F to Z. We

4 This behaviour is formally modeled using the eventual-delivery secure message trans-
mission ideal functionality in [32].



consider static corruptions, and so the set of corrupted parties is fixed before
the computations, and is known to Z, S and F . As before, the computation
completes once Z stops activating other parties and outputs a single bit.

The ideal functionality defines the desired behaviour of the computation. F
receives the inputs from the dummy parties, executes the desired computation
and sends the output to the parties. The ideal adversary does not see and can-
not delay the communication between the parties and the ideal functionality,
however, S can communicate with F . As we consider asynchronous protocols in
the real model, ideal functionalities must consider some inherent limitations, for
instance, the ability of the adversary to decide when each honest party learns
the output. Since the UC framework has no notion of time, we follow [34, 32]
and model time by number of activations. Once F prepares an output for some
party it does not ask permission from the adversary to deliver it to the party,
instead the party must request the functionality for the output, and this can
only be done when the party is active. Furthermore, the adversary can instruct
F to delay the output for each party by ignoring the requests for a polynomial
number of activations. If the environment activates the party sufficiently many
times, the party will eventually receive the output from the ideal functionality.
It follows that the ideal computation will terminate, i.e., all honest parties will
obtain their output, in case the environment will allocate enough resources to
the parties. We use the term F sends a request-based delayed output to Pi to
describe the above interaction between the F , S and Pi.

Let IDEALF,S,Z(κ, z, r) denote Z’s output on input z and security parameter
κ, after interacting with ideal adversary S and dummy parties P1, . . . , Pn which
interact with ideal functionality F with random tapes r = (rS , rZ) as described
above. Let IDEALF,S,Z(κ, z) denote the random variable IDEALF,S,Z(κ, z, r),
when the vector r is uniformly chosen.

Definition 5. We say that a protocol π t-securely UC realizes an ideal function-
ality F in the presence of static malicious (resp., fail-stop) adversaries, if for
any PPT malicious (resp., fail-stop) real model adversary A, controlling a subset
of up to t parties, and any PPT environment Z, there exists a PPT ideal model
adversary S such that following two distribution ensembles are computationally
indistinguishable

{REALπ,A,Z (κ, z)}κ∈N,z∈{0,1}∗
c≡ {IDEALF,S,Z (κ, z)}κ∈N,z∈{0,1}∗ .

The hybrid model. In a G-hybrid model, the execution of the protocol proceeds
as in the real model, however, the parties have access to an ideal functionality
G for some specific operations. The communication of the parties with the ideal
functionality G is performed as in the ideal model. An important property of the
UC framework is that an ideal functionality in a hybrid model can be replaced
with a protocol that securely UC realizes G. We informally state the composition
theorem from Canetti [14].

Theorem 2 ([14]). Let π be a protocol that t-securely UC realizes F in the
G-hybrid model and let ρ be a protocol that t-securely UC realizes G. Then the



protocol πρ that is obtained from π by replacing every ideal call to G with the
protocol ρ, t-securely UC realizes F in the model without ideal functionality G.

3.2 Some Ideal Functionalities

We now present the asynchronous SFE and asynchronous BA functionalities.

Asynchronous Secure Function Evaluation Secure function evaluation
(SFE) is a multiparty primitive where a set of n parties wish to compute
a (possibly randomized) function f : ({0, 1}∗)n × {0, 1}∗ → ({0, 1}∗)n, where
f = (f1, . . . , fn). That is, for a vector of inputs x = (x1, . . . , xn) ∈ ({0, 1}∗)n
and random coins r ∈R {0, 1}∗, the output vector is (f1(x; r), . . . , fn(x; r)). The
output for the i’th party (with input xi) is defined to be fi(x; r). The function
f has public output, if all parties output the same value, i.e., f1 = . . . = fn,
otherwise f has private output.

In an asynchronous protocol for computing secure function evaluation, the
adversary can always delay messages from t parties, and so t input values might
not take part in the computation. Therefore, in the definition of the ideal func-
tionality for asynchronous SFE, the ideal-model adversary is given the power to
determine a core set of n − t input providers (t of which might be corrupted)
that will contribute input values for the computation. The asynchronous secure
function evaluation functionality, FfASFE, is presented in Figure 1.

Functionality FfASFE

FfASFE proceeds as follows, running with parties P1, . . . , Pn and an adversary S,
and parameterized by an n-party function f : ({0, 1}∗)n×{0, 1}∗ → ({0, 1}∗)n.
For each party Pi initialize an input value xi = ⊥ an output value yi = ⊥.

– Upon receiving a message (input, sid, v) from some party Pi, if CoreSet has
not been recorded yet or if Pi ∈ CoreSet, set xi = v. Next, send a message
(input, sid, Pi) to S.

– Upon receiving a message (coreset, sid,CoreSet) from S, verify that CoreSet
is a subset of {P1, . . . , Pn} of size n− t; else ignore the message. If CoreSet
has not been recorded yet, record CoreSet and for every Pi not in CoreSet,
set xi to some default input value xi = x̃i.

– Upon receiving a message (output, sid) from some party Pi, do:
1. If CoreSet has not been recorded yet or if xj has not been recorded

for some Pj ∈ CoreSet, ignore the message.
2. Otherwise, if y1, . . . , yn have not been set yet, then choose r ∈R {0, 1}∗

and compute (y1, . . . , yn) = f(x1, . . . , xn; r).
3. Generate a request-based delayed output (output, sid, (CoreSet, yi)) to

Pi and send (output, sid, Pi) to S.

Fig. 1: The asynchronous secure function evaluation functionality



Asynchronous Byzantine Agreement In a synchronous Byzantine agree-
ment, each party has an input bit and outputs a bit. Three properties are re-
quired: agreement, meaning that all honest parties agree on the same bit, va-
lidity, meaning that if all honest parties have the same input bit then this will
be the common output and termination, meaning that the protocol eventually
terminates. When considering asynchronous Byzantine agreement (ABA), the
definition must be weakened, since t input values may be delayed and not effect
the result. We adopt the ABA functionality as defined in [34]. The asynchronous
Byzantine agreement functionality, FABA, is presented in Figure 2.

Functionality FABA

FABA proceeds as follows, running with parties P1, . . . , Pn and an adversary S:

– Upon receiving a message (vote, sid, b), where b ∈ {0, 1} from party Pi,
send a message (vote, sid, Pi, b) to the adversary. The adversary is also
allowed to vote.

– The result is computed using one of the following rules:
• If n − t parties voted, and t + 1 voted b and S voted b, then set the

result to be b.
• If n− t parties voted b, then set the result to be b.
• If n − t parties voted, but do not agree, then the result is set by the

vote of S.
When the result of voting sid has been decided to be v, the functionality
sends (decide, sid, v) as a request-based delayed output to all parties.

Fig. 2: The asynchronous Byzantine agreement functionality

4 Zero-Knowledge Proofs and Certificates

In order to ensure security against malicious behaviour, the parties must
prove their actions using zero-knowledge proofs during the protocol. The zero-
knowledge functionality FZK and its one-to-many extension F1:M

ZK are defined in
Section 4.1 and the notion of certificates in Section 4.2.

4.1 Zero-Knowledge Proofs

In the zero-knowledge functionality, parameterized by a relation R, the prover
sends the functionality a statement x to be proven along with a witness w. In
response, the functionality forwards the statement x to the verifier if and only
if R(x,w) = 1 (i.e., if and only if x a correct statement and w is a witness
for x). Thus, in actuality, this is a proof of knowledge in that the verifier is
assured that the prover actually knows w (and has explicitly sent w to the



functionality), rather than just being assured that such a w exists. The zero-
knowledge functionality, FZK, is presented in Figure 3.5

Functionality FZK

FZK proceeds as follows, running with prover P , a verifier V and an adversary
S, and parameterized with a relation R:

– Upon receiving (ZK-prover, sid, x, w) from P , do: if R(x,w) = 1,
then send (ZK-proof, sid, x) to S, send a request-based delayed output
(ZK-proof, sid, x) to V and halt. Otherwise, halt.

Fig. 3: The zero-knowledge functionality

The zero-knowledge functionality, as defined in Figure 3, is parameterized by
a single relation R (and thus a different copy of FZK is needed for every different
relation required). In this work we require zero-knowledge proofs for several
relations, therefore, we use standard techniques by considering the relation R
index several predetermined relations. This can be implemented by separating
the statement x into two parts: x1 that indexes the relation to be used and x2
that is the actual statement. Then, define R((x1, x2), w) as Rx1(x2, w).

We now define the one-to-many extension of the zero-knowledge functional-
ity, where one party proves a statement to some subset of parties. The definition
of the one-to-many zero-knowledge functionality, denoted F1:M

ZK , is presented in
Figure 4.

Functionality F1:M
ZK

F1:M
ZK proceeds as follows, running with parties P1, . . . , Pn and an adversary S,

and parameterized with a relation R:

– Upon receiving (ZK-prover, sid,P, x, w) from party Pi, where P ⊆
{P1, . . . , Pn} do: if R(x,w) = 1, then send (ZK-proof, sid, Pi,P, x) to S,
a request-based delayed output (ZK-proof, sid, Pi,P, x) to all parties in P
and halt. Otherwise, halt.

Fig. 4: The one-to-many zero-knowledge functionality

5 For simplicity, we concentrate on the single-session version of FZK, which requires a
separate common reference string for each protocol that realizes FZK. The protocols
realizing FZK will later be composed, using the universal composition with joint
state of Canetti and Rabin [16], to obtain protocols that use only a single copy of
the common reference string when realizing all the copies of FZK.



4.2 Certificates

As we consider static corruptions, there exists efficient constant-round zero-
knowledge protocols in the FCRS-hybrid model, e.g., omega protocols [23], and
even non-interactive zero-knowledge proofs [21]. These protocols would suffice
for realizing FZK as it is a two-party functionality. However, when considering
the multiparty functionality F1:M

ZK , some problems may arise. The reason is that
the statement that needs to be proven is not public, and a malicious prover may
prove different statements to different parties.

This problem is resolved using certificates, introduced by Hirt et al. [30].
Certificates are generated by an interactive protocols among the parties such that
at the end of the execution, one party can non-interactively prove correctness of
some statement to each other party, without revealing additional information.
The protocol for issuing a certificate is based on threshold signatures and involves
two stages. First, a signature proving the statement is computed interactively
with all the parties – it is essential that all the parties are active during this
stage, otherwise the prover might not receive enough shares to reconstruct the
signature. Next, the prover can send the signature as a non-interactive proof of
the statement and every other party can validate it.

During out main protocol, in Section 5, we consider three relations:

– Proof of Plaintext Knowledge. The relations is parameterized by a
TFHE scheme. The statement consists of a public encryption key ek and
a ciphertext c and the witness consists of the plaintext x and random coins
r, explaining c as an encryption of x under ek. That is

RPoPK = {((ek, c), (x, r)) | c = Encek(x; r)} .

– Proof of Correct Decryption. The relations is parameterized by a TFHE
scheme. The statement consists of a public encryption key ek, a ciphertext c
and a decryption share d and the witness consists of the decryption key dk.
That is

RPoCD = {((ek, c, d), dk) | d = DecSharedk(c)} .

– Proof of Correct Signature. The relations is parameterized by a TSIG
scheme. The statement consists of a public verification key vk, a message
msg and a signature share σ and the witness consists of the signing key sk.
That is

RPoCS = {((vk,msg, σ), sk) | σ = SignSharesk(msg)}

Lemma 1. Let n > 2t + 1 and let Rx1
be a binary relation. Assuming the

existence of threshold signature schemes, F1:M
ZK can be UC realized in the FZK-

hybrid model in the presence of static malicious adversaries.

Proof. Consider a party Pi, holding a witness w, that wishes to prove a statement
x to all other parties. The high-level idea is for Pi to prove x to each other
Pj using a two-party zero-knowledge proof. If all parties are active and Pi is
honest, it is guaranteed that eventually at least n − t proofs will successfully



terminate. Once a verifier Pj accepts the proof, it produces a share σj of a
signature approving x, sends the share back to Pi and proves the validity of σj
to Pi using another two-party zero-knowledge proof. After Pi obtains n− t valid
signature shares, it can reconstruct the signature σ which serves as its certificate.

Assuming that n > 2t+1, it holds that (n−t)−t ≥ 1, and so it is guaranteed
that at least one honest party accepted the proof of the statement x; it follows
that the corrupted parties cannot falsely certify invalid statements. Furthermore,
assuming the two-parties zero-knowledge proofs are constant round, certifying a
statement takes constant time.

Protocol 3 shows how to compute F1:M
ZK in the FZK-hybrid model. During the

protocol, two instances of FZK are used; the first is for proving statements for
the relation Rx1 and the second for the relation RPoCS. We use the notation sidkj
for the string sid ◦ k ◦ j.

Protocol 3 (F1:M
ZK protocol, in the FZK-hybrid model)

Offline setup:
For every j ∈ [n], party Pj is initialized with keys for a threshold sig-
nature scheme (vk, skj), where (sk, vk) ← SigGen(n−t,n)(1

κ), and sk =
(sk1, . . . , skn).

Code for sender Pi:
– Upon receiving (ZK-prover, sid,P, (x1, x2), w) from the environment,

party Pi sends (ZK-prover, sid1j , (x1, x2), w) to FZK where Pi acts as
the prover and Pj acts as the verifier (for every j ∈ [n] \ {i}). In
addition, send (sid,P) to every party.

– Request output from FZK until receiving
(ZK-proof, sid2j , (PoCS, vk,msg, σ)), with msg =
〈(x1, x2) is a valid statement, for (sid,P)〉 (for every j ∈ [n] \ {i}),
until receiving n− t signature shares {σj}.

– Compute cert = SignRecon({σj}), send (sid, (x1, x2), cert) to every
party in P and halt.

Code for receiver Pj (for j 6= i):
– Requests output from FZK until receiving (ZK-proof, sid1j , (x1, x2)).

Next, upon receiving the message (sid,P) from Pi, set
msg = 〈(x1, x2) is a valid statement, for (sid,P)〉, compute σj =
SignShareskj (msg) and send (ZK-prover, sid2j , (PoCS, vk,msg, σj), skj)
to FZK where Pj acts as the prover and Pi acts as the verifier.

– Upon receiving the first message (sid, (x1, x2), cert) from Pi set
msg = 〈(x1, x2) is a valid statement, for (sid,P)〉 and verify that
Vrfyvk(msg, cert) = 1. If so output (ZK-proof, sid, Pi,P, (x1, x2)) and
halt.

The one-to-many zero-knowledge protocol

Let A be an adversary attacking Protocol 3 and let Z be an environment.
We construct a simulator S as follows. S runs the adversary A and simulates
the environment, the honest parties and the ideal functionality FZK towards A.



In order to simulate Z, S forwards every message it receives from Z to A and
vice-versa. S simulates the honest parties towards A. In case Pi is corrupted,
S receives ((x1, x2), w) by simulating FZK and in addition receives P from A.
Next, S sends (ZK-prover, sid,P, (x1, x2), w) to F1:M

ZK and continues simulating
the honest parties and FZK to A. In case Pi is not corrupted, it first receives
(ZK-proof, sid, Pi,P, (x1, x2)) from F1:M

ZK . Next, whenever A requests output from
FZK with sid1j for j ∈ I, S replies with (ZK-proof, sid, (x1, x2)). The rest of the
simulation follows the protocol. It is straight-forward to see that the view of A
is indistinguishable when interacting with S and when attacking the execution
of Protocol 3, and the proof follows.

5 Asynchronous MPC Protocol

Following the spirit of [29, 30], the protocol consists of an offline key-distribution
stage (preprocessing) followed three online stages: the input stage, the compu-
tation and threshold-decryption stage and the termination stage. We present
the protocol for public-output functionalities, and a variant for private-output
functionalities can be obtained using the technique of [29].

5.1 Key-Distribution Stage

The key-distribution stage can be computed once for multiple instances of the
protocol and essentially distributes the keys for threshold schemes amongst
the parties. We will describe the protocol in a hybrid model where the key-
distribution is done by an ideal functionality FKeyDist. This ideal functionality
can be realized using any asynchronous MPC protocol that does not require
preprocessing, e.g., [35]. We emphasize that the time complexity of the protocol
realizing the key-distribution stage is independent of the function to compute.
FKeyDist generates the public and secret keys for the TFHE and the TSIG

schemes and sends to each party its corresponding keys. The key-distribution
functionality is described in Figure 5.

5.2 Input Stage

In the input stage, as described in Protocol 4, each party encrypts its input and
sends it to all the other parties along with certificates proving that the party
knows the plaintext (and so independence of inputs is retained) and that n − t
parties have obtained it. Next, the parties jointly agree on a common subset of
input providers, CoreSet, which consists of n− t parties whose encrypted input
has been obtained by all the parties. This stage proceeds in a similar manner
to [29] with the difference that the plaintexts are encrypted using TFHE rather
than TAHE.

In more details, each party Pi starts by encrypting its input ci ← Encek(xi),
and proving to each other party knowledge of the plaintext. Once a party Pj
accepts the proof, it sends Pi a signature share for the statement msg = 〈n −



Functionality FKeyDist

FKeyDist proceeds as follows, interacting with parties P1, . . . , Pn and an adver-
sary S, and parameterized by TFHE and TSIG schemes.

– Upon receiving a message (keydist, sid) from party Pi, do:
1. If there is no value (sid, dk, ek, sk, vk) recorded, compute

(dk, ek) ← Gen(t,n)(1
κ), where dk = (dk1, . . . , dkn), and

(sk, vk) ← SigGen(n−t,n)(1
κ), where sk = (sk1, . . . , skn) and

record (sid, dk, ek, sk, vk).
2. Send (sid, Pi, ek, vk) to S and a request-based delayed outputa

(sid, dki, ek, ski, vk) to Pi.

a This is the standard formalization of the asynchronous setting in the UC
framework, see Section 3; Pi must request the output from FKeyDist, and S
can continuously instruct FKeyDist to arbitrarily delay the answer.

Fig. 5: The key-distribution functionality

t parties hold the input ci of Pi〉. After Pi obtains n− t signature shares, it can

reconstruct and distribute the certificate certinput
i , which is essentially a signature

on msg.
When a party collects n − t certificates it knows that at least n − t parties

have their certified inputs distributed to at least n− t parties. Since n ≥ 2t+ 1,
by assumption, this means that at least (n− t)− t ≥ 1 honest parties obtained
certified inputs from at least n− t parties. Hence, if the honest parties echo the
certified inputs they receive and collect n− t echoes, then all honest parties will
end up holding the certified inputs of the n− t parties which had their certified
inputs distributed to at least one honest party. These n−t parties will eventually
be the input providers. To determine who they are, the asynchronous Byzantine
agreements functionality FABA is invoked (concurrently) n times. During the
protocol description we use the notation sidkj for the string sid ◦ k ◦ j.

5.3 Computation and Threshold Decryption Stage

In the computation and threshold-decryption stage, as described in Protocol 5,
each party locally prepares the circuit Circ(CoreSet) (with hard-wired default
input values for parties outside CoreSet) and evaluates it over the encrypted
input ciphertexts that were agreed upon in the input stage. Since the encryption
scheme is fully homomorphic, this part is done without interaction between the
parties. Once the encrypted output c̃i is obtained, Pi computes a decryption
share di and interactively certifies it. Next, Pi sends the certified decryption
share to all other parties and waits until it receives t + 1 certified decryption
shares, from which it can reconstruct the output yi.

Once Pi obtains the output, it should send it to all other parties in order
to trigger the termination stage. This is done by first computing a signature



Protocol 4 (The input stage, in the (FKeyDist,FZK,F1:M
ZK ,FABA)-hybrid)

Setup: Upon receiving input (input, sid, xi) from the environment, proceed as
follows:
1. Send (keydist, sid) to FKeyDist.
2. Request the output from FKeyDist until receiving (sid, dki, ek, ski, vk).
3. Initialize the following sets to ∅: VerProvi (verified input providers),

VerDistProvi (verified distributed input providers), GlobalProvi (globally
verified distributed input providers), CertInputsi (certified inputs) and
GlobalInputsi (globally certified inputs).

Distribution of Encrypted Input:
1. Compute ci = Encek(xi; ri) (for uniformly distributed ri).
2. Send (ZK-prover, sid1i , {P1, . . . , Pn} \ {Pi}, (PoPK, ek, ci), (xi, ri)) to
F1:M

ZK .
3. Request output from FZK (with sid2i,j for every j ∈ [n] \ {i}) un-

til receiving (ZK-proof, sid2i,j , (PoCS, vk,msg, σ
inputi
j )), where Pi acts

as the verifier and Pj acts as the prover, with msg = 〈n −
t parties hold the input ci of Pi〉, until receiving n− t signature shares

{σinputi
j }.

4. Compute the certificate certinput
i = SignRecon({σinputi

j }) (which equals

Signsk(msg)). Send (sid,msg, ci, cert
input
i ) to all the parties.

Grant Certificate:
Request the output from F1:M

ZK (with sid1j for every j ∈ [n] \ {i}).
Upon receiving (ZK-proof, sid1j , Pj , {P1, . . . , Pn} \ {Pj}, (PoPK, ek, cj)),
add j to VerProvi. Next, set the message msg = 〈n −
t parties hold the input cj of Pj〉, compute σ

inputj
i = SignShareski(msg),

and send (ZK-prover, sid2j,i, (PoCS, vk,msg, σ
inputj
i ), ski) to FZK, where Pi

acts as the prover and Pj as the verifier.
Echo Certificate:

Upon receving (sid,msg, cj , cert
input
j ) with the message msg = 〈n −

t parties hold the input cj of Pj〉 and Vrfyvk(msg, certinput
j ) = 1, check if

j /∈ VerDistProvi. If so, add j to VerDistProvi, add (cj , cert
input
j ) to

CertInputsi and forward (sid,msg, cj , cert
input
j ) to all the parties.

Select Input Providers:
When |VerDistProvi| ≥ n − t, stop executing the above rules and proceed
as follows:
1. Send (sid,VerProvi,CertInputsi) to all the parties.
2. Collect a set of

{
(VerProvj ,CertInputsj)

}
j∈J of n− t pairs.

3. Let GlobalProvi = ∪j∈JVerProvj and GlobalInputsi = ∪j∈JCertInputsj .
4. For j ∈ [n], send (vote, sid3j , vj) to FABA, where vj = 1 iff j ∈ GlobalProvi.
5. Request the outputs from FABA until receiving (decide, sid3j , wj) for every

j ∈ [n].
6. Denote CoreSet = {j ∈ [n] | wj = 1}.
7. For each j ∈ GlobalProvi ∩ CoreSet, send (sid, cj , cert

input
j ) to all the

parties (note that (cj , cert
input
j ) ∈ GlobalInputsi).

8. Wait until receiving (cj , cert
input
j ) for every j ∈ CoreSet.

The input stage code for Pi



share σoutput
i for the statement that yi is the output value, interactively certify

σoutput
i and send it to all parties. Once Pi receives n − t signature shares it can

reconstruct a certificate proving that yi is indeed the output value. Finally Pi
sends yi along with the certificate to all the parties.

Protocol 5 (The computation and threshold-decryption stage)

Wait until input stage is completed, resulting with a core set CoreSet and input
ciphertexts {cj | j ∈ CoreSet}.

Circuit Evaluation:
1. For each j /∈ CoreSet, hard-wire the default value x̃j for Pj into the

circuit Circ, denote the new circuit by Circ(CoreSet).
2. Locally compute the homomorphic evaluation of the circuit

c̃i = Evalek
(
Circ(CoreSet), cj1 , . . . , cj|CoreSet|

)
.

Threshold Decryption:
1. Compute the decryption share di = DecSharedki(c̃i).
2. Send (ZK-prover, sid4i , {P1, . . . , Pn} \ {Pi}, ((PoCD, ek, c̃i, di), dki) to
F1:M

ZK .
3. Request the output from F1:M

ZK (for every j ∈ [n] \ {i}). Upon receiv-
ing (ZK-proof, sid4j , Pj , {P1, . . . , Pn}\{Pj}, (PoCD, ek, c̃j , dj)), accept the
proof if c̃i = c̃j .

4. Once t + 1 decryption shares with accepted proofs {(ek, c̃i, dj)} have
arrived, reconstruct the output yi = DecRecon({dj}).

5. Set msg = 〈yi is the output value〉 and compute σoutput
i =

SignShareski(msg).

6. Send (ZK-prover, sid5i , {P1, . . . , Pn} \ {Pi}, (PoCS, vk,msg, σoutput
i ), ski) to

F1:M
ZK .

7. Request output from F1:M
ZK (for j ∈ [n] \ {i}) until receiv-

ing (ZK-proof, sid5j , Pj , {P1, . . . , Pn} \ {Pj}, (PoCS, vk,msg, σoutput
j )), with

msg = 〈yi is the output value〉.
8. Compute the certificate certoutput-verified

i = SignRecon({σoutputi
j }) (which

equals Signsk(msg) with msg = 〈yi is the output value〉).
Send (sid,msg, certoutput-verified

i ) to all the parties.

The computation and threshold-decryption stage code for Pi

5.4 Termination Stage

The termination stage, as described in Protocol 6, ensures that all honest parties
will eventually terminate the protocol, and will do so with the same output.
Recall that the computation and threshold-decryption stage is concluded when a
party sends a certified output value to all the parties. The party cannot terminate
at this point since it might be required to assist in certifying statements for other



parties. Therefore, during the entire course of the protocol the termination code
is run concurrently. The termination stage follows the technique of Bracha [13].
In this stage, each party continuously collects certified outputs sent by other
parties. Once it receives t+ 1 certified outputs of the same value it knows that
this is the correct output value for the computation (since at least one honest
party sent it). The party then adopts this certified output as its own output
(in case it did not obtain the output value earlier) and echoes it to all other
parties. Once the party receives n− t certified outputs of the same value, it can
terminate.

Protocol 6 (The termination stage)

During the protocol, concurrently executes the following rule:

Collecting Output Values:
When receiving for the first time from party Pj the value
(sid,msg, certoutput-verified

j ), with msg = 〈yj is the output value〉 and

Vrfyvk(msg, certoutput-verified
j ) = 1.

1. If the value yj has arrived from t+1 parties and the output of Pi is not set
to be yj , then set the output yi to be yj and echo (sid,msg, certoutput-verified

j )
to all the parties.

2. If the value yj has arrived from n− t parties, then terminate with output
(output, sid, (CoreSet, yi)).

The termination stage code for Pi

6 Proof of Security

Lemma 2. Let f be an n-party functionality and assume the existence of TFHE
and TSIG schemes. Then the protocol π described in Protocol 4, Protocol 5 and
Protocol 6 UC realizes FfASFE in the (FKeyDist,FZK,F1:M

ZK ,FABA)-hybrid model, in
constant time, in the presence of static malicious adversaries corrupting at most
t parties, for t < n/2.

Proof. Let A be a static malicious adversary against the execution of π and let
Z be an environment. Denote by I the set of indices of the corrupted parties.
We construct an ideal-process adversary S, interacting with the environment Z
and with the ideal functionality FfASFE. S constructs virtual real-model honest
parties and runs the real-model adversary A. S must simulate the view of A,
i.e., its communication with Z, the messages sent by the uncorrupted parties,
and the interactions with the functionalities (FKeyDist,FZK,F1:M

ZK ,FABA).

In order to simulate the communication with Z, every message that S receives
from Z is sent to A, and likewise, every message sent from A sends to Z is
forwarded by S.



Simulating the input stage. S starts by simulating FKeyDist and generates
the cryptographic keys by computing (dk, ek) ← Gen(t,n)(1

κ), where dk =
(dk1, . . . , dkn), and (sk, vk) ← SigGen(n−t,n)(1

κ), where sk = (sk1, . . . , skn),
and recording (dk, ek, sk, vk). Upon request from A, S sends the corresponding
keys (dki, ek, ski, vk) for each corrupted party Pi (i ∈ I).

Next, S simulates the operations of all honest parties in the input stage
(Protocol 4). During the Distribution of Encrypted Input phase, S sets ev-
ery ciphertext of an honest party to be an encryption of zero, that is for
every j /∈ I, compute cj ← Encek(0). When the adversary send a re-
quest to F1:M

ZK with sid1j (for j /∈ I) on behalf of a corrupted party, S re-
sponds with a confirmation of the validity of the ciphertext cj , i.e., with
(ZK-proof, sid1j , Pj , {P1, . . . , Pn} \ {Pj}, (PoPK, ek, cj)). When a corrupted party

Pi (i ∈ I) sends (ZK-prover, sid1i , {P1, . . . , Pn} \ {Pi}, (PoPK, ek, ci), (xi, ri)) to
F1:M

ZK , S confirms that indeed ci = Encek(xi; ri) and if so records the input xi. S
continues to simulate the honest parties by following the protocol; in all other
calls to FZK, S responds according to the ideal functionality. When the simula-
tion reaches the Select Input Providers phase, S simulates the interface to FABA

to A. When the first honest party completes the simulated input stage, S learns
the set CoreSet.

Note that S learned the input values that were used by the adversary A
on behalf of the corrupted parties that were selected to be input providers.
This follows since for every i ∈ I ∩ CoreSet, there exists an honest party that
confirmed the ciphertext ci and sent a signature share to Pi (except for the
negligible probability that A managed to forge a signature). It follows that the
corrupted party must have sent its input to F1:M

ZK during the Distribution of
Encrypted Input phase, and so its input value xi was recorded by S.

Interacting with FfASFE. Once S learns CoreSet, it sends to FfASFE the input
value xi that was recorded for each i ∈ I ∩ CoreSet, the input value xi = 0 for
each i ∈ I \ CoreSet and the set CoreSet as the set of input providers. Once S
receives back the output value y, it starts the simulation of the computation and
threshold-decryption stage.

Simulating the computation and threshold-decryption stage. In order to simulate
the honest parties in this stage (Protocol 5), S proceeds as follows. Initially,
S computes the evaluated ciphertext c̃ based on the input ciphertexts of the
input providers, i.e., c̃ = Evalek(Circ(CoreSet), cj1 , . . . , cj|CoreSet|). Next, for every
i ∈ I, use the share of the decryption key dki to compute the decryption share
di = DecSharedki(c̃). S then sets the decryption share dj , for every j /∈ I, such
that (d1, . . . , dn) form a secret sharing of the output value y. When the adversary
sends a request to F1:M

ZK with sid4j (for j /∈ I) on behalf of a corrupted party, S
responds with a confirmation of the validity of the decryption share dj , i.e., with
(ZK-proof, sid4j , Pj , {P1, . . . , Pn}\{Pj}, (PoCD, ek, c̃, dj)). S continues to simulate
the honest parties by following the protocol; in all other calls to F1:M

ZK , S responds
according to the ideal functionality.



Simulating the termination stage. S simulates the honest parties in the termi-
nation stage (Protocol 6) by following the protocol;

We now define a series of hybrid games that will be used to prove the in-
distinguishability of the real and ideal worlds. The output of each game is the
output of the environment.

The game REALπ,A,Z . This is exactly the execution of the protocol π in the
real-model with environment Z and adversary A (and ideal functionalities
(FKeyDist,FZK,F1:M

ZK ,FABA)).

The game HYB
1
π,A,Z . In this game, we modify the real-model experiment

in the computation stage as follows. Whenever a corrupted party requests
output from F1:M

ZK with sid4j (for j /∈ I), the response from F1:M
ZK is

(ZK-proof, sid4j , Pj , {P1, . . . , Pn} \ {Pj}, (PoCD, ek, c̃, dj)), without checking if Pj
sent a valid witness.

Claim 7 REALπ,A,Z ≡ HYB
1
π,A,Z .

Proof. This follows since in the execution of π, honest parties always send a valid
witness to F1:M

ZK , and so the response from F1:M
ZK is the same in both games.

The game HYB
2
π,A,Z . This game is just like an execution of HYB

1 except for the
computation of the decryption shares of honest parties during the computation
stage. Let y be the output of f , let c̃ be the evaluated ciphertext, let dki (for
i ∈ I) be the shares of the decryption key held by the corrupted parties, and
let di = DecSharedki(c̃) be the corresponding decryption shares. Then, instead
of computing the decryption share of the honest parties as dj = DecSharedkj (c̃)
(for j /∈ I), the decryption shares are computed such that (d1, . . . , dn) form a
secret sharing of the output value y.

Claim 8 HYB
1
π,A,Z

c≡ HYB
2
π,A,Z .

Proof. The ability to compute the decryption shares of the honest parties follows
from the properties of the secret sharing scheme.6 Computational indistinguisha-
bility follows from the semantic security of the TFHE scheme.

The game HYB
3
π,A,Z . This game is just like an execution of HYB

2 except for

the following difference. Whenever a corrupted party requests output from F1:M
ZK

with sid1j (for j /∈ I), the response from F1:M
ZK is (ZK-proof, sid1j , Pj , {P1, . . . , Pn}\

{Pj}, (PoPK, ek, cj)), without checking if Pj sent a valid witness.

Claim 9 HYB
2
π,A,Z ≡ HYB

3
π,A,Z .

Proof. This follows since in the execution of π, honest parties always send a valid
witness to F1:M

ZK , and so the response from F1:M
ZK is the same in both games.

6 In the scheme of Shamir [39], fix the points corresponding to the shares di (for
i ∈ I) and the secret y, create a degree t polynomial interpolating these points, and
compute the shares dj (for j /∈ I) accordingly.



The game HYB
4,`
π,A,Z . This game is just like an execution of HYB

3 with the follow-
ing difference. In the input stage, in case i ≤ ` honest party Pi encrypts its actual
input ci ← Encek(xi), whereas in case i > ` Pi encrypts zeros ci ← Encek(0).
(Note that HYB

4,n is exactly HYB
3.)

Claim 10 For every ` ∈ {0, . . . , n− 1}, HYB
4,`
π,A,Z

c≡ HYB
4,`+1
π,A,Z .

Proof. This follows from the semantic security of the encryption scheme.

Claim 11 HYB
4,0
π,A,Z ≡ IDEALf,S,Z .

Proof. This follows since the joint behaviour of ideal functionalities
(FKeyDist,FZK,FABA), the modified behaviour of the ideal functionality F1:M

ZK and
the behaviour of the honest parties in HYB

4,0 is identical to the simulation done
by S.

Combining Claims 7-11, we conclude that REALπ,A,Z
c≡ IDEALf,S,Z .

7 Conclusions

By Lemma 1, F1:M
ZK can be realized in the FZK-hybrid model (assuming the

existence of TSIG and an honest majority). Assuming the existence of enhanced
trapdoor permutations, FZK can be UC realized in the FCRS-hybrid model non-
interactively (meaning that the prover sends a single message to the verifier)
[21]. Using universal composition with joint state [16], a multi-session version
of FZK that requires a single copy of the CRS can be used. We thus obtain the
following theorem from Lemma 2:

Theorem 12 (formal statement of Theorem 1). Let f be an n-party func-
tion and assume that enhanced trapdoor permutations, TFHE schemes and TSIG
schemes exist. Then FfASFE can be UC realized in the (FCRS,FKeyDist,FABA)-hybrid
model, in constant time, in the presence of static malicious adversaries corrupt-
ing at most t parties, for t < n/2.

During the input stage (Protocol 4) the functionality FABA is concurrently in-
voked n times. If FABA is instantiated using a constant expected round protocol,
e.g., the protocol of Canetti and Rabin [15], the time complexity of the concur-
rent composition will result with expectancy of log(n). Ben-Or and El-Yaniv [7]
constructed a concurrent ABA protocol that runs in constant expected time,
assuming that t < n/3.7 We therefore conclude with the following corollary.

Corollary 2 (formal statement of Corollary 1). Let f be an n-party func-
tion and assume that enhanced trapdoor permutations, TFHE schemes and TSIG
schemes exist. Then FfASFE can be UC realized in the (FCRS,FKeyDist)-hybrid
model, in constant expected time, in the presence of static malicious adversaries
corrupting at most t parties, for t < n/3.

7 Although the protocol in [7] is proved based on the property-based definition of
ABA, a simulation-based proof should follow as we consider static adversaries.
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