
On the Key Dependent Message Security of
the Fujisaki-Okamoto Constructions

Fuyuki Kitagawa1,2, Takahiro Matsuda2, Goichiro Hanaoka2, and Keisuke
Tanaka1

1 Tokyo Institute of Technology, Tokyo, Japan
{kitagaw1,keisuke}@is.titech.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST), Tokyo,
Japan

{t-matsuda,hanaoka-goichiro}@aist.go.jp

Abstract. In PKC 1999, Fujisaki and Okamoto showed how to convert
any public key encryption (PKE) scheme secure against chosen plaintext
attacks (CPA) to a PKE scheme which is secure against chosen ciphertext
attacks (CCA) in the random oracle model. Surprisingly, the resulting
CCA secure scheme has almost the same efficiency as the underlying
CPA secure scheme. Moreover, in J. Cryptology 2013, they proposed
more efficient conversion by using the hybrid encryption framework.
In this work, we clarify whether these two constructions are also secure
in the sense of key dependent message security against chosen ciphertext
attacks (KDM-CCA security), under exactly the same assumptions on
the building blocks as those used by Fujisaki and Okamoto. Specifically,
we show two results: Firstly, we show that the construction proposed in
PKC 1999 does not satisfy KDM-CCA security generally. Secondly, on
the other hand, we show that the construction proposed in J. Cryptology
2013 satisfies KDM-CCA security.

Keywords: public key encryption, key dependent message security, cho-
sen ciphertext security.

1 Introduction

1.1 Background and Motivation

Security against chosen ciphertext attacks (CCA) has been considered as a de-
sirable security notion for public key encryption (PKE) schemes. In order to
take adversaries who mount active attacks into consideration, it is desirable that
PKE schemes satisfy CCA security. Moreover, since CCA security implies non-
malleability [18, 7], it is considered that CCA security is strong enough for many
applications. Therefore, many standardization bodies for public key cryptogra-
phy judge whether they include a PKE scheme or not mainly based on whether
the scheme satisfies CCA security [28].

On these backgrounds, it has been widely studied how to construct a prac-
tical CCA secure PKE scheme [10, 19–21, 26]. Among them, the constructions

2 F. Kitagawa et al.

proposed by Fujisaki and Okamoto [19, 21] are one of the most famous construc-
tions. In [19], Fujisaki and Okamoto showed how to convert any PKE scheme
secure against chosen plaintext attacks (CPA) to a PKE scheme which is CCA se-
cure in the random oracle model. Surprisingly, the resulting CCA secure scheme
has almost the same efficiency as the underlying CPA secure scheme. Moreover,
in [21], they proposed more efficient conversion by using the hybrid encryption
framework. EPOC (Efficient PrObabilistiC public-key encryption) that is one of
the concrete instantiations of [19, 21] has been included by IEEE p1363a [1], as
it has high practicality, and moreover, its security can be strictly analyzed.

CCA security has been considered as a standard security notion, but it has
recently come to light that there are many situations where even CCA security
may not guarantee confidentiality of communication. One typical example is
situations where secret keys are encrypted in the system. It is known that there
is an encryption scheme which is totally insecure when an adversary can get an
encryption of secret keys, even though the scheme satisfies CCA security [16].

Black, Rogaway, and Shrimpton [11] introduced a security notion called key
dependent message (KDM) security which guarantees confidentiality even in the
situation of encrypting secret keys. (Around the same time, Camenisch and
Lysyanskaya [15] independently formalized a similar notion called circular secu-
rity.) It is widely known that when an encryption scheme is used as a building
block of complicated systems, encrypting secret keys can often occur. Hard disk
encryption systems (e.g., BitLocker [11]) and anonymous credential systems [15]
are known as such examples. In addition, from the perspective of symbolic cryp-
tography, KDM security is also important [2, 3]. From these facts, we consider
that KDM security against chosen ciphertext attacks, that is, KDM-CCA secu-
rity is one of the desirable security notions for practical encryption schemes.

Since CCA security is regarded as a desirable security notion, the security of
standardized PKE schemes has been analyzed only in the sense of CCA security.
Therefore, it is not clear whether these schemes remain secure even when an
adversary can get an encryption of secret keys. In modern society where encryp-
tion schemes can be used as a building block of complicated systems, and can
encrypt secret keys, it is very important to clarify whether standardized schemes
are secure also in the sense of KDM-CCA security.

1.2 Our Results

Based on this motivation, in this paper, we clarify whether the constructions
proposed by Fujisaki and Okamoto [19, 21] satisfy KDM-CCA security 3 under
exactly the same assumptions on the building blocks as those used in [19, 21],
and show two results. 4 Firstly, we show that the construction of [19] (which

3 When we refer to “KDM security”, unless stated otherwise, we mean KDM secu-
rity with respect to any polynomial time computable functions. For the details, see
Remark after Definition 4 in Section 2.2.

4 Actually, the construction of [21] is based on that of [20]. In this work, we concentrate
on the construction of [21].

On the KDM Security of the Fujisaki-Okamoto Constructions 3

we call FO1) does not satisfy KDM-CCA security generally. Secondly, on the
other hand, we show that the construction of [21] (which we call FO2) satisfies
KDM-CCA security. More specifically, we prove the following two theorems.

Theorem 1 (Informal). Assume that there exists an IND-CPA secure and
smooth PKE scheme. Then, there exists an IND-CPA secure and smooth PKE
scheme Π such that the PKE scheme FO1 does not satisfy KDM-CPA security
in the random oracle model, where FO1 is constructed by applying the conversion
of [19] to Π.

Theorem 2 (Informal). Let Π be a OW-CPA secure and smooth PKE scheme,
Σ be a OT-CPA secure symmetric key encryption scheme, and FO2 be the PKE
scheme which is constructed by applying the conversion of [21] to Π and Σ.
Then, FO2 satisfies KDM-CCA security in the random oracle model.

We note that smoothness is a security notion for PKE schemes introduced by
Bellare et al. [9], and essentially equivalent to γ-uniformity which is used in [19,
21]. We review the definition of smoothness in Section 2.

We think it is theoretically very interesting that the construction of [19]
does not necessarily satisfy KDM-CCA security, and on the other hand, that
of [21] satisfies KDM-CCA security, even though these two constructions are
closely related. In addition, due to Theorem 2, we can construct various practical
KDM-CCA secure PKE schemes in the random oracle model, by applying the
construction of [21] to existing OW-CPA secure PKE schemes and OT-CPA
secure symmetric key encryption (SKE) schemes.

The standardized PKE schemes EPOC-1 and EPOC-2 are respectively in-
stantiated by applying the conversion of [19] and [21] to the PKE scheme pro-
posed by Okamoto and Uchiyama [27]. We note that the counter-example we
show in the proof of Theorem 1 does not capture the PKE scheme of [27].
Therefore, it is not the case that Theorem 1 states that EPOC-1 is insecure
in the sense of KDM security. On the other hand, due to Theorem 2, we can
immediately see that EPOC-2 is KDM-CCA secure in the random oracle model.

1.3 Related Work

Backes et al. [6] showed that RSA-OAEP is secure in the sense of KDM security
in the random oracle model. More specifically, they defined a security notion
called adKDM security which takes adaptive corruptions and arbitrary active
attacks into consideration, and showed that OAEP is adKDM secure in the
random oracle model if the underlying trapdoor permutation satisfies partial
domain one-wayness. Recently, Davies and Stam [17] studied KDM security of
hybrid encryption in the random oracle model. (Since the construction treated
in [17] is associated with the construction of FO2, we later refer to their work in
detail in Section 5.)

Boneh et al. [12] constructed the first KDM secure PKE scheme in the
standard model under the decisional Diffie-Hellman (DDH) assumption. Their
scheme is KDM secure relative to the family of affine functions (affine-KDM

4 F. Kitagawa et al.

secure, for short) which is a comparatively simple function family. Informally,
a PKE scheme is said to be KDM secure relative to a function family F if the
scheme remains secure even when an adversary can get an encryption of f(sk),
where sk is the secret key and f is an arbitrary function belonging to F . Also,
affine-KDM secure schemes were later constructed under the learning with er-
rors (LWE) [5], quadratic residuosity (QR) [13], decisional composite residuosity
(DCR) [13, 25], and learning parity with noise (LPN) [5] assumptions.

Boneh et al.’s scheme is KDM secure only in the CPA setting, and thus how
to construct a KDM-CCA secure scheme remained open. Camenisch et al. [14]
later showed how to construct a KDM-CCA secure scheme using a KDM-CPA
secure scheme and a non-interactive zero-knowledge (NIZK) proof system for
NP languages as building blocks. Recently, Hofheinz [22] showed the first con-
struction of a circular-CCA secure scheme whose security can be directly proved
based on number theoretic assumptions.

Applebaum [4] showed how to construct a PKE scheme which is KDM secure
relative to functions computable by a-priori bounded polynomial time, based on
a PKE scheme which is KDM secure relative to a simple function family called
projection functions. We note that the result of Applebaum works in both of
the CPA and the CCA settings. Bellare et al. [8] showed a similar result that
works only in the CPA setting but is more efficient than Applebaum’s. Recently,
Kitagawa et al. [23] also showed a more efficient result than Applebaum’s, which
works in the CCA setting. In addition, Kitagawa et al. [24] showed how to expand
the plaintext space of a PKE scheme which is KDM secure relative to projection
functions, without using any other assumption.

1.4 Outline of the Paper

In Section 2, we review the definitions of the primitives and the security notions
that we use in this paper. Then, in Section 3, we prove Theorem 1. In the
subsequent sections, we tackle Theorem 2. Our idea for proving Theorem 2 is
simple, but the proof of Theorem 2 might look somewhat complicated. Thus,
after reviewing the construction of FO2 in Section 4, in Section 5, we first explain
the difficulty which we encounter when trying to prove the KDM security of a
hybrid encryption scheme whose key derivation function is regarded as a random
oracle. Then, in Section 6, we prove Theorem 2.

In order to help the reader understand the proof of Theorem 2, in the full
version of this paper, we also show that the hybrid encryption scheme whose
key derivation function is a random oracle satisfies KDM-CPA security in the
random oracle model, if the underlying PKE scheme and SKE scheme satisfy
OW-CPA security and OT-CPA security, respectively. Since the construction
can roughly be seen as a simplification of FO2, we believe the proof is relatively
easy to understand than that of Theorem 2.

2 Preliminaries

In this section we define some notations and cryptographic primitives.

On the KDM Security of the Fujisaki-Okamoto Constructions 5

2.1 Notations

x
r←− X denotes choosing an element from a finite set X uniformly at random,

and y ← A(x; r) denotes assigning y to the output of an algorithm A on an input
x and a randomness r. When there is no need to write the randomness clearly,
we omit it and simply write y ← A(x). For strings x and y, x∥y denotes the
concatenation of x and y. λ denotes a security parameter. A function f(λ) is a
negligible function if f(λ) tends to 0 faster than 1

λc for every constant c > 0. We
write f(λ) = negl(λ) to denote f(λ) being a negligible function. PPT stands for
probabilistic polynomial time. [ℓ] denotes the set of integers {1, · · · , ℓ}. MSBn(x)
denotes the first n bits of x. ∅ denotes the empty set.

2.2 Public Key Encryption

In this subsection we define public key encryption (PKE).

Definition 1 (Public key encryption). A PKE scheme Π is a three tuple
(KG,Enc,Dec) of PPT algorithms.

– The key generation algorithm KG, given a security parameter 1λ, outputs a
public key pk and a secret key sk.

– The encryption algorithm Enc, given a public key pk and a message m ∈M,
outputs a ciphertext c, whereM is the plaintext space of Π.

– The decryption algorithm Dec, given a secret key sk and a ciphertext c,
outputs a message m̃ ∈ {⊥} ∪M. This algorithm is deterministic.

Correctness We require Dec(sk ,Enc(pk ,m)) = m for every m ∈M and (pk , sk)
← KG(1λ).

Next, we define one-wayness against chosen plaintext attacks (OW-CPA se-
curity) for PKE schemes. KDM security, which we define in this subsection,
considers situations where there are many users, and thus KDM security is de-
fined via a security game where there are many keys and an adversary can make
many challenge queries. Therefore, for our purpose, it is useful to consider the
following one-wayness in the multi-user setting. Specifically, we use a security no-
tion which we call List-OW-CPA security. In the security game of List-OW-CPA
security, there are many keys, and an adversary can make multiple encryption
queries and outputs a list of candidate plaintexts in the final phase.

Definition 2 (List-OW-CPA security). Let Π be a PKE scheme whose mes-
sage space isM, and ℓ be the number of keys. We define the List-OW-CPA game
between a challenger and an adversary A as follows.

Initialization First, the challenger generates ℓ key pairs (pk j , sk j)← KG(1λ)(j
= 1, · · · , ℓ). Then, the challenger sends (pk1, · · · , pkℓ) to A. Finally, the
challenger sets Lenc = ∅.
A may make polynomially many encryption queries.

6 F. Kitagawa et al.

Encryption queries j ∈ [ℓ] is an index of a key. The challenger generates

m
r←− M and computes c ← Enc(pk j ,m). Then, the challenger adds m to

Lenc and returns c to A.
Final phase A outputs Lans which is a set of plaintexts. (We require the size

of Lans to be bounded by some polynomial of λ.)

In this game, we define the advantage of the adversary A as follows.

Advlowcpa
Π,A,ℓ (λ) = Pr[Lenc ∩ Lans ̸= ∅]

We say that Π is List-OW-CPA secure if for any PPT adversary A and poly-
nomial ℓ = ℓ(λ), we have Advlowcpa

Π,A,ℓ (λ) = negl(λ).

A OW-CPA secure PKE scheme Π is also List-OW-CPA secure. Formally,
the following lemma holds. We provide the definition of OW-CPA security and
the proof of Lemma 1 in Appendix A.

Lemma 1. Let Π be a OW-CPA secure PKE scheme. Then, Π is also List-
OW-CPA secure.

Next, we define KDM-CPA security and KDM-CCA security for PKE schemes.

Definition 3 (KDM-CPA security). Let Π be a PKE scheme and ℓ be the
number of keys. We define the KDM-CPA game between a challenger and an
adversary A as follows. In the following, sk denotes (sk1, · · · , sk ℓ).

Initialization First, the challenger chooses a challenge bit b
r←− {0, 1}. Next,

the challenger generates ℓ key pairs (pk j , sk j) ← KG(1λ)(j = 1, · · · , ℓ) and
sends (pk1, · · · , pk ℓ) to A.
A may adaptively make polynomially many KDM queries.

KDM queries (j, f), where j is a key index and f is a function. Here, f
needs to be efficiently computable. If b = 1 then the challenger returns c ←
Enc(pk j , f(sk)); If b = 0 then the challenger returns c← Enc(pk j , 0

|f(·)|).
Final phase A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as follows.

Advkdmcpa
Π,A,ℓ (λ) = |Pr[b = b′]− 1

2
|

We say that Π is KDM-CPA secure if for any PPT adversary A and poly-
nomial ℓ = ℓ(λ), we have Advkdmcpa

Π,A,ℓ (λ) = negl(λ).

By permitting the adversary to make decryption queries, we can analogously
define KDM-CCA security.

Definition 4 (KDM-CCA security). Let Π be a PKE scheme and ℓ be the
number of keys. We define the KDM-CCA game between a challenger and an
adversary A in the same way as the KDM-CPA game except that A is allowed to

On the KDM Security of the Fujisaki-Okamoto Constructions 7

adaptively make decryption queries. In the initialization step of the KDM-CCA
game, the challenger first runs in the same way as the KDM-CPA game, and
then, prepares the KDM query list Lkdm into which pairs of the form (j, c) will
be stored, where j is an index and c is a ciphertext, and which is initially empty.
When A makes a KDM query (j, f), the challenger computes the answer c and
adds (j, c) to Lkdm. A is not allowed to make a decryption query (j, c) which is
contained in Lkdm.

Decryption queries (j, c) /∈ Lkdm, where j is a key index and c is a ciphertext.
For this query, the challenger returns m← Dec(sk j , c).

In this game, we define the advantage Advkdmcca
Π,A,ℓ (λ) of the adversary A analo-

gously to that in the KDM-CPA game. Then, Π is said to be KDM-CCA secure
if for any PPT adversary A and polynomial ℓ = ℓ(λ), we have Advkdmcca

Π,A,ℓ (λ) =
negl(λ).

Remarks. Black et al. [11] first defined KDM security. In their paper, they made
an assumption that functions which the adversary queries in the security game
are length-regular. A function f is said to be length-regular if the output length of
f(sk) does not depend on the value of sk, and thus we can uniquely determine the
length of f(sk) only from f . In this paper, we also impose the length-regularity
of functions which the adversary queries in the security game.

In the KDM-CPA game and KDM-CCA game in the random oracle model,
the adversary is allowed to make hash queries to the random oracle. Moreover, it
is more appropriate to permit a function which the adversary queries as a KDM
query (KDM function) to access to the random oracle, in order to capture more
various situations. Actually, Black et al. used the definition which allows KDM
functions to access to the random oracle. Therefore, similarly to the definition
of Black et al., we allow a KDM function to access to the random oracle.

IND-CPA security is a special case of KDM-CPA security. More specifically,
we can define IND-CPA security by restricting functions an adversary can query
as a KDM query in the KDM-CPA game to any constant functions. Similarly,
IND-CCA security is a special case of KDM-CCA security.

Usually, KDM security is defined with respect to a function family F . F-
KDM security is defined by restricting KDM functions used by an adversary
to functions belonging to F . In this paper, unless stated otherwise, we allow
an adversary to query arbitrary function computable in polynomial-time in the
security game, and we omit to write a function family.

Next, we review a security notion for PKE schemes called smoothness [9]. In-
formally, a PKE scheme is said to be smooth if the number of possible ciphertexts
is super-polynomially large for any message. We note that many known PKE
schemes secure in the sense of indistinguishability have smoothness uncondition-
ally, but it is not the case that any IND-CPA or IND-CCA secure PKE scheme
is smooth. However, we can easily transform any non-smooth PKE scheme to a
smooth one. Fujisaki and Okamoto [19, 21] proved the security of their scheme

8 F. Kitagawa et al.

via a property called γ-uniformity. γ-uniformity is a slightly stronger security
notion than smoothness in the sense that it considers maximum also over all
public keys, but these two notions are essentially the same.

Definition 5 (Smoothness [9]). Let Π be a PKE scheme. For λ ∈ N, we
define Smth as follows.

Smth(λ) = E(pk ,sk)←KG(1λ)

[
max
m,c′

Pr
c←Enc(pk ,m)

[c = c′]

]
We say that Π is smooth if we have Smth(λ) = negl(λ).

We note that Definition 5 is essentially equivalent to the security notion
defined via the following game played by a challenger and an adversary A.

Initialization The challenger generates ℓ key pairs (pk j , sk j) ← KG(1λ)(j =
1, · · · , ℓ) and sends ((pk1, sk1), · · · , (pk ℓ, skℓ)) to A.

Final phase A outputs (j,m, c′), and the challenger computes c← Enc(pkj ,m).

In this game, we define the advantage of the adversary A as follows.

Advsmth
Π,A,ℓ(λ) = Pr[c = c′]

Then, it is straightforward to see that for any computationally unbounded
adversary A and polynomial ℓ = ℓ(λ), we have Advsmth

Π,A,ℓ(λ) ≤ ℓ · Smth(λ).

Therefore, if Smth(λ) is negligible, so is Advsmth
Π,A,ℓ(λ) for any computationally

unbounded adversary A and polynomial ℓ = ℓ(λ).

2.3 Symmetric Key Encryption

In this subsection we define symmetric key encryption (SKE).

Definition 6 (Symmetric key encryption). A SKE scheme Σ is a two tuple
(E,D) of PPT algorithms.

– The encryption algorithm E, given a key K ∈ {0, 1}λ and a message m ∈M,
outputs a ciphertext c, whereM is the plaintext space of Σ.

– The decryption algorithm D, given a key K and a ciphertext c, outputs a
message m̃ ∈ {⊥} ∪M. This algorithm is deterministic.

Correctness We require D(K,E(K,m)) = m for every m ∈ M and K ∈
{0, 1}λ.

Next, we review the definition of indistinguishability against one-time chosen
plaintext attacks (OT-CPA security) for SKE schemes.

Definition 7 (OT-CPA security). Let Σ be a SKE scheme whose message
space isM. We define the OT-CPA game between a challenger and an adversary
A as follows.

On the KDM Security of the Fujisaki-Okamoto Constructions 9

KGFO1(1
λ) :

(pk , sk)← KG(1λ)
return (pk , sk)

EncFO1(pk ,m) :
r ← {0, 1}n
R← H(m∥r)
c← Enc(pk ,m∥r;R)
return c

DecFO1(sk , c) :
m∥r ← Dec(sk , c)
if m∥r = ⊥
return ⊥

else
R← H(m∥r)
if c ̸= Enc(pk,m∥r;R)
return ⊥

else
return m

Fig. 1. The construction [19] of an IND-CCA secure PKE scheme FO1 =
(KGFO1,EncFO1,DecFO1) from a PKE scheme Π = (KG,Enc,Dec) which is IND-CPA
secure and smooth, and a hash function H.

Initialization First the challenger chooses a challenge bit b
r←− {0, 1}. Next the

challenger generates a key K
r←− {0, 1}λ and sends 1λ to A.

Challenge A selects two messages m0 and m1 of equal length, and sends them
to the challenger. Then the challenger returns c← E(K,mb).

Final phase A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as follows.

AdvotcpaΣ,A (λ) = |Pr[b = b′]− 1

2
|

We say that Σ is OT-CPA secure if for any PPT adversary A, we have
AdvotcpaΣ,A (λ) = negl(λ).

3 Fujisaki-Okamoto Construction (PKC’99) Does Not
Satisfy KDM Security in General

Fujisaki and Okamoto [19] showed how to transform any IND-CPA secure (and
smooth) PKE scheme to an IND-CCA secure one by using a random oracle. The
resulting scheme has almost the same efficiency as the underlying scheme. In this
section, although their construction satisfies IND-CCA security, we show that
their construction generally does not satisfy KDM security. In the following, we
first review the construction of [19], and then we show our negative result.

Let Π = (KG,Enc,Dec) be a PKE scheme, and H : {0, 1}∗ → {0, 1}n be
a hash function, where n = n(λ) is a polynomial. Then, we construct a PKE
scheme FO1 = (KGFO1,EncFO1,DecFO1) as described in Fig. 1. Here, we assume
that the plaintext space of Π is {0, 1}∗, and thus that of FO1 is also {0, 1}∗. In
addition, let the randomness spaces of Enc and EncFO1 be both {0, 1}n.

In the above construction, Fujisaki and Okamoto showed that ifΠ is IND-CPA
secure and smooth, and H is a random oracle, then FO1 is IND-CCA secure in
the random oracle model. However, as mentioned above, we show that FO1 does

10 F. Kitagawa et al.

KG(1λ) :

sk
r←− {0, 1}s

(p̂k, ŝk)← K̂G(1λ; sk)

pk ← p̂k
return (pk, sk)

Enc(pk ,m) :

c← Ênc(pk,m)

(pk′, sk′)← K̂G(1λ;MSBs(m))
if pk = pk′

return 1∥c
else
return 0∥c

Dec(sk, p∥c) :
(p̂k, ŝk)← K̂G(1λ; sk)

m← D̂ec(ŝk, c)
return m

Fig. 2. The construction of a PKE scheme Π = (KG,Enc,Dec) which is IND-CPA
secure and smooth but not KDM-CPA secure from an IND-CPA secure and smooth
PKE scheme Π̂ = (K̂G, Ênc, D̂ec).

not satisfy KDM-CPA security generally under the same assumptions. Formally,
we show the following theorem.

Theorem 3. Assume that there exists an IND-CPA secure and smooth PKE
scheme. Then, there exists an IND-CPA secure and smooth PKE scheme Π
such that FO1 does not satisfy KDM-CPA security in the random oracle model.

Proof of Theorem 3. This proof consists of two steps. In the first step, using any
IND-CPA secure and smooth PKE scheme, we construct a PKE scheme which
is still IND-CPA secure and smooth, but insecure in the sense of KDM security.
Then, in the second step, we show that the PKE scheme which is constructed
by applying the conversion of [19] to the PKE scheme we construct in the first
step, also does not satisfy KDM-CPA security. In the following, we start with
the first step.

Let Π̂ = (K̂G, Ênc, D̂ec) be any IND-CPA secure and smooth PKE scheme.

Without loss of generality, we assume that the plaintext space of Π̂ is {0, 1}∗,
and the randomness space of K̂G is {0, 1}s for some polynomial s = s(λ). Then,

using Π̂, we construct a PKE scheme Π = (KG,Enc,Dec) as described in Fig. 2.

It is clear that if Π̂ is IND-CPA secure and smooth, then Π satisfies the same
security notions. The reason is as follows. In the IND-CPA game regarding Π,

since a PPT adversary can find the randomness that was used to run K̂G with
negligible probability, when the challenger generates the challenge ciphertext,
Enc outputs a ciphertext whose first bit is 1 with negligible probability. Thus,
if Π̂ satisfies IND-CPA, then so is Π. Moreover, regardless of the plaintext, a

ciphertext output by Enc includes a ciphertext output by Ênc itself, and thus Π
is smooth if so is Π̂. On the other hand, Π does not satisfy KDM-CPA security.
In order to show it, we consider the following adversary A which attacks the
KDM-CPA security of Π. For simplicity, we consider the case where only one
key pair exists. On input pk, A queries the identity function id, gets the answer
p∥c, and outputs b′ = p. Let b be the challenge bit in the KDM-CPA game
between the challenger and A. Then, we can estimate the advantage of A as

On the KDM Security of the Fujisaki-Okamoto Constructions 11

follows.

Advkdmcpa
Π,A,1 (λ) =

1

2
|Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|

=
1

2
|Pr[p = 1|b = 1]− Pr[p = 1|b = 0]|

Here, let sk be the secret key corresponding to pk. Then, sk is chosen from

{0, 1}s at random and pk = p̂k, where (p̂k, ŝk) = K̂G(1λ; sk). In addition, let
m1 = sk and m0 = 0s. Then, we note that for any b ∈ {0, 1}, the probability that
p equals 1 is the same as the probability that pk = pk′ holds, where (pk′, sk′) =

K̂G(1λ;mb). We note that these probabilities are taken over the choice of sk.
When b = 1, it is straightforward that pk = pk′ always holds, and thus we have
Pr[p = 1|b = 1] = 1. On the other hand, when b = 0, pk = pk′ occurs only
with negligible probability. The reason is as follows. If pk = pk′ holds, by the

correctness of Π̂, D̂ec(sk′, Ênc(pk,m)) = m holds for any m ∈ {0, 1}∗. Therefore,
if pk = pk′ holds with non-negligible probability, an adversary can break the

IND-CPA security of Π̂ by generating (pk′, sk′) ← K̂G(1λ; 0s) and decrypting
the challenge ciphertext using sk′. This is a contradiction, and thus we have
Pr[p = 1|b = 0] = negl(λ). From these, we have Advkdmcpa

Π,A,1 (λ) = 1
2 (1− negl(λ)),

and we see that Π does not satisfy KDM-CPA security.
Next, we construct a PKE scheme FO1 = (KGFO1,EncFO1,DecFO1) by apply-

ing the conversion in Fig. 1 to the above Π, and show that FO1 also does not
satisfy KDM-CPA security. Let (pk, sk) be a key pair output by KGFO1. Here, a
key pair of FO1 is a key pair of Π itself. Namely, sk is randomly chosen from

{0, 1}s and pk = p̂k, where (p̂k, ŝk)← K̂G(1λ; sk). Then, for any m ∈ {0, 1}s, the
probability that the first bit of the result of EncFO1(pk,m) equals 1 is the same

as the probability that pk = pk′ holds, where (pk′, sk′) = K̂G(1λ;MSBs(m∥r)) =
K̂G(1λ;m) and r is a randomness generated in EncFO1. These probabilities are
over the choice of the random oracle H, (pk, sk), and r ∈ {0, 1}n. Therefore,
if m = sk, the first bit of EncFO1(pk,m; r) always equals 1. One the other
hand, if m does not depend on sk, similarly to the first step, the first bit of
EncFO1(pk,m; r) equals 1 only with negligible probability. From these, FO1 does
not satisfy KDM-CPA security. □ (Theorem 3)

4 KDM-CCA Security of Fujisaki-Okamoto Construction
(J. Cryptology’13)

Fujisaki and Okamoto [21] showed how to construct an IND-CCA secure PKE
scheme in the random oracle model (which we call FO2) using a OW-CPA secure
PKE scheme and a OT-CPA secure SKE scheme. In this section, we show that
FO2 also satisfies KDM-CCA security in the random oracle model, under exactly
the same assumptions on the building blocks as those used in [21]. First, we
review the construction of FO2.

Let Π = (KG,Enc,Dec) be a PKE scheme and Σ = (E,D) be a SKE scheme.
Here, we assume that the message space and the randomness space of Π are

12 F. Kitagawa et al.

KGFO2(1
λ) :

(pk , sk)← KG(1λ)
return (pk , sk)

EncFO2(pk ,m) :

r
r←− {0, 1}λ

K
r←− G(r)

d← E(K,m)
R← H(r, d)
c← Enc(pk , r;R)
return (c, d)

DecFO2(sk, (c, d)) :
r ← Dec(sk , c)
if r = ⊥ or c ̸= Enc(pk, r;H(r, d))
return ⊥

else
K ← G(r)
m← D(K, d)
return m

Fig. 3. The construction [21] of a PKE scheme FO2 = (KGFO2,EncFO2,DecFO2) from a
PKE scheme Π = (KG,Enc,Dec) and a SKE scheme Σ = (E,D).

{0, 1}λ and {0, 1}n, respectively, where n = n(λ) is a polynomial. Moreover,
we also assume that the message space and the key space of Σ are {0, 1}∗ and
{0, 1}λ, respectively. In addition, let H : {0, 1}∗ × {0, 1}∗ → {0, 1}n and G :
{0, 1}∗ → {0, 1}λ be hash functions. Then, we construct a PKE scheme FO2 =
(KGFO2,EncFO2,DecFO2) as described in Fig. 3. Here, we note that the message
space of FO2 is {0, 1}∗.

[21] showed that, by regarding H and G as random oracles, if Π is OW-CPA
secure and smooth, and Σ is OT-CPA secure, then FO2 satisfies IND-CCA secu-
rity in the random oracle model. As mentioned earlier, we show that FO2 satisfies
KDM-CCA security, even though we require exactly the same assumptions for
building blocks as those used in [21]. Formally, we show the following theorem.

Theorem 4. Let Π be a PKE scheme which is OW-CPA secure and smooth, Σ
be a OT-CPA secure SKE scheme, and H and G be random oracles. Then, FO2

is a PKE scheme which is KDM-CCA secure in the random oracle model.

5 Overview of Our Techniques

Our idea for proving the KDM-CCA security of FO2 is conceptually simple. How-
ever, unfortunately, our security proof might look somewhat complicated. Thus,
in this section, we first explain where the difficulty lies and how we overcome it
when showing the KDM-CCA security of FO2.

The difficulty. FO2 has a somewhat complicated structure at first glance. How-
ever, it can roughly be seen as a hybrid encryption scheme Πhyb which has the
following encryption algorithm Enchyb.

Enchyb(pk,m; r) = (Enc(pk, r),E(G(r),m))

Here, similarly to FO2, Π = (KG,Enc,Dec) and Σ = (E,D) are a OW-CPA
secure PKE scheme and a OT-CPA secure SKE scheme, respectively, and G is
a random oracle. The difficulty that lies in the security proof of the KDM-CCA
security of FO2, is almost the same as that of the KDM-CPA security of Πhyb.
Therefore, for simplicity, we explain the difficulty we encounter when showing

On the KDM Security of the Fujisaki-Okamoto Constructions 13

Game [b = 1] Game [hybrid] Game [b = 0]

1st Enchyb(pk, f
G
1 (sk)) Enchyb(pk, 0

|f1(·)|) Enchyb(pk, 0
|f1(·)|)

2nd Enchyb(pk, f
G
2 (sk)) Enchyb(pk, f

G
2 (sk)) Enchyb(pk, 0

|f2(·)|)

Fig. 4. The ordinary sequence of games. ”1st” and ”2nd” indicate the answers to the
first and second KDM queries from A, respectively.

the KDM-CPA security of Πhyb in the case where only one key pair (pk, sk)
exists. In the following, we call a function an adversary queries as a KDM query
in the security game a KDM function. In addition, we call an answer to a KDM
query a challenge ciphertext, and randomness r encapsulated by Enc a proto-key.

We first consider a simple case, that is, the case where KDM functions
cannot access to the random oracle G. In this case, an adversary who does
not query a proto-key r to G cannot distinguish (Enc(pk, r),E(G(r), f(sk)))
and (Enc(pk, r),E(G(r), 0|f(·)|)) due to the randomness of outputs of G and the
OT-CPA security of Σ, where f is a KDM function. Thus, all we have to con-
sider is whether the adversary can query the proto-key r to G, but it is unlikely
because of the OW-CPA security of Π. From these, in this case, we can easily
see that Πhyb is KDM-CPA secure.

However, in the case where KDM functions can access to the random oracle G,
there is a problem. The problem is that an adversary who makes multiple KDM
queries can get an encryption of a proto-key r which was used to compute a past
challenge ciphertext. In order to take a closer look at this problem, we consider
the reduction from the KDM-CPA security ofΠhyb to the OT-CPA security of Σ.
For simplicity, we consider an adversary A who makes only two KDM queries in
the KDM-CPA game of Πhyb. Let f1 and f2 be the KDM functions that A sends,
and b denote the challenge bit between the challenger and A. Then, consider the
sequence of games as described in Fig. 4.

Game [b = 1] and Game [b = 0] correspond to the KDM-CPA game when
b = 1 and b = 0, respectively. If the behavior of A does not change non-negligibly
between Game [b = 1] and Game [b = 0], then we can conclude that Πhyb is
KDM-CPA secure. In order to show this by using the OT-CPA security of Σ, we
typically consider a hybrid game Game [hybrid], and we show that the behavior
of A does not change between Game[b = 1] and Game [hybrid], and between
Game [hybrid] and Game [b = 0].

Then, we try to construct an adversary B who simulates Game [b = 1] or
Game [hybrid] for A according to the value of the challenge bit between B and
the challenger of the OT-CPA game regarding Σ. B first generates (pk, sk) using
KG and sends pk to A. B simulates G by lazy sampling. For the first KDM query
f1 from A, B first makes the challenge query (fG

1 (sk), 0
|f1(·)|) and gets the answer

d1. Then, B generates a proto-key r1, computes c1 ← Enc(pk, r1), and returns
(c1, d1) to A. In addition, B let the value of G(r1) be the value of the key of
Σ that the challenger used to compute d1. We note that B does not know the
actual value of the key of Σ. Here, suppose that A sends the following KDM
function f2 as the second KDM query. fG

2 (sk) computes r1 = Dec(sk, c1), and

14 F. Kitagawa et al.

then computes G(r1) and returns the value. Then, in order to compute the value
of fG

2 (r1), B needs the value of G(r1). However, B does not know the actual
value of G(r1), and thus cannot compute fG

2 (sk) correctly. Therefore, B fails a
simulation of Games for A if A queries such a second KDM query.

The approach of Davies and Stam [17]. Davies and Stam [17] studied
KDM security for hybrid encryption where the key derivation function (KDF) is
regarded as a random oracle, and pointed out the above problem. 5 Then, they
overcame the problem and showed that if a PKE scheme satisfies OW-CCA
security and a SKE scheme satisfies OT-CCA security, the hybrid encryption
scheme satisfies KDM-CCA security in the random oracle model.

They approached the above problem by introducing a new security notion
for SKE schemes that they call prior key dependent message security (PKDM
security). Informally, PKDM security guarantees that an encryption scheme can
securely encrypt a message which depends only on keys of the scheme used to
generate past ciphertexts. In other words, confidentiality of a ciphertext of a
PKDM secure scheme under a key Ki holds even if an adversary can get an en-
cryption of the form E(Ki, f(K1, · · · ,Ki−1)), where K1, · · · ,Ki−1 are keys used
so far and f is an arbitrary function. Davies and Stam showed that PKDM-CCA
security is equivalent to OT-CCA security, and they overcame the above prob-
lem by reducing the KDM-CCA security of the hybrid encryption scheme to the
PKDM-CCA security of the SKE scheme.

To accomplish this task, their reduction algorithm has to convert a KDM
function of the secret keys of the PKE scheme to that of the keys of the SKE
scheme. Here, in the KDM-CCA game which the reduction algorithm simulates,
there exists a random oracle. On the other hand, in the PKDM-CCA game which
the reduction algorithm actually plays, there does not exist a random oracle.
Therefore, Davies and Stam used the technique of replacing the random oracle
with a pseudorandom functions (PRF) when conducting the above conversion of
KDM functions. Therefore, their security bound has a PRF term even though the
construction does not include a PRF. In addition, they stated that it is difficult
to prove its KDM-CCA security without using PKDM security or a PRF.

Our approach. Both our work and the work of [17] study the KDM-CCA
security of the hybrid encryption scheme whose KDF is regarded as a random
oracle. However, there is a big difference between our work and [17]. The dif-
ference is that the building blocks of [17] already satisfy CCA security. On the
other hand, the building blocks of FO2 that we treat satisfy only CPA security.
In order to prove the KDM-CCA security of FO2 even though the building blocks
satisfy only CPA security, similarly to Fujisaki and Okamoto [21], we have to
use smoothness [9]. (As mentioned in Section 2, smoothness is essentially the
same notion as γ-uniformity.) In addition, the construction of FO2 contains two
random oracles, and one of them is used to generate a randomness for the en-
cryption algorithm of the PKE scheme. Thus, it looks difficult to replace both
5 Davies and Stam actually treated a hybrid encryption scheme constructed from a
SKE scheme and a key encapsulation mechanism (KEM).

On the KDM Security of the Fujisaki-Okamoto Constructions 15

Game [b = 1] Game [reverse] Game [b = 0]

1st Enchyb(pk, f
G
1 (sk)) Enchyb(pk, f

G
1 (sk)) Enchyb(pk, 0

|f1(·)|)

2nd Enchyb(pk, f
G
2 (sk)) Enchyb(pk, 0

|f2(·)|) Enchyb(pk, 0
|f2(·)|)

Fig. 5. The sequence of games which replace the challenge ciphertexts in the “reverse
order”.

of two random oracles with a PRF, and thus, to directly use the proof tech-
nique used in [17]. Therefore, we try to prove the KDM-CCA security of FO2

by a proof technique which is different from that of [17], especially a technique
without using PKDM security or a PRF. In the following, we give our main idea
using Πhyb.

As earlier, we consider an adversary A for the KDM-CPA security of Πhyb

who makes a KDM query only twice. Our idea is to replace the challenge cipher-
texts in “reverse order”. Namely, we consider the sequence of games as described
in Fig. 5.

Then, we can avoid the problem that we explained above. We try to construct
an adversary B who simulates Game [b = 1] or Game [reverse] for A according
to the value of the challenge bit between B and the challenger of the OT-CPA
game regarding Σ. B first generates (pk, sk) using KG and sends pk to A. For the
first KDM query f1 from A, B generates a proto-key r1 and a key K1 of Σ, and
returns (Enc(pk, r1),E(K1, f

G
1 (sk))). In addition, B defines the value of G(r1)

as K1 by itself. For the second KDM query f2 from A, B makes the challenge
query (fG

2 (sk), 0
|f2(·)|) and gets the answer d2. Then, B generates a proto-key r2,

computes c2 ← Enc(pk, r2), and returns (c2, d2) to A. Since B defines the value
of G(r1) by itself, B can simulate G for f2 and compute fG

2 (sk) correctly even if
f2 calls G.

Then, we in turn try to construct an adversary B′ who simulates Game
[reverse] or Game [b = 0] for A according to the value of the challenge bit be-
tween B′ and the challenger of the OT-CPA game regarding Σ. B′ also generates
(pk, sk) using KG and sends pk to A. For the first KDM query f1 from A, B′
first makes the challenge query (fG

1 (sk), 0
|f1(·)|) and gets the answer d1. Then,

B′ generates a proto-key r1, computes c1 ← Enc(pk, r1), and returns (c1, d1) to
A. Here, B′ let the value of G(r1) be the value of the key of Σ that the challenger
used to compute d1, and thus B does not know the value of G(r1). However, in
this case, B′ does not need the value of G(r1) to respond to the second KDM
query because the answer to this query is an encryption of 0|f2(·)|, and thus B′
does not have to compute fG

2 (sk) actually. We note that since KDM functions
are length regular, B′ can know |f2(·)| without computing fG

2 (sk). Therefore, we
can overcome the problem that KDM functions may refer to past proto-keys by
replacing the challenge ciphertexts in the reverse order.

When we prove the KDM-CCA security of FO2, we have to take the OW-CPA
security and smoothness of the building block PKE scheme into consideration,
and then we use the identical-until-bad technique and the deferred analysis tech-
nique. Hence, in this case, whether a KDM function is computed actually or not

16 F. Kitagawa et al.

is very sensitive, but by dividing the bad events into smaller pieces than Davies
and Stam, we are able to complete the proof.

6 Proof of Theorem 4

In this section, we show the formal proof of Theorem 4.
Let A be an adversary that attacks the KDM-CCA security of FO2 in the

random oracle model, and makes at most qe KDM queries and qd decryption
queries, where qe and qd are polynomials of λ. Let ℓ be a polynomial of λ and
denote the number of keys. As mentioned just after Definition 4, similarly to
Black et al. [11], we assume that a function which A queries as a KDM query
can access to the random oracles, and is length-regular. We note that since
KDM functions can access to the random oracle, it makes security proof simple
to clearly distinguish the entries of the hash list used to compute KDM functions
and that used to make challenge ciphertexts. Thus, we divide the random oracle
into multiple random oracles, which is a technique used by Davies and Stam [17].
Namely, in our sequence of games, there are six random oracles even though
the construction of FO2 contains only two random oracles. Now, consider the
following sequence of games.

Game 0 This is the KDM-CCA game in the random oracle model regarding
FO2. See Fig. 6 for how KDM queries and decryption queries are answered,
and how random oracles behave in Game 0.
In the original KDM-CCA game regarding FO2, there exist only two random
oracles H and G. However, to define the subsequent games, we consider six
random oracles H, H∗, HH∗, G, G∗, and GG∗. Moreover, random oracles
are implemented by lazy sampling. More specifically, random oracles run as
follows.

– H maintains the list LH which stores query/answer pairs so far, and runs
as follows. If some value (r, d) is queried to H, H first checks whether there
is an entry of the form ((r, d), R) in LH. If so, H returns R. Otherwise,
H returns a fresh random value R and adds ((r, d), R) to LH.

– H∗, G, and G∗ also maintain the query/answer pairs list LH∗ , LG, and
LG∗ , respectively, and run in the same way as H.

– Similarly to the other random oracles, HH∗ and GG∗ are implemented by
lazy sampling. However, HH∗ and GG∗ do not have their own list. When
HH∗ samples a fresh random value, HH∗ adds a new entry to LH, and
when GG∗ samples a fresh random value, GG∗ adds a new entry to LG.
In addition, HH∗ runs by referring to both lists LH and LH∗ , and GG∗

runs by referring to both lists LG and LG∗ .

Moreover, in this game, H and H∗ are synchronized. Namely, H and H∗ refer
to not only their own list but also the list of the other one. Similarly, G and
G∗ are synchronized. In this game, random oracles are called at the following
four cases.

– (1) When A makes a hash query.

On the KDM Security of the Fujisaki-Okamoto Constructions 17

[KDM] (j, f)

m1 ← fHH∗,GG∗
(sk)

m0 ← 0|f(·)|

r
r←− {0, 1}λ, K ← G∗(r)

d← E(K,mb)
R← H∗(r, d)
c← Enc(pkj , r;R)
add (j, c, d) to Lkdm

return (c, d)

[Decryption] (j, c, d) /∈ Lkdm

r ← Dec(skj , c)
if r = ⊥ or
c ̸= Enc(pk j , r;HH

∗(r, d))
return ⊥

else
K ← GG∗(r)
return m← D(K, c)

H(r, d):
if ((r, d), R) ∈ LH ∪ LH∗

return R
else

R
r←− {0, 1}n

add ((r, d), R) to LH

return R

G(r):
if (r,K) ∈ LG ∪ LG∗

return K
else

K
r←− {0, 1}λ

add (r,K) to LG

return K

H∗(r, d):
if ((r, d), R) ∈ LH ∪ LH∗

return R
else

R
r←− {0, 1}n

add ((r, d), R) to LH∗

return R

G∗(r):
if (r,K) ∈ LG ∪ LG∗

return K
else

K
r←− {0, 1}λ

add (r,K) to LG∗

return K

Fig. 6. The manner the challenger responds to a KDM query and a decryption query,
and the behavior of H, H∗, G, and G∗ in Game 0. We note that in Game 0, HH∗ and
GG∗ run in exactly the same way as H and G, respectively.

– (2) When the challenger computes a hash value to respond to a KDM
query from A.

– (3) When a function which A sends to the challenger as a KDM query
accesses to the random oracles.

– (4) When the challenger computes a hash value to respond to a decryp-
tion query from A.

H and G are used when (1), H∗ and G∗ are used when (2), and HH∗ and
GG∗ are used when (3) and (4). Then, we note that the difference between
this game and the original KDM-CCA game is only conceptual.

Game 1 Same as Game 0, except for the behaviors of H∗ and G∗. In this game,
H∗ runs without referring to LH. Moreover, every time H∗ is given an input
(r, d) ∈ {0, 1}λ × {0, 1}∗, H∗ generates a uniformly random value R over
{0, 1}n. Then, H∗ outputs R after adding ((r, d), R) to LH∗ even if there
already exists an entry whose first component is (r, d) in LH∗ . We note that
H and HH∗ still refer to LH∗ in this game. When H and HH∗ refer to LH∗ , if
there are multiple entries whose first components are identical, then H and
HH∗ adopt the entry which was added first. G, G∗, and GG∗ run analogously
to H, H∗, and HH∗, respectively. See Fig. 7 for how H∗ and G∗ behave in
Game 1.

Game 2 Same as Game 1, except that H runs without referring to LH∗ , and G
runs without referring to LG∗ . Here, we note that HH∗ still refers to both LH

and LH∗ , and GG∗ also refers to both LG and LG∗ . See Fig. 8 for how H and
G behave in Game 2.

Game 3 Same as Game 2, except that if A makes a decryption query, then the
challenger responds as described in Fig. 9. We note that, due to this change,

18 F. Kitagawa et al.

H∗(r, d):

R
r←− {0, 1}n

add ((r, d), R) to LH∗

return R

G∗(r):

K
r←− {0, 1}λ

add (r,K) to LG∗

return K

Fig. 7. The behavior of H∗ and G∗

in Game 1.

H(r, d):
if ((r, d), R) ∈ LH

return R
else

R
r←− {0, 1}n

add ((r, d), R) to LH

return R

G(r):
if (r,K) ∈ LG

return K
else

K
r←− {0, 1}λ

add (r,K) to LG

return K

Fig. 8. The behavior of H and G in Game 2.

[Decryption](j, c, d) /∈ Lkdm

if ∃((r, d), R) ∈ LH ∪ LH∗

s.t. c = Enc(pkj , r;R)
K ← GG∗(r)
m← D(K, d)
return m

else return ⊥

Fig. 9. The manner the challenger re-
sponds to a decryption query in Game 3.

[Decryption](j, c, d) /∈ Lkdm

if ∃((r, d), R) ∈ LH

s.t. c = Enc(pkj , r;R)
K ← G(r)
m← D(K, d)
return m

else return ⊥

Fig. 10. The manner the challenger re-
sponds to a decryption query in Game 4.

the challenger can respond to a decryption query without using the secret
keys in this and subsequent games.

Game 4 Same as Game 3, except that if A makes a decryption query, the
challenger refers to only LH instead of LH ∪ LH∗ when checking the validity
of the ciphertext from A, and uses G instead of GG∗ to compute the answer.
See Fig. 10.

Game 5 Same as Game 4, except that if A makes a KDM query (j, f), the
challenger always returns a ciphertext whose plaintext is 0|f(·)|. See Fig. 11.

The above completes the description of the games.
We define the following events in Game i (i = 0, · · · , 5).

SUCi: A succeeds in guessing the challenge bit, that is, b = b′ occurs.

COLi: When the challenger generates r ← {0, 1}λ to respond to a KDM query
from A, there exists an entry of the form (r, ·) in LG ∪ LG∗ , or there exists
an entry of the form ((r, ·), ·) in LH.

BHQi: When A queries r to G or queries (r, d) to H, there exists an entry of the
form (r, ·) in LG∗ . We call such a hash query a “bad hash query”.

On the KDM Security of the Fujisaki-Okamoto Constructions 19

[KDM](j, f)

r
r←− {0, 1}λ

K ← G∗(r)

d← E(K, 0|f(·)|)
R← H∗(r, d)
c← Enc(pk j , r;R)
add (j, c, d) to Lkdm

return (c, d)

Fig. 11. The manner the challenger responds to a KDM query in Game 5.

In addition, we define the following two events related to decryption queries.

SMTHi: A makes a decryption query (j, c, d) /∈ Lkdm which satisfies the following
two conditions, where Dec(skj , c) = r : There does not exist an entry of the
form ((r, d), ·) in LH ∪ LH∗ , and c = Enc(pk, r;HH∗(r, d)) holds.

BDQi: A makes a decryption query (j, c, d) /∈ Lkdm which satisfies the following
condition: There exists an entry ((r, d), R) ∈ LH ∪ LH∗ which satisfies c =
Enc(pkj , r;R), and for such r, (r, ·) ∈ LG∗ holds. Here, (r, ·) ∈ LG∗ indicates
that there exists an entry in LG∗ whose first component is r. We call such a
decryption query a “bad decryption query”.

Using the above events, we can estimate Advkdmcca
FO2,A,ℓ(λ) as Lemma 2 stated

below.

Lemma 2. We can estimate Advkdmcca
FO2,A,ℓ(λ) as follows:

Advkdmcca
FO2,A,ℓ(λ) ≤ Pr[COL1] + 2Pr[SMTH3] + |Pr[SUC4]− Pr[SUC5]|

+|Pr[BHQ4]− Pr[BHQ5]|+ 2|Pr[BDQ4]− Pr[BDQ5]|
+Pr[BHQ5] + 2Pr[BDQ5] (1)

Proof of Lemma 2. As mentioned above, the difference between Game 0 and the
original KDM-CCA game is only conceptual, and thus we have Advkdmcca

FO2,A,ℓ(λ) =

|Pr[SUC0]− 1
2 |. By using the triangle inequality, we get the following inequality.

|Pr[SUC0]−
1

2
| ≤

4∑
k=0

|Pr[SUCk]− Pr[SUCk+1]|+ |Pr[SUC5]−
1

2
|

We note that, in Game 5, the challenger always responds to a KDM query
(j, f) from A by returning an encryption of 0|f(·)| regardless of the value of
the challenge bit. Therefore, in Game 5, the choice of the challenge bit and the
behavior of A are independent, and thus |Pr[SUC5]− 1

2 | = 0. Below, we estimate
|Pr[SUCk]− Pr[SUCk+1]|(k = 0, 1, 2, 3, 4).

Game 0 and Game 1 are identical games unless when the challenger generates
r

r←− {0, 1}λ, there already exists an entry whose first component is r in LH ∪

20 F. Kitagawa et al.

LG ∪ LG∗ . We note that if LG∗ does not have such an entry, the same is true
for LH∗ . Therefore, we can see that Game 0 and Game 1 are identical unless
the event COL0 (resp. COL1) occurs in Game 0 (resp. Game 1), and thus we have
|Pr[SUC0]− Pr[SUC1]| ≤ Pr[COL1].

Next, the only difference between Game 1 and Game 2 is how the challenger
responds to a bad hash query from A. In other words, Game 1 and Game 2 are
identical unless the event BHQ1 (resp. BHQ2) occurs in Game 1 (resp. Game 2),
and thus we have |Pr[SUC1]− Pr[SUC2]| ≤ Pr[BHQ2].

Moreover, Game 2 and Game 3, and Game 3 and Game 4 are identical games
except for how the challenger responds to a decryption query which satisfies the
condition we stated in the definition of events SMTHi and BDQi, respectively. In
other words, Game 2 and Game 3 are identical unless the event SMTH2 (resp.
SMTH3) occurs in Game 2 (resp. Game 3), and Game 3 and Game 4 are identical
unless the event BDQ3 (resp. BDQ4) occurs in Game 3 (resp. Game 4). Therefore,
we have |Pr[SUC2]−Pr[SUC3]| ≤ Pr[SMTH3] and |Pr[SUC3]−Pr[SUC4]| ≤ Pr[BDQ4].
Then, we get the following inequality.

Advkdmcca
FO2,A,ℓ(λ) ≤ Pr[COL1] + Pr[BHQ2] + Pr[SMTH3]

+Pr[BDQ4] + |Pr[SUC4]− Pr[SUC5]| (2)

In addition, Pr[BHQ2] ≤
∑4

k=2 |Pr[BHQk]−Pr[BHQk+1]|+Pr[BHQ5] holds. By con-
sidering analogously to the above argument, we get |Pr[BHQ2] − Pr[BHQ3]| ≤
Pr[SMTH3] and |Pr[BHQ3]−Pr[BHQ4] ≤ Pr[BDQ4]. Therefore, the following inequal-
ity holds.

Pr[BHQ2] ≤ Pr[SMTH3] + Pr[BDQ4] + |Pr[BHQ4]− Pr[BHQ5]|+ Pr[BHQ5]

Moreover, we have Pr[BDQ4] ≤ |Pr[BDQ4]− Pr[BDQ5]|+ Pr[BDQ5]. By using these
inequalities in the inequality (2), we get the inequality (1). □ (Lemma 2)

Below, we show the following lemmas that state each term of the right side
of the inequality (1) is negligible.

Lemma 3. Pr[COL1] = negl(λ).

Lemma 4. Let Π be smooth. Then Pr[SMTH3] = negl(λ).

Lemma 5. Let Σ be OT-CPA secure. Then |Pr[SUC4] − Pr[SUC5]| = negl(λ),
|Pr[BHQ4]− Pr[BHQ5]| = negl(λ), and |Pr[BDQ4]− Pr[BDQ5]| = negl(λ).

Lemma 6. Let Π be OW-CPA secure. Then Pr[BHQ5] = negl(λ).

Lemma 7. Let Π be OW-CPA secure. Then Pr[BDQ5] = negl(λ).

Proof of Lemma 3. Since A is a PPT algorithm, there is a polynomial of λ
which is the upper bound of the number of total entries in LH ∪ LG ∪ LG∗ .
Let Q = Q(λ) denote this upper bound. Then, the probability that when the

challenger generates r
r←− {0, 1}λ to respond to a KDM query form A, there is an

entry of the form (r, ·) in LG∪LG∗ , or there is an entry of the form ((r, ·), ·) in LH

is at most Q
2λ
. A makes a KDM query at most qe times, and qe is a polynomial

of λ. Therefore, we have Pr[COL1] ≤ Q·qe
2λ

= negl(λ). □ (Lemma 3)

On the KDM Security of the Fujisaki-Okamoto Constructions 21

Proof of Lemma 4. We first define the following event for every i ∈ [qd].

SMTHi3 : In Game 3, the i-th decryption query (j, c, d) made by A satisfies the
following two conditions, where Dec(skj , c) = r: (1) There does not exist an
entry of the form ((r, d), ·) in LH ∪ LH∗ , and (2) c = Enc(pkj , r;HH

∗(r, d)).

When the condition (1) is satisfied, the value of HH∗(r, d) is defined with a
newly generated uniformly random value. Then, the above condition (2) means

that c = Enc(pkj , r;R) holds, where R
r←− {0, 1}n. In addition, Pr[SMTH3] ≤∑

i∈[qd] Pr[SMTH
i
3] holds. Then, using the adversary A that attacks FO2, we con-

struct the following adversary B that attacks the smoothness of Π.

Initialization On input ((pk1, sk1), · · · , (pkℓ, skℓ)), B first chooses b
r←− {0, 1}

and t
r←− [qd]. Then, B sends (pk1, · · · , pk ℓ) to A. Finally, B sets sk =

(sk1, · · · , skℓ) and Lkdm = LH = LH∗ = LG = LG∗ = ∅.
Hash queries If A queries (r, d) to H, B simulates H. Namely, B first checks

whether there is an entry of the form ((r, d), R) in LH. If so, B returns R to

A. Otherwise, B generates R
r←− {0, 1}n, adds ((r, d), R) to LH, and returns

R to A. If A queries r to G, B simulates G analogously.

KDM queries For a KDM query (j, f) fromA, B computesm1 ← fHH∗,GG∗
(sk)

and m0 ← 0|m1|. Here, B correctly forms LH, LH∗ , LG, and LG∗ through to
the end, and thus if f calls HH∗ or GG∗, B can simulate them for f . Next,
B generates r

r←− {0, 1}λ, K r←− {0, 1}λ, and R
r←− {0, 1}n. Then, B computes

c ← Enc(pk j , r;R) and d ← E(K,mb), and returns (c, d) to A. Finally, B
adds (r,K) to LG∗ , ((r, d), R) to LH∗ , and (j, c, d) to Lkdm.

Decryption queries For the i-th decryption query (j, c, d) /∈ Lkdm from A, B
responds as follows.

– In the case i < t, if there does not exist an entry ((r, d), R) ∈ LH which
satisfies c = Enc(pkj , r;R), B returns ⊥ to A. Otherwise, B first checks
whether there is an entry of the form (r,K) in LG ∪LG∗ . If so, B returns

m← D(K, d) to A. Otherwise, B generates K
r←− {0, 1}λ, adds (r,K) to

LG, and returns m← D(K, d) to A.
– In the case i = t, B first computes r ← Dec(skj , c). Then, if there exists

an entry of the form ((r, d), ·) in LH ∪ LH∗ , B aborts with output ⊥.
Otherwise, B outputs (j, r, c) and terminates.

B perfectly simulates Game 3 until A makes the t-th decryption query. We
note that since t is chosen from [qd] uniformly at random and independently of A,
and is information-theoretically hidden from the view of A, the choice of t does
not affect the behavior of B. When A makes the t-th decryption query (j, c, d), B
first computes r ← Dec(skj , c), and if there does not exist an entry of the form
((r, d), ·) in LH ∪ LH∗ , B outputs (j, r, c) and terminates. Otherwise, B outputs
⊥ and terminates. We can see that B succeeds in breaking the smoothness of Π
if and only if c = Enc(pkj , r;R) holds for a fresh randomness R, which means
that the event SMTHt3 occurs in Game 3 which B simulates for A. Therefore, we

22 F. Kitagawa et al.

can estimate the advantage of B Advsmth
Π,B (λ) as follows.

Advsmth
Π,B (λ) =

∑
i∈[qd]

Pr[SMTHi3 ∧ t = i]

=
∑
i∈[qd]

Pr[SMTHi3] · Pr[t = i] =
1

qd

∑
i∈[qd]

Pr[SMTHi3]

Therefore, we see that Pr[SMTH3] ≤ qd ·Advsmth
Π,B (λ). Since Π is smooth and qd is

a polynomial of λ, we have Pr[SMTH3] = negl(λ). □ (Lemma 4)

Proof of Lemma 5. Using the adversary A that attacks FO2, we construct the
adversaries BSUC, BBHQ, and BBDQ all of which attack the OT-CPA security of Σ.
We first describe BSUC below.

Initialization On input security parameter 1λ, BSUC first chooses t
r←− [qe].

Then, BSUC generates ℓ key pairs (pk j , sk j) ← KG(1λ)(j = 1, · · · , ℓ) and
sends (pk1, · · · , pk ℓ) to A. Finally, BSUC sets sk = (sk1, · · · , skℓ) and Lkdm =
LH = LH∗ = LG = LG∗ = ∅.

Hash queries For a hash query from A, BSUC responds in the same manner as
B in the proof of Lemma 4.

KDM queries For the i-th KDM query (j, f) from A, BSUC responds as follows.
– In the case i < t, BSUC first computes m1 ← fHH∗,GG∗

(sk) and m0 ←
0|f(·)|. Since BSUC correctly forms LH, LH∗ , LG, and LG∗ up to this point,
when f calls HH∗ and GG∗, BSUC can simulate them for f . Next, BSUC gen-
erates r

r←− {0, 1}λ, K r←− {0, 1}λ, and R
r←− {0, 1}n. Then BSUC computes

c ← Enc(pk j , r;R) and d ← E(K,mb), and returns (c, d) to A. Finally,
BSUC adds (r,K) to LG∗ , ((r, d), R) to LH∗ , and (j, c, d) to Lkdm.

– In the case i = t, BSUC first computes m1 ← fHH∗,GG∗
(sk) and m0 ←

0|f(·)|. Since BSUC correctly forms LH, LH∗ , LG, and LG∗ up to this point,
when f calls HH∗ and GG∗, BSUC can simulate them for f . Next, BSUC
sends (m0,mb) as a challenge query to the challenger to get the answer

d. Then, BSUC generates r
r←− {0, 1}λ and R

r←− {0, 1}n, computes c ←
Enc(pk j , r;R), and returns (c, d) to A. Finally, BSUC adds (r,⊥) to LG∗ ,
((r, d), R) to LH∗ , and (j, c, d) to Lkdm.

– In the case i > t, BSUC first generates r
r←− {0, 1}λ, K r←− {0, 1}λ, and R

r←−
{0, 1}n. Then, BSUC computes c ← Enc(pk j , r;R) and d ← E(K, 0|f(·)|),
and returns (c, d) to A. Finally, BSUC adds (r,K) to LG∗ , ((r, d), R) to
LH∗ , and (j, c, d) to Lkdm.

Decryption queries For a decryption query (j, c, d) /∈ Lkdm from A, if there
does not exist an entry ((r, d), R) ∈ LH which satisfies c = Enc(pkj , r;R),
BSUC returns ⊥ to A. Otherwise, BSUC first checks whether there is an entry
of the form (r,K) in LG. If so, BSUC returns m ← D(K, d) to A. Otherwise,

BSUC generates K
r←− {0, 1}λ, adds (r,K) to LG, and returns m← D(K, d) to

A.
Final phase When A terminates with output b′, BSUC outputs βSUC = 1 if b = b′.

Otherwise, BSUC outputs βSUC = 0.

On the KDM Security of the Fujisaki-Okamoto Constructions 23

BBHQ runs in exactly the same way as BSUC except for how to determine the
final output bit βBHQ. BBHQ determines βBHQ as follows. BBHQ initially sets βBHQ = 0.
When A queries r to G or queries (r, d) to H, BBHQ first responds in the same
manner as BSUC. In addition, BBHQ checks whether the query is a bad hash query
or not. Namely, BBHQ checks whether there exists an entry in LG∗ whose first
component is r. If so, BBHQ sets βBHQ = 1. When A terminates with output b′,
BBHQ outputs βBHQ.
BBDQ also runs in exactly the same way as BSUC except for how to determine the

final output bit βBDQ. BBDQ determines βBDQ as follows. BBDQ initially sets βBDQ =
0. When A makes a decryption query (j, c, d) /∈ Lkdm, BBDQ first responds in
the same manner as BSUC. In addition, BBDQ checks whether the query is a bad
decryption query or not. Namely, BBDQ checks whether the query satisfies the
following condition: There exists an entry ((r, d), R) ∈ LH ∪ LH∗ which satisfies
c = Enc(pkj , r;R), and if so, for such r, (r, ·) ∈ LG∗ holds. If (j, c, d) satisfies the
above condition, then BBDQ sets βBDQ = 1. When A terminates with output b′,
BBDQ outputs βBDQ.

Let β be the challenge bit in the game between the challenger and BSUC. Then,
the advantage of BSUC is estimated as follows.

AdvotcpaΣ,BSUC(λ) =
1

2
|Pr[βSUC = 1|β = 1]− Pr[βSUC = 1|β = 0]|

=
1

2
|
∑

k∈[qe]

Pr[βSUC = 1 ∧ t = k|β = 1]

−
∑

k∈[qe]

Pr[βSUC = 1 ∧ t = k|β = 0]|

Here, for any k ∈ [qe], we have the following two equations.

Pr[βSUC = 1 ∧ t = k|β = 1] = Pr[t = k|β = 1]Pr[βSUC = 1|β = 1 ∧ t = k]

Pr[βSUC = 1 ∧ t = k|β = 0] = Pr[t = k|β = 0]Pr[βSUC = 1|β = 0 ∧ t = k]

We note that t is chosen from [qe] uniformly at random and independently of
β. Hence, for all k ∈ [qe], we have Pr[t = k|β = 1] = Pr[t = k|β = 0] = 1

qe
.

Moreover, for every k ∈ [qe−1], in the cases β = 1∧ t = k and β = 0∧ t = k+1,
BSUC responds to KDM queries from A in exactly the same way. In the above
two cases, the only difference is whether BSUC computes fHH∗,GG∗

(sk) to responds
to the (k + 1)-th KDM query from A. Due to this difference, in the above two
cases, the manner LH and LG are formed is different. However, since A cannot
see the contents of LH and LG, this does not affect the behavior of A. Therefore,
we have Pr[βSUC = 1|β = 1 ∧ t = k] = Pr[βSUC = 1|β = 0 ∧ t = k + 1] for any
k ∈ [qe − 1]. From these, we have the following equality.

AdvotcpaΣ,BSUC(λ) =
1

2qe
|Pr[βSUC = 1|β = 1 ∧ t = qe]− Pr[βSUC = 1|β = 0 ∧ t = 1]|

Since BBHQ and BBDQ run in exactly the same way as BSUC except for how to
determine the final output bit, all of the above arguments also hold for BBHQ and

24 F. Kitagawa et al.

BBDQ. Therefore, we also have the following equalities.

AdvotcpaΣ,BBHQ(λ) =
1

2qe
|Pr[βBHQ = 1|β = 1 ∧ t = qe]− Pr[βBHQ = 1|β = 0 ∧ t = 1]|

AdvotcpaΣ,BBDQ(λ) =
1

2qe
|Pr[βBDQ = 1|β = 1 ∧ t = qe]− Pr[βBDQ = 1|β = 0 ∧ t = 1]|

We note that, until A makes the t-th KDM query, BSUC correctly forms LH,
LH∗ , LG, and LG∗ , and thus BSUC can compute KDM functions up to this point.
On the other hand, BSUC cannot simulate the t-th entry of LG∗ because B simu-
lates the security game for A so that the second component of the t-th entry of
LG∗ is the value of the key the challenger generates, and thus BSUC does not know
it. Therefore, when responding to the subsequent KDM queries, BSUC cannot com-
pute KDM functions correctly. However, since BSUC only needs the output length
of KDM functions to respond to the (t + 1)-th and subsequent KDM queries,
and KDM functions are length regular, BSUC need not compute f . Then, we see
that when β = 1 ∧ t = qe, BSUC perfectly simulates Game 4 for A. On the other
hand, when β = 0 ∧ t = 1, BSUC perfectly simulates Game 5 for A. We note that
t is information-theoretically hidden from the view of A, and thus the choice of
t does not affect the behavior of A. Here, this argument also holds for BBHQ and
BBDQ.

In addition, BSUC outputs 1 only when A succeeds in guessing b, that is, b = b′

occurs, BBHQ outputs 1 only when A makes a bad hash query, and BBDQ outputs
1 only when A makes a bad decryption query. Therefore, we have following
equalities.

Pr[βSUC = 1|β = 1 ∧ t = qe] = Pr[SUC4], Pr[βSUC = 1|β = 0 ∧ t = 1] = Pr[SUC5]

Pr[βBHQ = 1|β = 1 ∧ t = qe] = Pr[BHQ4], Pr[βBHQ = 1|β = 0 ∧ t = 1] = Pr[BHQ5]

Pr[βBDQ = 1|β = 1 ∧ t = qe] = Pr[BDQ4], Pr[βBDQ = 1|β = 0 ∧ t = 1] = Pr[BDQ5]

Therefore, we get the following equalities.

AdvotcpaΣ,BSUC(λ) =
1

2qe
|Pr[SUC4]− Pr[SUC5]|

AdvotcpaΣ,BBHQ(λ) =
1

2qe
|Pr[BHQ4]− Pr[BHQ5]|

AdvotcpaΣ,BBDQ(λ) =
1

2qe
|Pr[BDQ4]− Pr[BDQ5]|

Since Σ is OT-CPA secure and qe is a polynomial of λ, we see that |Pr[SUC4]−
Pr[SUC5]| = negl(λ), |Pr[BHQ4]−Pr[BHQ5]| = negl(λ), and |Pr[BDQ4]−Pr[BDQ5]| =
negl(λ). □ (Lemma 5)

Proof of Lemma 6. Using the adversary A that attacks FO2, we construct the
following adversary B that attacks the List-OW-CPA security of Π. We note
that since Π is OW-CPA secure, by Lemma 1, Π is also List-OW-CPA secure.

On the KDM Security of the Fujisaki-Okamoto Constructions 25

Initialization On input (pk1, · · · , pkℓ), B sends (pk1, · · · , pkℓ) to A, and B sets
Lkdm = LH = LG = Lans = ∅.

Hash queries If A queries (r, d) to H, B simulates H. Namely, B first checks
whether there is an entry of the form ((r, d), R) in LH. If so, B returns R to

A. Otherwise, B generates R
r←− {0, 1}n, adds ((r, d), R) to LH, and returns R

to A. Then, B adds r to Lans. If A queries r to G, B simulates G analogously
to H as above, and adds r to Lans.

KDM queries For a KDM query (j, f) from A, B first queries j to the chal-
lenger as an encryption query and gets the answer c. Then, B generates
K

r←− {0, 1}λ and computes d ← E(K, 0|f(·)|). Finally, B adds (j, c, d) to
Lkdm, and returns (c, d) to A.

Decryption queries For a decryption query (j, c, d) /∈ Lkdm from A, B re-
sponds in the same manner as BSUC in the proof of Lemma 5.

Final phase When A terminates with output b′, B outputs Lans.

In the List-OW-CPA game, the challenger maintains the list Lenc which
stores plaintexts of the challenge ciphertexts. Then, the advantage of B is Pr[Lenc

∩ Lans ̸= ∅]. We see that B perfectly simulates Game 5 for A. If A queries r as
a G query or (r, d) as a H query, B adds r to Lans. In addition, in Game 5, a
new entry is added to LG and LH only when A makes a G query and H query,
respectively. Therefore, we can write Lans = {r|(r, ·) ∈ LG ∨ ((r, ·), ·) ∈ LH}.
Here, (r, ·) ∈ LG (resp. ((r, ·), ·) ∈ LH) indicates that there exists an entry in LG

(resp. LH) whose first component is r.
On the other hand, every time A makes a KDM query (j, f), B sends j to

the challenger as an encryption query and gets the answer c. Here, let c be an
encryption of r. Then, by the above encryption query from B, the challenger
adds r to Lenc. On the other hand, in Game 5, the hash value of r is computed
using G∗ at this point, and thus an entry of the form (r, ·) is added to LG∗ .
Therefore, Lenc can be seen as the set of the first components of the entries in
LG∗ in Game 5. (Actually, B does not make LG∗ by itself, but B does not need
LG∗ to simulate Game 5 for A.) From these, we see that Lenc ∩ Lans ̸= ∅ holds
if the event BHQ5 occurs in Game 5 which B simulates for A. Therefore, we can
see that Advlowcpa

Π,B,ℓ (λ) ≥ Pr[BHQ5]. Since Π is List-OW-CPA secure, we see that
Pr[BHQ5] = negl(λ). □ (Lemma 6)

Proof of Lemma 7. First, we define the following two events.

BDQ15: In Game 5, A makes a decryption query (j, c, d) /∈ Lkdm satisfying the
following condition: There exists an entry ((r, d), R) ∈ LH which satisfies
c = Enc(pkj , r;R) and (r, ·) ∈ LG∗ .

BDQ25: In Game 5, A makes a decryption query (j, c, d) /∈ Lkdm satisfying the
following condition: There exists an entry ((r, d), R) ∈ LH∗ which satisfies
c = Enc(pkj , r;R). (We note that if there is an entry of the form ((r, ·), ·) ∈
LH∗ , then there is an entry of the form (r, ·) ∈ LG∗ .)

By the definition of the events, obviously, BDQ5 = BDQ15 ∨ BDQ25 holds, and thus
we have Pr[BDQ5] ≤ Pr[BDQ15]+Pr[BDQ25]. Here, regarding BDQ25, when A makes

26 F. Kitagawa et al.

a decryption query (j, c, d) /∈ Lkdm satisfying the condition of BDQ25, it holds
that r = r∗, R = R∗, and d = d∗ for some entry (j∗, c∗, d∗) ∈ Lkdm, where
c∗ = Enc(pkj∗ , r

∗;R∗). In addition, in this case, j ̸= j∗ also holds. The reason
is as follows. If j = j∗ holds, then c = Enc(pkj , r;R) = Enc(pkj∗ , r

∗;R∗) = c∗

holds, and thus we have (j, c, d) = (j∗, c∗, d∗), which contradicts (j, c, d) /∈ Lkdm.
Therefore, j ̸= j∗ holds. From these, the event BDQ25 implies the following event.

BDQ2∗5: In Game 5, A makes a decryption query (j, c, d) /∈ Lkdm satisfying
the following condition: For some entry (j∗, c∗, d∗) ∈ Lkdm, where c∗ =
Enc(pkj∗ , r

∗;R∗), it holds that c = Enc(pkj , r
∗;R∗) and j ̸= j∗.

Here, we have Pr[BDQ25] ≤ Pr[BDQ2∗5].
Then, using the adversary A that attacks FO2, we construct the following

adversary B that attacks the List-OW-CPA security of Π. Since Π is OW-CPA
secure, from Lemma 1, Π is also List-OW-CPA secure. Here, we note that B
attacks the List-OW-CPA security of Π in the case the number of keys is ℓ− 1.

Initialization On input (pk∗1 , · · · , pk∗ℓ−1), B first chooses s
r←− [ℓ] and generates

(pks, sks) ← KG(1λ). Then, for 1 ≤ j < s, B sets pkj = pk∗j , and for
s < j ≤ ℓ, B sets pkj = pk∗j−1. Finally, B sends (pk1, · · · , pkℓ) to A, and sets

Lkdm = LH = LG = L1
ans = L2

ans = ∅.
Hash queries IfA queries (r, d) to H, B first simulates H. Namely, B first checks

whether there is an entry of the form ((r, d), R) in LH. If so, B returns R to

A. Otherwise, B generates R
r←− {0, 1}n, adds ((r, d), R) to LH, and returns

R to A. Then, B adds r to L1
ans. If A queries r to G, B just simulates G

analogously to H. (B does not add r to L1
ans in the case of G query.)

KDM queries For a KDM query (j, f) from A, B responds as follows.

– In the case j ̸= s, B first queries j if j < s and j − 1 if j > s to
the challenger as an encryption query and gets the answer c. Then, B
generates K

r←− {0, 1}λ and computes d ← E(K, 0|f(·)|). Finally, B adds
(j, c, d) to Lkdm, and returns (c, d) to A.

– In the case j = s, B first generates r
r←− {0, 1}λ, K r←− {0, 1}λ, and

R
r←− {0, 1}λ. Then, B computes c = Enc(pkj , r;R) and d← E(K, 0|f(·)|).

Finally, B adds (j, c, d) to Lkdm, and returns (c, d) to A.
Decryption queries For a decryption query (j, c, d) /∈ Lkdm from A, if j = s,
B first computes r ← Dec(sks, c), and adds r to L2

ans if r ̸= ⊥. Then, B
responds in the same manner as BSUC in the proof of Lemma 5.

Final phase When A terminates with output b′, B chooses γ
r←− {1, 2} and

outputs Lγ
ans.

We see that B perfectly simulates Game 5 for A. In the initialization step,
B chooses s

r←− [ℓ] and generates (pks, sks) ← KG(1λ). Since s is information-
theoretically hidden from the view of A, this does not affect the behavior of
A. We note that, in the List-OW-CPA game, the challenger maintains the list
Lenc which stores plaintexts of the challenge ciphertexts. Then, it holds that
Advlowcpa

Π,B,ℓ−1(λ) = Pr[Lenc ∩Lγ
ans ̸= ∅]. Here, γ is a randomness over {1, 2} which

On the KDM Security of the Fujisaki-Okamoto Constructions 27

B chooses in the final phase, and thus the following equality holds.

Advlowcpa
Π,B,ℓ−1(λ) =

1

2
Pr[Lenc ∩ L1

ans ̸= ∅] +
1

2
Pr[Lenc ∩ L2

ans ̸= ∅]

In the following, we first consider Pr[Lenc∩L1
ans ̸= ∅]. When the event BDQ15

occurs in Game 5 which B simulates for A, there exists an entry ((r∗, d), R) ∈ LH

which satisfies c = Enc(pkj , r
∗, R) and (r∗, ·) ∈ LG∗ for some decryption query

(j, c, d) /∈ Lkdm from A. We note that only when A makes a H query, an entry
is added to LH. Thus, ((r

∗, d), R) ∈ LH means that A has queries (r∗, d) as a H
query. Therefore, in this case, L1

ans contains r∗. Also, (r∗, ·) ∈ LG∗ means that
r∗ is generated to compute the answer to a KDM query from A. (Actually, B
does not make LG∗ by itself, but B need not make LG∗ to simulate Game 5 for
A.) Here, let r∗ be generated to compute the answer (c∗, d∗) to a KDM query
(j∗, f) from A. In other words, let c∗ be an encryption of r∗ under pkj∗ . Then,
if j∗ ̸= s, c∗ is computed by the challenger, and thus Lenc contains r∗. On the
other hand, if j∗ = s, c∗ is computed by B, and thus Lenc does not contain r∗.
Therefore, at least when A makes a decryption query satisfying the condition
of the event BDQ15, and j∗ ̸= s holds for the above j∗, Lenc ∩ L1

ans ̸= ∅ holds.
Since s is chosen from [ℓ] uniformly at random, and is information-theoretically
hidden from the view of A, the choice of s is independent of the behavior of A.
Therefore, the probability that j∗ ̸= s holds under the condition thatA has made
a decryption query satisfying the condition of BDQ15 is ℓ−1

ℓ . Moreover, since B
perfectly simulates Game 5 for A, the probability that A makes a decryption
query satisfying the condition of the event BDQ15 is Pr[BDQ15]. From these, we
have Pr[Lenc ∩ L1

ans ̸= ∅] ≥ ℓ−1
ℓ Pr[BDQ15].

Next, we consider Pr[Lenc ∩ L2
ans ̸= ∅]. When the event BDQ2∗5 occurs in

Game 5 which B simulates for A, for some decryption query (j, c, d) /∈ Lkdm

from A and some entry (j∗, c∗, d∗) ∈ Lkdm, it holds that c = Enc(pkj , r
∗;R∗)

and j ̸= j∗, where c∗ = Enc(pkj∗ , r
∗;R∗). Then, if j = s, L2

ans contains r∗.
In addition, in this case, j∗ ̸= j = s holds, and thus Lenc also contains r∗.
Therefore, at least when A makes a decryption query (j, c, d) /∈ Lkdm satisfying
the condition of the event BDQ2∗5, and j = s holds, Lenc ∩ L2

ans ̸= ∅ holds. Since
the choice of s is independent of A, the probability that j = s holds under
the condition that A has made a decryption query satisfying the condition of
BDQ2∗5 is 1

ℓ . Moreover, since B perfectly simlates Game 5 for A, the probability
that A makes a decryption query satisfying the condition of the event BDQ2∗5 is
Pr[BDQ2∗5]. Therefore, we get Pr[Lenc ∩ L2

ans ̸= ∅] ≥ 1
ℓ Pr[BDQ2

∗
5].

From these, we can estimate Advlowcpa
Π,B,ℓ−1(λ) as follows.

Advlowcpa
Π,B,ℓ−1(λ) =

1

2
Pr[Lenc ∩ L1

ans ̸= ∅] +
1

2
Pr[Lenc ∩ L2

ans ̸= ∅]

≥ 1

2
· ℓ− 1

ℓ
Pr[BDQ15] +

1

2
· 1
ℓ
Pr[BDQ2∗5]

≥ 1

2ℓ
(Pr[BDQ15] + Pr[BDQ2∗5])

≥ 1

2ℓ
(Pr[BDQ15] + Pr[BDQ25]) ≥

1

2ℓ
Pr[BDQ5]

28 F. Kitagawa et al.

From the above, we have Pr[BDQ5] ≤ 2ℓ·Advlowcpa
Π,B,ℓ−1(λ). Since Π is List-OW-CPA

secure and ℓ is a polynomial of λ, we see that Pr[BDQ5] = negl(λ). □ (Lemma 7)

From the inequality (1) and Lemmas 3 to 7, we have Advkdmcca
FO2,A,ℓ(λ) = negl(λ).

Since the choice of ℓ and A is arbitrary, we see that FO2 is KDM-CCA secure in
the random oracle model. □ (Theorem 4)

References

1. IEEE standard specifications for public-key cryptography - amendment 1: Addi-
tional techniques. IEEE Std 1363a-2004 (Amendment to IEEE Std 1363-2000),
Sept 2004.

2. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computa-
tional soundness of formal encryption). J. Cryptology, 20(3):395, 2007.

3. P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness and completeness of
formal encryption: The cases of key cycles and partial information leakage. Journal
of Computer Security, 17(5):737–797, 2009.

4. B. Applebaum. Key-dependent message security: Generic amplification and com-
pleteness. EUROCRYPT 2011, LNCS 6632, pp. 527–546. 2011.

5. B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. CRYPTO 2009,
LNCS 5677, pp. 595–618. 2009.

6. M. Backes, M. Dürmuth, and D. Unruh. OAEP is secure under key-dependent
messages. ASIACRYPT 2008, LNCS 5350, pp. 506–523. 2008.

7. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions
of security for public-key encryption schemes. CRYPTO 1998, LNCS 1462, pp.
26–45. 1998.

8. M. Bellare, V. Hoang, and P. Rogaway. Garbling schemes. IACR Cryptology ePrint
Archive, 2012:265, 2012. (The proceedings version appears in ACMCCS 2012.)

9. M. Bellare, D. Hofheinz, and E. Kiltz. Subtleties in the definition of IND-CCA:
when and how should challenge decryption be disallowed? J. Cryptology, 28(1):29–
48, 2015.

10. M. Bellare and P. Rogaway. Optimal asymmetric encryption. EUROCRYPT 1994,
LNCS 950, pp. 92–111. 1994.

11. J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the pres-
ence of key-dependent messages. SAC 2002, LNCS 2595, pp. 62–75. 2002.

12. D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption
from decision Diffie-Hellman. CRYPTO 2008, LNCS 5157, pp. 108–125. 2008.

13. Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key encryp-
tion under subgroup indistinguishability - (or: Quadratic residuosity strikes back).
CRYPTO 2010, LNCS 6223, pp. 1–20. 2010.

14. J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
EUROCRYPT 2009, LNCS 5479, pp. 351–368. 2009.

15. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. EUROCRYPT 2001, LNCS
2045, pp. 93–118. 2001.

16. D. Cash, M. Green, and S. Hohenberger. New definitions and separations for
circular security. PKC 2012, LNCS 7293, pp. 540–557. 2012.

On the KDM Security of the Fujisaki-Okamoto Constructions 29

17. G. Davies and M. Stam. KDM security in the hybrid framework. CT-RSA 2014,
LNCS 8366, pp. 461–480. 2014.

18. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography (extended ab-
stract). STOC 1991, pp. 542–552. 1991.

19. E. Fujisaki and T. Okamoto. How to enhance the security of public-key encryption
at minimum cost. PKC 1999, LNCS 1560, pp. 53–68. 1999.

20. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. CRYPTO 1999, LNCS 1666, pp. 537–554. 1999.

21. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. J. Cryptology, 26(1):80–101, 2013.

22. D. Hofheinz. Circular chosen-ciphertext security with compact ciphertexts. EU-
ROCRYPT 2013, LNCS 7881, pp. 520–536. 2013.

23. F. Kitagawa, T. Matsuda, G. Hanaoka, and K. Tanaka. Efficient key dependent
message security amplification against chosen ciphertext attacks. ICISC 2014,
LNCS 8949, pp. 84–100. 2014.

24. F. Kitagawa, T. Matsuda, G. Hanaoka, and K. Tanaka. Completeness of single-bit
projection-kdm security for public key encryption. CT-RSA 2015, LNCS 9048, pp.
201–219. 2015.

25. T. Malkin, I. Teranishi, and M. Yung. Efficient circuit-size independent public key
encryption with KDM security. EUROCRYPT 2011, pp. 507–526. 2011.

26. T. Okamoto and D. Pointcheval. REACT: rapid enhanced-security asymmetric
cryptosystem transform. CT-RSA 2001, LNCS 2020, pp. 159–175. 2001.

27. T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factor-
ing. EUROCRYPT 1998, LNCS 1403, pp. 308–318. 1998.

28. V. Shoup. A proposal for an ISO standard for public key encryption. IACR
Cryptology ePrint Archive, 2001:112, 2001.

A The proof of Lemma 1

Here, we define OW-CPA security for PKE schemes, and then prove Lemma 1.

Definition 8 (OW-CPA security). Let Π be a PKE scheme whose message
space isM. We define the OW-CPA game between a challenger and an adversary
A as follows.

Initialization First the challenger generates a key pair (pk , sk) ← KG(1λ).

Then, the challenger generates m
r←− M and c ← Enc(pk ,m), and sends

(pk , c) to A.
Final phase A outputs m′.

In this game, we define the advantage of the adversary A as follows.

Advowcpa
Π,A (λ) = Pr[m = m′]

We say that Π is OW-CPA secure if for any PPT adversary A, we have
Advowcpa

Π,A (λ) = negl(λ).

We give the proof of Lemma 1 below.

30 F. Kitagawa et al.

Proof of Lemma 1. Let A be an adversary for the List-OW-CPA security of Π
which makes at most q encryption queries and outputs a list Lans that contains at
most p elements. Let ℓ = ℓ(λ) be any polynomial. Then, we define the following
event Si,k for any i ∈ [q] and k ∈ [p].

Si,k: Let mi be the i-th entry of Lenc and m′k be the k-th entry of Lans. Then,
mi = m′k holds.

Here, we have Advlowcpa
Π,A,ℓ (λ) ≤

∑
i∈[q]

∑
k∈[p] Pr[S

i,k].
Then, using A, we construct the following adversary B which attacks the

OW-CPA security of Π.

Initialization On the input (pk∗, c∗), B first chooses s
r←− [ℓ] and t

r←− [q].
Then, B sets pks = pk∗, generates ℓ − 1 key pairs (pk j , sk j) ← KG(1λ)(j =
1, · · · , s− 1, s+ 1, · · · , ℓ), and sends (pk1, · · · , pk ℓ) to A.

Encryption queries For the i-th encryption query j ∈ [ℓ] made by A, B re-
sponds as follows.
– In the case i ̸= t, B generates m

r←−M, computes c← Enc(pk j ,m), and
returns c to A.

– In the case i = t, if j ̸= s, then B aborts with output ⊥. Otherwise, B
returns c∗ to A.

Final phase When A outputs Lans, B first chooses u
r←− [p], where p is the

number of entries in Lans. Then, B outputs the u-th entry of Lans.

If B does not abort, B perfectly simulates the List-OW-CPA game for A. We
note that s, t, and u are chosen uniformly at random. In addition, if B does not
abort, the choice of them is information-theoretically hidden from the view of
A, and thus is independent of A. When A makes the t-th encryption query jt,
if jt = s, B returns c∗ which is the challenge ciphertext for B itself. Let c∗ be an
encryption of r∗. Then, the t-th entry of Lenc in the List-OW-CPA game which B
simulates for A is r∗. In addition, in the final phase, B outputs the u-th entry of
Lans output by A. From these, for any i ∈ [q] and k ∈ [p], B succeeds in breaking
the OW-CPA security of Π if the event Si,k occurs in the List-OW-CPA game
which B simulates for A, and t = i, jt = s, and u = k hold. Therefore, we can
estimate the advantage of B as follows.

Advowcpa
Π,B (λ) =

∑
i∈[q]

∑
k∈[p]

Pr[Si,k ∧ t = i ∧ s = ji ∧ u = k]

=
∑
i∈[q]

∑
k∈[q]

Pr[Si,k] · Pr[t = i] · Pr[s = ji] · Pr[u = k]

=
1

ℓpq

∑
i∈[q]

∑
k∈[p]

Pr[Si,k] ≥ 1

ℓpq
Advmowcpa

Π,A,ℓ (λ)

Since Π is OW-CPA secure, and ℓ, p, and q are polynomials of λ, we see that
Advlowcpa

Π,A,ℓ (λ) ≤ ℓpq · Advowcpa
Π,B (λ) = negl(λ). □ (Lemma 1)

