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Abstract. We study robust secret sharing schemes in which between
one third and one half of the players are corrupted. In this scenario,
robust secret sharing is possible only with a share size larger than the
secrets, and allowing a positive probability of reconstructing the wrong
secret. We focus on the most challenging case where the number corrup-
tions is just one less than the number of honest players. In the standard
model, it is known that at least m + k bits per share are needed to ro-
bustly share a secret of bit-length m with an error probability of 2−k;
however, to the best of our knowledge, no efficient scheme matches this
lower bound: the one that gets closest has share size m+Õ(n+k), where
n is the number of players in the scheme.
We show that it is possible to obtain schemes with close to minimal
share size in a model of local adversaries, i.e. in which corrupt players
cannot communicate between receiving their respective honest shares
and submitting corrupted shares to the reconstruction procedure, but
may coordinate before the execution of the protocol and can also gather
information afterwards. In this limited adversarial model, we prove a
lower bound of roughly m + k bits on the minimal share size, which
is (somewhat surprisingly) similar to the lower bound in the standard
model, where much stronger adversaries are allowed. We then present
efficient scheme that essentially meets our lower bound, and has shorter
share size than any known efficient construction in the standard model
for the same set of parameters. For our construction, we introduce a novel
procedure that compiles an error correcting code into a new randomized
one, with the following two properties: a single local portion of a code-
word leaks no information on the encoded message itself, and any set of
portions of a codeword reconstructs the message with error probability
exponentially low in the set size.

1 Introduction

While many cryptographic primitives require computational hardness assump-
tions to leverage restrictions on an adversary’s computing power, the fundamen-
tal primitive of secret sharing protects data information-theoretically. This is
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accomplished by dispersing a secret among several parties, a sufficient number
of whom are trustworthy. In a classical secret sharing scheme (as introduced
independently by Shamir [23] and Blakely [4]), a dealer shares a secret among n
parties such that any t+1 of them can reconstruct the secret, but any coalition of
at most t players cannot learn anything about the secret. This is an information-
theoretic guarantee, requiring that the joint distribution of any t shares must be
independent of the secret.

Applications of secret sharing schemes range widely from secure multiparty
computation (MPC), secure storage, secure message transmission, and distributed
algorithms. In some of these applications, particularly secure storage and mes-
sage transmission, an additional feature of “robustness” is desirable. Robust
secret sharing is defined to satisfy all the usual properties of secret sharing,
while additionally requiring that when the reconstruction procedure receives at
most t adversarially corrupted shares out of n, it still outputs the correct secret
(with sufficiently high probability).

Prior works on robust secret sharing (e.g. [22,7,5,10,9]) have focused on ro-
bustness against a “monolithic” adversary, i.e. a (computationally unbounded)
centralized adversary who maliciously corrupts t parties and submits arbitrary
values for their shares to the reconstruction procedure, potentially using all of the
joint information present in the t shares initially received by the corrupted par-
ties. In this model, it is known that for t < n/3 robust secret sharing schemes
can be perfect, i.e. for any admissible adversary the reconstruction procedure
outputs the correct secret with probability one (e.g. Shamir secret sharing, with
Reed-Solomon decoding achieves this property). Interestingly, for n/3 ≤ t < n/2
robust secret sharing is possible, but only by allowing a positive reconstruction
failure probability [8]. In this scenario, Cevallos et al. [9] presented a polyno-
mial time robust secret sharing scheme over m-bit messages with share sizes of
m+ Õ(k+n) and reconstruction failure probability of 2−k. This scheme has the
lowest share size among efficient schemes in this model, but does not match the
best known lower bound of m + k [7]. Our work is motivated by the following
question:

Can the share size be significantly reduced with additional,
but reasonable, restrictions on the adversary?

We identify a very natural and realistic adversary for which we construct a
scheme with considerably shorter shares – while still maintaining efficiency. In
this new adversarial model, we also prove a lower bound of m+ k − 2− log2(3)
bits on the share size, which essentially matches our constructions’ shares and
is almost identical to the best known lower bound in the standard model, in
which much stronger adversaries are allowed. By constructing a scheme that
approximately attains our lower bound, we have a rather complete understanding
of the share sizes that can be obtained for robust secret sharing schemes in this
model, a degree of precision that has not yet been achieved against the standard
monolithic adversary.



Our Adversarial Model. We consider a “local” adversary, meaning that the t
corrupted players cannot communicate with each other during the execution of
the protocol – but they may arbitrarily coordinate before and after (the latter
to try to gain knowledge on the secret). This means that each of the corrupted
parties must decide on his malicious share to submit to the reconstruction pro-
cedure based only on some pre-determined strategy and the one honest share it
has received from the dealer. This model carries some similarities to the work
of Lepinski et al. [18], in the context of collusion-free protocols. In the setting
of secret sharing robust against local adversaries, it is still true that for t < n/3
schemes can be perfect, and for n/3 ≤ t < n/2 robustness can be achieved
only allowing a failure probability (the same proofs as the ones in the mono-
lithic adversarial model still apply), but in this latter scenario, working with
local adversaries allows us to construct schemes with optimal share sizes, still
maintaining efficiency.

Motivation for our Model. Local adversaries model several kinds of realistic
limitations of adversarial power in many applications. For example, in a secure
message transmission, data may travel quickly and realtime cooperation among
corrupted nodes may be unlikely. In a large secure multiparty computation, the
scale and pace of the computation may also make online coordination among
adversarial parties unrealistic. Corrupted parties may also be mutually distrust-
ing, unwilling to coordinate (e.g. if they have opposite goals), or they might not
even know about the existence of each other (say in a large scale MPC over the
Internet).

Similar adversary models have been well-studied in other subfields of com-
puter science, such as the multi-prover setting for interactive proofs. In the clas-
sical result of IP = PSPACE [24], a single, computationally unbounded and
potentially duplicitous prover must convince a much less powerful verifier of the
truth of a particular statement. As was shown in [3], considering two duplicitous
but non-communicating provers greatly expands the class of statements that
can be proved, as MIP = NEXP . Removing online communication between
the provers is precisely what fuels this expanded power, and similar gains may be
possible in other interactive scenarios, including secure multiparty computation
and robust distributed algorithms.

In order to capture limited collusion among adversarial parties during the
protocol, the locality model can be extended to allow small factions. More pre-
cisely, we could allow each adversarially submitted share to depend on the view of
a certain bounded number of received shares. We do not address this extended
model in this work, but we suspect that similar techniques can be applied to
obtain such extensions.

More Details on our Results. As mentioned earlier, we prove two complementary
results on the share size of secret sharing schemes robust against a local adversary
corrupting t of the n players, where n/3 ≤ t < n/2, and where the reconstruction
failure probability is 2−k.



In the first part of the paper, we show a lower bound of m+ k − 2− log2(3)
on the minimal share size in this setting. This is somewhat surprising, since it
is quantitatively comparable to the lower bound of m + k proven in [7] in the
case of a monolithic (and much stronger!) adversary. Our proof uses remarkably
little adversarial power to obtain this lower bound: more precisely, we show that
this lower bound holds against an oblivious adversary who completely ignores
the honest shares given to corrupted parties and replaces them with either de-
fault values or fresh shares. We note that working with such little adversarial
knowledge requires us to develop new lower bound techniques. In particular, the
proof of the previous lower bound of [7] heavily leverages centralized adversarial
knowledge of the true secret and all of the shares received by corrupted players.
Their argument considers an adversary who maximizes its success conditioned
on this knowledge – knowledge that our much weaker local adversary does not
have.

In the second part, we construct a poly-time scheme robust against local
adversaries whose share size is m + O(k), which essentially meets our lower
bound. Our core idea for shrinking the shares is to authenticate all honest shares
with a single MAC key that is “hidden in plain sight” from a local adversary.
To do so, while still ensuring that the key can be efficiently recovered by the
reconstruction procedure, we develop a novel tool integrating error-correcting
codes with “locally hiding” distributions, a rather general tool that may be of
independent interest.

Compared to the scheme in the standard model with smallest share size [9],
our scheme reduces the share size by removing the additive factor of n. Thus, we
see that restricting to local adversaries allows us to considerably reduce share
size down to approximately match a proven lower bound, removing any linear
dependence on the number of players, while maintaining polynomial time effi-
ciency. This yields a much tighter understanding of what is achievable against
local adversaries than what is known against a monolithic adversary in the con-
text of robust secret sharing.

Techniques for our Construction. Previous constructions of robust secret sharing
schemes use MACs to authenticate honest shares. Against a monolithic adversary
who can view all of the shares received by corrupt players, it seems necessary
to use many different MACs to prevent the adversary from compiling enough
information about the keys to forge enough tags for corrupt shares. These many
MAC keys and tags significantly increase the size of shares.

In the local adversary setting where each corrupt party can only act based
upon a pre-determined strategy and its own received share, we can restrict to
a single MAC key to be used on each share for authentication. Essentially, we
will design our shares so that each party will be given a share that is distributed
independently of the MAC key when considered on its own, but the joint distri-
bution of just a constant number of honest shares reveals the key (hence allowing
authentication of honest shares).

The basic idea is as follows: each share consists of a Shamir share of the
secret, a tag on the Shamir share, and information on the global MAC key (used



for the tag). This information has to be conveyed in a way that a single player
obtains no information on the key itself (otherwise it could forge its tag), and
the key is still retrievable even if nearly half of the shares are corrupt.

In our construction, the dealer embeds the key in a bit-matrix and distributes
one row per player in such a way that each single row looks random, but the
joint distribution of enough rows reveals the key. More specifically, each bit of
the key is encoded as a column of such matrix, as follows: the bit 0 is encoded
as a uniform bit-column, while the bit 1 is encoded as either the all-zero and
the all-one column, and this choice is uniform. A single row in such matrix is
a uniform string; no information on the key is revealed. On the other hand,
looking across a bigger number of honest rows (and seeing them all agree at the
positions corresponding to 1) allows us to invert the embedding with probability
close to one – the failure probability decreases exponentially with the number of
honest rows seen. In order to make the failure probability negligible when the
number of inspected rows is constant, we encode the key via an asymptotically
good error correcting code before the embedding procedure.

A secondary challenge is that looking at corrupt rows can lead to the wrong
key. However, it is possible to detect a corrupt key by the fact that it verifies
fewer than t + 1 tags with high probability (the honest shares are likely to be
incompatible with a non-honest key).

Thus, we can iterate the procedure to invert the embedding of the key through
all subsets of shares of a fixed constant size, attempt to reconstruct the MAC
key from each set, and stop whenever we find one that authenticates properly.
This computation is still polynomial in n and succeeds with sufficiently high
probability. This comprises our construction of an efficient secret sharing scheme
that is robust against local adversaries, with a significantly reduced share size
compared to previous constructions in the standard model.

Techniques for the Lower Bound. To prove our lower bound on minimal share
size in this setting, we consider very simple local adversary strategies. We sup-
pose that a local adversary’s goal is to cause a reconstruction failure when a
challenger generates honest shares from a uniformly random secret. In particu-
lar, the adversary identifies a player with a share of minimal length and chooses
to corrupt a random set of t of the remaining players and replaces the corrupt
players’ shares with freshly generated honest shares for a new uniformly chosen
secret. Note that these t corrupted shares will be sampled from the same dis-
tribution as honest shares, but sampled independently from the true secret. For
simplicity of illustration, suppose that this local adversary has replaced the first
t shares with its own sample, while the remaining t+ 1 shares are honest. Also
suppose that the t + 1st share has minimal length (any scenario follows these
assumptions, up to a relabeling of the players indices). Then, it is likely that
the first t corrupted shares and the honest t+ 1st share are also consistent with
some honest sharing. At this point, the complete set of shares is ambiguous, in
the sense that the first t+ 1 shares define a (corrupt) secret, while the last t+ 1
shares define another (honest) secret. Now, it is not clear whether running the
reconstruction procedure on this set of shares will lead to one secret or the other:



in particular, the probability that an honest sharing agrees with the first t + 1
shares could be different from the probability that an honest sharing agrees with
the last t+1 shares – and the reconstruction procedure can take this into account
when given an ambiguous set of shares as input (and, for example, output the
secret defined by the shares that are more likely).

To address these subtleties, we parameterize the underlying probability space
in terms of pairs of secrets and random strings chosen by the share generating
algorithm. We group these pairs into various equivalence classes based on colli-
sions of subsets of the resulting shares, and model these equivalences in a layered
graph. Our analysis takes advantage of the fact that the adversary can produce
the first t corrupted shares in a way that is consistent with the t+1st share with-
out knowing what the reconstruction would output. This crucial property comes
as a consequence of the privacy guarantee of the scheme: any first t shares are
consistent with every secret, otherwise the adversary would get information on
the secret after the protocol is over (and communication between corrupt play-
ers is allowed). This is a key source of the precision of our bound as compared
to [7], where they capture adversary success by considering when the adversary
correctly guesses an unknown share, making use of all the information on the t
shares he is given. We manage to capture the adversarial success without requir-
ing such guesses, and no knowledge on the honest shares given to the adversary.

Our lower bound proof holds for secret sharing schemes that are private,
robust, and statistically correct (i.e. we are not requiring that t+1 shares deter-
mine the secret with probability one – however, even if this is the case, by the
(t, δ)-robustness property for an n = 2 · t + 1 player secret sharing scheme, we
get that t+ 1 shares determine a secret with probability 1− δ).

In summary, we obtain an extremely powerful lower bound, since it relies
only upon (weak) local adversaries, and assumes only statistical correctness for
the underlying scheme.

Additional Related Work. Robust secret sharing schemes are also considered in
[11], which does not consider local adversaries, but relaxes the model by requiring
a gap between privacy threshold and reconstruction threshold (this is commonly
known as a ramp scheme). In this setting t/n must be less than 1/2− ε for some
positive ε. Moreover, ramp schemes can avoid the typical restriction that the size
of individual shares must be at least as large as the secret size. In this model
[11] achieves robust secret sharing with nearly constant sized shares.

Decentralized adversaries are also considered in [1,6], which provide frame-
works for simulation-based security definitions for cryptographic primitives against
local adversaries. Similarly, in the setting of leakage-resilient cryptography, vari-
ous “local” adversarial models have been studied. For example, the “only compu-
tation leaks information” axiom of Micali and Reyzin [20] restricts an adversary
to leakage that happens solely on whatever portion of a secret state is currently
involved in a computation. Some other works, such as [14] and [13] consider se-
cret state as divided among multiple devices and leaking independently. [2] also
present a rather general study of various collusion restrictions on adversarial
actors in multiparty protocols.



2 Preliminaries

In this section we list the classic tools and notation used in our paper.
We usually denote distributions by calligraphic letters (e.g. D), random vari-

ables by capital letters (e.g. D ∼ D reads as “D follows the distribution D”),
and samples by lowercase letters (e.g. d ← D reads “d is sampled according to
D”). Moreover, for any set X, we denote by UX the uniform distribution on X.

Definition 1 (Projection). For any integer n, for any set X = X1×· · ·×Xn,
and for any I ⊆ {1, . . . , n}, we write XI to denote the set

∏
i∈I Xi. This notation

is carried over to the elements of X.

Definition 2 (Hamming Weight). For a vector v ∈ Fc2, we define w(v) to be
the Hamming weight of v (i.e. the number of non-zero coordinates of v).

We will use the following Chernoff Bound, which appears as Theorem 4.4 in
[21].

Lemma 1. Let Y1, . . . , Ym be independent random variables with Pr[Yi = 1] = p
and Pr[Yi = 0] = 1− p. Let Y =

∑m
i=1 Yi and µ = p ·m. Then for 0 < β ≤ 1,

Pr[Y ≥ (1 + β) · µ] ≤ e−µβ
2/3.

2.1 Message Authentication Codes

Definition 3 (MAC). A (one time) ε-secure message authentication code (MAC)
for messages inM is a function MAC : K×M→ T , for some sets K (key space)
and T (tag space) such that for all m 6= m′ ∈ M, for all t, t′ ∈ T , and for a
uniform random variable K ∼ UK:

Pr[MAC(K,m′) = t′ | MAC(K,m) = t] ≤ ε.

2.2 Error-Correcting Codes

An error-correcting code for messages that are bit strings of length h is a function
C : Fh2 → Fc2, where c is called the block length. The distance d of the code is
defined as

min
x6=y∈Fh2

{w(x− y)}.

The number E of adversarial errors tolerated is dd2 − 1e, while the fraction e of

errors tolerated is E
c . The rate of the code r is defined to be h/c. A decoding

procedure is a function D : Fc2 → Fh2 such that whenever z satisfies w(z, C(x)) ≤
E, D(z) = x.

An infinite ensemble of codes for increasing block lengths c is said to be
asymptotically good if the rate r and fraction of errors e are both lower bounded
by positive constants. Such codes are known to exist, and with efficient encoding
and decoding functions. For example, Justesen [17] gave an explicit family of
asymptotically good codes with block lengths h = 2m(2m − 1) for each positive
integer m with efficient encoding and decoding functions.



2.3 Robust Secret Sharing Schemes

Throughout the rest of the paper, we use the following notation:

– n is an integer that denotes the number of players in the scheme.
– t ≤ n denotes the maximum number of corruptible players in the scheme.
– M is the message space. We denote by m the integer such that 2m−1 <
|M| ≤ 2m.

– R is a set that denotes the randomness space used by the scheme to share
messages. We assume that the scheme samples uniform elements in R to
produce sequences of shares.

– S = S1 × · · · × Sn is a set that denotes the ambient space of sequences
of shares. For i = 1, . . . , n we denote by 0i a default element in Si (i.e.
an element that any Turing machine can retrieve without any input). For
example, if Si is a group, 0i could be the zero of Si as a group.

Definition 4 (Secret Sharing Scheme). A t-private, n-player secret sharing
scheme over a message space M is a tuple (Share,Rec) of algorithms that run
as follows:

Share(s, r)→ (s1, . . . , sn): this algorithm takes as input a message s ∈ M and
randomness r ∈ R and outputs a sequence of shares (s1, . . . , sn) ∈ S.

Rec(s1, . . . , sn)→ s′: this algorithm takes as input an element (s1, . . . , sn) ∈ S
(not necessarily output by Share) and outputs a message s′ ∈M.

Moreover, the following properties hold:

Privacy: Any t out of n shares of a secret give no information on the secret
itself. More formally, for any random variable S over M and uniform R ∼
UR:

S = (S | Share(S,R)C1
= Share(s, r)C1

, . . . ,Share(S,R)Ct = Share(s, r)Ct)

Perfect Correctness: Reconstructing a sequence of shares generated by the
sharing procedure leads to the original secret, even given n− t− 1 erasures.
More formally, for any I ⊆ {1, . . . , n} with |I| = t+ 1 let ∆(I) ∈ {⊥, 1}n be
the characteristic vector of I (i.e. for i ∈ I, ∆(I)i = 1; for i /∈ I, ∆(I)i =⊥,
where ⊥ is a special symbol such that ⊥ ·si =⊥ for any share si ∈ Si). Then,
for any s ∈M, r ← UR:

Pr[Rec(Share(s, r) ∗∆(I)) = s] = 1,

where ∗ denotes the coordinate-wise product.

Remark 1. Jumping ahead, when defining (t, δ)-robust secret sharing, we relax
perfect correctness to statistical correctness – i.e. correctness holds with proba-
bility 1− δ instead of 1.



Definition 5 (Merging Function). Let s ∈M, r ∈ R and let I ⊆ {1, . . . , n}.
For i ∈ I, let vi ∈ Si. We define the merging function of s, r with I, (vi)i∈I as

Merge(s, r, I, (vi)i∈I) = S ∈ S

where for i ∈ I Si = vi, and for i /∈ I Si = Share(s, r)i.

Definition 6 (Adversary). For any t-private, n-player secret sharing scheme
(Share,Rec), we define the experiment Exp(Share,Rec)(D,Adv), where D is a distri-
bution over M, and Adv is an interactive Turing machine, called the adversary.

Exp(Share,Rec)(D,Adv) is defined as follows:

E.1. Send the public description (Share,Rec) of the scheme and the distribu-
tion D to Adv.

E.2. Adv computes and outputs I = {i1, . . . , it} ⊆ {1, . . . , n}, i.e. a subset of
players whose size is less or equal to t.

E.3. Sample s ← D, and r ← UR, compute Share(s, r) and send Share(s, r)I
to Adv.

E.4. Adv outputs (vi)i∈I , where vi ← Vi and

Vi = Vi(Share,Rec,D,Share(s, r)i1 , . . . ,Share(s, r)it)

is a random variable that may depend on the public information of the
scheme, and the ensemble of shares indexed by I.

E.5. Return 1 if and only if Rec(Merge(s, r, I, (vi)i∈I)) 6= s.

For v ≤ t, we say that an adversary is v-local if for all i ∈ I,

Vi = Vi(Share,Rec,D,Share(s, r)i1 , . . . ,Share(s, r)iv ),

i.e. Vi is a random variable that depends only on the public information of the
scheme, and at most v elements of the ensemble of shares indexed by I.

Definition 7 (Robust Secret Sharing Scheme). A t-private n-player se-
cret sharing scheme (Share,Rec) over a message space M is (t, δ)-robust if the
following property holds:

Robustness: With probability less or equal to δ the reconstruction procedure
fails at outputing the correct shared value, even if t out of the n shares are
corrupt by adversary. Formally, for any distribution D, for any adversary
Adv:

Pr[Exp(Share,Rec)(D,Adv) = 1] ≤ δ

We say that a scheme is (t, δ)-robust agaist v-local adversaries if robustness
holds for any v-local adversary.



3 Lower Bound

We prove a lower bound for the share size of any secret sharing scheme that is
robust against 0-local adversaries, which implies that this lower bound applies
to any secret sharing scheme that is robust against v-local adversaries for any
v ≥ 0.

Theorem 1. Let k,m, t be integers. Let δ = 2−k, n = 2 · t + 1, M be a set
with 2m−1 ≤ |M| ≤ 2m. Let (Share,Rec) be an n-player secret sharing scheme
over M. If (Share,Rec) is (t, δ)-robust, then the minimum bit-length of any of
its shares is at least m+ k − (2 + log2(3)).

3.1 Intuition for the Proof of Theorem 1

Here, we give a high level overview of our proof. Let Pt+1 be a player associated
with a share with the shortest size λ.

An Adversary We relate the value λ to the security parameter k by analyzing
the success probability of a (local) adversary that does the following:

1. “decide” whether to corrupt I = {P1, . . . , Pt} or J = {Pt+2, . . . , Pn}. An
intuition about how this decision is made is given in the following.

2. sample a uniform message x and randomness rx and compute Share(x, rx)
3. output Share(x, rx)i as the corrupt share of Pi, for all i in the set of corrupt

players.

The decision made by the adversary in step 1 can be thought of simulating each
choice (either corrupt I or J) and picking the one that leads to higher success
probability. Studying this success probability is a bit tricky. A sufficient way to
describe it is by analyzing the probability that:

– the t+ 1st share is compatible with the corrupt shares and
– the reconstruction doesn’t output the correct secret (this latter property

alone would suffice, but it is easier to understand it in the presence of the
former one)

Intuitively, in order to directly understand the above two properties, one has
to understand the distribution induced by the sharing procedure on the shares,
which may be cumbersome. It would be helpful to relate the success of the
adversary solely on the distribution of secrets and randomness – the uniform
distribution.

A Graph – Definition We achieve this feature by relating the above two
properties to a graph, constructed as follows: it is a 4-layered graph, where each
vertex in a layer is a pair (s, r) for all possible messages s and randomness r.
Edges are created according to the following rule:



(s, r) (sI , rI) (sJ , rJ) (s′, r′)

Edge if: Share(s, r)I = Share(sI , rI )I Share(sI , rI )t+1 = Share(sJ , rJ )t+1 Share(sJ , rJ )J = Share(s′, r′)J

A Graph – Properties In order to make his decision, the adversary labels the
edges between the second and third layer as follows:

(s, r) (sI , rI) (sJ , rJ) (s′, r′)

I if: Rec(sI1, . . . , s
I
t , s

I
t+1 = sJt+1, s

J
t+2, . . . , s

J
n) 6= sJ

J if: Rec(sI1, . . . , s
I
t , s

I
t+1 = sJt+1, s

J
t+2, . . . , s

J
n) 6= sI

The decision he makes in step 1, is merely counting how many edges have a
specific label:

Decide to corrupt I if |I-edges| ≥ |J-edges| (corrupt J otherwise)

Adversarial Success in the Graph Without loss of generality, assume that
the adversary chose to corrupt I. Then, the robustness experiment is equivalent
to the following:

– choose a vertex (sJ , rJ) uniformly from the third layer of the graph
– choose a vertex (s, r) uniformly from the first layer of the graph

It turns out that the success probability of the adversary is equivalent to the
probability that (s, r) and (sJ , rJ) are connected (this implies that the t + 1st
share is compatible with the corrupt shares), and there exists an I-edge in the
connecting path (this implies that the reconstruction fails). In other words,

2−k ≥ Pr[Exp(Share,Rec)(U ,Adv) = 1]

= Pr (s,r,sJ ,rJ )[∃(sI , rI) | (s, r)—(sI , rI)
I

—(sJ , rJ)]



Refining, Analyzing Connectivity, and Concluding Now, we can start an
analysis of the above property which relates the security parameter to the size
of the shortest share. Firstly, we define a subgraph with the specific connectivity
property that the number of vertices at layer one connected by a path to a
specific vertex at layer three is at least 2m times the number of vertices at layer
two connected to the same vertex at layer three. In other words,

|{(s, r) | ∃(sI , rI) : (s, r)—(sI , rI)—(sJ , rJ)| ≥ 2m·|(sI , rI) | (s, r)—(sI , rI)—(sJ , rJ)|

Somewhat surprisingly, this can be done by removing only a relatively small
number (2 · 2−k fraction) of vertices to the second layer of the graph: among
others, we remove all those vertices (s, r) such that Rec(Share(s, r)) 6= s (there
is most a 2−k fraction of them, by statistical correctness), and then use perfect
correctness and privacy on the induced graph to obtain the above.

We now use the graph properties to manipulate the resulting probability:
the property of the refined graph allows us to essentially “move” the probability
mass at the first layer of the subgraph to the second layer, with a gain of a 2m

factor:

Pr (s,r,sJ ,rJ )[∃(sI , rI) | (s, r)—(sI , rI)
I

—(sJ , rJ)] ≈ 2m·Pr (sI ,rI ,sJ ,rJ )[(s
I , rI)

I
—(sJ , rJ)]

(we write ≈ here instead of = to take into account of the small number of vertices
removed in the construction of the subgraph.) Then, we can remove the labeling
condition by noticing that the adversary chose the more successful among I and
J , which means that at least a 1/2 fraction of the labeled edges are I-edges:

2m · Pr (sI ,rI ,sJ ,rJ )[(s
I , rI)

I
—(sJ , rJ)] ≥ 2m−1 · Pr (sI ,rI ,sJ ,rJ )[(s

I , rI)—(sJ , rJ)]

The rest of the proof is an algebraic manipulation of the resulting probabil-
ity which leads to the correct result by using standard probability tools, such
as independence of random variables, union bounds, and the Cauchy-Schwarz
inequality.

3.2 Proof of Theorem 1

Proof. We first note that it suffices to prove a lower bound of m+k−(1+log2(3))
for |M| = 2m, since a lower bound for the share size required to share a secret
from a space of size 2m−1 certainly applies to sharing a secret from larger a
space of size |M| ≥ 2m−1. Throughout the proof, we will therefore assume that
|M| = 2m.

Our proof will rely solely on very simple local adversary strategies. Namely,
we will need to consider only two possible adversary strategies: one that replaces
some subset of t shares with default values of (say) all zeros, and another that
replaces them with shares generated with fresh randomness for a fresh (uniform)
secret. These strategies are both 0-local because the adversary submits shares
that are distributed independently of all the shares that the corrupted players
receive. The key idea will be that if one share is very short, then it becomes



more likely that the adversary submitting t freshly distributed shares will cause
a “collision”, meaning that the corrupted shares are consistent with the honestly
generated short share. This will make it difficult for the reconstruction algorithm
to tell which is the honestly shared secret. We also consider the adversary who
submits default values for technical reasons within the argument, in order to
prove that there are not too many honest sharings for differing secrets that agree
in some set of at least t + 1 shares. If these were too common, the adversary
submitting default values for the complement set would succeed in confusing the
reconstruction algorithm with sufficient probability.

To carefully study the probability space of pairs (s, r) where s is a uni-
formly random secret and r is a random bit string used in the share generating
procedure, we define a layered graph whose vertices at each layer correspond
to these pairs (s, r), and edges between the layers represent agreeing shares for
specified subsets of players. Essentially, our graph models various kinds of equiv-
alence classes of values (s, r) corresponding to partial agreements of the resulting
shares. To execute our proof, we will identify paths in our graph corresponding
to the events of adversary success, and we will then lower bound the number of
such edges and hence the success probability of the adversary.

A Graph. (For an intuitive description, see Section 3.1.) Let P ∈ {1, . . . , n} be
the index of a player, let I ⊂ {1, . . . , n} \ {P} be a set of cardinality |I| = t,
and let J = {1, . . . , n} \ ({P} ∪ I) be the set of size t corresponding to the
players that are not in I and are not P . Let G = G(P, I) be a graph defined
as:

– Vertices(G) = {1, . . . , 4} × M × R, i.e. the vertex set consists of four
layers of message and random value tuples.

– ((i, s, r), (i+ 1, s′, r′)) ∈ Edges(G) if:

• i = 1, and Share(s, r)I = Share(s′, r′)I : i.e. a vertex at layer one is
connected to a vertex at layer two if the tuples of shares they define
agree on the shares at I.

• i = 2, s 6= s′, and Share(s, r)P = Share(s′, r′)P : i.e. a vertex at layer
two is connected to a vertex at layer three if the vertices represent
different secrets, and the tuples of shares they define agree on the
share at P .

• i = 3, and Share(s, r)J = Share(s′, r′)J : i.e. a vertex at layer three is
connected to a vertex at layer four if the tuples of shares they define
agree on the shares at J .

Path Sets, Labeling, Balance. (For an intuitive description, see Section 3.1.)
We want to construct a labeling system for paths from layer one to layer
four, that will be useful to analyze certain reconstruction properties of the
secret sharing scheme associated with the graph. Firstly, however, we need
to construct a function that maps paths containing edges from layer two
to layer three to sequences of shares. For 1 ≤ i < j ≤ 4, let Ei,j be the
set of paths succesively connecting vertices at layer i to vertices at layer j;



formally,

Ei,j := {((i, si, ri), (i+ 1, si+1, ri+1), . . . , (j, sj , rj)) |
for i ≤ k < j : ((k, sk, rk), (k + 1, sk+1, rk+1)) ∈ Edges(G(P, I))}.

We also define another set, E , containing all paths with an edge between
layer two and three; formally,

E =
⋃

i∈{1,2},j∈{3,4}

Ei,j .

Now, we construct a string function S that assigns sequences of shares to
paths in E . Formally, for ` ∈ E , ` = (. . . , (2, s2, r2), (3, s3, r3), . . . ), define
S(`) as the sequence of shares with the following properties:
– S(`)I := Share(s2, r2)I ,
– S(`)P := Share(s2, r2)P = Share(s3, r3)P ,
– S(`)J := Share(s3, r3)J .

Notice that the function S depends only on the edges between layer two and
three, so any two paths in E sharing the same edge from layer two and three
have the same image.
Now, for i ∈ {1, 2}, j ∈ {3, 4}, we define a labeling relation L as follows:

L : E // {I, J}

` � //
{
I, if Rec(S(`)) 6= s3,
J, if Rec(S(`)) 6= s2

Analogously to S, L depends only on the edges between layer two and three
of a path. Also notice that L is not necessarily a function, as we do not
exclude the existence of paths ` = (. . . , (2, s2, r2), (3, s3, r3), . . . ) with s2 6=
Rec(S(`)) 6= s3. Such paths would be labeled as both I and J .
Finally, we say that the graph G is I-oriented if there are at least as many
edges in E2,3 labeled by I than J , i.e. if |{` ∈ E2,3 | L(`) = I}| ≥ |{` ∈ E2,3 |
L(`) = J}|.
Now that we introduced all the required tools and definitions, we are ready
to begin our analysis.

Setup. Let λ be the minimal bit-length of any share of (Share,Rec). With-
out loss of generality, assume that P is a player associated with a share of
(Share,Rec) of length λ.

Construction of an Adversary. (For an intuitive description, see Section 3.1.)
Let AdvA be the adversary who behaves as follows (during an execution of
Exp(Share,Rec)(D,AdvA)):
1. Given the public information (Share,Rec), D in step E.1, sample x ←
UM, rx ← UR.

2. Compute (v1, . . . , vn)← Share(x, rx).
3. Sample a uniform set I ⊂ {1, . . . , n} \ {P} with |I| = t.
4. Construct G(P, I).



5. If G(P, I) is I-oriented, output I at step E.2, and (vi)i∈I at step E.4.
Else, output J at step E.2, and (vj)j∈J at step E.4.

Notice that AdvA is a valid 0-local adversary, since all the computation AdvA
performs is independent of the values it is inputed at step E.3.

Representing Adversarial Success in the Graph. (For an intuitive descrip-
tion, see Section 3.1.) Assume that, if I is the set chosen by the adversary,
the graph G(P, I), induced by the given secret sharing scheme, is I-oriented.
Let z ∈ M, rz ← UR, let C be a sequence of shares defined as: for i ∈ I,
Ci = Vi = Share(x, rx)i; for j ∈ J ∪ {P}, Cj = Share(z, rz)j . Notice that
C can be seen as a sharing of z corrupted at I by the above adversary,
therefore, by the robustness property:

Pr[Rec(C) 6= z] ≤ δ = 2−k, (1)

where the probability is taken over uniform choices of x, z ∈M, rx, rz ∈ R.
Notice that if there exists (y, ry) such that ` := ((1, x, rx), (2, y, ry), (3, z, rz)) ∈
E1,3 and V (`) = I then Rec(C) 6= z: in fact, if ` ∈ E1,3, then V (`) = I implies
Rec(S(`)) 6= z, by definition of V ; and since S(`) = C (by the following:
S(`)I = Share(y, ry)I = Share(x, rx)I = CI , S(`)J = Share(z, rz)J = CJ
and S(`)P = Share(y, ry)P = Share(z, rz)P = CP ) then V (`) = I implies
Rec(C) 6= z. This means that

Pr[∃(y, ry), ` := ((1, x, rx), (2, y, ry), (3, z, rz)) ∈ E1,3, V (`) = I] ≤ Pr[Rec(C) 6= z],
(2)

which implies

Pr[∃(y, ry), ` := ((1, x, rx), (2, y, ry), (3, z, rz)) ∈ E1,3, V (`) = I] ≤ 2−k, (3)

by combining equation 1 and 2.
A More Refined Graph. (For an intuitive description, see Section 3.1.) In

order to better analyze the left-hand side of equation 3, we introduce a
subgraph G′(P, I) of G(P, I), defined by the following algorithm:
1. Initialize G′ ← G(P, I)
2. For a = (ai1 , . . . , ait+1

) ∈ SI∪{P}:
(a) Define Ha := {(2, s, r) ∈ Vertices(G) | Share(s, r)I∪{P} = a}
(b) Initialize H ′a := Ha

(c) While there exist (2, s, r), (2, s′, r′) ∈ H ′a such that s 6= s′:
i. Update the graph G′ by removing (2, s, r) and (2, s′, r′):

– Edges(G′)← Edges(G′)|Vertices(G′)\{(2,s,r),(2,s′,r′)}
– Vertices(G′)← Vertices(G′) \ {(2, s, r), (2, s′, r′)}

ii. Update H ′a ← {(2, s, r) ∈ Vertices(G′) | Share(s, r)I∪{P} = a}
3. Output G′(P, I)← G′.

Notice that the vertices we are removing in this graph might exist, because
we are allowing schemes where correctness is only statistical. In the following,
we bound the number VR = |Vertices(G(P, I))\Vertices(G′(P, I))| of vertices
removed from G(P, I) by the above algorithm to obtain G′(P, I). To do so,
we relate VR to Pr[Exp(Share,Rec)(UM,AdvB) = 1] where AdvB is a specific
adversary, defined as follows:



1. Let b = (0j1 , . . . , 0jt) ∈ SJ
2. Output J at step E.2, b at step E.4.

Notice that AdvB is a valid 0-local adversary, as b depends only on the public
specifications (Share,Rec) of the scheme (and therefore it is independent of
any value inputed to B at step E.3). Let

GB := {(s, r) ∈M×R | Rec(Merge(s, r, J, b)) 6= s}

Notice that if any element (s, r) ofGB is sampled at step E.3 of Exp(Share,Rec)(UM,AdvB),
then Exp(Share,Rec)(UM,AdvB) outputs 1, by definition of GB . Notice also
that the probability of sampling (s, r) in GB at step E.3 is |GB |/|M × R|,
as the experiment considers uniform messages (and randomness). Therefore,
by the robustness of the scheme,

|GB |/|M×R| ≤ 2−k (4)

Now, we want to relate GB and VR. Notice that any two vertices (2, s, r),
(2, s′, r′), simultaneously removed in step 2(c)i, belong to the same set Ha

for some a, which implies that

Share(s, r)I∪{P} = a = Share(s′, r′)I∪{P}, (5)

by definition of Ha. Combining equation 5 with the fact that {1, . . . , n}\J =
I ∪ {P}, it follows that Merge(s, r, J, b) = S = Merge(s′, r′, J, b). Now, let
s′′ ← Rec(S). Since s 6= s′ then at least one between s and s′ differs from
s′′, which means that at least one between (s, r) and (s′, r′) lies in GB .
Therefore,

VR ≤ 2 · |GB | (6)

In other words, at least half of the vertices (2, s, r) removed in the construc-
tion of G′ are such that to (s, r) ∈ GB . Combining equation 6 with equation
4, we get

VR ≤ 2 · 2−k · |M×R| (7)

General Facts about the Connectivity between Layers. (For an intuitive
description, see Section 3.1.) Now that we have a bound on the number of ver-
tices removed from G(P, I) to obtain G′(P, I) we can proceed and study how
some specific sets of vertices are connected between the layers of G′(P, I).
We are mostly interested in vertices on layer one and two. For any vertex
(2, s, r) ∈ Vertices(G′(P, I)), and for any secret s′ ∈M, define

Cs′(2, s, r) := {(1, s′, r′) | ((1, s′, r′), (2, s, r)) ∈ Edges(G′(P, I))}

i.e. the set of vertices at layer one that represent secret s′ and are connected
to (2, s, r). Notice that the set {Cs′(2, s, r)}s′∈M is a partition of the set of
vertices at layer one connected to (2, s, r). We want to show that for any
s′, s′′, |Cs′(2, s, r)| = |Cs′′(2, s, r)|. For the sake of contradiction, assume this



is not the case, so without loss of generality there exist s′ 6= s′′ such that
|Cs′(2, s, r)| > |Cs′′(2, s, r)|. By definition of G′(P, I), this means that

|{r′ ∈ R | Share(s′, r′)I = Share(s, r)I}| > |{r′′ ∈ R | Share(s′′, r′′)I = Share(s, r)I}|

which implies that

Pr[s′ | Share(s, r)I ] > Pr[s′′ | Share(s, r)I ]

and therefore violates the privacy of the scheme, as Share(s, r)I would reveal
that the secret is more likely to be s′ than s′′, but by privacy given any t
shares the secret should look uniform. Therefore,

for any s′, s′′ ∈M, (2, s, r) ∈ G′(P, I): |Cs′(2, s, r)| = |Cs′′(2, s, r)| (8)

This implies that any (2, s, r) ∈ G′(P, I) is connected to 2n · |Cs(2, s, r)|
vertices at layer one (2n · |Cs(2, s, r)| = | ∪s′∈S Cs′(2, s, r)|, by the fact that
{Cs′(2, s, r)}s′∈M is a partition).

Particular Facts about the Connectivity between Layers. (For an intu-
itive description, see Section 3.1.) Now, with a notation similar to the one
in the construction of G′(P, I), for a ∈ SI∪{P}, let

H ′a := {(2, s, r) ∈ Vertices(G′(P, I)) | Share(s, r)I∪{P} = a}

Moreover, let

C ′a := {(1, s, r) ∈ Vertices(G′(P, I)) | ∃(2, s′, r′) ∈ H ′a : ((1, s, r), (2, s′, r′)) ∈ Edges(G′(P, I))}

i.e. the set of vertices at layer one that are connected to H ′a. Notice that all
vertices in H ′a represent the same secret: namely, if (2, s, r), (2, s′, r′) ∈ H ′a,
then s = s′, by construction of G′(P, I). Also, for any (2, s, r) ∈ H ′a, if
(2, s, r′) ∈ H ′a, then ((1, s, r′), (2, s, r)) ∈ Edges(G′(P, I)), again by construc-
tion of H ′a, and in particular from the fact that Share(s, r)I = Share(s, r′)I .
This implies that for any (2, s, r) ∈ H ′a, |Cs(2, s, r)| ≥ |H ′a|. Using property
8, we get that any (2, s, r) ∈ H ′a is connected to a set X of vertices at layer
one of cardinality at least 2m · |H ′a|. Since |C ′a| ≥ |X| (as C ′a ⊇ X), we get
Therefore,

|C ′a| ≥ 2m · |H ′a| (9)

Putting things together. (For an intuitive description, see Section 3.1.) We
can now proceed and bound the left-hand side of equation 3 in terms of the
size of SP . The following calculation starts with a probability space where
(x, rx) and (z, rz) are independently and uniformly sampled form M×R.



We begin with some simple consequences of our definitions:

2−k ≥ Pr[∃(y, ry), ` := ((1, x, rx), (2, y, ry), (3, z, rz)) ∈ E1,3, V (`) = I]

=
∑

a∈SI∪{P}

Pr

[
∃(y, ry), y 6= z,Share(x, rx)I = aI ,Share(y, ry)I = aI ,
Share(y, ry)P = aP ,Share(z, rz)P = aP , V (`) = I

]
(definition of E1,3)

=
∑

a∈SI∪{P}

Pr

[
Share(x, rx)I = aI ,∃(2, y, ry) ∈ Vertices(G′(P, I)), y 6= z,

Share(y, ry)I∪{P} = a,Share(z, rz)P = aP , V (`) = I

]
(Vertices(G′(P, I)) ⊆ Vertices(G(P, I)))

Next we recall that the label of the ` can be determined without reference
to (x, rx). We will write `2,3 as the edge connecting (2, y, ry) and (3, z, rz),
and we note that V (`) = V (`2,3). We note that the condition on x can now
be written independently:

=
∑

a∈SI∪{P}

Pr[(1, x, rx) ∈ C ′a] · Pr

 ∃(2, y, ry) ∈ Vertices(G′(P, I)),
y 6= z,Share(y, ry)I∪{P} = a,

Share(z, rz)P = aP , V (`2,3) = I


(definition of C ′a)

=
∑

a∈SI∪{P}

|C ′a|
|M×R|

· Pr

 ∃(2, y, ry) ∈ Vertices(G′(P, I)),
y 6= z,Share(y, ry)I∪{P} = a,

Share(z, rz)P = aP , V (`2,3) = I


(unif. of (x, rx) ∈M×R)

=
∑

a∈SI∪{P}

2m · |H ′a|
|M×R|

· Pr

 ∃(2, y, ry) ∈ Vertices(G′(P, I)),
y 6= z,Share(y, ry)I∪{P} = a,

Share(z, rz)P = aP , V (`2,3) = I

 (equation 9)

Now in order to express this in a more convenient form and then replace the
existence condition on y with something easier to manipulate, we introduce
a fresh random variable (Y, rY ) sampled independently and uniformly from
M×R:

= 2m ·
∑

a∈SI∪{P}

Pr[(2, Y, rY ) ∈ H ′a] · Pr

 ∃(2, y, ry) ∈ Vertices(G′(P, I)),
y 6= z,Share(y, ry)I∪{P} = a,

Share(z, rz)P = aP , V (`2,3) = I


(unif. of (Y, rY ) ∈M×R)

≥ 2m ·
∑

a∈SI∪{P}

Pr

[
(2, Y, rY ) ∈ H ′a, Y 6= z,

(2, Y, rY ) /∈ VR,Share(z, rz)P = aP , V (`2,3) = I

]

In this last expression, `2,3 now denotes the edge between (2, Y, rY ) and
(3, z, rz). Our labeling condition now applied to an edge between two uni-
formly sampled vertices at layer 2 and layer 3, hence we can directly apply



our knowledge that the graph is I-oriented to conclude:

≥ 2m

2
·
∑

a∈SI∪{P}

Pr

[
(2, Y, rY ) ∈ H ′a, Y 6= z,

(2, Y, rY ) /∈ VR,Share(z, rz)P = aP

]

We next observe that the events Y 6= z and Share(z, rz)P = aP are indepen-
dent, by privacy. This allows us to proceed as:

≥ (1− 2−m) · 2m

2
·
∑

a∈SI∪{P}

Pr

[
(2, Y, rY ) ∈ H ′a,
(2, Y, rY ) /∈ VR

]
· Pr[Share(z, rz)P = aP ]

(independence)

= (1− 2−m) · 2m

2
·
∑

a∈SI∪{P}

Pr

 Share(Y, rY )I = aI ,
Share(Y, rY )P = aP ,

(2, Y, rY ) /∈ VR

 · Pr[Share(z, rz)P = aP ]

(definition of H ′a)

We will next apply a union bound to remove the condition (2, Y, rY ) /∈ VR,
and then use our prior bound on the size of VR:

≥ − |VR|
|M×R|

+ (1− 2−m) · 2m

2
·

·
∑

a∈SI∪{P}

Pr

[
Share(Y, rY )I = aI ,
Share(Y, rY )P = aP

]
· Pr[Share(z, rz)P = aP ]

(union bound)

≥ −2−k+1 +
2m

2
·

·
∑

a∈SI∪{P}

Pr

[
Share(Y, rY )I = aI ,
Share(Y, rY )P = aP

]
· Pr[Share(z, rz)P = aP ]

(equation 7)

Next we reorganize our sum by looking at each aP value and summing over
all the values of aI :

= −2−k+1 +
2m

2
·
∑
a∈SP

Pr[Share(Y, rY )P = aP ] · Pr[Share(z, rz)P = aP ]

The remainder of the calculation is an application of the Cauchy-Schwarz
inequality after exploiting the fact that (Y, rY ) and (z, rz) are identically



distributed and now subject to the same condition:

= −2−k+1 +
2m

2
·
∑
a∈SP

Pr[Share(Y, rY )P = aP ]2

(identical random variables)

= −2−k+1 +
2m

2
· 1

|SP |
·
∑
a∈SP

Pr[Share(Y, rY )P = aP ]2
∑
a∈SP

12

≥ −2−k+1 +
2m

2
· 1

|SP |
·

 ∑
a∈S{P}

Pr[Share(Y, rY )P = aP ] · 1

2

(Cauchy-Schwarz inequality)

= −2−k+1 +
2m

2
· 1

2λ
(definition of λ)

= 2m−λ−1 − 2−k+1

Therefore, we must have

2m−λ−1 − 2−k+1 ≤ 2−k,

which implies that
λ ≥ m+ k − (1 + log2(3)).

4 An Efficient Scheme

The main idea behind our efficient scheme is similar to many other robust secret
sharing schemes in the standard model: in order to achieve robustness we use
Shamir’s secret sharing scheme and expand each share with some authentication
data so that any adversary who submits a corrupt share cannot provide authen-
tication data that matches it. Differently from previous work, however, we have
more freedom in what authentication data we can add, since each corrupt share
depends only on a single share sent by the dealer, instead of depending on all
the shares assigned to the adversary. We use this property and embed the same
MAC key into each share and add a tag to the share in such a way that the key
is not recoverable by individual corrupt players, while it is recoverable by the
reconstructor, who will then check the authenticity of each share.

More precisely, we will use our locally hiding transform developed in Ap-
pendixA to distribute a MAC key among the parties so that it cannot be learned
by a local adversary but can be reliably extracted from a number of honest shares.
Recovery of the key and authentication in the reconstruction procedure will be
performed by iterating over constant subsets of shares, extracting a candidate
key value, and then attempting to authenticate at least t + 1 shares. Since the
local adversary cannot learn the real MAC key (during the execution of the pro-
tocol), we will prove that is it unlikely that a corrupted share will authenticate
properly under the correct key. Similarly, we will prove it is unlikely for an in-
correct candidate key to authenticate at least t+ 1 shares. The error-correcting



code in our locally hiding transform will ensure that when we attempt to extract
a key from a subset of honest shares, we produce the correct key with very high
probability. Putting this all together, we can argue that the correct key will be
recovered and the correct secret will be reconstructed.

Remark 2. After the completion of this work, Daniel Wichs discovered a simpli-
fication of our construction, achieving similar parameters. Intuitively, to share a
message s, the dealer does the following:

1. create Shamir secret shares si of s using a polynomial of degree t

2. choose a one-time MAC key z and compute a tag ti ← MAC(z, si) on si via
z

3. create Shamir secret shares zi of z using a polynomial of degree 1

4. send (si, ti, zi) to Pi.

The reconstruction procedure recovers the correct key z from the zi (this can
be done via Reed-Solomon decoding and is correct against t corruption), checks
it against each tag ti and recovers the secret s from the shares si for which the
check passes.

The key is unknown to the adversaries during the protocol, because they
are local and the key is secret shared via a 1-private secret sharing. This means
that the adversaries have no chance to forge their MACs during the protocol.
Therefore, they cannot change their shares and make the test on the tags pass
at the same time. Notice that after the protocol the adversaries can collude
and reconstruct the key z, but at this point it is of no use for them, since the
reconstructor already retrieved the correct secret s.

We feel that both constructions are of independent interest.

4.1 Construction

In the following, we use the MAC defined in Appendix B and the locally hiding
transform defined in AppendixA. We let g denote the tag length of our MAC (the
bit-length of its keys is then h = 2 · g), and we define an additional parameter
d := m/g, where m is the bit-length of messages. The security parameter for the
MAC is ε = d · 2−g.

We give an explicit construction of our secret sharing scheme in Figure 1 and
2.

Theorem 2. For n = 2 · t+ 1, the scheme (Share,Rec) given in Figure 1 and 2
is (t, δ)-robust against 1-local adversaries, where

δ = 2 · (t+ 1) · t/|M|+
(
n

α

)
· (4 · d · ε+ 5/|M|) + e−

cβ2

3·2α−1

The proof of Theorem 2 can be found in the full version of this work [19].



The procedure Share:

Local computation: In the notation of Shamir secret sharing scheme, for i =
1, . . . , n let xi be the evaluation point associated with Pi. On input s ∈M, the
dealer does the following:
1. Choose a uniform polynomial f ∈ M[X] of degree t such that f(0) = s.

Compute Shamir shares s1 = f(x1), . . . , sn = f(xn).
2. Choose a uniform MAC key z = (a, b) ∈ K.

3. Define M ∈ (F2)n×c as M = Ĉ(z). (See Appendix A.3 for the definition of

Ĉ)
4. For i = 1, . . . , t, define ti = MAC(z, si).

Share Distribution: For i = 1, . . . , n, the dealer sends (Mi, si, ti) to Pi.

Fig. 1. The sharing procedure Share.

The procedure Rec:

Communication: Every player Pi sends (Mi, si, ti) to the reconstructor.
Default Check: For y ∈ {s1, . . . , sn} define Iy as Iy = {i ∈ {1, . . . , n} | si = y}.

Then:
D1. If there exists y such that |Iy| > t, abort.
D2. If there exists y such that |Iy| = t, define G = {1, . . . , n} \ Iy, use Shamir

reconstruction on (si)i∈G to obtain s and finish.
D3. Else, proceed with the local computation.

Local computation: The reconstructor does the following, for each set R ⊆
{1, . . . , n} with |R| = α:

L1. Evaluate D̂R(MR) to obtain z = (a, b). (See Appendix A.3 for the definition

of D̂)
L2. Define GR = {i ∈ {1, . . . , n} | ti = MAC(z, si)}.
L3. If |GR| ≥ t + 1, use Shamir reconstruction on (si)i∈GR to obtain s and

finish.

Fig. 2. The reconstruction procedure Rec.

Corollary 1. Given an error-correcting code C with block length c = Θ(g) and
constant relative distance γ and m = Ω(g), there exists positive constants σ1, σ2
such that our construction in Figure 1 and 2 is δ-robust for δ ≤ 2−k and share
size is

m+ c+ g = m+ c+ k · σ−11 + σ2 · σ−11 · (log(n) + log(d)) = m+O(k).

The proof of Corollary 1 can be found in the full version of this work [19].

Remark 3. Note that the restriction that m = Ω(g) can be removed, if one
simply shares the shorter secrets in M with Shamir shares over a field of bit
length g. In this case, the share size becomes g + c+ g = m+ c+ O(g) instead
of precisely m+ c+ g.
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A New Tools for Scheme Construction

In this section,we develop some general tools that will be used in our efficient
scheme construction. First, we will define a simple “locally hiding function” that
generates two distributions D0 and D1. While any single bit of the output is
distributed identically in D0 and D1, the joint distribution of a relatively small
number of bits is sufficient to distinguish D0 from D1 with high probability.

A.1 Locally Hiding Function

Definition 8 (Locally Hiding Function). Let D0 = UFn2 be the uniform
distribution over Fn2 , and let D1 = UX be the uniform distribution over X =



{0n, 1n} ⊆ Fn2 . The n-locally hiding function is a randomized function η : F2 →
Fn2 defined as:

η : F2
// Fn2

v � // Dv.

Lemma 2 (Properties). The n-locally hiding function has the following prop-
erties:

Local Hiding: For any distribution D over F2, for any v ∈ F2, for any i ∈
{1, . . . , n}, and for any wi ∈ F2, if B ∼ D,

Pr[B = v] = Pr[B = v | η(B)i = wi].

Local Almost Invertibility: For any I ⊆ {1, . . . , n}, |I| = α, the function
ιI : Fα2 → F2

ιI : Fα2 // F2

u
� //

{
1 if u ∈ {0α, 1α}
0 otherwise

fails to invert η with probability less or equal to 2−α+1. More formally, for
any v ∈ F2,

Pr[ιI(η(v)I) 6= v] ≤ 2−α+1.

Proof. To prove local hiding, notice that for any i ∈ {1, . . . , n}

η(0)i =
(
UFn2

)
i

= UF2
=
(
U{0n,1n}

)
i

= η(1)i,

which means that for any distribution D and B ∼ D, η(B)i is a uniform bit,
independent of B. Therefore, for any v, wi ∈ F2, we have Pr[B = v] = Pr[B =
v | η(B)i = wi].

To prove local almost invertibility, simple manipulation leads to the result:

Pr[ιI(η(v)I) 6= v] = Pr[ιI(η(v)I) 6= v, v = 0] + Pr[ιI(η(v)I) 6= v, v = 1]

≤ Pr[ιI(η(0)I) = 1] + Pr[ιI(η(1)I) = 0]

≤ Pr[ιI((UFn2 )I) = 1] + Pr[ιI((U{0n,1n})I) = 0]

≤ Pr[S ∈ {0α, 1α} | S ∼ (UFn2 )I ] + Pr[S /∈ {0α, 1α} | S ∼ (U{0n,1n})I}]
≤ Pr[S ∈ {0α, 1α} | S ∼ UFα2 ] + Pr[S /∈ {0α, 1α} | S ∼ U{0α,1α}]
≤ 2 · 2−α = 2−α+1.

A.2 Extended Locally Hiding Function

Definition 9 (Extended Locally Hiding Function). Let η be the n-locally
hiding function. For any vector space Fc2, the extended n-locally hiding function
is the coordinate-wise extension of η, as follows:

ηc : Fc2 // Fn×c2

v = (v1, . . . , vc)
� // (η(v1), . . . , η(vc)).



Notice that the local hiding and invertibility properties are carried over as
follows:

Lemma 3 (Properties). The extended n-locally hiding function has the fol-
lowing properties:

Local Hiding: For any distribution D over Fc2, for any v ∈ Fc2, for any i ∈
{1, . . . , n}, and for any wi ∈ Fc2, if B ∼ D,

Pr[B = v] = Pr[B = v | ηc(B)i = wi].

Local Almost Invertibility: For any I ⊆ {1, . . . , n}, |I| = α, the function
ιcI : Fα×c2 → Fc2

ιcI : Fα×c2
// Fc2

u = (u1, . . . , uc)
T � // (ιI(u1), . . . , ιI(uc))

maps u = ηc(v) “close to” v. More formally, for any v ∈ Fc2, 0 < β ≤ 1:

Pr[w(v − ιcI(ηc(v)I)) ≥ (1 + β) · c2−α+1] ≤ e−
cβ2

3·2α−1 .

Proof. Similarly to the argument above, for all v ∈ Fc2, for all i ∈ {1, . . . , n}:

ηc(v)i = (η(v1), . . . , η(vc))i = (η(v1)i, . . . , η(vc)i) = (UF2
, . . . ,UF2

) = UcF2

which means that for any distribution D and B ∼ D, η(B)i is a uniform string
of length c, independent of B. Therefore, for any v, wi ∈ Fc2, we have Pr[B =
v] = Pr[B = v | η(B)i = wi].

To prove local almost invertibility, firstly for i = 1, . . . , c define the following
(Bernoulli) random variable:

xi :=

{
1 if vi − ιI(η(vi)I) 6= 0
0 otherwise

By the local almost invertibility property of the (standard) locally hiding func-
tion, we have

Pr[xi = 1] ≤ 2−α+1

and applying the Chernoff bound in Lemma 1 on the xi, for any 0 < β ≤
1− 2−α+1 we get

Pr

[
c∑
i=1

xi ≥ (1 + β) · c2−α+1

]
≤ e−

cβ2

3·2α−1 . (10)

To conclude, notice that

(v − ιcI(ηc(v)I))i = vi − ιcI(ηc(v)I)i = vi − ιI(η(vi)I)

therefore w(v− ιcI(ηc(v)I)) =
∑c
i=1 xi, by definition of xi and Hamming weight.

Combining this with equation 10, we get

Pr
[
w(v − ιcI(ηc(v)I)) ≥ (1 + β) · c2−α+1

]
≤ e−

cβ2

3·2α−1 .



A.3 Locally Hiding Transform

To use our locally hiding function inside an efficient robust secret sharing scheme,
we would like it to be more resilient to inversion errors when we invert using
a relatively small set of bits. This leads us to define the combined primitive of
a locally hiding transform, a concatenation of an error-correcting code and our
locally hiding function.

Definition 10 (Locally Hiding Transform). Let C : Fh2 → Fc2 be a block
(error-correcting) code over alphabet F2, with message length h, block length c
and relative distance γ. Its locally hiding transform is a randomized function
Ĉ : Fh2 → Fn×c2 , defined as Ĉ = ηc ◦ C:

Fh2

Ĉ

**
C // Fc2

ηc // Fn×c2

z = (z1, . . . , zh) � // C(z) = (v1, . . . , vc)
� // (η(v1), . . . , η(vc)).

Moreover, for any I ⊆ {1, . . . , n} with |I| = α, define D̂I = D ◦ ιI (where D is
the decoding function for C):

Fα×c2

D̂I

((ιcI // Fc2
D // Fh2

u = (u1, . . . , uc)
T � // (ιI(u1), . . . , ιI(uc)) = v � // D(v).

Notice that the local hiding property of ηc is trivially translated to Ĉ. For local
invertibility, if γ > 2 · (1 + β)2−α+1, then D̂ is locally inverts Ĉ with error

probability less or equal to e−
cβ2

3·2α−1 .

B A Suitable MAC for our Scheme

B.1 The MAC and some of its Algebraic Properties

Definition 11. In the following, we assume that h = 2 · g, m = d · g, and use
the following MAC, for M⊆ F2m

∼= (F2g )d (note that any set M can be thought
of as a subset of F2m , for large enough m), K = (F2g )2, and T = F2g :

MAC : (F2g )2 × (F2g )d // F2g

(a, b), (m1, . . . ,md)
� //

d∑
l=1

al ·ml + b.

It is well known that the MAC described in definition 11 is ε-secure for
ε = d · 2−g, [12,16,25].



Lemma 4. The MAC described in definition 11 has the following properties:

– For any m ∈ M and t ∈ T , there are at most 2g different keys z ∈ K such
that MAC(z,m) = t.

– For m0,m1 ∈ M, m0 6= m1, and t0, t1 ∈ T , there are at most d different
keys z ∈ K such that MAC(z,m0) = t0, MAC(z,m1) = t1.

Proof. For the first property, fix an arbitrary m ∈M and t ∈ T . Let define the
set Km,t := {z ∈ K | MAC(z,m) = t} of keys that produce t as a tag of m. We
want to study |Km,t|. Using definition 11, we have

Km,t =

{
(a, b) ∈ F2

2g |
d∑
l=1

al ·ml + b = t

}

This means that if (a, b) ∈ Km,t, then b = t−
∑d
l=1 a

l ·ml. Therefore,

Km,t =

{(
a, t−

d∑
l=1

al ·ml

)
∈ F2

2g

}

Since the function a 7→ (a, t−
∑d
l=1 a

l ·ml) is a bijection from F2g to Km,t (with
inverse (a, b) 7→ a), we have |Km,t| = |F2g | = 2g.

For the second property, let m0,m1 ∈M, m0 6= m1, and t0, t1 ∈ T . We want
to study the cardinality of the following set X

X := {z ∈ K | MAC(z,m0) = t0,MAC(z,m1) = t1}

Again, using definition 11,

X =

{
(a, b) ∈ F2

2g |
d∑
l=1

al ·m0,l + b = t0,

d∑
l=1

al ·m1,l + b = t1

}

We can rewrite the above set as follows:

X =

{(
a, t0 −

d∑
l=1

al ·m0,l

)
∈ F2

2g |
d∑
l=1

al · (m0,l −m1,l)− t0 + t1 = 0

}
(11)

Since m0 6= m1, the polynomial x 7→
∑d
l=1 x

l ·(m0,l−m1,l)− t0 + t1 is a non-zero
polynomial over F2g of degree at most d, which therefore has at most d roots.
Since a is one of those roots, a can take only d values. From this, and the fact
that for any (a, b) ∈ X a completely defines b (by equation 11), we get that there
are at most d pairs (a, b) ∈ X.

B.2 Behavior towards Local Adversaries

We now prove another important property of the above MAC that will be useful
for our construction of a robust secret sharing scheme. Intuitively, we want to



study the probability that an honest message/tag pair is authenticated by any
key that validates two distinct message/tag pairs, each of them chosen by a
local adversary after seeing an honest message/tag pair. We also require that
at least one between the two adversarially chosen pairs is not honest, otherwise
the success probability of the adversaries would be trivially 1. To formalize this
notion, we define the following game played between a challenger (who provides
the honest message/tag pairs to the adversaries) and two, unbounded but non-
communicating adversaries (whose target is to provide new message message/tag
pairs).

Game A:
1. The challenger samples uniform messages m0,m1 6= m2 ∈M.
2. The challenger samples a uniform key z ∈ K.
3. For i = 0, 1, 2, the challenger computes ti = MAC(z,mi).
4. For i = 1, 2, the challenger sends mi, ti to adversary i.
5. For i = 1, 2, adversary i generates m̃i, t̃i and sends them to the chal-

lenger.
6. The challenger checks and whether m̃2 6= m̃1 6= m1 and whether there

exists z̃ such that

t0 = MAC(z̃,m0), t̃1 = MAC(z̃, m̃1), t̃2 = MAC(z̃, m̃2).

If so, the challenger sets W = 1; otherwise, it sets W = 0.

Lemma 5. In the notation of Game A,

Pr[W = 1] ≤ 2 · d · ε.

Proof. In order to analyze Pr[W = 1], we define another game which is equiv-
alent to Game A – equivalent in the sense that the distribution of the random
variables that are involved remains the same. First, since in Game A the value
m0, t0 are never revealed to any adversary, they might as well be generated af-
ter the challenger receives m̃1, t̃1 from adversary 1 and m̃2, t̃2 from adversary 2.
Therefore, Game A is equivalent to the following game

Game A1:
1. The challenger samples uniform messages m1 6= m2 ∈M.
2. The challenger samples a uniform key z ∈ K.
3. For i = 1, 2, the challenger computes ti = MAC(z,mi).
4. For i = 1, 2, the challenger sends mi, ti to adversary i.
5. For i = 1, 2, adversary i generates m̃i, t̃i and sends them to the chal-

lenger.
6. The challenger samples a uniformm0 ∈M and computes t0 = MAC(z,m0).
7. The challenger checks whether m̃2 6= m̃1 6= m1 and whether ther exists
z̃ such that

t0 = MAC(z̃,m0), t̃1 = MAC(z̃, m̃1), t̃2 = MAC(z̃, m̃2).

If so, the challenger sets W = 1; otherwise, it sets W = 0.



We are ready to analyze Pr[W = 1] in Game A1. First, define Z̃ ⊆ K as the set
of keys compatible with m̃1, t̃1 and m̃2, t̃2, i.e.

Z̃ = {z̃ ∈ K | t̃1 = MAC(z̃, m̃1), t̃2 = MAC(z̃, m̃2)}.

We can rewrite Pr[W = 1] as follows:

Pr[W = 1] = Pr (z,m0)[m̃2 6= m̃1 6= m1,∃z̃ ∈ Z̃ : t0 = MAC(z̃,m0)]

≤
∑
z̃∈Z̃

Pr (z,m0)[m̃2 6= m̃1 6= m1, t0 = MAC(z̃,m0)]. (12)

Making the requirement t0 = MAC(z̃,m0) explicit, we obtain:

t0 =

d∑
l=1

ãl ·m0,l + b̃. (13)

Now, remember that m0 is uniform, and t0 is computed as follows, for z = (a, b)
sampled according to step 2:

t0 =

d∑
l=1

al ·m0,l + b. (14)

Subtracting equation 14 from equation 13, we get that any key (ã, b̃) should
satisfy

d∑
l=1

(
ãl − al

)
·m0,l+b̃−b =

〈(
1,m0,1, . . . ,m0,d

)
,
(
b̃− b, ã1 − a1, . . . , ãd − ad

)〉
= 0.

(15)

In equation 15, if ã = a, then b̃ = b. This means that m̃1, t̃1 is a valid message/tag

pair for key (a, b), as it is valid for (ã, b̃), since (ã, b̃) = (a, b). Since the MAC
is ε-secure, and the adversaries are local (in particular adversary 1 only sees
m1, t1 and provides m̃1, t̃1 with m1 6= m̃1), then m̃1, t̃1 is a forgery for (a, b) –
since (a, b) is a uniform key, valid for both m1, t1 and m̃1, t̃1, with m̃1 6= m1.

Therefore, for any (ã, b̃) = z̃ ∈ Z̃:

Pr (z,m0)[m̃2 6= m̃1 6= m1, t0 = MAC(z̃,m0), ã = a] ≤ ε. (16)

Now, If ã 6= a, then the vector v = (̃b − b, ã1 − a1, . . . , ãd − ad) ∈ Fd+1
2 is non-

zero, and equation 15 holds if and only if v is orthogonal to a uniformly chosen
direction u = (1,m0,1, . . . ,m0,d), which happens with probability 2−g for any
non-zero v. Therefore,

Pr (z,m0)[m̃2 6= m̃1 6= m1, t0 = MAC(z̃,m0), ã 6= a] ≤ 2−g ≤ ε. (17)

Combining equations 16 and 17 with inequality 12 we get:

Pr[W = 1] ≤
∑
z̃∈Z̃

Pr (z,m0)[m̃2 6= m̃1 6= m1, t0 = MAC(z̃,m0)] ≤
∑
z̃∈Z̃

2 ·ε ≤ 2 ·d ·ε,

since |Z̃| = d, from lemma 4.
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