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Abstract. The well-known Signed ElGamal scheme consists of ElGamal
encryption with a non-interactive Schnorr proof of knowledge. While this
scheme should be intuitively secure against chosen-ciphertext attacks
in the random oracle model, its security has not yet been proven nor
disproven so far, without relying on further non-standard assumptions
like the generic group model. Currently, the best known positive result
is that Signed ElGamal is non-malleable under chosen-plaintext attacks.
In this paper we provide some evidence that proving Signed ElGamal to
be CCA secure in the random oracle model is hard. That is, building on
previous work of Shoup and Gennaro (Eurocrypt'98), Seurin and Treger
(CT-RSA 2013), and Bernhard et al. (PKC 2015), we exclude a large class
of potential reductions that could be used to establish CCA security of
the scheme.

1 Introduction

Indistinguishability under chosen-ciphertext attacks (IND-CCA, or CCA for
short) is widely considered to be the appropriate security notion for public-key
encryption. Most known CCA-secure public-key schemes are built from a basic
IND-CPA scheme (like ElGamal) and a non-interactive proof system. Examples
of this approach include Cramer-Shoup [7], TDH2 [16], and the Chaum-Pedersen-
Signed ElGamal scheme of Seurin and Treger [15], but also more theoretical
constructions like the DDN encryption scheme [8] fall under this paradigm.

The di�erence between IND-CPA and IND-CCA security is that the latter
notion allows the adversary to see decryptions of ciphertexts via a decryption
oracle. Informally, �encrypt-then-prove� schemes require an adversary to prove
knowledge of a plaintext as part of a valid ciphertext. But then a decryption
oracle which the adversary can only call for ciphertexts on messages that she
already knows is, intuitively, redundant. Hence, the encrypt-then-prove should
reduce CCA-security to IND-CPA of the basic scheme. Interestingly, this intu-
ition appears to be hard to turn into a formal proof, as we discuss for the case
of the Signed ElGamal encryption scheme.

1.1 Signed ElGamal

Signed ElGamal [16,14] is a well-known encrypt-then-prove scheme combining
ElGamal encryption with a Fiat-Shamir-Schnorr proof [13,9] of the randomness



used to encrypt (from which you can recover the plaintext from a ciphertext).
It is the most e�cient encrypt-then-prove scheme known to date both in terms
of ciphertext size and computation cost. Further, it is submission-secure [18]
(i.e., one can work homomorphically with the �core� ElGamal ciphertexts) and
publicly veri�able, making it suitable for applications such as electronic voting3.
All these properties would make Signed ElGamal the �primary choice� for a CCA
encryption scheme, unless one objects to the Random Oracle Model (ROM)
methodology [3]. Remarkably, however, Signed ElGamal has never been proven
to be CCA-secure, even in the Random Oracle Model!

Shoup and Gennaro [16] were the �rst to consider the security of Signed ElGa-
mal. They found that the �obvious� proof strategy to show CCA-security based
on the encrypt-then-prove intuition did not work and gave a concrete example
why the common strategy fails, but neither proved nor disproved CCA-security
of the scheme. Instead, they developed the slightly less e�cient TDH2 scheme
which does come with a CCA proof. Schnorr and Jakobsson [14] proved Signed
ElGamal to be CCA-secure under a combination of the ROM and the generic
group model (GGM). Tsiounis and Yung [17] gave yet another proof under a
non-standard �knowledge assumption� that resembles the approach behind the
GGM.

More abstractly, the two mentioned proofs of CCA-security of Signed ElGa-
mal [17,14] both rely on variants of a property known as plaintext awareness,
which together with IND-CPA security su�ces to show CCA; this property is
in fact strictly stronger than CCA-security [4]. Plaintext awareness requires the
existence of a plaintext extractor who, given some trapdoor key, can extract
plaintexts from ciphertexts in an �online� manner, i.e., without interacting fur-
ther with the party who created the ciphertext. However, in 2013, Seurin and
Treger [15] showed that a plaintext extractor for Signed ElGamal in the ROM,
without extra assumptions such as the GGM, could not exist, unless plain El-
Gamal is already insecure (i.e. one can solve the Computational Di�e-Hellman
(CDH) problem in the underlying group). This result calls into question the
proofs based on plaintext awareness as a route to show CCA-security of Signed
ElGamal.

We stress again that Seurin and Treger, like Shoup and Gennaro, did not
prove or disprove the CCA-security of Signed ElGamal in the ROM. Their result
only rules out proofs based on plaintext awareness. Also, the recent result of
Bernhard et al. [5], showing that Fiat-Shamir-Schnorr proofs of knowledge are
not adaptively secure, only gives a limited answer about the CCA-security of
Signed ElGamal. Their result relies on the fact the the knowledge extractor has
to return the full witness (i.e., the randomness for Signed ElGamal), whereas
a clever CCA-to-CPA reduction only needs to simulate the decryption oracle,
returning the message as a fraction of the full witness.

In this paper we provide further evidence against the CCA security of Signed
ElGamal, even if one takes a direct route, without going through plaintext aware-

3 The Helios [2] voting scheme used by the IACR uses a variant of Signed ElGamal.



ness. To this end, we rule out a large class of common proof techniques. The
obstacle encountered by Shoup and Gennaro seems to be very solid indeed.

1.2 State of the art

We summarise previous work on the security of Signed ElGamal in the table in
Figure 1, ordered by the strength of the model.

paper result model
[6] NM-CPA secure ROM
[16] obvious CCA proof fails ROM
[15] not PA2 unless CDH easy ROM
[5] no adaptive extractor under OMDL ROM
this work no CCA reduction under IES ROM
[1] CCA ROM + algebraic adv.
[14,17] CCA ROM+GGM

Fig. 1: Overview over security results for Signed ElGamal. Here, OMDL is the one-
more discrete log problem, IES is our Interactive ElGamal-Schnorr assumption. In
case of negative results, further restrictions on the reductions (such as black-box use
of adversaries) may apply.

Although CCA security of Signed ElGamal has sometimes been claimed infor-
mally, the strongest formal result in the ROM to date [6] only shows the weaker
notion of non-malleability (NM-CPA). If one extends the ROM to include either
the generic group model [14], a generic knowledge assumption [17] or restricts
to algebraic adversaries [1] then one can prove CCA security. Conversely, we
know that in the plain ROM the �obvious� CCA proof fails [16]. Signed ElGa-
mal cannot be ROM-PA2 plaintext aware unless CDH is easy [15] which rules
out proofs based on non-rewinding extractors for the contained ZK proof. The
strongest negative result to date [5] rules out any CCA proof based on adaptive
extractors for the ZK proof, by showing that the proof scheme in question (Fiat-
Shamir-Schnorr) is not adaptively secure unless the one-more discrete logarithm
(OMDL) problem is easy.

Adaptive proofs of knowledge. To put our results in context, we outline
and discuss the results of Bernhard et al. [5], explain their limits and how we im-
prove on them. Their work identi�es the notion of adaptive proofs of knowledge
as a potential bottleneck towards proving IND-CCA security for Signed ElGa-
mal: this notion is what seems to be necessary to make the intuition behind
encypt-then-prove work, yet it is provably not achieved by its implementation
based on Fiat-Shamir-Schnorr proofs in Signed ElGamal.

In a hypothetical CCA-to-IND-CPA reduction of Signed to plain ElGamal,
when the adversary asks a decryption query on a ciphertext, the reduction



rewinds the adversary to extract the plaintext. Shoup and Gennaro [16] con-
sidered an adversary who makes a chain of n ciphertexts, the plaintext of each
one depending on the last ciphertext (e.g. through a hash function), then asks
decryption queries in reverse order. The e�ect of this adversary is to make a
straightforward rewinding strategy take exponential time in n, as the reduction
ends up re-rewinding the rewound adversaries each time.

Bernhard et al. [5] were the �rst to show that such an exponential expansion
is unavoidable under certain conditions. A non-interactive proof of knowledge is,
informally speaking, a construction in which you can extract a witness from a
single proof given suitable powers (e.g. the ability to rewind the prover). Bern-
hard et al. proposed a notion of adaptive proofs in which the prover can make
a sequence of proofs and the extractor must return the found witnesses to the
prover. In this way, should the prover ever succeed in making a proof for which
she does not know a witness, she gains knowledge from the extractor. The game
is adaptive in the sense that the extractor must deliver the witness for the k-th
proof before the prover prepares the (k + 1)-st proof.

Bernhard et al. proved that (unlike a construction of Fischlin [10]) Fiat-
Shamir-Schnorr proofs are not adaptively secure, unless the one-more discrete
logarithm (OMDL) problem is easy in the group concerned. Speci�cally, any
adaptive extractor must either take at least 2n time on an adapted version of
Shoup/Gennaro's adversary, or reduce to solving OMDL.

Their results rules out a proof of IND-CCA security for Signed ElGamal
which considers the basic encryption scheme and the non-interactive proofs in
isolation, such as one might do following the encrypt-then-prove intuition. The
intuition is that the reduction would not be able to answer decryption queries by
relying on an extractor for the Fiat-Shamir-Schnorr proofs, as such an extractor
does not exists.

Strictly speaking however, their result only rules out an extractor that obtains
the randomness used in the ciphertexts and not one that somehow obtains only
the underlying plaintexts. Yet, there is a signi�cant complexity gap between
these two problems: �nding the plaintext is equivalent to solving a CDH problem
(with the aid of rewinding) whereas �nding the randomness (again with the aid
of rewinding) is equivalent to taking a discrete logarithm. This means that the
result outlined above does not rule out all plausible reductions. In addition, the
result does not immediately apply to the combination of ElGamal ciphertext
and proof that makes up Signed ElGamal.

1.3 Our Contribution

We narrow the gap between the positive and negative results by showing that,
in the ROM, one cannot construct any black-box key-passing reduction from
CCA-security of Signed ElGamal to IND-CPA security of plain ElGamal unless
Schnorr proofs are insecure (speci�cally, they can help you solve CDH). We view
this result as strong evidence in favour of the hypothesis that Signed ElGamal
is not CCA secure in the ROM.



Technically, we show a metareduction whose starting point is any reduction
from the IND-CCA security to IND-CPA of ElGamal, where the reduction makes
only black-box use of the adversary and which is key-passing in the sense that it
hands the public key in the ElGamal scheme to the adversary. Our metareduction
turns such a reduction into an algorithm against an assumption which we call
the �Interactive ElGamal-Schnorr� assumption, or IES in short. Informally, the
IES assumption is the following.

You are given an ElGamal public key and a ciphertext on an unknown,
random message. You can play the veri�er in a single interactive Schnorr
proof of the randomness in the ciphertext. Then you cannot extract the
encrypted message.

We remark that we are not proposing a new assumption for the purpose
of giving a cryptosystem that is secure under this assumption. Instead, we are
showing that an already well-known cryptosystem cannot be proven CCA secure
unless a plausible assumption is actually false � in which case we would be
distrustful of any cryptosystem employing Schnorr proofs. Since IES is closely
related to CDH, we would also have concerns about the use of any ElGamal-
based scheme in a group in which IES is easy.

1.4 Outline of this work

We begin by recalling the de�nition of Signed ElGamal and the IND-CPA/CCA
notions for encryption. We then present and justify the IES assumption and
prove that for any group, if there is an e�cient key-passing reduction from CCA
of Signed ElGamal to IND-CPA of ElGamal then IES is e�ciently breakable
in the group concerned. Our result even shows that proving CCA1 security,
where the adversary makes all decryption queries before learning the challenge
ciphertext, is hard.

2 Preliminaries

2.1 Cryptographic groups

A cryptographic group is a group G of some prime order q together with a desig-
nated generator g, in which one can perform the group operation and inversion
e�ciently. It follows that one can also e�ciently exponentiate in such groups.
Typical examples (that have interesting security properties) are subgroups of
the multiplicative group Z×p for primes p and groups derived from elliptic curves
over �nite �elds.

2.2 Public-key encryption and ElGamal

A public-key encryption scheme consists of three algorithms: KeyGen which pro-
duces a public and a secret key, Encrypt which takes a message and a public key



and produces a ciphertext and Decrypt which takes a secret key and ciphertext
and produces either a message or the symbol ⊥ to indicate failure. Decryption
is deterministic. If you generate a key pair, encrypt a message with the public
key then decrypt the ciphertext with the matching secret key then you get the
same message back.

The ElGamal encryption scheme over a group G (generated by g, of order q)
has key pairs of the form (gx, x) for x ∈ Zq; to generate a secret key one picks a
random integer x modulo q. To encrypt a message m ∈ G to public key y ∈ G,
pick a random r ∈ Zq, your ciphertext is (gr,m · yr). To decrypt a ciphertext
(c, d) with secret key x compute d/cx.

The IND-CPA and IND-CCA security notions are given by the following
game. To begin, the game generates a key pair and returns the public key.
Once in the game, you may pick two messages (m0,m1) of the same length4 in
response to which the game picks β ∈ {0, 1} randomly and gives you a challenge
encryption c∗ of mβ . In the CCA version of the game only, you may ask the
game to decrypt any ciphertext for you, as often as you like and both before
and after obtaining the challenge � except that after obtaining the challenge
c∗, you may not ask for c∗ itself to be decrypted. Your aim is to guess β. Your
success probability σ is the probability that you guess β correctly (taken over all
random choices made by the game) and your advantage α is de�ned as 2σ−1, so
a perfect guesser has advantage 1 and a uniform random guesser has advantage
0.

For a sequence of groups Gλ indexed by a security parameter λ ∈ N, the
ElGamal encryption scheme is said to be (asymptotically) IND-CPA/CCA secure
if the advantage of any e�cient adversary (who receives λ as input in unary
notation) in the corresponding game over group Gλ is negligible as a function of
the parameter λ.

ElGamal (a.k.a. plain ElGamal) is IND-CPA secure under the DDH assump-
tion: given a pair (gx, gy) of uniformly random and independent group elements
it is hard to tell gxy from another independent, uniformly random group element
gz. More precisely, there is a reduction from breaking IND-CPA of ElGamal to
solving DDH that succeeds 1/2 of the time. Plain ElGamal is not CCA secure.

2.3 Schnorr proofs

Over a cryptographic group G with designated generator g and order q, the
Schnorr proof scheme is a protocol for a prover to convince a veri�er that he
knows a secret x such that y = gx, where y may be known to the veri�er in
advance. The prover picks a random a ∈ Zq and sends y and ga to the veri�er
who replies with a challenge c drawn randomly from Zq. The prover answers
with s = a+ cx (mod q) and the veri�er accepts if and only if gs = ga · yc.

The Fiat-Shamir-Schnorr protocol is a non-interactive version of the above.
Instead of the veri�er picking c, the prover picks it herself as c = H(y, ga) where

4 For ElGamal, the message space is the underlying group G and all group elements
have the same length which can be described as �one element�.



H is a cryptographic hash function with codomain Zq. The prover sends the
veri�er a single message (y, ga, s) and the veri�er recomputes5 c and performs
the same check as in the interactive protocol. Fiat-Shamir-Schnorr requires the
so-called Random Oracle Model (ROM) for its security analysis, which idealises
the hash function as an oracle that both prover and veri�er can call.

2.4 Signed ElGamal

Signed ElGamal combines plain ElGamal and a Fiat-Shamir-Schnorr proof in a
construction that Bernhard et al. call encrypt-then-prove. We de�ne the scheme
formally here.

De�nition 1. Signed ElGamal is the following encryption scheme over a cryp-
tographic group G of order q with generator g.

KeyGen: Pick x ∈ Zq uniformly at random and set y = gx for your public
key. Your keypair is (y, x).

Encrypt: Your message m must be an element of G. Let y be the public key.
Pick a random r ∈ Zq and compute an ElGamal ciphertext (gr, yr · m). Then
make a Fiat-Shamir-Schnorr proof: pick random a ∈ Zq, set c = H(y, gr, yr ·
m, ga) and compute s = a+ cx (mod q). Your ciphertext is (gr, yr ·m, ga, s).

Decrypt: Given x and a ciphertext (u, v, b, s) compute c = H(gx, u, v, b) and
check that gs = b · uc. If this check fails, the ciphertext is invalid � return ⊥.
Otherwise decrypt m = v/ux.

2.5 Metareductions

A cryptographic security de�nition often takes the form of a game: an algorithm
with one interface and a notion of winning. Speci�cally, a scheme is secure if there
is no e�cient adversary (an algorithm with one interface, compatible with that
of the game) such that if we connect the adversary to the game, the adversary
wins (with more than a negligible chance).

A reduction from source problem (e.g. IND-CPA of ElGamal) to a target
problem (e.g. DDH) is an algorithm with two interfaces, one for a source-problem
adversary and one for the target-problem game. The aim of a proof by reduction
is to show that for any adversary who could win the source game, the system
obtained by composing the adversary and the reduction would win the target
game. This system is itself an algorithm with one interface, which is compatible
with the target game.

A metareduction is an algorithm with three interfaces. A proof by metare-
duction shows that there can be no reduction from a source problem S to a
target problem T unless another problem U is already easy. The metareduc-
tion's �rst two interfaces are those of an S-adversary and a T -game; the third

5 A variant of the protocol has the prover send (y, c, s) which is often shorter as it
consists of one group element and two integers instead of two group elements and one
integer. This variant is identical to the protocol presented here for security purposes.



interface is compatible with the U -game. In a proof by metareduction, we take
a hypothetical S-to-T reduction and connect its S and T interfaces to those of
the metareduction. In other words, composing a S, T, U metareduction with a
S, T reduction gives a system with one free interface of type U , and this whole
system can be connected to the U -game.

A metareduction will typically simulate a perfect S-adversary. The accom-
panying proof will show that if the reduction wins the T -game given a perfect
S-adversary, then the metareduction wins the U -game given the reduction. In
most cases, security of the U -game should only hold against e�cient adversaries,
such that the metareduction is typically also required to obey this running time
bound.

3 The IES assumption

The interactive Schnorr proof scheme is known to be a correct, honest-veri�er
zero-knowledge proof of knowledge of a discrete logarithm. The non-interactive
(Fiat-Shamir-Schnorr) version is �full� zero-knowledge in the ROM. We propose
an assumption that we call IES (Interactive ElGamal-Schnorr) that looks at
an interactive Schnorr proof on an ElGamal ciphertext for a random message.
While weaker than assuming such a proof to be zero-knowledge, IES states the
assumption that such a proof does not leak the encrypted message.

Suppose you are given an ElGamal public key y = gx and an encryption
(u, v) = (gr,myr) for a random group element m. In addition, you receive a
Schnorr commitment ga for a random a and can pick c ∈ Zq, in response to
which you get s = a+ cr (mod q). The IES assumption is then that you cannot
recover m.

It turns out that m is actually not required to state IES. Decrypting an
ElGamal ciphertext is solving a CDH6 instance, so we can state IES as a CDH
variant directly:

De�nition 2. Given three uniformly random and independent group elements
(gx, gr, ga) in a cryptographic group G of order q with generator g, the IES prob-
lem is to compute grx (the CDH problem) where one, after receiving (gx, gr, ga),
may pick a single value c ∈ Zq and learns s = a + cr (mod q) as a one-time
auxiliary information.

This de�nition shows that IES is stronger than CDH since a CDH solver could
break IES trivially. The justi�cation that s should not help is the same one as for
the interactive Schnorr proof: since a is uniformly random in Zq and independent
of r, x, if ga were not provided then s would be uniform and independent of r, x
itself and the problem would reduce to CDH. The IES assumption formalises the
idea that giving out ga as well, which is also independent of the CDH problem
on r, x, should not help you either.

6 Computational Di�e-Hellman: given random group elements gx, gy compute gxy.



For IES adversaries who pick c independently of a, the IES assumption re-
duces to CDH with the help of a rewinding reduction. Given a CDH instance
(gx, gr) one can pick a random ga and run the adversary up to the point where she
produces c, then pick a random s and set h = gs/(gr)c and rerun the adversary
on (gx, gr, h). As long as the same c appears in the second run, the simulation
is sound (in particular the adversary can verify that she got the correct s). This
is of course exactly how one simulates Schnorr proofs to show honest-veri�er
zero-knowledge of the protocol. Like for Schnorr proofs, the simulation argu-
ment breaks down if the adversary chooses c depending on ga but there is no
known attack to exploit this technique.

The di�erence between breaking IES and extracting a witness from a Schnorr
proof is that the former requires only �nding a particular group element whereas
the latter involves recovering an integer (exponent). An adversary who can re-
cover x from a Schnorr proof (gx, ga, c, s = a+ cx) can take discrete logarithms.

The result of Bernhard et al. on Fiat-Shamir-Schnorr shows that one can-
not build a CCA�to�IND-CPA reduction for Signed ElGamal by extracting the
witness (the encryption randomness) from the Schnorr proof in a ciphertext.
However, the main task for such a reduction is to answer decryption queries, for
which it su�ces to recover the encrypted message (a group element).

4 Main theorem

Our goal is to exclude reductions from CCA security of Signed ElGamal to
IND-CPA security of plain ElGamal (equivalently, to DDH). We make three
constraints on the class of reductions that we consider. First, we consider only ef-
�cient reductions, since an exponential-time reduction could exhaustively search
the key-space. Secondly, we consider rewinding black-box reductions: our reduc-
tions may invoke any number of copies of the adversary as long as the reduction
is e�cient overall. Each invocation of the adversary counts as a single opera-
tion. All these copies of the adversary run with the same random string. The
reduction is in charge of all communication to and from these copies, including
random oracle calls. In particular the reduction can employ the usual �special
soundness� forking strategies. All computation from the moment the reduction
sends a message to a copy of the adversary up to the adversary's reply counts
as a single operation as far as the reduction is concerned.

Finally, we consider only key-passing reductions. A reduction to IND-CPA
receives a public key from the IND-CPA challenger whereas a CCA adversary
expects a public key; keys for plain and Signed ElGamal are of the same form.
A key-passing reduction is one that gives all copies of the adversary the same
public key which it received from its challenger. Alternatively, one could view
the public key as being made available globally to all parties (the reduction and
the copies of the adversary) via the IND-CPA challenger.

Why key-passing?We provide some intuition and the technical reasons for the
key-passing assumption. Due to the rewinding nature of the Schnorr protocol
extractor, we must allow our reduction access to multiple copies of the adversary



with full control over the random oracle. Yet we do not want to o�er the reduction
the option to substitute a key of its own (for which it may know the secret key)
for some copies of the adversary, which would lead to the following problem: The
reduction may �rst run multiple copies of the adversary under self-chosen keys
and test if the adversary succeeds in predicting the challenge bit with su�ciently
high probability, exploiting knowledge of the secret key for answering decryption
queries in this part. Only if this test phase is over, it may start the actual
reduction to the IND-CPA challenger's public key.

While an actual adversary would pass the test phase of the reduction above,
any metareduction most likely will fail to reach the second phase. The reason is
simply that it would need to e�ciently break CCA security under the reduction's
keys. More precisely, if the metareduction treats the reduction as a black box,
then one could potentially even mount meta-metareduction techniques (i.e., now
playing against the metareduction) as in [11] to base this argument on formal
grounds. Still, it seems that this �testing� reduction is somewhat contrived, as it
is not known how the test phase helps to break CPA security for the given key.

Technically, the chosen-key problem appears when our metareduction tries
to inject an IES challenge into the reduction's view. The reduction, on input
the challenger's public key pk, could both substitute a key of its own (for which
it knows the secret key, but which is independent of the IES challenger) or the
reduction could rerandomise pk by picking random r and returning pkr. In this
case the reduction cannot directly decrypt anything, but there is a dependency
on the IES challenger's key. Intuitively, creating further keys of its own should
not help the reduction to attack the challenger. But to a metareduction, both
these tactics are indistinguishable: the resulting key looks random in both cases.
If the metareduction injects an IES challenge into a ciphertext for which the
reduction knows the secret key, all bets are o� � the metareduction cannot
simulate an adversary consistently anymore.

The solution to the above dilemma would be to somewhat grant the metare-
duction access to the reduction's self-chosen secretkeys. Note that it would not
be su�cient to ask that each public key comes with a Schnorr signature of
knowledge of its secret key (perhaps signed by the challenger) � the reduction
controls the random oracle towards the adversary, so it could easily forge such
signatures. But, in principle, other secure means of proofs of knowledge could
help. Alternatively, switching to more transparent types of reductions such as
algebraic or generic ones could also be a viable path.

It would be interesting to see whether the key-passing requirement could be
weakened in future work. A more complicated argument (with looser concrete
security bounds) may well succeed, but for now we prefer to work in the key-
passing model.

Our main result is the following theorem that excludes a large class of at-
tempts to prove Signed ElGamal CCA-secure. The proof of the following also
reveals that showing even CCA1 security is hard.



Theorem 1. Suppose that DDH and IES hold in a cryptographic group G. Then
there is no e�cient key-passing black-box reduction from CCA security of Signed
ElGamal to IND-CPA security of plain ElGamal in G.

5 The Proof

We will construct a metareduction to IES from any CCA�to�CPA reduction for
Signed ElGamal. We introduce some variants of IES that will make the proof
easier to present. We note that this does not introduce additional assumptions
for our result: we show that they all reduce to IES.

5.1 Veri�able IES

First, we deal with the issue that decrypted messages are not �veri�able�. Proofs
of knowledge are usually taken over NP relations (e.g. discrete logarithm). How-
ever, the statement that a ciphertext decrypts to a particular message is not
immediately veri�able � it would require either the secret key or the encryption
randomness to verify.

Our metareduction will have to check the decryptions produced by the re-
duction with which it interacts. We introduce a new assumption that we call
veri�able IES or vIES to give the metareduction this ability; we also show that
vIES reduces to IES. The new feature of vIES is that the adversary gets many
attempts at guessing the message; formally we introduce a new oracle for the
adversary to check messages.

De�nition 3 (vIES). The vIES problem in a cryptographic group (G, q, g) is to
solve IES given the extra ability to check candidate solutions. Given (gx, gr, ga)
one may once submit a value c ∈ Zq and learn s = a + cr (mod q) in return;
in addition, one may query an oracle check(m) many times which returns 1 if
and only if m = grx. One wins the game if one can �nd grx. A code-based
presentation of the game is given in Figure 2.

The vIES assumption reduces to the IES assumption with a loss in soundness
of a factor k+1 where k is the number of checks made by the adversary. To see
this, consider an e�cient adversary with probability p of winning the vIES game
and let k be a (polynomial) bound on the number of checks the adversary makes.
Then with probability p, one of the following k+1 events occur: Ei for 1 ≤ i ≤ k
is the event that the adversary makes at least i checking queries and the i-th
check contains the correct message; E0 is the event that the adversary never
makes a checking query on the correct message but still calls the �nalization
oracle with the correct message.

Our reduction to IES guesses i
$← {0, 1, . . . , k} uniformly at random and

simulates as follows: forward the initial data and the challenge query between
the adversary and IES challenger, for i > 0 answer the �rst i−1 checking queries
with 0 and pass the result of the i-th checking query to the IES �nalization



procedure initialise:

x
$← Zq; X ← gx;

r
$← Zq; R← gr;

a
$← Zq; A← ga;

return (X,R,A)

oracle challenge(c):

return a+ cr (mod q)

oracle check(m):

if m = grx then return 1

else return 0 endif

procedure �nalise(m):

return check(m)

Fig. 2: Veri�able IES. The checking oracle allows the adversary to test candidate solu-
tions before submitting one. Challenge may only be called once.

oracle directly, aborting the adversary at this point. For i = 0 answer 0 to
all the adversary's checking queries and forward the adversary's output to the
�nalization oracle. If the adversary does not make i checking queries or in case
0 makes no output, abort.

If event Ei occurs then the reduction for case i will break IES. Since we
assumed the adversary to succeed with probability p, at least one of the events
will occur with probability p/(k + 1) as the k + 1 events are a partition of the
event that the adversary succeeds. Since the reduction chooses i uniformly, we
conclude that it succeeds against IES with probability p/(k + 1).

5.2 One-more veri�able IES

For our metareduction we use a one-more variation of IES, for the same reason
that Bernhard et al.'s proof that Fiat-Shamir-Schnorr is not adaptively secure
requires the one-more discrete logarithm assumption. Unlike the cited theorem
and assumption, the one-more IES assumption reduces to the basic one. We give
the one-more assumption and reduction for veri�able IES; the same reduction
holds for the non-veri�able variation.

The one-more assumption works as follows. The adversary may obtain and
open a number of IES �instances�; her aim is to solve an unopened instance. The
initialization oracle produces a �public key� gx shared between all instances. The
instance oracle creates a fresh pair (gr, ga) together with an internal �ag f = 0 to
denote that this instance is fresh. The adversary may issue a challenge c once per
instance, to which the challenger replies with s = a+cr and sets the �ag to f = 1
to denote that the challenge for this instance has been provided. In addition, the
adversary may ask for an instance to be opened to which the challenger responds
with (r, a) and sets f = 2. As in vIES, the adversary may also ask to check a
value m against an instance, in which case the challenger reveals if m = grx.
Checking does not a�ect the �ag f . The adversary wins by providing the value
m = grx on an instance that has not been opened, i.e. f ≤ 1. The one-more
veri�able IES game is asymmetric in that the adversary must only solve a CDH



instance to win but the game must provide a discrete logarithm r on request. It
is this asymmetry that makes our metareduction work. Nonetheless, one-more
veri�able IES reduces to plain IES. In the code-based presentation of the game
in Figure 3, an index i is used to distinguish di�erent instances.

De�nition 4 (OMvIES). The one-more veri�able IES game is given by the
code in Figure 3.

procedure initialise:

j ← 0; T ← [ ];

x
$← Zq; X ← gx;

return X

procedure instance:

j ← j + 1;

r
$← Zq; R← gx;

a
$← Zq; A← gx;

f ← 0;

T [j]← (r, a, f);

return (j, R,A)

procedure �nalise(i,m):

if i > j then return 0 endif;

(r, a, f)← T [i];

if f > 1 then return 0 endif;

return check(i,m)

oracle challenge(i, c):

if i > j then return ⊥ endif;

(r, a, f)← T [i];

if f > 0 then return ⊥ endif;

T [i]← (r, a, 1);

return a+ cr (mod q)

oracle check(i,m):

if i > j then return 0 endif;

(r, a, f)← T [i];

if m = grx then return 1

else return 0 endif

oracle open(i):

if i > j then return ⊥ endif;

(r, a, f)← T [i];

T [i]← (r, a, 2);

return (r, a)

Fig. 3: One-more veri�able IES. All IES instances share a common x but have their
own r, a � which can be revealed using the open oracle.

The reader may be asking why they should have any con�dence that an
assumption as complex as OMvIES should be hard. We note that vIES and
OMvIES derive their justi�cation solely from the fact that they reduce to IES:
they are intermediate steps to make our main proof easier, not assumptions in
their own right that we ask anyone to believe in. The justi�cation for basic IES
we gave when we introduced it, that a single Schnorr proof should not completely
break the security of ElGamal encryption. The reason that the one-more version
reduces to the simple one is that the instances are independent in the sense that
the adversary cannot perform a challenge query that �touches� more than one
instance.

Lemma 1. There is a reduction from OMvIES to IES that loses a factor O(k2)
in soundness where k is a bound on the number of queries made by the adversary.



Proof. It su�ces to reduce OMvIES to vIES with a loss of O(k). Given an upper

bound k on the number of instances an adversary can create, pick n
$← {1, . . . , k}

at random and use the vIES challenger for the n-th instance. Simulate all other
instances by picking fresh (r, a). To open a simulated instance, simply reveal
(r, a). To check a simulated instance against a candidate m, check if m = Xr. If
the adversary tries to open the n-th instance, abort. If the adversary succeeds
with probability p against OMvIES then she succeeds with probability at least
p/k against the n-th instance, in which case she cannot have opened this instance.
So the reduction wins the vIES game with at least p/k probability too. ut

5.3 A model adversary

Let R be a rewinding, black-box, key-passing reduction from CCA security of
Signed ElGamal to IND-CPA security of plain ElGamal. That is, R may invoke
multiple copies of a CCA adversary A which expects to receive a public key, can
make one challenge and many decryption queries and will output a guess bit. R
itself can interact with one IND-CPA challenger who provides a public key and
a single challenge query, which returns a plain ElGamal ciphertext.

The aim ofR is to guess its challenger's bit β. We �rst construct an ine�cient
adversary A that breaks CCA of Signed ElGamal with advantage 1, that is it
guesses correctly all the time. Our adversary A will operate in three phases:
phases 1 and 2 are e�cient and if a reduction R advances our adversary to
phase 3 then R must have already broken an assumption (IES or DDH) itself
or launched exponentially many copies of the adversary. We also show how to
construct an e�cient simulation of (multiple copies of) A under these conditions,
yielding our metareduction. Thus, using an ine�cient adversary in the �rst place
does not cause triviality problems.

Suppose w.l.o.g. that q > 5 and consider the ine�cient adversary An in
Figure 4 where Ψ : Zq[X] → Zq is a random function7 (since e�ciency is not
an issue, random functions exist). RO is a random oracle call and dlog takes
a discrete logarithm (which an ine�cient adversary can also do). Decrypt and
Challenge are calls to the CCA challenger.

Adversary An runs in three phases. In phase 1, it builds up a chain of n
Signed ElGamal ciphertexts in such a way that the randomness used in each
ciphertext depends on the challenge returned from the random oracle in the
previous one. Indeed, An only draws one random value to initialise S and uses
the random function Ψ to update its state afterwards. One can think of S as the
current state of a internal pseudorandom number generator.

In phase 2, our adversary asks decryption queries in reverse order, in the
manner �rst proposed by Shoup and Gennaro [16] and used by Bernhard et
al. [5]. Crucially, our adversary checks the correctness of each decryption and
aborts if the CCA game resp. reduction to which it is connected tries to cheat
by returning a false decryption. By the time our adversary reaches phase 3, it is

7 By choosing the polynomial ring over Zq as the domain, we mean that Ψ takes
arbitrary-length �nite sequences of integers modulo q as input.



// input: public key Y

S
$← Zq; T ← [ ]

// PHASE 1 //

for i = 1 . . . n do

r ← Ψ(1, S)

a← Ψ(2, S)

m← Ψ(3, S)

M ← gm

(C,D)← (gr,MY r)

A← ga

c← RO(Y,C,D,A)

s← a+ cr (mod q)

S ← (S, c)

T [i]← (M,C,D,A, s)

endfor

// PHASE 2 //

for i = n . . . 1 step (−1) do
(M,C,D,A, s)← T [i]

M ′ ← Decrypt(C,D,A, s)

if M 6=M ′ then abort endif

endfor

// PHASE 3 //

m0 ← Ψ(4, S)

m1 ← Ψ(5, S)

(C,D,A, s)← Challenge(m0,m1)

r ← dlog(C)

M ← D/Y r

if M = gm0 then return 0

else return 1 endif

Fig. 4: Adversary An against CCA of Signed ElGamal with advantage 1.

�satis�ed� that whoever it is interacting with really can decrypt Signed ElGamal
ciphertexts. It picks two random messages, asks a challenge query and takes a
discrete logarithm to win the CCA game with overwhelming probability8.

Our proof strategy will be to give an e�cient simulation of phases 1 and 2
(which means dealing with Ψ) and to argue that no copy of An will ever reach
phase 3 in less than exponential time, unless the reduction solves IES or DDH.

In the proof we will make three case distinctions. Recall that R is a reduction
from CCA of Signed ElGamal to IND-CPA of plain ElGamal.

1. R answers the IND-CPA challenger's query without any copy of the adver-
sary reaching Phase 3. In this case, we can simulate all copies of the adversary
by lazily sampling the random function Ψ to obtain an IND-CPA adversary
that wins its game with the same probability as R given access to a CCA
adversary that always guesses correctly.

2. R answers a decryption query on a ciphertext without using special sound-
ness. We build a metareduction to IES.

3. Neither of the above cases occur. In this case one copy of the adversary we
are simulating proceeds to the point where it would have to use its discrete
logarithm capability hence it must have got answers to all n decryption
queries. In this case we show that the reduction must have launched Ω(2n)
copies of the adversary.

8 The probability is not exactly 1 because m0 and m1 could collide.



5.4 Case 1: the reduction solves DDH by itself

If the reduction answers its IND-CPA challenge without getting any copy of the
adversary to run to phase 3 then the reduction must be breaking indistinguisha-
bility �by itself�. In this case we can just simulate the adversary e�ciently for as
long as needed.

Lemma 2. Let E1 be the event that the reduction R returns a guess to its chal-
lenger without any copy of the adversary reaching Phase 3. There is a metare-
duction M1 that breaks DDH in G with advantage αM = Pr[E1]αE1/2 where αE1

is the advantage of R (with access to our adversary) given that E1 has occurred.

Proof. Consider an e�cient metareduction M1 which simulates all the copies of
our adversary in phases 1 and 2 and the random function by lazy sampling, once
for all copies of the adversary. If an adversary copy reaches phase 3 or R aborts,
M1 outputs a random guess. Writing σE1

:= Pr[R guesses correctly | E1] and
αE1

:= (2σE1
−1) we compute the advantage ofM1 as Pr[E1]·αE1

. The advantage
against the encryption scheme gives an adversary against DDH with advantage
Pr[E1]αE1/2. ut

5.5 Case 2: The reduction breaks IES

If the reduction R does run a copy of the adversary to phase 3, we can hope that
it solves IES for us along the way. We de�ne a metareduction M2 that simulates
individual copies of An as follows, with joint state between the copies in two
global variables U, V . All other variables are local to each simulated copy of the
adversary.



// COPY OF An //

// PHASE 1 //

S ← 0

for i = 1 . . . n do

(R,A, d)← draw(S)

c← R.RO(X,R, gd, A)

s← chal(R,A, c)

S ← (S, c)

T [i]← (R,A, d, c, s)

endfor

// PHASE 2 //

for i = n . . . 1 step (−1) do
(R,A, d, c, s)← T [i]

M ← R.decrypt(R, gd, A, s)

Z ← gd/M

if not check(R,A,Z) then

abort this copy of An
endif

endfor

oracle check(R,A,Z):

(j, φ, c′, s′, r′, a′)← V [R,A]

β ← I.check(j, Z)

if β = 1 and φ < 2 then

abort and return (j, Z)

to OMvIES challenger

else

return β

endif

oracle draw(S):

if U [S] is de�ned then

(R,A, d)← U [S]

return (R,A, d)

else

(j, R,A)← I.Instance()

d
$← Zq

U [S]← (R,A, d)

V [R,A]← (j, 0, 0, 0, 0, 0)

return (R,A, d)

endif

oracle chal(R,A, c):

(j, φ, c′, s′, r′, a′)← V [R,A]

if φ = 0 then

s← I.Challenge(j, c)

V [R,A]← (j, 1, c, s, 0, 0)

return s

elseif φ = 1 then

if c = c′ then // replay

return s′

else // fork

(r, a)← I.open(j)

V [R,A]← (j, 2, c′, s′, r, a)

return a+ cr (mod q)

endif

else // φ = 2

return a′ + cr′ (mod q)

endif

Our metareductionM2 simulates both the adversary and challenger interfaces
towards the reduction R and interacts with an OMvIES challenger. On the
challenger interface M2 passes the challenger's public key. By assumption, R is
key-passing so although the simulated adversaries formally receive a public key
from R we could equally well have the metareduction provide them with this
key directly. If the reduction asks an IND-CPA challenge query, we just simulate
this challenge query (picking a random bit b); since we have already dealt with
case 1 we can ignore the reduction returning a guess to the challenger for now.

In detail, our metareduction operates as follows. Initially, it obtains a value
X from its OMvIES challenger and hands control to the reduction R. When R



asks to invoke a new copy of the adversary A, metareduction M2 simulates a
copy of A using public key X (since R is key-passing) using the algorithms in
the code listing above. The oracles check, draw and chal are shared between all
copies of the simulated adversary. R.alg means we call back to R, simulating the
adversary calling its challenger's oracle named alg whereas I.alg means call the
oracle named alg on the OMvIES challenger.

If the reduction makes a challenge query (to its IND-CPA challenger) the
metareduction draws a random bit b and simulates the challenge ciphertext; if
the reduction R makes a guess at b then the metareduction aborts (this is case
1 which we have dealt with above). If R manages to get a copy of the simulated
adversary to phase 3, the metareduction M2 aborts too � this is case 3 which
we will deal with later.

The check, draw and chal oracles help the metareductionM2 simulate multi-
ple copies of An using only one OMvIES challenger. The draw oracle ensures that
multiple copies of the adversary who receive identical (random oracle) replies
from R also produce identical ciphertexts. In a table U the metareduction keeps
track of whether a particular adversary state S has been encountered before; if
so we can simply replay the same ciphertexts.

The chal oracle is responsible for completing the proofs in Signed ElGamal
ciphertexts. The table V maps each OMvIES instance (R,A) to the following
parameters:

� The integer j is the index required to tell the challenger to operate on this
particular instance.

� The potential φ is the equivalent of the OMDL potential in Bernhard et
al. 's proof [5] and matches the potential f stored internally by the OMvIES
challenger.
• The �rst time a particular instance (R,A) is used (case φ = 0), chal uses
the OMvIES challenge oracle to complete the proof.

• In case φ = 1, if the current challenge has been used before then the
reduction is replaying one adversary copy's responses to a second copy.
In this case the metareduction replays the response s that it computed
earlier. If c is fresh on the other hand, then the reduction has �forked�
two copies of the adversary on the random oracle call in this proof and is
about to recover the discrete logarithm r by applying special soundness.
In this case our metareduction M2 opens the instance.

• In case φ = 2 the instance has already been opened, so M2 knows the
values a, r necessary to make the proof itself.

� The values c′, s′ in a V -entry store the challenge and response from a previous
chal query. These values are used in case φ = 1 and the reduction replays
the same c′, in which case the metareduction replies with the same s′.

� The values r′, a′ store the discrete logarithms of R,A when φ = 2. In this
case the reduction has forked the adversary on the instance (R,A), forcing
the metareduction to open the instance.

The check oracle is responsible for checking both that the reduction does not
cheat and whether the reduction has solved OMvIES for us. When the reduction



returns a decryption M to a copy of the adversary, the simulated adversary
strips out the message to recover what would be the CDH solution grx for the
instance in question. The metareduction M2 then checks this with the OMvIES
challenger. Should the decryption turn out to be false, the copy of the adversary
in question aborts. If the decryption is correct and the potential is not yet at 2
then the reduction has given us some information that we do not know already
(the instance in question is unopened) and we solve OMvIES.

The above arguments show that whenever R decrypts an unopened challenge
instance, the metareduction M2 breaks OMvIES. It remains to show that R
cannot distinguish M from multiple, independent copies of An running on the
same random string. Recall that in Figure 4 we have the following invariants.

1. Two copies of An that receive identical messages from R also produce iden-
tical messages/calls back to R.
This is because all copies execute on the same random string and do not
communicate with anyone except R.

2. R can in�uence copies of An in exactly three places: answering random oracle
queries in phase 1, decryption queries in phase 2 and the challenge query in
phase 3.

3. The moment that two copies of An get di�erent answers to a random oracle
query, the two copies become independent of each other.
If at some point two copies U, V get di�erent answers cU 6= cV to the same
random oracle query then their states SU , SV will become distinct from then
on and never coincide again (since we only ever append to state vectors).
Since the randomness used to construct Signed ElGamal ciphertexts is drawn
using a random function Ψ from the current state S, the ciphertexts in two
copies with di�erent states are independent.

4. The distribution of each individual ElGamal ciphertext and Schnorr com-
mitment produced by An is uniform, that is (C,D,A) is a uniformly random
element of G3.
This follows from r, a,m being drawn by a random function on distinct
inputs.

5. In phase 2, a copy of An will proceed past a decryption query (and not abort)
if and only if the decryption is correct.

These invariants will let us show that the values received by R when in-
teracting with M2 or multiple copies of An are identically distributed. We use
induction over the sequence of all calls made to R in a particular execution.
Before the �rst call, the distributions of all values sent to R are certainly equal.

� For a RO call, there are two cases. If this call is made by a copy of the
adversary that has received the exact same sequence of inputs and outputs
as some other copy has received previously, then it will return the same
values (X,C,D,A) as the previous copy.
This holds for An as the state S of the copy that sent the current call will
match the state S′ of the previous copy at the time it sent the equivalent
call, so the values C,D,A will be equal (and X is constant in any case).



In M2, the oracle draw ensures that the same state S leads to the same
values (R,A, d) being returned.

� For a fresh RO call (that does not match the case above), the value X is
constant and the values R,D,A are uniformly random and independent of
each other and all values sent to the reduction R so far.
In An this holds because S is fresh and the values in question are therefore
obtained by a random function on distinct, fresh inputs (since m is uniform,
so is M and because M is not used elsewhere, so is MY r). In M2 a fresh S
causes (R,A) to be sampled from the OMvIES challenger so they are uniform
and independent of previous values as expected; D is also a fresh, uniform
group element.

� The value s in a decryption query is completely determined by the matching
C,D,A and c � all of which R has seen before in the matching random
oracle query, or in the case of c the reduction R has chosen the value itself.
This holds in both An and M2.

It follows that up until some adversary copy reaches phase 3, R cannot tell
M2 from An and must therefore have a negligibly close IND-CPA advantages in
both experiments.

5.6 Case 3: the reduction takes exponential time

This case is essentially the same argument as that of Bernhard et al. [5]. If
the reduction R when interacting with M2 ever gets a copy of the simulated
adversary to phase 3 (in which case M2 aborts) then it must have launched at
least 2n copies of the adversary.

Lemma 3. Consider an execution of M2 with any reduction R that results in
one copy of the simulated adversary advancing to phase 3. Then R must have
launched 2n copies of the adversary.

If a copy of the adversary simulated by M2 advances to phase 3, we know
that neither has R returned a guess at β (this would have halted the entire
execution as in Case 1) nor has the check oracle aborted because OMvIES has
been solved (Case 2). In particular, R has never answered a decryption query
on a ciphertext linked to an OMvIES instance at potential φ ≤ 1.

We build a complete binary tree of depth n representing points in the execu-
tion of R with our metareduction where the adversary must have been �forked�
on Schnorr proofs. Our aim is to show that each leaf of the tree must reference
a distinct copy of the adversary, hence there must have been at least 2n copies
overall launched by R. We �rst give the invariants of our tree and prove that
these imply distinct adversary copies in the leaves. Then we will construct a tree
meeting these invariants from any execution that reaches phase 3.

The nodes in our tree have labels (i, k) where i is an identi�er for some copy
of the adversary (for example, one can number the copies in the order that they
begin phase 1) and k ≤ n is an integer referencing a particular decryption query.
Our nodes will have the following invariants.



1. Any copy of the adversary referenced in the tree has advanced to at least
phase 2 and has obtained all its n challenges. If a node (i, k) is present then
copy i has also obtained answers to at least its �rst k decryption queries,

2. The root of the tree is of the form (i, n). A child of (i, k) is of the form
(j, k − 1) and a descendant of (i, k) is of the form (j, l) with 0 ≤ l < k.

3. If (j, l) is a descendant of (i, k) then (1) the copy j has got the same �rst
n − k challenges as copy i. (The two could also be identical.) However, (2)
the copies (j, k − 1) and (j′, k − 1) represented by the two children of (i, k)
di�er in challenge n− k + 1.

Recall that our adversary An performs decryption queries in reverse order
after it has got all n challenges, so the �rst decryption query uses the n-th
challenge etc. This explains the reversed indexing n − (k − 1) of the referenced
challenges for the (∗, k − 1) nodes in the last property.

If we can construct such a complete binary tree rooted at (i, n) where i is the
copy of the adversary that reached phase 3 then we claim that all 2n leaves of
this tree represent distinct copies of the adversary, proving our exponential lower
bound. Suppose for the sake of contradiction that two distinct leaves L = (j, 0)
andM = (j′, 0) refer to the same copy of the adversary, i.e. j = j′. Then consider
the unique path from the one leaf to the other in the tree, and the highest (i.e.
closest to the root) node R = (i, k) on this path. R will have two children A
and B, since R is not itself a leaf by construction. W.l.o.g. L is a descendant or
equal to A and M is a descendant or equal to B. The contradiction is that by
invariant 3, A and B must di�er in their n − k + 1st challenge (part 1 of the
invariant) whereas all descendants of A, including L, must share their n−k+1st
challenge with A (by applying part 2 of the invariant to A). Similarly, M must
share challenge n − k + 1 with B and therefore L,M must di�er in challenge
n − k + 1. It follows that j 6= j′ and that there must be 2n distinct copies of
the adversary referenced in the leaves, hence R must have launched this many
copies.

To construct the tree from an execution that reaches phase 3, we pick the
copy i of the adversary An that reached phase 3 and use (i, n) as the root; this
trivially meets all invariants. We repeatedly give each node (j, l) with l > 0 two
children as follows. The �rst child of (j, l) is simply (j, l− 1). Invariant 1 carries
over as the second component of the node decreases, invariants 2 and 3(1) are
trivially satis�ed.

The core of the tree construction is in the choice of the second child for each
node. For the second child of (j, l) with l > 0 we observe that since copy j has got
an answer to its l-th decryption query yet M2 has not solved OMvIES with this
answer, the corresponding IES instance must be at φ = 2. Therefore some other
copy j′ of the adversary must have triggered the opening of this instance, before
copy j got its l-th decryption query answered. This other copy j′ must therefore
have shared challenges 1 up to n−l with j and been �forked� on challenge n−l+1
to open the IES instance in question. And this forking can only have happened
after j′ had its own l − 1st decryption query answered, since it must have been



the lth decryption query of j′ that triggered the opening. It follows that we can
pick (j′, l − 1) as our second child of (j, l) to satisfy all the invariants.

Taken together, our three cases show that a key-passing black-box reduction
R from IND-CPA security of Signed ElGamal to IND-CPA security of plain
ElGamal must either solve DDH, or IES, or run in exponential time. This proves
our Theorem 1. ut

6 Conclusion

CCA security is often presented as the correct notion for public-key encryption
and Signed ElGamal is very tempting to use due to its short ciphertexts and
fast computation. However, Signed ElGamal has never been proven CCA secure
in the plain ROM (without algebraic or generic-group assumptions).

Our results do not disprove CCA security of Signed ElGamal in the plain
ROM nor yield an attack against CCA of Signed ElGamal in typical implemen-
tations. What they do is further limit the techniques available to anyone wishing
to prove CCA security. Where Shoup and Gennaro [16] showed that the obvious
proof does not work and Bernhard et al. [5] excluded proofs based on extracting
the Schnorr proof's randomness, which seems to us to be overly strong � even
the honest decryptor holding the secret key cannot learn the randomness without
taking a discrete logarithm � we exclude all proofs by reduction to IND-CPA of
plain ElGamal that do not make use of at least one non-standard step, such as
treating the adversary in a non-black box manner. We would recommend caution
before using Signed ElGamal in a scenario where CCA security is really called
for (if NM-CPA is su�cient, so is Signed ElGamal).

At this point, our result works for key-passing reductions only. Our metare-
duction to IES requires the reduction to launch its adversary copies with the
same public key that it got from its (simulated) IND-CPA challenger. In par-
ticular, if instead of reducing to IND-CPA of ElGamal, one wishes to reduce to
a problem such as DDH directly, there is no notion of a key anymore so such
reductions seem not to be covered9. Key-passing seems to be a common way
to build a reduction to the CPA security of ElGamal, and has been used in the
proofs of previous results on Signed ElGamal [17,14] with some additional knowl-
edge assumption. Alternatively, one may consider the implications of restricting
to algebraic or generic reductions � unlike algebraic adversaries, this seems a
sound choice to us as there do not seem to be any non-algebraic reductions in
discrete-logarithm based schemes. Potentially, this could not only eliminate the
key-passing requirement but also show an impossibility of a reduction to any
�natural� problem over groups as in Fleischhacker et al. [12]. We will investigate
this problem in future research.

9 We thank an anonymous reviewer from a previous draft of this paper for commenting
on this point. Interestingly, if such a reduction were to exist, the underlying hard
problem would either have to not reduce to IND-CPA of plain ElGamal itself, or
the combination of reductions (Signed ElGamal to hard problem to IND-CPA of
ElGamal) would itself have to be non-key-passing to avoid our impossibility result.



Another interesting question is whether IES is hard in the generic group
model. Our best answer at the moment is that IES is out of scope of the generic
model: as de�ned by Shoup, the model allows an adversary to start with arbitrary
information and perform generic computations on the group elements in the
adversary's input, but it does not allow for information relating to the adversary's
group inputs to be revealed adaptively during the execution. This is exactly what
IES does and it seems to us that one would have to extend the model to capture
this, leading to the question how one would validate such a new model.
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