
Efficient Unlinkable Sanitizable Signatures from
Signatures with Re-Randomizable Keys

Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider,
Dominique Schröder, and Mark Simkin

CISPA, Saarland University

Abstract. In a sanitizable signature scheme the signer allows a desig-
nated third party, called the sanitizer, to modify certain parts of the
message and adapt the signature accordingly. Ateniese et al. (ESORICS
2005) introduced this primitive and proposed five security properties
which were formalized by Brzuska et al. (PKC 2009). Subsequently,
Brzuska et al. (PKC 2010) suggested an additional security notion, called
unlinkability which says that one cannot link sanitized message-signature
pairs of the same document. Moreover, the authors gave a generic con-
struction based on group signatures that have a certain structure. How-
ever, the special structure required from the group signature scheme only
allows for inefficient instantiations.
Here, we present the first efficient instantiation of unlinkable sanitiz-
able signatures. Our construction is based on a novel type of signature
schemes with re-randomizable keys. Intuitively, this property allows to
re-randomize both the signing and the verification key separately but
consistently. This allows us to sign the message with a re-randomized
key and to prove in zero-knowledge that the derived key originates from
either the signer or the sanitizer. We instantiate this generic idea with
Schnorr signatures and efficient Σ-protocols, which we convert into non-
interactive zero-knowledge proofs via the Fiat-Shamir transformation.
Our construction is at least one order of magnitude faster than instanti-
ating the generic scheme of Brzuska et al. with the most efficient group
signature schemes.

1 Introduction

Sanitizable signature schemes were introduced by Ateniese et al. [1] and simi-
lar primitives were concurrently proposed by Steinfeld, Bull, and Zheng [43], by
Miyazaki et al. [37], and by Johnson et al. [34]. The basic idea of this primitive
is that the signer specifies parts of a (signed) message such that a dedicated
third party, called the sanitizer, can change the message and adapt the signa-
ture accordingly. Sanitizable signatures have numerous applications, such as the
anonymization of medical data, replacing commercials in authenticated media
streams, or updates of reliable routing information [1]. After the first introduc-
tion of sanitizable signatures in [1], the desired security properties were later
formalized by Brzuska et al. [11]. At PKC 2010, Brzuska et al. [12] identified an



important missing property called unlinkability. Loosely speaking, this notion
ensures that one cannot link sanitized message-signature pairs of the same doc-
ument. This property is essential in applications like the sanitization of medical
records because it prevents the attacker from combining information of several
sanitized versions of a document in order to reconstruct (parts of) the original
document. The authors also showed that unlinkable sanitizable signatures can
be constructed from group signatures [4] having the property that the keys of the
signers can be computed independently, and in particular before the keys of the
group manager. However, to this date, no efficient group signature scheme that
has the required properties is known, which also means that no efficient unlink-
able sanitizable signature scheme is known. This leaves us in an unsatisfactory
situation. Either we use efficient sanitizable signature schemes that only achieve
a subset of the security properties [1,11] or we have to rely on an inefficient
black-box construction of unlinkable sanitizable signatures.

In this work, we close this gap by presenting the first efficient unlinkable
sanitizable signature scheme that achieves all security properties. The instan-
tiation of our scheme only requires 15 exponentiations for signing, 17 for the
verification, and 14 for sanitizing a message-signature pair. This is at least one
order of magnitude faster than the fastest previously known construction. For a
detailed performance comparison, refer to Section 1.2.

1.1 Overview of our Construction

In this section, we describe the main idea of our construction and the under-
lying techniques. Our solution is based on a novel type of digital signature
schemes called signatures with perfectly re-randomizable keys. This type of sig-
nature schemes allows to re-randomize both the signing and the verification
key separately. It is required that the re-randomization is perfect, meaning that
re-randomized keys must have the same distribution as the original key. The
new unforgeability notion for this type of signature scheme requires that it is
infeasible for an attacker to output a forgery under either the original or a re-
randomized key, even if the randomness is controlled by the attacker.

We show that this notion does not trivially follow from the regular notion
of unforgeability. In fact, only a few signature schemes having this property
achieve our notion of unforgeability under re-randomizable keys. We demon-
strate this fact by showing concrete attacks against some well known unforgeable
signature schemes that have re-randomizable keys. In particular, we show that
the signature scheme of Boneh and Boyen [6] and the one of Camenisch and
Lysyanskaya [15] have re-randomizable keys, but are insecure with respect to
our stronger security notion. We stress that these attacks have no implications
on the original security proof, but that they cannot be used as an instantiation.
On the positive side, we prove that Schnorr’s signature scheme [41,42] has re-
randomizable keys and fulfills our security notion. It is well known that Schnorr’s
signature scheme [41,42] is one of the most efficient signature schemes based on
the discrete logarithm assumption. Moreover, we also propose an instantiation of

2



signature schemes with re-randomizable keys in the standard model by slightly
modifying the signature scheme of Hofheinz and Kiltz [31,32].

Apart from their usefulness in constructing highly efficient sanitizable signa-
tures, this primitive may also be of independent interest. A second possible appli-
cation of signature schemes with re-randomizable keys are stealth addresses [27]
in Bitcoin or other cryptocurrencies. On a very high level, Bitcoin replaces bank
accounts with keys of a signature scheme. Money transactions in Bitcoin transfer
money from one public key to another and are only valid if they are signed with
the secret key of the payer. All transactions are logged in a public log data struc-
ture, the block chain, which can be used to verify the validity of new transactions
as well as to track money flow in Bitcoin. Our signatures with re-randomizable
keys provide a conceptually very simple solution for so called stealth addresses.
Consider a Bitcoin donation address on a website to support the host of the web-
site or donate money to the website for a good cause. A donor may be unwilling
to donate money if he can be linked to the website or other donors by the block
chain. Using signatures with re-randomizable keys a donor can take the dona-
tion address, re-randomize it, and pay the money to the re-randomized address
and transmit the re-randomization factor to the recipient through a non-public
channel, such as email. The recipient can use the given re-randomization fac-
tor to re-randomize his corresponding secret key to further transfer the received
money. Such addresses that are related in some invisible way to the recipient
are called stealth addresses. For a more detailed treatment of Bitcoin and the
existing stealth address mechanism see [27].

Construction of Unlinkable Sanitizable Signature Schemes. Our construction is
based on signature schemes that have perfectly re-randomizable keys. To sign
a message m, the signer first splits the message into the parts that cannot be
modified by the sanitizer and those that may be changed. Subsequently, the
signer authenticates the entire messages using a signature scheme with re-ran-
domized keys. However, the signer cannot sign this part directly as this would
reveal the identity of the signer. Instead, the signer chooses a randomness ρ, re-
randomizes their key-pair, and then proves, in zero-knowledge, that the derived
public key is a re-randomization of either the signer’s or the sanitizer’s key.

Sanitizing a message follows the same idea: the sanitizer modifies the message
and signs it with a re-randomized version of their key pair and appends a zero-
knowledge proof for the same language.

To turn this idea into an efficient scheme, we propose an efficient sigma proto-
col tailored to our problem that we then convert via the Fiat-Shamir transforma-
tion [24] into an efficient non-interactive zero-knowledge proof. The main obser-
vation is that our zero-knowledge proofs prove only simple statements about the
keys and not about encrypted signatures that verify under either the signer or
the sanitizers public-key. Since the corresponding language is much simpler than
this standard “encrypt-and-proof” approach, it has much shorter statements and
thus the resulting zero-knowledge proofs are significantly more efficient.

3



1.2 Evaluation and Comparison

To demonstrate the efficiency of our approach, we compare both the computa-
tional and the storage complexity of our construction to the one of Brzuska et
al. [12], where we use the currently most efficient instantiations of the underly-
ing (group) signature scheme. Somewhat surprisingly, only a few group signature
schemes have the property that the user keys can be generated independently of
and, in particular, before the group manager’s key — a property that is required
by [12]. This property originates from the definitions of Bellare, Micciancio, and
Warinschi [4] and only very few group signature schemes, such as [30,29], can be
adapted to have this property and at the same time fulfill all security require-
ments needed in [12]. In most cases the group member’s keys depend on some
information published by the group manager. Finally, we instantiate the signa-
ture scheme in [12] using a deterministic version of Schnorr’s signature scheme.
Thus, in our comparison shown in Table 1, we instantiate [12] with the group

KGensig KGensan Sign Sanit Verify Proof Judge
This paper 7E 1E 15E 14E 17E 23E 6E
[12] using [30] 1E 1E 194E+2P 186E+1P 207E+62P 14E+1P 1E+2P
[12] using [29] 1E 4E 2831E 2814E 2011E 18E 2E

Table 1. Comparison of the dominant operations in our construction instantiated
as described in Section 5 with the construction of Brzuska et al. [12] instantiated
with Schnorr signatures and the group signature schemes of Groth [30] and Furukawa
and Yonezawa [29] respectively. E and P stand for group exponentiations and pairing
evaluations respectively.

signature schemes of Groth [30] and of Furukawa and Yonezawa [29], which are
to the best of our knowledge the two most efficient group signature schemes
that can be adapted to allow an instantiation of [12]. Our comparison shows

pksig sksig pksan sksan σ π

This paper 7 14 1 1 14 4
[12] using [30] 1 1 1 1 69 1
[12] using [29] 1 1 5 1 1620 3

Table 2. Comparison of the key, signature, and proof sizes in our construction instan-
tiated as described in Section 5 with the construction of Brzuska et al. [12] instantiated
with Schnorr signatures and the group signature schemes of Groth [30] and Furukawa
and Yonezawa [29] respectively. Here pksig, sksig, pksan, and sksan refer to the signer’s
and sanitizer’s public and secret keys, while σ refers to the signature, and π refers to
the proof that is used to determine accountability. The sizes are measured in group
elements. For the sake of simplicity we do not distinguish between elements of different
groups such as Zq and G. This simplification slightly favors [12] using [30], since group
signatures in this scheme consist exclusively of G-elements.

4



that in the most important algorithms, i.e., signing, sanitizing, and verification,
our construction is at least one order of magnitude faster than both instantia-
tions of [12]. Similarly, Table 2 provides an overview of the storage complexity
of the different constructions. Although our keys are slightly larger than the
other instances, it also shows that our signatures are significantly smaller than
the ones of the other instances. Note that both the number of exponentiations
and the number of group elements for Furukawa and Yonezawa’s group signa-
ture scheme depend linearly on the security parameter. In our comparison, the
scheme is instantiated with 100 bit security.

Thus, it is easy to see that our solutions is the first scheme that is efficient
enough to be used in practice today.

1.3 Related Work

Ateniese et al. [1] first introduced sanitizable signatures and gave an informal de-
scription of the following properties: Unforgeability ensures that only the honest
signer and sanitizer can create valid signatures. Immutability says that the (ma-
licious) sanitizer can only modify designated parts of the message. Transparency
guarantees that signatures computed by the signer and the sanitizer are indis-
tinguishable. Accountability demands that, with the help of the signer, a proof of
authorship can be generated, such that neither the malicious signer nor the ma-
licious sanitizer can deny authorship of the message. These properties were later
formalized by Brzuska et al. [11] and the Unlinkability property was introduced
by Brzuska et al. in [12]. Later, in [13], Brzuska et al. introduce the notion of
non-interactive public accountability, which allows a third party, without help
from the signer, to determine, whether a message originates from the signer or
the sanitizer. In [14], the same authors provide a slightly stronger unlinkability
notion and an instantiation that has non-interactive public accountability and
achieves their new unlinkability notion. However, non-interactive accountability
and transparency are mutually exclusive. That is, no scheme can fulfill both
properties at the same time. In this work we focus on schemes that have (in-
teractive) accountability and transparency. Another line of research initiated by
Klonowski and Lauks [35] and continued by Canard and Jambert [16] consid-
ers different methods for limiting the allowed operations of the sanitizer. That
is, they show how to limit the set of possible modifications on one single block
and how to enforce the same modifications on different message blocks. In [17],
Canard et al. extend sanitizable signatures to the setting with multiple signers
and sanitizers. Recently, Derler and Slamanig suggested a security notion that
is stronger than privacy but weaker than unlinkability [23].

Other closely related types of malleable signature schemes, such as homomor-
phic signatures [34,8,33,2,28,18] or redactable signatures [43,34,38,10,19], where
parts of the signed message can be removed, are closely related to sanitizable sig-
natures, but aim to solve related but different problems, have different security
notions, and are not directly applicable to solve the problem of efficient un-
linkable sanitizable signatures. In [5] Boldyreva et al. deal with proxy signature
schemes for delegating signing rights. In such signature schemes a designator

5



can delegate signing rights to a proxy signer, who can then sign messages on
behalf of the designator. However, in such a scheme the proxy signatures are
publicly distinguishable from signatures created by the designator. This would
break the transparency property of sanitizable signature schemes. Policy-based
signatures [3] allows a signer to delegate signing rights in connection with a
policy that specifies, which messages can be signed with the delegated signing
key. In addition, they require that they delegation policy shall remain hidden.
In a similar vein to [3] in [9] the authors explore the possibilities of delegating
signing keys for arbitrary functions. That is, using the delegated signing key one
can sign functions of the message that correspond to the key. These works show
theoretical solutions to the discussed problems, but are too slow for practical
use due to the cryptographic tools they use.

2 Sanitizable Signatures

Sanitizable signature schemes allow the delegation of signing capabilities to a
designated third party, called the sanitizer. These delegation capabilities are re-
alized by letting the signer “attach” a description of the admissible modifications
Adm for this particular message and sanitizer. The sanitizer may then change
the message according to some modification Mod and update the signature us-
ing their private key. More formally, the signer holds a key pair (sksig, pksig) and
signs a message m and the description of the admissible modifications Adm for
some sanitizer pksan with its private key sksig. The sanitizer, having a matching
private key sksan, can update the message according to some modification Mod
and compute a signature using his secret key sksan. In case of a dispute about the
origin of a message-signature pair, the signer can compute a proof π (using an
algorithm Proof) from previously signed messages that proves that a signature
has been created by the sanitizer. The verification of this proof is done by an
algorithm Judge (that only decides the origin of a valid message-signature pair
in question; for invalid pairs such decisions are in general impossible).

Admissible Modifications. Following [11,12] closely, we assume that Adm and
Mod are (descriptions of) efficient deterministic algorithms such that Mod maps
any messagem to the modified messagem′ = Mod(m), and Adm(Mod) ∈ {0, 1}
indicates if the modification is admissible and matches Adm, in which case
Adm(Mod) = 1. By FixAdm we denote an efficient deterministic algorithm
that is uniquely determined by Adm and which maps m to the immutable
message part FixAdm(m), e.g., for block-divided messages FixAdm(m) is the
concatenation of all blocks not appearing in Adm. We require that admissible
modifications leave the fixed part of a message unchanged, i.e., FixAdm(m) =
FixAdm(Mod(m)) for all m ∈ {0, 1}∗ and all Mod with Adm(Mod) = 1. Anal-
ogously, to avoid choices like FixAdm having empty output, we also require that
the fixed part must be “maximal” given Adm, i.e., FixAdm(m′) 6= FixAdm(m)
for m′ /∈ {Mod(m) |Mod with Adm(Mod) = 1}.

6



2.1 Definition of Sanitizable Signatures
The following definition of sanitizable signature schemes is taken in verbatim
from [11,12].
Definition 1 (Sanitizable Signature Scheme). A
sanitizable signature scheme SanS = (KGensig,KGensan,Sign,Sanit,Verify,Proof,
Judge) consists of seven algorithms:
Key Generation. There are two key generation algorithms, one for the signer
and one for the sanitizer. Both create a pair of keys, a private and the corre-
sponding public key:

(sksig, pksig)← KGensig(1κ) and (sksan, pksan)← KGensan(1κ).

Signing. The signing algorithm takes as input a message m ∈ {0, 1}∗, a signer
secret key sksig, a sanitizer public key pksan, as well as a description Adm of
the admissible modifications to m by the sanitizer and outputs a signature σ. We
assume that Adm can be recovered from any signature:

σ ← Sign(m, sksig, pksan,Adm).

Sanitizing. The sanitizing algorithm takes as input a message m ∈ {0, 1}∗, a
description Mod of the desired modifications to m, a signature σ, the signer’s
public key pksig, and a sanitizer secret key sksan. It modifies the message m
according to the modification instruction Mod and outputs a new signature σ′
for the modified message m′ = Mod(m) or possibly ⊥ in case of an error:

{(m′, σ′),⊥} ← Sanit(m,Mod, σ, pksig, sksan).

Verification. The verification algorithm takes as input a message m, a can-
didate signature σ, a signer public key pksig, as well as a sanitizer public key
pksan and outputs a bit b:

b← Verify(m,σ, pksig, pksan).

Proof. The proof algorithm takes as input a signer secret key sksig, a message
m, a signature σ, and a sanitizer public key pksan and outputs a proof π:

π ← Proof(sksig,m, σ, pksan).

Judge. The judge algorithm takes as input a message m, a signature σ, signer
and sanitizer public keys pksig, pksan, and proof π. It outputs a decision d ∈
{Sign, San} indicating whether the message-signature pair was created by the
signer or the sanitizer:

d← Judge(m,σ, pksig, pksan, π).

For a sanitizable signature scheme the usual correctness properties should hold,
saying that genuinely signed or sanitized messages are accepted and that a gen-
uinely created proof by the signer leads the judge to decide in favor of the signer.
For a formal approach to correctness see [11].

7



2.2 Security of Sanitizable Signatures
In this section we recall the security notions of sanitizable signatures given by
Brzuska et al. [11,12] and we follow their description closely. The authors de-
fined unforgeability, privacy, immutability, accountability, transparency, and un-
linkability and showed that signer and sanitizer accountability together implies
unforgeability and that unlinkability implies privacy. Therefore, we only focus
on the necessary definitions and omit unforgeability and privacy.

Immutability. Informally, this property says that a malicious sanitizer cannot
change inadmissible blocks. This is formalized in a model where the malicious
sanitizer A interacts with the signer to obtain signatures σi for messages mi,
descriptions Admi and keys pksan,i of its choice. Eventually, the attacker stops,
outputting a valid pair (pk∗san,m∗, σ∗) such that message m∗ is not a “legiti-
mate” transformation of one of the mi’s under the same key pk∗san = pksan,i.
The latter is formalized by requiring that for each query pk∗san 6= pksan,i or
m∗ /∈ {Mod(mi) |Mod with Admi(Mod) = 1} for the value Admi in σi. This
requirement enforces that for block-divided messages m∗ and mi differ in at
least one inadmissible block. Observe that this definition covers also the case
where the adversary interact with several sanitizers simultaneously, because it
can query the signer for several sanitizer keys pksan,i.
Definition 2 (Immutability). A sanitizable signature scheme SanS is said to
be immutable if for all PPT adversaries A the probability that the experiment
ImmutSanS

A (κ) evaluates to 1 is negligible (in κ), where
Experiment ImmutSanS

A (κ)
(sksig, pksig)← KGensig(1κ)
(pk∗san,m∗, σ∗)← ASign(·,sksig,·,·),Proof(sksig,·,·,·)(pksig)

letting (mi,Admi, pksan,i) and σi denote the
queries and answers to and from oracle Sign.

Output 1 if Verify(m∗, σ∗, pksig, pk∗san) = 1 and for all i the following holds:
pk∗san 6= pksan,i or m∗ /∈ {Mod(mi) |Mod with Admi(Mod) = 1}

Else output 0.

Accountability. This property demands that the origin of a (possibly sanitized)
signature should be undeniable. We distinguish between sanitizer-accountability
and signer-accountability and formalize each security property in the following.
Signer-accountability says that, if a message and its signature have not been
sanitized, then even a malicious signer should not be able to make the judge
accuse the sanitizer.

In the sanitizer-accountability game let ASanit be an efficient adversary play-
ing the role of the malicious sanitizer. Adversary ASanit has access to a Sign and
Proof oracle and it succeeds if it outputs a valid message signature pair such
that m∗, σ∗, together with a key pk∗san (with (pk∗san,m∗) such that the output
is different from pairs (pksan,i,mi) previously queried to the Sign oracle). More-
over, it is required that the proof produced by the signer via Proof still leads the
judge to decide “Sign”, i.e., that the signature has been created by the signer.

8



Definition 3 (Sanitizer-Accountability). A sanitizable signature scheme
SanS is sanitizer-accountable if for all PPT adversaries A the probability that
the experiment San-AccSanS

A (κ) evaluates to 1 is negligible (in κ), where

Experiment San-AccSanS
A (κ)

(sksig, pksig)← KGensig(1κ)

(pk∗san,m∗, σ∗)← A
Sign(·,sksig,·,·),
Proof(sksig,·,·,·)(pksig)

letting (mi,Admi, pksan,i) and σi
denote the queries and answers to
and from oracle Sign

π ← Proof(sksig,m∗, σ∗, pk∗san)
Output 1 if for all i the following holds:

(pk∗san,m∗) 6= (pksan,i,mi) and
Verify(m∗, σ∗, pksig, pk∗san) = 1 and
Judge(m∗, σ∗, pksig, pk∗san, π) 6= San

In the signer-accountability game a malicious signer ASign gets a public sanitizing
key pksan as input and has access to a sanitizing oracle, which takes as input tu-
ples (mi,Modi, σi, pksig,i) and returns (m′i, σ′i). Eventually, the adversary ASign

outputs a tuple (pk∗sig,m∗, σ∗, π∗) and is considered succesful if Judge accuses
the sanitizer for the new key-message pair pk∗sig,m∗ with a valid signature σ∗.

Definition 4 (Signer-Accountability). A sanitizable signature scheme SanS
is said to be signer-accountable if for all PPT adversaries A the probability
that the experiment Sig-AccSanS

A (κ) evaluates to 1 is negligible (in κ), where

Experiment Sig-AccSanS
A (κ)

(sksan, pksan)← KGensan(1n)
(pk∗sig,m∗, σ∗, π∗)← ASanit(·,·,·,·,sksan)(pksan)

letting (mi,Modi, σi, pksig,i) and
(m′i, σ′i) denote the queries and
answers to and from oracle Sanit.

Output 1 if for all i the following holds:
(pk∗sig,m∗) 6= (pksig,i,m′i) and
Verify(m∗, σ∗, pk∗sig, pksan) = 1 and
Judge(m∗, σ∗, pk∗sig, pksan, π∗) 6= Sign

else output 0.

Transparency. Informally, this property says that one cannot decide whether a
signature has been sanitized or not. Formally, this is defined in a game where an
adversary A has access to Sign, Sanit, and Proof oracles with which the adversary
can create signatures for (sanitized) messages and learn proofs. In addition, A
gets access to a Sanit/Sign box which contains a secret random bit b ∈ {0, 1} and
which, on input a message m, a modification information Mod and a description
Adm behaves as follows:

9



– for b = 0 runs the signer algorithm to create σ ← Sign(m, sksig, pksig,Adm),
then runs the sanitizer algorithm and returns the sanitized message m′ with
the new signature σ′, and

– for b = 1 acts as in the case b = 0 but also signs m′ from scratch with the
signing algorithm to create a signature σ′ and returns the pair (m′, σ′).

Adversary A eventually produces an output a, the guess for b. A sanitizable
signature is now transparent if for all efficient algorithms A the probability for
a right guess a = b in the above game is negligibly close to 1

2 . Below we also
define a relaxed version called proof-restricted transparency.

Definition 5 ((Proof-Restricted) Transparency). A sanitizable signature
scheme SanS is said to be proof-restrictedly transparent if for all PPT adver-
saries A the probability that the experiment TransSanS

A (κ) evaluates to 1 is negli-
gibly bigger than 1/2 (in κ), where

Experiment TransSanS
A (κ)

(sksig, pksig)← KGensig(1κ)
(sksan, pksan)← KGensan(1κ)
b← {0, 1}

a← A
Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),
Proof(sksig,·,·,·),Sanit/Sign(·,·,·) (pksig, pksan)

letting MSanit/Sign and MProof denote
the sets of messages output by the Sanit/Sign
and queried to the Proof oracle respectively.

Output 1 if
(
a = b and MSanit/Sign ∩MProof = ∅

)
Else output 0

Unlinkability. This security notion demands that it is not feasible to use the sig-
natures to identify sanitized message-signature pairs originating from the same
source. This should even hold if the adversary itself provides the two source
message-signature pairs and modifications of which one is sanitized. It is required
that the two modifications yield the same sanitized message, because otherwise
predicting the source is easy, of course. This, however, is beyond the scope of
signature schemes: the scheme should only prevent that signatures can be used
to link data. In the formalization of [12], the adversary is given access to a sign-
ing oracle and a sanitizer oracle (and a proof oracle since this step depends on
the signer’s secret key and may leak valuable information). The adversary is also
allowed to query a left-or-right oracle LoRSanit which is initialized with a secret
random bit b and keys pksig, sksan. The adversary may query this oracle on tuples
((m0,Mod0, σ0), (m1,Mod1, σ1)) and returns Sanit(mb,Modb, σb, pksig, sksan)
if Verify(mi, σi, pksig, pksan) = 1 for i = 0, 1, Adm0 = Adm1 and if the modi-
fications map to the same message, i.e., Adm0(Mod0) = 1, Adm1(Mod1) = 1
and Mod0(m0) = Mod1(m1). Otherwise, the oracle returns ⊥. The adversary
should eventually predict the bit b significantly better than with the guessing
probability of 1

2 .

10



Definition 6 (Unlinkability). A sanitizable signature scheme SanS is unlink-
able if for all PPT adversaries A the probability that the experiment LinkSanS

A (κ)
evaluates to 1 is negligibly bigger than 1/2 (in κ), where
Experiment LinkSanS

A (κ)
(sksig, pksig)← KGensig(1κ)
(sksan, pksan)← KGensan(1κ)
b← {0, 1}

a← A
Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),

Proof(sksig,·,·,·),LoRSanit(·,·) (pksig, pksan)
if a = b then output 1, else output 0.

3 Signatures Schemes With Re-Randomizable Keys

In this section, we introduce signature schemes that have re-randomizable keys
and which serve as the main building block for our construction. Signature
schemes with this property have the advantage that one can re-randomize the
key-pair (sk, pk) to a key-pair (sk′, pk′) and sign a message m with a seemingly
unrelated key. Jumping ahead, this property allows us to sign messages with
a fresh key and prove, in zero-knowledge, the origin of the key. For one of the
signature schemes we require bilinear maps, which are defined as follows. Let
e : G1 ×G2 → Gt be an efficient, non-degenerate bilinear map, for system-wide
available groups, where g1 and g2 are generators of G1 and G2, respectively.

3.1 Defining Signature Schemes With Re-randomizable Keys

To define this property and the corresponding security notion formally, we denote
by Σ = (SSetup,SGen,SSign,SVerify) a standard digital signature scheme, where
pp ← SSetup(1κ), (sk, pk) ← SGen(1κ), σ ← SSign(sk,m), b ← SVerify(pk,m, σ)
are the standard algorithms of a digital signature scheme.
Definition 7 (Signatures with Perfectly Re-Randomizable Keys). A
signature scheme Σ = (SSetup,SGen,SSign,SVerify) has perfectly re-randomiz-
able keys if there exist two PPT algorithms (RandSK,RandPK) and a randomness
space χ such that:
RandSK(sk, ρ): The secret key re-randomization algorithm takes as input a secret

key sk and a randomness ρ ∈ χ and outputs a new secret key sk′.
RandPK(pk, ρ): The public key re-randomization algorithm takes as input a pub-

lic key pk and a randomness ρ ∈ χ and outputs a new public key pk′.
Correctness The scheme is correct if and only if all of the following holds:
1. For all κ ∈ N, all key-pairs (sk, pk) ← SGen(1κ), all messages m ∈ {0, 1}∗,

and all signatures σ ← SSign(sk,m), it holds that SVerify(pk,m, σ) = 1.
2. For all κ ∈ N, all key-pairs (sk, pk) ← SGen(1κ), all randomness ρ ∈ χ,

all messages m ∈ {0, 1}∗, and σ ← SSign(RandSK(sk, ρ),m), it holds that
SVerify(RandPK(pk, ρ),m, σ) = 1.

11



3. For all key pairs (sk, pk), and a uniformly chosen randomness ρ ∈ χ, the dis-
tribution of (sk′, pk′) and (sk′′, pk′′) is identical, where pk′ ← RandPK(pk, ρ),
sk′ ← RandSK(sk, ρ), and (sk′′, pk′′)← SGen(1κ)

3.2 Security of Signature Schemes With Re-randomizable Keys

The security of signature scheme with re-randomizable keys is defined analo-
gously to the unforgeability of regular signature schemes, but allows the adver-
sary to learn message/signature pairs under re-randomized keys. This should
even hold if the randomness to re-randomize the keys is chosen by the attacker.
In this definition, the adversary has access to two oracles. The first one, denoted
by O1 is a regular signing oracle. The second one, denoted by O2 is an oracle
that takes as input a message m and some randomness ρ. It then re-randomizes
the private key according to ρ and signs the message using this key.

Definition 8 (Unforgeability under Re-randomized Keys). A signature
scheme with perfectly re-randomizable keys Σ = (SGen,SSign,SVerify,RandSK,
RandPK) is unforgeable under re-randomized keys (UFRK) if for all PPT adver-
saries A the probability that the experiment UFRKΣA(κ) evaluates to 1 is negligible
(in κ), where
Experiment UFRKΣA(κ) :

(sk, pk)← SGen(1κ)
Q := ∅
(m∗, σ∗, ρ∗)← AO1(sk,·),O2(sk,·,·)(pk)
Output 1 if one of the two conditions is fulfilled
1. If SVerify(pk,m∗, σ∗) = 1

and m∗ 6∈ Q
2. If SVerify(RandPK(pk, ρ∗),m∗, σ∗) = 1

and m∗ 6∈ Q
else output 0

O1(sk,m) :
Q := Q ∪ {m}
σ ← SSign(sk,m)
output σ

O2(sk,m, ρ) :
Q := Q ∪ {m}
sk′ ← RandSK(sk, ρ)
σ ← SSign(sk′,m)
output σ

Given this definition of unforgeability, one can easily obtain the “standard” no-
tion of existential unforgeability by giving the adversary only access to O1 and
only checking the first condition.

Definition 9 (Existential Unforgeability). A signature scheme with per-
fectly re-randomizable keys Σ = (SGen,SSign,SVerify,RandSK,RandPK) is said
to be existentially unforgeable under chosen message attacks (EUF) if for all
PPT adversaries A the probability that the experiment EUFΣA(κ) evaluates to 1
is negligible (in κ), where EUFΣA(κ) is defined as UFRKΣA(κ), but the adversary
only gets access to O1 and wins if the first condition is fulfilled.

For our construction, we also need signature schemes that are strongly unforge-
able, meaning that it is computationally hard to compute a new signature σ∗ on
a message m, i.e., the adversary is allowed to submit m to the oracle and learn
a signature σ and wins the game if σ∗ is valid but different from σ.

12



Definition 10 (Strong Existential Unforgeability). A signature scheme
with perfectly re-randomizable keys Σ = (SGen,SSign,SVerify,RandSK,RandPK)
is strongly existentially unforgeable under chosen message attacks (s-EUF) if
for all PPT adversaries A the probability that the experiment s-EUFΣA(κ) eval-
uates to 1 is negligible (in κ), where s-EUFΣA(κ) is defined as UFRKΣA(κ), but
the adversary only gets access to O1 and O1 maintains Q := Q ∪ {m,σ}. The
adversary wins only if the following condition is fulfilled: SVerify(pk,m∗, σ∗) =
1 and (m∗, σ∗) 6∈ Q.

3.3 Counter Examples

In this section, we show that unforgeability under re-randomizable keys (Defi-
nition 8) does not trivially follow from regular unforgeability (Definition 9). In
fact, very few standard model signatures, that have re-randomizable keys, are
unforgeable under re-randomizable keys. We demonstrate this by giving concrete
attacks against some well known schemes, such as the Boneh and Boyen [7] and
Camenisch and Lysyanskaya [15] signature schemes. We remark that these at-
tacks have no implications on the original security proof and that our attacks
are outside of the regular unforgeability model.

Boneh-Boyen Signature Scheme The scheme of Boneh and Boyen [7] works
in a bilinear groups setting and is existentially unforgeable under the q-SDH
assumption. The scheme works as follows: The secret key consists of x, y ∈ Z∗q
and the public key consists of the corresponding G2 elements u := gx2 and v := gy2 .
To sign a message m ∈ Z∗q , the signer chooses a random r ← Z∗q , computes
s := g

1/(x+m+yr)
1 , and outputs the signature σ = (r, s). To verify that a signature

is valid, the verifier checks that e(s, u · gm2 · vr) = e(g1, g2) holds. The keys of the
scheme can be re-randomized additively, i.e., given randomness (ρ1, ρ2) ∈ Z2

q,
secret keys are randomized as (x′, y′) := (x + ρ1, y + ρ2) and public keys are
randomized as (u′, v′) := (u · gρ1

2 , v · gρ2
2 ).

Even though this scheme is existentially unforgeable under the q-SDH as-
sumption and has perfectly re-randomizable keys, it is forgeable under re-ran-
domized keys. The attack is as follows: The adversary A on input the public key
(u, v) chooses a random message m ∈ Z∗q as well as a random value ρ1 ∈ Z∗q . It
then queries (m, (ρ1, 0)) to its signing oracle receiving back a signature σ = (r, s).
Then, it computes m′ := m+ ρ1 and outputs σ,m′, (0, 0) as a forgery. It is easy
to verify, that the verification equation actually holds for the output of A:

e(s, u · gm
′

2 · vr) = e(g1, g2)
⇔ e(s, gx+m+ρ1+yr

2 ) = e(g1, g2)

⇔ e(g
1

(x+ρ1)+m+yr
1 , gx+ρ1+m+yr

2 ) = e(g1, g2)

⇔ e(g1, g2)
x+ρ1+m+yr
x+ρ1+m+yr = e(g1, g2)

⇔ e(g1, g2) = e(g1, g2)

13



Furthermore, the adversary is efficient and the only message queried to the
signing oracle is m, and m′ 6= m. Therefore, it follows that A breaks the un-
forgeability under re-randomizable keys with probability 1.

Camenisch-Lysyanskaya Signature Scheme The signature scheme of Ca-
menisch and Lysyanskaya [15] works in a symmetric bilinear groups setting and
is existentially unforgeable under the LRSW assumption. The scheme works as
follows: The secret key consists of x, y ∈ Zq and the public key consists of the
corresponding group elements X := gx and Y := gy. To sign a message m ∈ Zq,
the signer chooses a random a ← G, computes b := ay and c := ax+mxy, and
outputs the signature σ = (a, b, c). To verify that a signature is valid, the veri-
fier checks that e(a, Y ) = e(g, b) and e(X, a) · e(X, b)m = e(g, c) hold. The keys
of the scheme can be re-randomized multiplicatively1. I.e., given randomness
(ρ1, ρ2) ∈ Z2

q, secret keys are randomized as (x′, y′) := (x · ρ1, y · ρ2) and public
keys are randomized as (X ′, Y ′) := (Xρ1 , Y ρ2).

This scheme is also existentially unforgeable and has perfectly re-random-
izable keys. Nevertheless it also is forgeable under re-randomized keys and the
corresponding attack works as follows: The adversary A on input the public
key (X,Y ) chooses a random message m ∈ Z∗q as well as a random value ρ2 ∈
Z∗q\{1}. It then queries (m, (1, ρ2)) to its signing oracle receiving back a signature
σ = (a, b, c). It it finally computes m′ := m · ρ2 and b′ := b(ρ−1

2 ) and outputs
(a, b′, c),m′, (1, 1) as a forgery. It is easy to verify, that the verification equation
actually holds for the output of A. For the first check equation we have:

e(a, Y ) = e(g, b′)

⇔ e(a, gy) = e(g, b(ρ−1
2 ))

⇔ e(gy, a) = e(g, a(yρ2)·ρ−1
2 )

⇔ e(gy, a) = e(g, ay)
⇔ e(g, a)y = e(g, a)y.

For the second verification equation we have:

e(X, a) · e(X, b′)m
′

= e(g, c)

⇔ e(gx, a) · e(gx, bρ
−1
2 )m·ρ2 = e(g, ax+mxyρ2)

⇔ e(g, a)x · e(gx, ayρ2ρ
−1
2 )mρ2 = e(g, a)x+mxyρ2

⇔ e(g, a)x · e(g, a)mxyρ2 = e(g, a)x+mxyρ2

⇔ e(g, a)x+mxyρ2 = e(g, a)x+mxyρ2 .

Furthermore, the adversary is efficient and the only message queried to the
signing oracle is m, and m′ 6= m, since ρ2 6= 1. Therefore, it follows that A wins
the unforgeability game with re-randomizable keys with probability 1.
1 The keys can also be re-randomized additively, however in that case neither a proof

of security nor an attack are apparent.

14



3.4 Instantiations

In this section, we show that our security notion is achievable in the random
oracle and the standard model. In the random oracle model, we prove that
Schnorr’s signature scheme [41,42] is unforgeable under re-randomized keys and
in the standard model we show that a slightly modified version of the signature
scheme due to Hofheinz and Kiltz [31,32] satisfies our notion.

Random Oracle Model We show that Schnorr’s signature scheme [41,42] is
unforgeable under re-randomized keys. Our proof technique relies on an idea
that was previously observed by Fischlin and Fleischhacker [25] in the context
of an impossibility result. The core of this technique, that we call randomness
switching technique, allows moving a signature from one public key to another
one knowing only the difference between the two corresponding secret keys.

Definition 11 (Schnorr Signature Scheme). Let G be a cyclic group of
prime order q with generator g and let H : {0, 1}∗ → Zq be a hash function.
The Schnorr signature scheme SSS, working over G, is defined as follows:
SGen(1κ): Pick sk← Zq at random, compute pk := gsk, and output (sk, pk).

SSign(sk,m): Pick r ← Zq at random and compute R := gr, compute c :=
H(R,m) and y := r + sk · c mod q. Output σ := (c, y).

SVerify(pk,m, σ): Parse σ as (c, y). If c = H(pk−cgy,m), then output 1, other-
wise output 0.

RandSK(sk, ρ): Compute sk′ := sk + ρ mod q and output sk′.

RandPK(pk, ρ): Compute pk′ := pk · gρ and output pk′.

Obviously all three correctness conditions hold. It remains to show that SSS is
unforgeable under re-randomized keys.

Theorem 1 (Unforgeability of Schnorr Signatures Under Re-Random-
ized Keys). The signature scheme SSS (Definition 11) is unforgeable under
re-randomized keys (Definition 8) in the random oracle model if the discrete
logarithm problem in G is hard.

Proof. Assume towards contradiction that there exists an efficient adversary
A against the unforgeability under re-randomized keys. Then, we construct an
adversary B against the existential unforgeability of SSS, which runs A as a
black-box and simulates both oracles with its own signing oracle. More pre-
cisely, B answers all queries to O1(sk,m) with its own signing oracle and it
simulates O2(sk, ρ,m) by first querying its own signing oracle on m, obtain-
ing a signature (c, y), and then adapting the signatures by adding the value
ρ · c to y. Eventually, the adversary A outputs a forgery (σ∗,m∗, ρ∗) with
σ∗ = (c, y). The reduction B adapts the signature in order to serve as a forgery

15



under the key pk by subtracting ρ∗ · c from y. A formal description of the ad-
versary and the simulation of the oracle O2(sk, ρ,m) is given in the following:

BO1(sk,·)(pk) :

(σ∗,m∗, ρ∗)← AO1(sk,·),O2(sk,·,·)(pk)
Parse σ∗ as (c, y)
y′ := y − ρ∗c
output (c, y′),m∗

O2(sk, ρ,m) :
(c, y)← O1(sk,m)
y′ := y + ρc

output (c, y′)

For the analysis, let us assume that A’s success probability in the experiment
UFRKSSS

A is greater than 1/poly(κ). It is easy to see that B is efficient and that
the simulation of A’s signing oracle O1 is perfect. Now, we show that B also
provides a perfect simulation of the oracle O2. The signature under pk received
by O2 consists of c and y. The c value is independent of the signing key, therefore
only the y value needs to be adapted. The adapted value is computed as

y′ = y + ρc = r + sk · c+ ρc = r + (sk + ρ) · c.

Obviously (c, y′) is therefore a signature on m under pk · gρ with the same
randomness as (c, y). It follows that the answers to signing queries are distributed
exactly as in the UFRKSSS

A (κ) experiment.
Similarly the output of B is computed from the output of A. Whenever A

outputs a valid signature, message, randomness triple (σ∗,m∗, ρ∗), we have that
σ∗ = (c, y) where c = H(gr,m) and y = r + (sk + ρ∗) · c for some r ∈ Zq. We
therefore have

y′ := y − ρ∗c = r + (sk + ρ∗) · c− ρ∗c = r + sk · c

and thus (c, y′) is a valid signature on m under pk. Further, in answering signing
queries for A, the adversary B queries the exact same messages as A and there-
fore whenever A wins in the UFRKSSS

A (κ) experiment, B wins in the EUFSSS
A (κ)

experiment. Combining this with the well known proof of existential unforgeabil-
ity of Schnorr signatures by Pointcheval and Stern [39,40] rules out the existence
of A under the discrete logarithm assumption in the random oracle model.

Standard Model In the following we show that a modified version of the
signature schemes due to Hofheinz and Kiltz [31,32] is unforgeable under re-
randomized keys. The original construction of Hofheinz and Kiltz works on type
1 and type 2 pairings and the element s in their scheme is a random bit string.
However, in our case we choose s as a random element from Zq. This modifi-
cation slightly increases the signature’s size, but does not influence the original
functionality or security proof. To prove the security formally, we adapt the
randomness switching technique to this setting, which allows us to reduce the
unforgeability under re-randomized keys to standard existential unforgeability.

16



The scheme of Hofheinz and Kiltz requires a programmable hash function [31,32],
but since security properties of programmable hash functions are not relevant
to our proofs, we omit them here and refer the interested reader to [31,32].

Definition 12 (Programmable Hash Function [31,32]). A programmable
hash function (Gen,Eval) consists of two algorithms:
k ← Gen(1κ): The key generation algorithm takes as input the security parame-

ter 1κ and generates a public key k.
y ← Eval(k,m): The deterministic evaluation algorithm takes as input a key k

and a message m ∈ {0, 1}` and outputs a hash value y.

Given the definition of programmable hash functions, we define the slightly mod-
ified signature scheme due to Hofheinz Kiltz and define the re-randomization
algorithms.

Definition 13 (Hofheinz Kiltz Signature Scheme [31,32]). Let PHF =
(Gen,Eval) be a programmable hash function with domain {0, 1}∗ and range G1.
The signature scheme HKSS is defined as follows:
SSetup(1κ): Generate a key for PHF as k ← Gen(1κ) and output pp = k.

SGen(1κ): Pick sk← Zq at random, compute pk := gsk
2 , and output (sk, pk).

SSign(sk,m): Parse k from pp. Pick s← Zq uniformly at random and compute
y := Eval(k,m)

1
sk+s . Output σ := (s, y).

SVerify(pk,m, σ): Parse σ as (s, y). If e(y, pk·gs2) = e(Eval(k,m), g2) then output
1, otherwise output 0.

RandSK(sk, ρ): Compute sk′ := sk + ρ mod q and output sk′.

RandPK(pk, ρ): Compute pk′ := pk · gρ2 and output pk′.

Obviously all three correctness conditions hold. It remains to show that HKSS
is unforgeable under re-randomized keys.

Theorem 2 (Unforgeability of HKSS Under re-randomized Keys). The
signature scheme HKSS as defined in Definition 13 is unforgeable under re-
randomized keys (Definition 8) in the standard model, if HKSS is unforgeable
under chosen message attacks (Definition 9).

Proof. Assume towards contradiction that there exists an efficient adversary A
against the unforgeability under re-randomizable keys. Then, we construct an
adversary B against the existential unforgeability of the underlying signature
scheme, which runs A as a black-box. The algorithm B simulates the oracle
O1 by simply forwarding the query to its own signing oracle and it uses the
randomness switching technique for the simulation of O2. That is, whenever A
sends a message-randomness pair (m, ρ) to O2, then A queries its signing oracle
on m and adjusts the key by subtracting ρ from s. The formal description of B
and the oracle O2 is given in the following:

17



BO(sk,·)(pk) :

(σ∗,m∗, ρ∗)← AO1(sk,·),O2(sk,·,·)(pk)
Parse σ∗ as (s, y)
s′ := s+ ρ∗

output (s′, y),m∗

O2(sk, ρ,m) :
(s, y)← O(m)
s′ := s− ρ
output (s′, y)

For the analysis, let us assume that A’s success probability in the experiment
UFRKHKSS

A (κ) is bigger than 1/poly(κ). It is easy to see that B is efficient and
that the simulation of A’s signing oracle O1 is perfect. Now, we show that B
also provides a perfect simulation of the oracle O2. Whenever A sends (ρ,m)
to O2, then B returns a signature (s′, y) for which it holds that e(y, pk · gρ2 ·
gs
′

2 ) = e(Eval(k,m)
1

sk+s , g
sk+ρ+(s−ρ)
2 ) = e(Eval(k,m), g2), which has obviously

the correct distribution.
Finally, we argue that B outputs a valid signature whenever A outputs a

valid forgery. To see this, note that (s′ = s + ρ∗, y) for m∗ under pk, whenever
A returns a valid signature (s, y) for m∗ under the re-randomized key pk · gρ2 ,
since e(y, (pk · gρ2) · gs2) = e(y, pk · gρ+s

2 ) = e(y, pk · gs′2 ). Combining this with the
proof of existential unforgeability of the modified version of the Hofheinz Kiltz
signature schemes from [31,32] rules out the existence of A.

4 Efficient Sanitizable Signatures

In this section we show how to build efficient unlinkable sanitizable signatures
from signatures with perfectly re-randomizable keys.

4.1 Preliminaries

We recall the definitions and security notions of the other building blocks re-
quired for our construction of sanitizable signatures. Namely we recall the defi-
nitions of CCA secure public key-encryption and non-interactive zero-knowledge
proof systems.

CCA Secure Public-key Encryption A public key encryption scheme E =
(EGen,Enc,Dec) consists of a key generation algorithm (dk, ek) ← EGen(1κ),
an encryption algorithm c ← Enc(ek,m), and a decryption algorithm m ←
Dec(dk, c). We omit the standard correctness condition and recall the standard
notion of CCA security.

Definition 14 (Indistinguishability under Chosen Ciphertext Attacks).
A public key encryption scheme E = (EGen,Enc,Dec) has indistinguishable en-
cryptions under chosen ciphertext attacks (IND-CCA) if for all (possibly stateful)

18



PPT adversaries A = (A0,A1) the probability that the experiment IND-CCAEA(κ)
evaluates to 1 is negligibly bigger than 1/2 (in κ), where
Experiment IND-CCAEA(κ) :

(dk, ek)← EGen(1κ)
b← {0, 1}
m0,m1 ← ADec(dk,·)

0 (ek)
cb ← Enc(ek,mb)
a← ADec′(dk,cb,·)

1 (cb)
if a = b, then output 1
else output 0

Dec′(dk, cb, c) :
if c 6= cb
then output Dec(dk, c)
else output ⊥

Non-Interactive Zero-Knowledge Proof System We recall the definitions
of non-interactive zero-knowledge proof systems. A non-interactive zero-know-
ledge proof system (SetupZK,PZK,VZK) for a language L with the corresponding
relation R consists of a setup algorithm crs ← SetupZK(1κ) that generates a
common reference string, a prover algorithm π ← PZK(crs, x, w) that takes as
input the common reference string crs, a statement x, and a witness w and
outputs a zero-knowledge proof π; and a verification algorithm b← VZK(crs, x, π)
that outputs 1 iff x ∈ L and 0 otherwise. We omit the standard definition of
correctness and recall the definitions of (perfect) soundness, zero-knowledge, and
proof of knowledge.
Definition 15 (Perfect Soundness). A NIZK scheme has perfect soundness
if and only if for all κ ∈ N and all adversaries A it holds that

Pr[ crs← SetupZK(1κ); (x, π)← A(crs) : VZK(crs, x, π) = 0 |x 6∈ L ] = 1

Definition 16 (Zero-knowledge). A NIZK scheme has computational zero-
knowledge if for all κ ∈ N there exists an efficient simulator S = (S0,S1) such
that for all adversaries A it holds that∣∣∣∣∣Pr

[
crs← SetupZK(1κ) : APZK(crs,·,·)(crs) = 1

]
−Pr

[
(crs,T)← S0(1κ) : AS′(crs,T,·,·)(crs) = 1

] ∣∣∣∣∣ ≤ negl(κ),

where S′(crs,T, x, w) = S1(crs,T, x) if (x,w) ∈ R and outputs failure otherwise.
Definition 17 (Proof of Knowledge). A NIZK scheme is a proof of knowl-
edge if there exists an efficient extractor Ext = (Ext0,Ext1) such that the follow-
ing conditions hold:
For all polynomial time adversaries A it holds that∣∣∣∣Pr[ crs← SetupZK(1κ) : A(crs) = 1]

−Pr[ (crs,T)← Ext0(1κ) : A(crs) = 1]

∣∣∣∣ ≤ negl(κ).

For all polynomial time adversaries A it holds that

Pr
[

(crs,T)← Ext0(1κ); (x, π)← A(crs);
w ← Ext1(crs,T, x, π) : (x,w) ∈ R

∣∣∣∣VZK(crs, x, π) = 1
]
≥ 1

poly(κ) .

19



4.2 Our Construction

In the following, we describe our construction of a sanitizable signature scheme
based on signatures with re-randomizable keys. Similar to previous construc-
tions [11,12], we sign the parts of the message that cannot be changed by the
sanitizer and a description of valid modifications Adm with a separate signature
scheme. The main part of our construction, and which is very different from all
previous schemes, is the computation of the signature on the parts that can be
modified by the sanitizer. The basic idea here is that we compute this signature
using a signature scheme with re-randomizable keys. That is, we compute this
signature using a re-randomized private and public key-pair (sk′, pk′), which was
either re-randomized by the signer or the sanitizer. To allow for an easy Proof
and Judge algorithm and avoid rewinding in the proof, we have to provide a way
to check that pk′ is in fact the re-randomization of the signer’s or the sanitizer’s
public key. Therefore, we also include an encryption of the actual public key. In
the Proof algorithm the signer can then decrypt and return this public key along
with a proof of correct decryption.

In the following, for the sake of brevity all algorithms are assumed to implic-
itly take the public parameters as input.

Construction 1. Let Σ = (SSetup,SGen,SSign,SVerify,RandSK,RandPK) be
a signature scheme with perfectly re-randomizable keys, ΣFix = (SSetupFix,
SGenFix,SSignFix,SVerifyFix) be a deterministic signature scheme, E = (EGen,
Enc,Dec) be a public key encryption scheme, and ΠPoK = (SetupPoK,PPoK,VPoK)
as well as ΠZK = (SetupZK,PZK,VZK) be two non-interactive zero-knowledge
proof systems for the languages L1 and L2, where the language L1, used in Sign,
Sanit, and Verify, contains tuples (ek, c, pk′, pksan, pk) for which there exists wit-
ness w = (ω, ρ) such that

c = Enc(ek, pk;ω) ∧ pk′ = RandPK(pk, ρ)

or
c = Enc(ek, pksan;ω) ∧ pk′ = RandPK(pksan, ρ).

The second language L2, used in Proof and Judge, contains tuples (ek, c, p̂k) for
which there exists witness w = (ψ, dk) such that

(ek, dk) = EGen(1κ;ψ) ∧ p̂k = Dec(dk, c).

Define our sanitizable signature scheme SanS = (KGensig,KGensan,Sign,Sanit,
Verify,Proof, Judge) as follows:
Setup and Key Generation. The setup algorithm generates two common
reference strings for the two different zero-knowledge proofs (of knowledge) and
the key generation algorithm the required keys. They are formally defined as
follows:

20



Setup(1κ) :
crsPoK ← SetupPoK(1κ)
crsZK ← SetupZK(1κ)
pps ← SSetup(1κ)
pp = (crsPoK, crsZK, pps)
output pp

KGensan(1κ) :
(sksan, pksan)← SGen(1κ)
output (sksan, pksan)

KGensig(1κ) :

(sk, pk)← SGen(1κ)
(skFix, pkFix)← SGenFix(1κ)
(dk, ek)← EGen(1κ;ψ)

sksig :=
(

skFix, sk, dk,
pkFix, pk, ek, ψ

)
pksig := (pkFix, pk, ek)
output (sksig, pksig)

Signing and Sanitizing. The signing and sanitizing algorithms first parse their
inputs and Sanit further checks that Mod is actually an admissible modification
and modifies the message accordingly. The Sign algorithm now signs the fixed
part with skFix, while Sanit can simply reuse the σFix of the input signature.
The remainder of the two algorithms proceeds identically, by re-randomizing
the respective key, encrypting the original key, proving that sk′ is indeed a re-
randomization and signing the full message together with signer’s and sanitizer’s
public keys as seen in the following:

Sign(m, sksig, pksan,Adm) :

Parse sksig as
(skFix, sk, dk, pkFix, pk, ek, ψ).

pksig := (pkFix, pk, ek)
mFix := (FixAdm(m),Adm, pksan)
σFix := SSignFix(skFix,mFix)
ρ← χ

sk′ ← RandSK(sk, ρ)
pk′ ← RandPK(pk, ρ)
c← Enc(ek, pk;ω)
x := (c, ek, pk, pksan, pk′)
τ ← PPoK(crs, x, (ρ, ω))
σ′ := SSign(sk′, (m, pksig, pksan))
output σ = (σFix, σ

′,Adm, pk′, c, τ)

Sanit(m,Mod, σ, pksig, sksan) :

Parse pksig as (pkFix, pk, ek).
Parse σ as (σFix, σ

′,Adm, pk′, c, τ).
If Adm(Mod) = 0
output ⊥
m̂ := Mod(m)
ρ← χ

ŝk′ ← RandSK(sksan, ρ)

p̂k′ ← RandPK(pksan, ρ)
ĉ← Enc(ek, pksan;ω)

x := (ĉ, ek, pk, pksan, p̂k′)
τ̂ ← PPoK(crs, x, (ρ, ω))

σ̂′ := SSign(ŝk
′
, (m̂, pksig, pksan))

output (m̂, σ̂ = (σFix, σ̂
′,Adm, p̂k′, ĉ, τ̂))

21



Verification. The verification algorithm checks that both signatures and the
proof of knowledge verify:

Verify(m,σ, pksig, pksan) :

Parse pksig as (pkFix, pk, ek).
Parse σ as (σFix, σ

′,Adm, pk′, c, τ).
mFix := (FixAdm(m),Adm, pksan)
x := (c, ek, pk, pksan, pk′)

if

 SVerifyFix(pkFix,mFix, σFix) = 1
and SVerify(pk′, (m, pksig, pksan), σ′) = 1
and VPoK(crs, x, τ) = 1


then output 1
else output 0

Proving and Judging. The algorithm Proof first verifies that the given signa-
ture is indeed valid. It then parses its inputs and decrypts the ciphertext c, thus
revealing who computed the signature. Moreover, it computes a zero-knowledge
proof asserting that the decryption was performed correctly. The Judge checks
whether the proof of decryption is correct. If the proof π contains pksan, then
the Judge algorithm outputs San. In all other cases, Judge returns Sign.

Proof(sksig,m, σ, pksan) :

If Verify(m,σ, pksig, pksan) = 0
output ⊥

Parse sksig as
(skFix, sk, dk, pkFix, pk, ek, ψ).

Parse σ as (σFix, σ
′,Adm, pk′, c, τ).

p̂k← Dec(dk, c)

x := (ek, c, p̂k)
φ← PZK(crs, x, (ψ, dk))

output (p̂k, φ)

Judge(m,σ, pksig, pksan, π) :

Parse pksig as (pkFix, pk, ek).
Parse σ as (σFix, σ

′,Adm, pk′, c, τ).

Parse π as (p̂k, φ).

x := (ek, c, p̂k)

if
(

pksan = p̂k
and VZK(crs, x, φ) = 1

)
then output San

else output Sign

4.3 Security Proof

We are now ready to state the main theorem about the security of the construc-
tion described above.

Theorem 3. If Σ = (SSetup,SGen,SSign,SVerify,RandSK,RandPK) is a signa-
ture scheme that is unforgeable under re-randomized keys, ΣFix = (SSetupFix,
SGenFix,SSignFix,SVerifyFix) is a signature scheme that is strongly existentially

22



unforgeable, ΠPoK = (SetupPoK,PPoK,VPoK) is a computationally zero-knowledge
perfectly sound proof of knowledge system, ΠZK = (SetupZK,PZK,VZK) is a com-
putationally zero-knowledge perfectly sound proof system, E = (EGen,Enc,Dec)
is a CCA-secure public key encryption scheme, then Construction 1 is sanitizer-
accountable, signer-accountable, immutable, (proof-restrictedly) transparent, and
unlinkable.

We sketch the basic ideas of the proofs here. The full proofs for each security
property are deferred to the full version [26].

Sanitizer Accountability. Consider an efficient adversary A against the sani-
tizer accountability of SanS, whose final output is a tuple (pk∗san,m∗, σ∗). The
signature σ∗ can be parsed as (σFix, σ

′,Adm, pk′, c, τ) and the public-key as
pksig = (pkFix, pk, ek). Whenever A wins, then A never queried (pk∗san,m∗) to
its sign oracle Sign, the signature verifies, and Judge outputs Sign. This implies
that

SVerify(pk′, (m∗, pksig, pk∗san), σ′) = 1
and

p̂k = pk.
Since (pk∗san,m∗) is fresh and the re-randomization factor ρ∗ can be extracted
from the proof τ , it follows that (m∗, pksig, pk∗san), σ′, ρ∗ is a valid forgery un-
der a re-randomization of pk, which contradicts the unforgeability under re-
randomized keys of Σ.

Signer Accountability. Let A be an efficient adversary against the signer account-
ability of SanS, whose final output is a tuple (pk∗sig,m∗, σ∗, π∗), where pk∗sig can
be parsed as (pkFix

∗, pk∗, ek∗), the signature σ∗ as (σFix, σ
′,Adm, pk′, c, τ), and

π∗ as (p̂k, φ). Whenever A wins, then A never queried (pk∗sig,m∗) to its sanitizer
oracle Sanit, the signature is valid, and Judge outputs San. This implies that

SVerify(pk′, (m∗, pk∗sig, pksan), σ′) = 1
and

p̂k = pksan.
Since (pk∗sig,m∗) is fresh and the re-randomization factor ρ∗ can be extracted
from the proof τ , it follows that (m∗, pk∗sig, pksan), σ′, ρ∗ is a valid forgery un-
der a re-randomization of pksan, which contradicts the unforgeability under re-
randomized keys of Σ.

Immutability. Let A be an efficient adversary against the immutability of SanS,
whose final output is tuple (pk∗san,m∗, σ∗). The signature σ∗ can be parsed as
(σFix, σ

′,Adm, pk′, c, τ). From the winning conditions of A we can conclude, that
the tuple (FixAdm(m∗),Adm, pk∗san) is different from any such tuple correspond-
ing to one of the Sanit queries and that

SVerifyFix(pkFix, (FixAdm(m∗),Adm, pk∗san), σFix).
However, then it follows that (FixAdm(m∗),Adm, pk∗san), σFix is a valid forgery
under pkFix, which contradicts the strong existential unforgeability of ΣFix.

23



(Proof Restricted) Transparency. The proof of transparency is the most involved
one and proceeds in several game-hops. We start with the transparency game
with the bit b = 0. Then, first, we use the simulatability of the zero knowledge
proofs, to switch to a game, where all proofs are simulated. We can then change
the Sanit/Sign oracle to no longer encrypt the re-randomized public key, but
an independently chosen public key instead. The answers of Proof queries can
be changed accordingly. The difference between the two games can be bounded
by reducing it to the CCA security of the encryption scheme. Next, the bit
b is flipped to 1. Due to the simulated proofs, the outputs of Sanit/Sign are
distributed identically before and after the switch. The outputs of the Proof
oracle, however, may differ, if the attacker manages to ask a valid query, such
that the signature reuses one of the ciphertexts computed by Sanit/Sign. This
leads to two different cases. If the attacker uses a new pk′san in its query, then it
must also compute a new proof of knowledge, which means that it has to know
the content of the ciphertext, leading to a trivial reduction to CCA security (or
even one-wayness) of the encryption scheme. In the other case, the fact that the
signature must verify, leads to a forgery under a re-randomized key, which would
contradict the unforgeability under re-randomized keys of Σ. Finally, we can
switch back to real ciphertexts instead of random ones and undo the simulation
of the zero knowledge proofs, thus arriving at the transparency game with the
bit b = 1.

Since the distances between all hops can be bounded by negligible functions,
the difference between the two cases of the game is also negligible.

Unlinkability. Let A be an efficient adversary against the signer unlinkability of
SanS and consider a query

((m0
i ,Mod0

i , σ
0
i ), (m1

i ,Mod1
i , σ

1
i ))

by A to the LoRSanit oracle. We parse the signature σbi as (σbFix,i, σ
′
i
b
,Admb

i , pk′bi ,
cbi , τ

b
i ) and denote by (m∗b , σ∗b ) the answer to this query depending on the choice

of b in the experiment. The signature σ∗b can be parsed as (σFix,b, σ
′
b,Admb, pk′b,

cb, τb). The conditions required for the LoRSanit oracle to provide such an answer
implies that the distribution of (σ′0,Adm0, pk′0, c0, τ0) and (σ′1,Adm1, pk′1, c1, τ1)
are identical. Therefore, the only way to distinguish between the two cases is if
it holds that σ0

Fix,i 6= σ1
Fix,i. However, since ΣFix is deterministic, such a query

would imply that one of (m0
Fix, σ

0
Fix) and (m1

Fix, σ
1
Fix) must necessarily be a valid

forgery under pkFix, which contradicts the strong existential unforgeability of
ΣFix.

5 Instantiating the Construction

We instantiate our generic construction with compatible and efficient instanti-
ations in the random oracle model. For the two signature schemes, we choose

24



standard Schnorr signatures as defined in Definition 11 for Σ, as well as a deran-
domized2 version of Schnorr signatures for ΣFix

3. The encryption scheme and
proof systems are instantiated with the Cramer Shoup encryption scheme [22],
and Σ-protocols that we convert into a non-interactive zero-knowledge proof via
the Fiat-Shamir transform [24]. The Cramer Shoup encryption scheme is defined
as follows:

Definition 18 (Cramer Shoup Encryption Scheme). Let G be a cyclic
group of prime order q with two random generators g1, g2 and let H : {0, 1}∗ →
Zq be a hash function. The Cramer Shoup encryption scheme, working over G,
is defined as follows:
EGen(1κ): The key generation algorithm proceeds as follows: Pick x, y, a, b, a′,

b′ ← Zq uniformly at random, compute h := gx1g
y
2 , h := ga1g

b
2, h := ga

′

1 g
b′

2 ,
set dk := (x, y, a, b, a′, b′) and ek := (h, c, d) and output (dk, ek).

Enc(ek,m): The encryption algorithm proceeds as follows: Parse ek as (h, c, d)
and choose r ← Zq uniformly at random. Compute α := H(gr1, gr2, hr · m)
and C := (gr1, gr2, hr ·m, (cdα)r). Output C.

Dec(dk, C): The decryption algorithm proceeds as follows: Parse dk as (x, y, a, b,
a′, b′) and C as (u, v, w, e). Compute α := H(u, v, w) and check if ua+αa′ ·
vb+ab

′ = e holds. If it holds output w/(ux · vy). Otherwise output ⊥.

The remaining building blocks for our construction are two non-interactive
zero-knowledge proof systems that we instantiate with specific Fiat-Shamir trans-
formed [24] Σ-protocols. The first proof system is for the language L1 and the
statement that we want to prove in our concrete instantiation looks as follows:

x := (ek := (g1, g2, h, c, d), C := (c1, c2, c3, c4), pk′, pksan, pk)

PoK

{
(ω, ρ) :

gω1 = c1 ∧ gω2 = c2 ∧ (cdα)ω = c4

∧ hω

gρ = c3
pk′ ∧

(
gρ1 = pk′

pk ∨ gρ1 = pk′
pksan

)}
.

Note that the statement that we are proving can be expressed as a logical
combination of discrete logarithm proofs of knowledge. For the design of each sin-
gle discrete logarithm proofs we deploy Schnorr’s Σ-protocols from [41]. We then
formulate the complete proof using standard parallel composition techniques,
first introduced in [20,21]. The complete protocol is depicted in Figure 1. It is
worth mentioning that, in order to express the logical disjunction of our state-
ment, the prover must run the simulator S provided by the zero-knowledge prop-
erty (Definition 16). For the specific case of Σ-protocols SΣ works by randomly
sampling zi, si from Zq and computing Ti as gsi1 /(

pk′
pk )zi (or gsi1 /(

pk′
pksan

)zi , respec-
tively). Finally, as mentioned above, the protocol can be made non-interactive
by using the Fiat-Shamir transformation. Note that this allow us to drop the
2 The randomness is generated by a PRF
3 Note, that while the original security proof [39,40] for Schnorr signatures only proves

standard existential unforgeability, it can be easily adapted to prove strong existen-
tial unforgeability

25



x := (ek := (g1, g2, h, c, d), C := (c1, c2, c3, c4), pk′, pksan, pk)

Prover (x, i, ω, ρ) Verifier (x)

(Ti, zi, si)← SΣ(1κ)
u1−i, u2 ← Zq
T1−i := g

u1−i
1

T2 := gu2
1 T3 := gu2

2
T4 := (cdα)u2 T5 := hu2 T0, T1, T2, T3, T4, T5

z ← Zq
z1−i := z − zi z

s1−i := ρ · z1−i + u1−i
s2 := ω · z + u2 s0, s1, s2, z0

z1 := z − z0

gs0
1

?= T0 · ( pk′
pk )z0

gs1
1

?= T1 · ( pk′
pksan

)z1

gs2
1

?= T2 · cz1
gs2

2
?= T3 · cz2

(cdα)s2 ?= T4 · cz4
hs2

g
s0+s1
1

?= T5
T0T1

· ( c3
pk′ )

z

Fig. 1. Σ-Protocol for Encryption of Public Key

first tuple of elements (T0, . . . , T5) since they can be simply recomputed from the
public parameters and the further messages of the protocol and their integrity
can be checked by recomputing the hash function.

In the following, we show how to instantiate the proof of knowledge for the
language L2. We prove the following statement:

x := (ek := (g1, g2, h, c, d), C := (c1, c2, c3, c4), p̂k)

ZK

{
(χ, ψ) : gχ1 g

ψ
2 = h ∧ cχ1 c

ψ
2 = c3

p̂k

}
.

Again, for the concrete instantiation in Figure 2 we deploy parallel compo-
sition of Σ-protocols made non-interactive via the Fiat-Shamir transformation.
Combining these building blocks yields a highly efficient sanitizable signature
scheme.

6 Conclusion

In this paper, we formalized the novel notion of signature schemes that are
unforgeable under re-randomized keys. Furthermore, we showed that Schnorr’s
signature scheme [41,42] is unforgeable under re-randomized keys in the random

26



x := (ek := (g1, g2, h, c, d), C := (c1, c2, c3, c4), p̂k)

Prover (x, χ, ψ) Verifier (x)

u0, u1 ← Zq
T := gu0

1 gu1
2 T

z ← Zq
s0 := χ · z + u0 z
s1 := ψ · z + u1 s0, s1

gs0
1 gs1

2
?= T · hz

cs0
1 c

s1
2

?= T · ( c3
p̂k )z

Fig. 2. Σ-Protocol for Proof of Decryption

oracle model and that Hofheinz’ and Kiltz’ signature scheme [31,32] is unforge-
able under re-randomized keys in the standard model.

Based on signature schemes with re-randomizable keys we then gave a con-
struction of unlinkable sanitizable signatures and an instantiation, which is at
least one order of magnitude faster than all previously known schemes.

Acknowledgments

This work was supported by the German Federal Ministry of Education and Re-
search (BMBF) through funding for the Center for IT-Security, Privacy and Ac-
countability (CISPA – www.cispa-security.org) and the project PROMISE.
Moreover, it was supported by the Initiative for Excellence of the German federal
and state governments through funding for the Saarbrücken Graduate School of
Computer Science and the DFG MMCI Cluster of Excellence. Part of this work
was also supported by the German research foundation (DFG) through funding
for the collaborative research center 1223. Dominique Schröder was also sup-
ported by an Intel Early Career Faculty Honor Program Award.

References

1. Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. San-
itizable signatures. In Sabrina De Capitani di Vimercati, Paul F. Syverson, and
Dieter Gollmann, editors, ESORICS 2005, volume 3679 of LNCS, pages 159–177,
Milan, Italy, September 12–14, 2005. Springer, Heidelberg, Germany. 1, 1.3

2. Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Efficient completely
context-hiding quotable and linearly homomorphic signatures. In Kaoru Kurosawa
and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 386–404,
Nara, Japan, February 26 – March 1, 2013. Springer, Heidelberg, Germany. 1.3

3. Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. In Krawczyk [36],
pages 520–537. 1.3

27



4. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656
of LNCS, pages 614–629, Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg,
Germany. 1, 1.2

5. Alexandra Boldyreva, Adriana Palacio, and Bogdan Warinschi. Secure proxy sig-
nature schemes for delegation of signing rights. Cryptology ePrint Archive, Report
2003/096, 2003. http://eprint.iacr.org/2003/096. 1.3

6. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Chris-
tian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of
LNCS, pages 56–73, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg,
Germany. 1.1

7. Dan Boneh and Xavier Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, April
2008. 3.3, 3.3

8. Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial
functions. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of
LNCS, pages 149–168, Tallinn, Estonia, May 15–19, 2011. Springer, Heidelberg,
Germany. 1.3

9. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseu-
dorandom functions. In Krawczyk [36], pages 501–519. 1.3

10. Christina Brzuska, Heike Busch, Özgür Dagdelen, Marc Fischlin, Martin Franz,
Stefan Katzenbeisser, Mark Manulis, Cristina Onete, Andreas Peter, Bertram Po-
ettering, and Dominique Schröder. Redactable signatures for tree-structured data:
Definitions and constructions. In Jianying Zhou and Moti Yung, editors, ACNS 10,
volume 6123 of LNCS, pages 87–104, Beijing, China, June 22–25, 2010. Springer,
Heidelberg, Germany. 1.3

11. Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus
Page, Jakob Schelbert, Dominique Schröder, and Florian Volk. Security of sanitiz-
able signatures revisited. In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009,
volume 5443 of LNCS, pages 317–336, Irvine, CA, USA, March 18–20, 2009.
Springer, Heidelberg, Germany. 1, 1.3, 2, 2.1, 2.1, 2.2, 4.2

12. Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder. Un-
linkability of sanitizable signatures. In Phong Q. Nguyen and David Pointcheval,
editors, PKC 2010, volume 6056 of LNCS, pages 444–461, Paris, France, May 26–
28, 2010. Springer, Heidelberg, Germany. 1, 1.2, 1.2, 1, 2, 1.2, 1.3, 2, 2.1, 2.2, 2.2,
4.2

13. Christina Brzuska, Henrich C. Pöhls, and Kai Samelin. Non-interactive public
accountability for sanitizable signatures. In Sabrina De Capitani di Vimercati
and Chris Mitchell, editors, EuroPKI 2012: 9th European Workshop on Public Key
Infrastructures, Services and Applications, volume 7868 of LNCS, pages 178–193,
Pisa, Italy, September 13–14 2012. Springer, Heidelberg, Germany. 1.3

14. Christina Brzuska, Henrich C. Pöhls, and Kai Samelin. Efficient and perfectly
unlinkable sanitizable signatures without group signatures. In Sokratis Katsikas
and Isaac Agudo, editors, EuroPKI 2013: 10th European Workshop on Public Key
Infrastructures, Services and Applications, volume 8341 of LNCS, pages 12–30,
Egham, UK, September 12–13 2013. Springer, Heidelberg, Germany. 1.3

15. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous creden-
tials from bilinear maps. In Matthew Franklin, editor, CRYPTO 2004, volume 3152
of LNCS, pages 56–72, Santa Barbara, CA, USA, August 15–19, 2004. Springer,
Heidelberg, Germany. 1.1, 3.3, 3.3

28

http://eprint.iacr.org/2003/096


16. Sébastien Canard and Amandine Jambert. On extended sanitizable signature
schemes. In Josef Pieprzyk, editor, CT-RSA 2010, volume 5985 of LNCS, pages
179–194, San Francisco, CA, USA, March 1–5, 2010. Springer, Heidelberg, Ger-
many. 1.3

17. Sébastien Canard, Amandine Jambert, and Roch Lescuyer. Sanitizable signatures
with several signers and sanitizers. In Aikaterini Mitrokotsa and Serge Vaudenay,
editors, AFRICACRYPT 12, volume 7374 of LNCS, pages 35–52, Ifrance, Morocco,
July 10–12, 2012. Springer, Heidelberg, Germany. 1.3

18. Dario Catalano. Homomorphic signatures and message authentication codes. In
Michel Abdalla and Roberto De Prisco, editors, SCN 14, volume 8642 of LNCS,
pages 514–519, Amalfi, Italy, September 3–5, 2014. Springer, Heidelberg, Germany.
1.3

19. Ee-Chien Chang, Chee Liang Lim, and Jia Xu. Short redactable signatures using
random trees. In Marc Fischlin, editor, CT-RSA 2009, volume 5473 of LNCS,
pages 133–147, San Francisco, CA, USA, April 20–24, 2009. Springer, Heidelberg,
Germany. 1.3

20. David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 89–105, Santa
Barbara, CA, USA, August 16–20, 1993. Springer, Heidelberg, Germany. 5

21. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Yvo Desmedt, editor,
CRYPTO’94, volume 839 of LNCS, pages 174–187, Santa Barbara, CA, USA, Au-
gust 21–25, 1994. Springer, Heidelberg, Germany. 5

22. Ronald Cramer and Victor Shoup. A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 13–25, Santa Barbara, CA, USA, Au-
gust 23–27, 1998. Springer, Heidelberg, Germany. 5

23. David Derler and Daniel Slamanig. Rethinking privacy for extended sanitizable
signatures and a black-box construction of strongly private schemes. In Man-
Ho Au and Atsuko Miyaji, editors, ProvSec 2015: 9th International Conference
on Provable Security, LNCS, Kanazawa, Japan, November 24–26 2015. Springer,
Heidelberg, Germany. 1.3

24. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume
263 of LNCS, pages 186–194, Santa Barbara, CA, USA, August 1987. Springer,
Heidelberg, Germany. 1.1, 5, 5

25. Marc Fischlin and Nils Fleischhacker. Limitations of the meta-reduction technique:
The case of Schnorr signatures. In Thomas Johansson and Phong Q. Nguyen, ed-
itors, EUROCRYPT 2013, volume 7881 of LNCS, pages 444–460, Athens, Greece,
May 26–30, 2013. Springer, Heidelberg, Germany. 3.4

26. Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Dominique
Schröder, and Mark Simkin. Efficient unlinkable sanitizable signatures from sig-
natures with rerandomizable keys. Cryptology ePrint Archive, Report 2015/395,
2015. http://eprint.iacr.org/2015/395. 4.3

27. Pedro Franco. Understanding Bitcoin: Cryptography, Engineering and Economics.
John Wiley & Sons, Chichester, UK, 2015. 1.1

28. David Mandell Freeman. Improved security for linearly homomorphic signatures:
A generic framework. In Marc Fischlin, Johannes Buchmann, and Mark Manulis,
editors, PKC 2012, volume 7293 of LNCS, pages 697–714, Darmstadt, Germany,
May 21–23, 2012. Springer, Heidelberg, Germany. 1.3

29

http://eprint.iacr.org/2015/395


29. Jun Furukawa and Shoko Yonezawa. Group signatures with separate and dis-
tributed authorities. In Carlo Blundo and Stelvio Cimato, editors, SCN 04, vol-
ume 3352 of LNCS, pages 77–90, Amalfi, Italy, September 8–10, 2005. Springer,
Heidelberg, Germany. 1.2, 1, 1.2, 2

30. Jens Groth. Fully anonymous group signatures without random oracles. In Kaoru
Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 164–180, Kuch-
ing, Malaysia, December 2–6, 2007. Springer, Heidelberg, Germany. 1.2, 1, 1.2, 2

31. Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their appli-
cations. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
21–38, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Ger-
many. 1.1, 3.4, 3.4, 12, 13, 3.4, 6

32. Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applica-
tions. Journal of Cryptology, 25(3):484–527, July 2012. 1.1, 3.4, 3.4, 12, 13, 3.4,
6

33. Rob Johnson, Leif Walsh, and Michael Lamb. Homomorphic signatures for digital
photographs. In George Danezis, editor, FC 2011, volume 7035 of LNCS, pages
141–157, Gros Islet, St. Lucia, February 28 – March 4, 2012. Springer, Heidelberg,
Germany. 1.3

34. Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homo-
morphic signature schemes. In Bart Preneel, editor, CT-RSA 2002, volume 2271
of LNCS, pages 244–262, San Jose, CA, USA, February 18–22, 2002. Springer,
Heidelberg, Germany. 1, 1.3

35. Marek Klonowski and Anna Lauks. Extended sanitizable signatures. In Min Surp
Rhee and Byoungcheon Lee, editors, ICISC 06, volume 4296 of LNCS, pages 343–
355, Busan, Korea, November 30 – December 1, 2006. Springer, Heidelberg, Ger-
many. 1.3

36. Hugo Krawczyk, editor. PKC 2014, volume 8383 of LNCS, Buenos Aires, Ar-
gentina, March 26–28, 2014. Springer, Heidelberg, Germany. 3, 9

37. Shigeo Mitsunari, Ryuichi Saka, and Masao Kasahara. A new traitor tracing.
IEICE Transactions, E85-A(2):481–484, February 2002. 1

38. Henrich Christopher Pöhls and Kai Samelin. On updatable redactable signatures.
In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, ACNS 14,
volume 8479 of LNCS, pages 457–475, Lausanne, Switzerland, June 10–13, 2014.
Springer, Heidelberg, Germany. 1.3

39. David Pointcheval and Jacques Stern. Security proofs for signature schemes. In
Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 387–398,
Saragossa, Spain, May 12–16, 1996. Springer, Heidelberg, Germany. 3.4, 3

40. David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. Journal of Cryptology, 13(3):361–396, 2000. 3.4, 3

41. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–252, Santa
Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany. 1.1, 3.4,
3.4, 5, 6

42. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, 1991. 1.1, 3.4, 3.4, 6

43. Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content extraction signatures.
In Kwangjo Kim, editor, ICISC 01, volume 2288 of LNCS, pages 285–304, Seoul,
Korea, December 6–7, 2002. Springer, Heidelberg, Germany. 1, 1.3

30


	Efficient Unlinkable Sanitizable Signatures from Signatures with Re-Randomizable Keys

