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Abstract. To simultaneously achieve CCA security and homomorphic
property for encryption, Emura et al. introduced a new cryptographic
primitive named keyed-homomorphic encryption, in which homomorphic
ciphertext manipulations can only be performed by someone holding
a devoted evaluation key which, by itself, does not enable decryption.
A keyed-homomorphic encryption scheme should provide CCA2 secu-
rity when the evaluation key is unavailable to the adversary and remain
CCA1-secure when the evaluation key is exposed. While existing keyed-
homomorphic encryption schemes only allow simple computations on
encrypted data, our goal is to construct CCA-secure keyed-fully homo-
morphic encryption (keyed-FHE) capable of evaluating any functions on
encrypted data with an evaluation key.

In this paper, we first introduce a new primitive called convertible identity-
based fully homomorphic encryption (IBFHE), which is an IBFHE with
an additional transformation functionality, and define its security no-
tions. Then, we present a generic construction of CCA-secure keyed-
FHE from IND-sID-CPA-secure convertible IBFHE and strongly EUF-
CMA-secure signature. Finally, we propose a concrete construction of
IND-sID-CPA-secure convertible IBFHE, resulting in the first CCA-secure
keyed-FHE scheme in the standard model.
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1 Introduction

Today’s information services are increasingly storing data across many servers
shared with other data owners. An example of this is cloud computing which
has the great potential of providing various services to the society at signifi-
cantly reduced cost due to aggregated management of elastic resources. Since
software systems are not guaranteed to be bug-free and hardware platforms are
not under direct control of data owners in such distributed systems, security
risks are abundant. To mitigate users’ privacy concern about their data, a com-
mon solution is to outsource data in encrypted form so that it will remain private
even if data servers are not trusted or compromised. To not nullify the benefits of
cloud computing, however, we need homomorphic encryption schemes that allow
meaningful computations on encrypted data. Recently, in a breakthrough effort,
Gentry [28] constructed a fully homomorphic encryption (FHE) scheme enabling
anyone to compute arbitrary functions on encrypted data. On the other hand,
security against chosen-ciphertext attack (CCA) [24, 42, 47] is now a commonly
accepted standard security notion for encryption, and unfortunately, it is well-
known that CCA security and the homomorphic property cannot be achieved
simultaneously.

The incompatibility of CCA security and homomorphicity cannot be recon-
ciled under the assumption that everyone can “freely” perform homomorphic op-
erations on ciphertexts. Very recently, Emura et al. [25] showed that in the setting
where homomorphic operations are performed in a “controlled” fashion, CCA se-
curity and homomorphicity can be simultaneously achieved. They suggested a
new primitive called keyed-homomorphic encryption [25], where homomorphic
ciphertext manipulations are only possible to a party holding a devoted evalua-
tion key EK which, by itself, does not enable decryption. A keyed-homomorphic
encryption scheme should provide CCA2 security when the evaluation key is un-
available to the adversary and remain CCA1 secure when EK is exposed. Emura et
al. [25] presented a number of keyed-homomorphic encryption schemes through
hash proof systems [22], which only allow simple computations on encrypted data
(i.e., either adding or multiplying encrypted ciphertexts, but not both operations
at the same time). This paper is motivated by the goal of constructing CCA-
secure keyed-fully homomorphic encryption (keyed-FHE)1 capable of evaluating
any functions on encrypted data with a devoted evaluation key EK.

Our Contribution. One may hope to obtain CCA-secure keyed-FHE by us-
ing the double encryption methodology: a ciphertext of an “inner” CPA-secure
FHE scheme is encrypted by an “outer” CCA-secure encryption scheme, and the
evaluation key EK is the decryption key of the “outer” CCA-secure encryption
scheme. Unfortunately, this naive construction is not secure in the sense of our
security definition for keyed-fully homomorphic encryption. An adversary is al-
lowed to issue decryption queries before the evaluation key EK is exposed to

1 We focus on leveled keyed-FHE schemes, and typically omit the term “leveled”. In a
leveled keyed-FHE scheme, the parameters of the scheme may depend on the depth,
but not the size, of the circuits that the scheme can evaluate.
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the adversary in our security definition. However, no such decryption query is
allowed in the CPA security game of the underlying “inner” FHE scheme2.

We propose a generic paradigm of constructing CCA-secure keyed-FHE, which
follows the line of CHK transformation [18]. It is worth noting that, one cannot
achieve CCA-secure keyed-FHE from IND-sID-CPA-secure IBFHE by CHK trans-
formation directly, since each IBE ciphertext is under a fresh identity and the
homomorphic evaluation functionality of IBFHE does not work.

– We define a new primitive named convertible identity-based fully homomor-
phic encryption (IBFHE) and its IND-sID-CPA security notions. Informally,
a convertible IBFHE is an IBFHE with an additional transformation func-
tionality, which may be of independent interest.

– Based on our new primitive, IND-sID-CPA-secure convertible IBFHE, and
strongly EUF-CMA-secure signature, we propose a generic paradigm of con-
structing CCA-secure keyed-FHE by modifying CHK transformation [18]
slightly.

– We construct a convertible identity-based (leveled) FHE scheme based on
the adaptively-secure IBE scheme proposed by Agrawal et al. [1], and prove
that it is IND-sID-CPA secure in the standard model, resulting in the first
CCA-secure keyed-FHE scheme in the standard model. Actually, one can
use our techniques to construct convertible IBFHE schemes based on the
adaptively-secure IBE schemes proposed in [19, 2].

Convertible IBFHE. A convertible IBFHE scheme consists of seven algo-
rithms: Setup, Extract, GenerateTK, Encrypt, Transform, Decrypt and Evaluate.
Among these algorithms, (Setup, Extract, Encrypt, Decrypt, Evaluate) constitute
the traditional IBFHE scheme; algorithms GenerateTK and Transform provide

the following functionality: given a transformation key TK 7→ĨD for an identity ĨD,
which is generated by an authority using algorithm GenerateTK, one with the
help of algorithm Transform can transform a ciphertext CT under any identity

into a ciphertext under identity ĨD without changing the underlying plaintext of
CT.

The additional functionality of convertible IBFHE is reminiscent of identity-
based proxy re-encryption (IBPRE) [32]. Unlike convertible IBFHE, in an IBPRE
scheme, a transformation key (i.e., re-encryption key) TKID1→ID2 associated with
two identities ID1 and ID2, is generated by the user with identity ID1, and one
with the transformation key can only convert an encryption under identity ID1

into the encryption under identity ID2.

2 Another naive approach to construct CCA-secure keyed-FHE is to utilize Naor-Yung
paradigm [42]: a plaintext is encrypted twice (independently) by CPA-secure FHE,
and then a non-malleable non-interactive zero-knowledge (NIZK) [51] proof is used in
order to prove that both ciphertexts are encryptions to the same plaintext (the CRS
needed for the NIZK is part of the public key); the evaluation key EK is the trapdoor
associated with the CRS. However, as the construct by using the double encryption
methodology, this construction is not secure in the sense of our security definition:
the adversary is allowed to use the decryption oracle even after the challenge phase,
just before the adversary requests EK.
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The adaptive security of convertible IBFHE requires that given a challenge
ciphertext CT∗ under some identity ID∗, no PPT adversary can distinguish,
except with a negligible advantage, whether CT∗ is an encryption of 1 under
identity ID∗ or an encryption of 0 under identity ID∗. We allow an adversary
to adaptively issue private key queries on identities ID and transformation key

queries on identities ĨD, but with the natural constraints that: 1) the adversary
cannot issue private key query for the challenge identity ID∗; 2) the adversary

cannot issue private key query for an identity ĨD such that the adversary has

issued a transformation key query on ĨD, and vice versa.

For constructing CCA-secure keyed-FHE, we only require that the underlying
convertible IBFHE be secure in a weaker security model, denoted as IND-sID-
CPA security model. In this weaker security model, the transformation key query
can be issued only once by the adversary, and the target identity ID∗ and the

designated identity ĨD which the adversary wants to obtain the corresponding
transformation key must be committed by the adversary ahead of the system
setup.

CCA-secure keyed-FHE from IND-sID-CPA-secure convertible IBFHE.
We give a high-level description on how to construct a CCA-secure keyed-FHE
scheme from an IND-sID-CPA-secure convertible IBFHE scheme characterized by
(GenerateTK,Transform), with the help of a strongly EUF-CMA-secure signature
scheme S = (Gen,Sign,Vrfy).

The public key of our proposed keyed-FHE scheme is the public parameters
of the convertible IBFHE scheme, the secret key is the corresponding master

key, and the evaluation key is (ṽk, s̃k,TK 7→ṽk
), where (ṽk, s̃k) is a key-pair for

the signature scheme S and TK 7→ṽk
which is generated by algorithm GenerateTK

of the convertible IBFHE scheme is the transformation key for “identity” ṽk.

To encrypt a message bit, the encryption algorithm first runs algorithm S.Gen
to obtain a key-pair (vk, sk), and then uses the convertible IBFHE scheme to
encrypt the message bit with respect to the “identity” vk, with the resulting
ciphertext denoted as CT. Next, the signing key sk is used to sign CT to ob-
tain a signature σ. The final ciphertext C consists of the verification key vk,
the convertible IBFHE ciphertext CT and the signature σ. Given a ciphertext
C = (vk,CT, σ), the decryption algorithm first uses algorithm S.Vrfy to verify
the signature σ on CT with respect to vk and outputs ⊥ if the verification fails.
Otherwise, the decryption algorithm generates the private key SKvk correspond-
ing to the “identity” vk, and decrypts the ciphertext CT using the underlying
convertible IBFHE scheme.

Given a tuple of ciphertexts C = (C1, . . . , Ck) where Ci = (vki,CTi, σi),
and a Boolean circuit f : {0, 1}k → {0, 1}, the evaluation algorithm first veri-
fies the signature σi on CTi with respect to vki for each i ∈ [k] and outputs ⊥
if the verification fails. Otherwise, for each i ∈ [k], with TK 7→ṽk

, it runs algo-
rithm Transform of the convertible IBFHE scheme to convert the ciphertext CTi

under “identity” vki into a ciphertext C̃Ti under the “identity” ṽk. Since now

C̃T1, . . . , C̃Tk are the ciphertexts under the same “identity” ṽk, the evaluation
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algorithm can evaluate the Boolean circuit f on the ciphertexts C̃T1, . . . , C̃Tk

using the underlying convertible IBFHE scheme. Then the resulting ciphertext

C̃T is signed using s̃k to obtain a signature σ̃, and the evaluation algorithm

outputs the ciphertext C = (ṽk, C̃T, σ̃).

As for the security of our proposed keyed-FHE scheme, we show that if there
exists an adversary A with a non-negligible advantage in the CCA security game,
we can create a reduction algorithm B that breaks the IND-sID-CPA security of
the underlying convertible IBFHE scheme. The reduction algorithm B is infor-
mally described as follows. B first runs S.Gen to obtain two key-pairs (vk∗, sk∗)

and (ṽk, s̃k). Then, B sets vk∗ and ṽk as its target “identity” and designated
“identity”, which are submitted to its challenger in the IND-sID-CPA security
game of the convertible IBFHE scheme. B is given the public parameters of the
convertible IBFHE scheme and the transformation key TK 7→ṽk

for “identity”

ṽk. Now, B can use (ṽk, s̃k) and TK 7→ṽk
to answer A’s evaluation queries and

the evaluation key query, and the challenge ciphertext C∗ given to A is set as
(vk∗,CT∗, σ∗), where CT∗ is B’s challenge ciphertext of the convertible IBFHE
scheme and σ∗ ← S.Sign(sk∗,CT∗). Next, we shall explain how B answers the
decryption queries for ciphertexts C = (vk,CT, σ) issued by adversary A.

We say a ciphertext C = (vk,CT, σ) is valid if σ is a valid signature on CT
with respect to vk. For A’s decryption query on a ciphertext C = (vk,CT, σ)

such that C is a valid ciphertext and vk /∈ {vk∗, ṽk}, B can issue a private key
query on the “identity” vk to its challenger to obtain the corresponding private
key SKvk, and use the private key SKvk to answer A’s query. The subtlety lies
in how B deals with A’s decryption query on a valid ciphertext C = (vk,CT, σ)

such that vk ∈ {vk∗, ṽk}. Recall that B is not allowed to issue a private key

query on the “identity” vk ∈ {vk∗, ṽk} to it’s own challenger in the IND-sID-
CPA security game of the convertible IBFHE scheme. We first note that any
valid ciphertext C = (vk,CT, σ) submitted by the adversary during its queries
must, except with negligible probability, have vk ̸= vk∗ by the strong security
of the signature scheme S. The crux of the security proof is then to show how
B answers A’s decryption query on a valid ciphertext C = (vk,CT, σ) such that

vk = ṽk.

In our security definition of keyed-fully homomorphic encryption, the adver-
sary can issue the decryption and evaluation queries only if it does not request
the evaluation key to be exposed. Hence, for any valid ciphertext C = (vk,CT, σ)

submitted by the adversary during its decryption queries, if vk = ṽk, with over-
whelming probability, C is one of B’s responses to A’s evaluation queries by
the strong EUF-CMA security of the signature scheme S. Based on the above
observation, B will resort to a list EList to answer A’s decryption query on a

valid ciphertext C = (vk = ṽk,CT, σ). The list EList is set as ∅ initially and is
updated while answering A’s evaluations queries. Now, when A issues an eval-
uation query on a tuple of ciphertext C = (C1, . . . , Ck) and a Boolean circuit
f , after sending the result C of the evaluation algorithm to the adversary, B
additionally proceeds as follows.
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1. Check whether there exists an i ∈ [k] such that Ci = C∗. If so, update the
list by EList← Elist∪{(⊥, C)}. Note that, to avoid an unachievable security
definition, B answers ⊥ for “unallowable ciphertext” that are the result of
homomorphic evaluation for C∗ and any ciphertext of A’s choice.

2. For each valid ciphertext Ci = (vki,CTi, σi) where i ∈ [k], obtain the corre-
sponding plaintext bi by finding the corresponding record (bi, Ci) in the list

EList if vki = ṽk or decrypting CTi with the help of issuing a private key
query on the “identity” vki to its challenger. Then, compute the message bit
m = f(b1, . . . , bk) and update the list by EList← Elist ∪ {(m,C)}.

Consequently, when A issues a decryption query on a valid ciphertext C =

(vk,CT, σ) such that vk = ṽk, except with negligible probability, B can find a
record (m,C) in the list EList and returnm to the adversary as its answer. Hence,
by the strong EUF-CMA security of the signature scheme S, with overwhelming
probability, B simulates the CCA security game of our proposed keyed-FHE
scheme for A properly. Therefore, if A has a non-negligible advantage in the CCA
security game, B breaks the IND-sID-CPA security of the underlying convertible
IBFHE scheme with a non-negligible advantage.

Construction of IND-sID-CPA-secure convertible IBFHE. Based on
the standard learning with errors (LWE) problem [49], Agrawal et al. [1] pro-
posed an efficient identity-based encryption scheme and showed that their base
construction can be extended to an adaptively-secure IBE using a lattice analog
of the Waters IBE [56]. Our IND-sID-CPA-secure convertible IBFHE starts from
the adaptively-secure IBE scheme in [1].

An encryption of a message bit b for an identity ID = (d1, . . . , dℓ) ∈ {−1, 1}ℓ
in the adaptively-secure IBE scheme [1] takes the form of

c0 = u⊤s+ x+ b⌊q
2
⌋ ∈ Zq, c1 = F⊤

IDs+

[
y

R⊤
IDy

]
∈ Z2m

q ,

where FID = A | B0 +
∑ℓ

i=1 diBi, RID =
∑ℓ

i=1 diRi, and A,B0, B1, . . . , Bℓ, u
are the system’s public parameters, a short basis TA for Λ⊥

q (A) is the master
key, s, x, y,R1, . . . , Rℓ are noise vectors with short norm used in the encryption
algorithm. The private key SKID for identity ID is a short vector eID in Λu

q (FID),

hence the message bit b can be recovered from c0 − e⊤IDc1.
Agrawal et al. [1] utilized the partitioning strategy to prove the adaptively-

secure security of the above IBE scheme. In the security reduction, B1, . . . , Bℓ

in the public parameters are set as Bi = AR∗
i +hiB0, where all the matrices R∗

i

are random and hi is a secret coefficient in Zq. Consequently,

FID = A | B0 +
ℓ∑

i=1

diBi = A | A(
ℓ∑

i=1

diR
∗
i ) + hIDB0,

where hID = (1 +
∑ℓ

i=1 dihi), and the identity space is partitioned into two
parts according to whether hID is equal to 0 or not. If hID ̸= 0, the simulator,
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without knowing the master key, can use a trapdoor TB0 for Λ⊥
q (B0) to generate

the private key for identity ID, i.e., a short vector eID in Λu
q (FID). The simulator

cannot produce the corresponding private key for identities ID such that hID = 0,
but will be able to construct a useful challenge to solve the given LWE problem
instance. Let ID∗ be the challenge identity and let ID1, . . . , IDQ be the identities
for which the adversary issues private key queries. The security proof will require
that for any ID∗, ID1, . . . , IDQ, with non-negligible probability,

hID∗ = 0 ∧ hID1 ̸= 0 ∧ . . . ∧ hIDℓ
̸= 0,

which can be satisfied by the abort-resistant hash family used in [56, 34, 7].
The idea of constructing convertible IBFHE is summarized as follows. We

first show how to design a convertible IBE scheme (i.e. without the homomorphic
evaluation functionality), and then extend it to a convertible IBFHE scheme. To
construct convertible IBE, we should provide an approach to converting a cipher-

text CT under any identity ID into a ciphertext C̃T under the designated identity

ĨD. For transformation correctness (i.e., decrypting CT and C̃T with the corre-

sponding private key SKID for identity ID and SKĨD for identity ĨD respectively,
must have the same result), we need be able to check whether a ciphertext is
well-formed. However, starting from the adaptively-secure IBE scheme proposed
in [1], we are thrown into a dilemma. Agrawal et al. [1] proved that in their
proposed IBE scheme, encryption of any message bit is indistinguishable from
uniform vector over Zq under the LWE assumption. That is, any well-formed
ciphertext in [1] is pseudorandom; thus it is difficult to design a mechanism to
check the well-formedness of a ciphertext. We resort to the recent advances in
indistinguishability obfuscation [52] to overcome the obstacle.

Besides A,B0, B1, . . . , Bℓ, u, the public parameters of our proposed convert-
ible IBE include an indistinguishability obfuscation of the following program that
takes as input an identity ID = (d1, . . . , dℓ) ∈ {−1, 1}ℓ, a message bit b ∈ {0, 1}
and randomness r,

1. Set t = PRG(r) and (s, x, y,R1, . . . , Rℓ) = F(K, ID, t);

2. Compute c0 = u⊤s+ x+ b⌊ q2⌋ ∈ Zq, c1 = F⊤
IDs+

[
y

R⊤
IDy

]
∈ Z2m

q and output

(t, c0, c1).

The system’s master key additionally includes the key K to the puncturable pseu-
dorandom function (PRF) [52] F. LetPEnc be the above obfuscated program. The
encryption algorithm simply runs PEnc(ID, b, r) and outputs the result (t, c0, c1).
The private key SKID for identity ID is a short vector eID in Λu

q (FID), and given a
ciphertext (t, c0, c1) under identity ID, the message bit b can be recovered from
c0− e⊤IDc1. Observe that, with the knowledge of K, one can retrieve the random-
ness s, x, y,R1, . . . , Rℓ and the message bit b from a ciphertext (t, c0, c1) under
an identity ID, and thus can check the well-formedness of the ciphertext and re-
encrypt b under another identity. Consequently, the transformation key for an

designated identity ĨD = (d̃1, . . . , d̃ℓ) ∈ {−1, 1}ℓ is an indistinguishability obfus-
cation of the following program that takes as input a ciphertext CT = (t, c0, c1)
under an identity ID = (d1, . . . , dℓ) ∈ {−1, 1}ℓ,
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1. Set (s, x, y,R1, . . . , Rℓ) = F(K, ID, t), and check whether there exists b ∈

{0, 1} such that c0 = u⊤s+x+ b⌊ q2⌋ and c1 = F⊤
IDs+

[
y

R⊤
IDy

]
. If not, output

⊥.
2. Set (s̃, x̃, ỹ, R̃1, . . . , R̃ℓ) = F(K, ĨD, t), and compute c̃0 = u⊤s̃ + x̃ + b⌊ q2⌋,

c̃1 = F⊤
ĨD
s̃+

[
ỹ

R̃⊤
ĨD
ỹ

]
and output (t, c̃0, c̃1).

Let PTrans be the above obfuscated program. To convert an encryption CT under

identity ID into the encryption under identity ĨD, the transformation algorithm
now simply runs PTrans(ID,CT) and outputs the result.

As for the IND-sID-CPA security of the convertible IBE scheme, we follow
the line of [1], i.e., utilizing the partitioning strategy. Let ID∗ be the challenge

identity, ĨD be the designated identity which the adversary wants to obtain the

corresponding transformation key TK 7→ĨD = (ĨD,PTrans), and ID1, . . . , IDQ be the
identities for which the adversary issues private key queries. Let CT∗ = (t∗, c∗0, c

∗
1)

be the challenge ciphertext for ID∗. In the security reduction, there exist some
subtleties:

1. It requires that hID∗ = 0, in order to construct the challenge CT∗ = (t∗, c∗0, c
∗
1)

to solve the given LWE problem instance. Like the security reduction in [1],
the randomness s∗, x∗, y∗ that are used to evaluate c∗0 and c∗1, come from the
given LWE problem instance and is unknown to the simulator. Hence, when
the adversary runs PTrans(ID∗, CT∗), it will get an error symbol ⊥, which
enables it to distinguish the simulated settings and the real settings. We ob-

serve that the simulator can prepare CT∗ and C̃T
∗
at the setup phase, where

C̃T
∗
denotes the corresponding result of calling the transformation algorithm

on the challenge ciphertext CT∗ = (t∗, c∗0, c
∗
1), since in the IND-sID-CPA se-

curity game the adversary must commit ID∗ and ĨD ahead of the system
setup. Consequently, the simulator can employ the technique of punctured
programs, introduced by Sahai et al. [52], to simulate the transformation key

for ĨD properly.

2. It requires that for any ID∗, ĨD, ID1, . . . , IDQ, with non-negligible probability,
hID∗ = 0 ∧ hĨD = 0 ∧ hID1 ̸= 0 ∧ . . . ∧ hIDℓ

̸= 0. Unfortunately, it cannot be
satisfied by the abort-resistant hash family used in [56, 34, 7]. On the other

hand, we observe that, if ID∗ and ĨD are chosen uniformly at random, with
non-negligible probability, the requirement of hID∗ = 0 ∧ hĨD = 0 ∧ hID1 ̸=
0∧. . .∧hIDℓ

̸= 0 can be satisfied by the abort-resistant hash family used in [56,
34, 7]. Therefore, we use another puncturable PRF to map an identity ID into
a random identity id ∈ {−1, 1}ℓ, and replace ID with id in all functionalities.

Similarly, since ID∗ and ĨD must be committed by the adversary ahead of
the system setup, the technique of punctured programs allows the simulator’s
simulation be performed properly.

So far, we obtain an IND-sID-CPA-secure convertible IBE scheme. Next, we show
that the convertible IBE scheme extends to a convertible IBFHE scheme. Re-
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cently, Gentry et al. [31] described a simple “compiler” that transforms any LWE-
based IBE scheme (that satisfies certain natural properties) into an identity-
based (leveled) FHE scheme. Since our proposed convertible IBE scheme starts
from the LWE-based IBE schemes proposed in [1] that have the required prop-
erties, we can utilize the “compiler” to transform it into a convertible identity-
based (leveled) FHE scheme.

Related Work. Emura et al. [25] showed that CCA security does not rule
out homomorphicity when the capability to compute on encrypted data is con-
trolled, by introducing a primitive called keyed-homomorphic encryption. Other
approaches to reconcile homomorphism and non-malleability were taken in [44–
46, 9, 20] but they inevitably satisfy weaker security notions than CCA security.

Based on hash proof systems [22], Emura et al. [25] constructed a number
of CCA-secure keyed-homomorphic schemes. Recently, Libert et al. [40] applied
linearly homomorphic structure-preserving signatures [39] to quasi-adaptive non-
interactive zero-knowledge (QA-NIZK) proofs [37], proposed QA-NIZK proofs
with unbounded simulation-soundness (USS), and constructed a CCA-secure
keyed-homomorphic scheme with threshold decryption by applying USS. These
CCA-secure keyed-homomorphic schemes only allow simple computations on en-
crypted data, i.e., either adding or multiplying encrypted ciphertexts, but not
both operations at the same time.

Fully Homomorphic Encryption. The notion of fully homomorphic encryption
(FHE) capable of performing any computations on encrypted data, was first put
forward by Rivest et al. [50]. However, only in the past few years have candidate
FHE schemes been proposed. The first such scheme was constructed by Gentry
[28]; his work inspired a tremendous amount of research effort on improving
the efficiency of his scheme [54, 53, 30, 29, 13, 21], realizations of FHE based on
different assumptions [55, 16, 17, 14], and so on. Until now, fully homomorphic
encryption schemes can only be proven secure against chosen-plaintext attack
(CPA).

Controlled Homomorphic Encryption. Desmedt et al. [23] put forth the notion of
a controllable homomorphic encryption scheme (CHES) that blends together the
notion of a fully homomorphic encryption scheme and of a functional encryption
scheme [8]. In a CHES, a designated homomorphic operation C can be efficiently
performed on a single ciphertext by a party that has a special token for function
C that is released by the owner of the secret key. Compared with CHES, keyed-
FHE enables a party holding a devoted evaluation key to compute arbitrary
functions on ciphertexts, and it can provide CCA2 security when the evaluation
key is unavailable.

Indistinguishability Obfuscation. Program obfuscation deals with the problem of
how to protect a program from reverse engineering while preserving functionality.
Unfortunately, Barak et al. [6, 5] showed that the most natural simulation-based
formulation of program obfuscation (a.k.a. “black-box obfuscation”) is impossi-
ble to achieve for general programs in a very strong sense. Faced with this impos-
sibility result, Barak et al. [6, 5] suggested another notion of program obfuscation
named indistinguishability obfuscation. Roughly speaking, an indistinguishabil-
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ity obfuscation scheme ensures that the obfuscations of any two functionally
equivalent circuits are computationally indistinguishable. Recently, Garg et al.
[27] proposed the first candidate construction of an efficient indistinguishability
obfuscation (iO) for general programs.

Recently, staring with [52] there has been much interest in investigating what
can be built from iO, since this model leads to poly-time obfuscation of unre-
stricted program classes, circumventing the known impossibility results of [6, 5].
Subsequently, many papers [52, 48, 36, 57, 33, 35, 26, 11] have shown a wide range
of cryptographic applications of iO. We utilize iO to construct an IND-sID-CPA-
secure convertible IBFHE scheme.

Organization. The rest of the paper is organized as follows. Some prelimi-
naries are given in Section 2. We introduce the notion and security model of
convertible IBFHE in Section 3. We propose a paradigm of constructing CCA-
secure keyed-FHE from IND-sID-CPA-secure convertible IBFHE and strongly
EUF-CMA-secure signature in Section 4. We present a concrete construction of
IND-sID-CPA-secure convertible identity-based (leveled) FHE in Section 5. Sec-
tion 6 concludes the paper.

2 Preliminaries

If S is a set, then s1, . . . , st ← S denotes the operation of picking elements
s1, . . . , st uniformly at random from S. If n ∈ N then [n] denotes the set
{1, . . . , n}. For a probabilistic algorithm A, we denote y ← A(x;R) the process
of running A on input x and with randomness R, and assigning y the result. Let
RA denote the randomness space of A, and we write y ← A(x) for y ← A(x;R)
with R chosen from RA uniformly at random. A function f(κ) is negligible, if
for every c > 0 there exists a κc such that f(κ) < 1/κc for all κ > κc. For a real
x ∈ R, ⌊x⌉ denotes the nearest integer to x, and ⌊x⌋, ⌈x⌉ for x ≥ 0 to indicate
rounding down or up.

2.1 Lattices

A full-rank lattice Λ is the set of all integer linear combinations of n linearly
independent basis vectors belonging to some Rn. In this work, we are interested
in full-rank integer lattices that are restricted to Zn.

Definition 1 Fixing q and given a matrix A ∈ Zn×m
q , define the following m-

dimensional Ajtai lattices,

Λq(A) = {y ∈ Zm : y = ATs mod q for some s ∈ Zn},
Λ⊥
q (A) = {y ∈ Zm : Ay = 0 mod q}.

For any u ∈ Zn
q admitting an integral solution to Ax = u mod q, define the

coset (or shifted lattice) Λu
q (A) = {y ∈ Zm : Ay = u mod q} = Λ⊥

q (A) + x.
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For a set of vectors B = {b1, . . . , bm} ∈ Zn×m
q , denote by ∥B∥ the L2 length

of the longest vector in B and denote by B̃ = {b̃1, . . . , b̃m} the Gram-Schmidt

orthogonalization of b1, . . . , bm taken in that order. We refer to ∥B̃∥ as the
Gram-Schmidt norm of B.

2.2 Discrete Gaussians

Let σ ∈ R+ and c ∈ Rm, the Gaussian function On Rm with center c and
parameter σ is defined as ρσ,c(x) = exp(−π∥x− c∥2/σ2). For a positive integer
m ∈ N, and a lattice Λ ∈ Zm, define the infinite discrete sum of Gaussian function
over the lattice Λ, ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x). The discrete Gaussian distribution

DΛ,σ,c is the m-dimensional Gaussian distribution centered at c and restricted

to the lattice Λ, defined as DΛ,σ,c(x) =
ρσ,c(x)
ρσ,c(Λ) for all the lattice point x ∈ Λ.

For ease of notation, we omit the center c if c = 0, and then abbreviate DΛ,σ,0

as DΛ,σ.

2.3 Sampling Algorithms

How to generate a random matrix A statistically close to uniform in Zn×m
q

along with a short basis (i.e., trapdoor) T of Λ⊥
q (A) is an important technique

in lattice-based cryptography. It has been widely investigated by [3, 4, 41]. We
use the trapdoor sampling algorithm proposed by Alwen and Peikert [4].

Theorem 1 Let n ≥ 1 and q be an odd prime, and let m ≥ 6n log q. There is an
efficient probabilistic polynomial-time algorithm TrapGen(q, n) that outputs A ∈
Zn×m
q and T ∈ Zm×m such that the distribution of A is within negl(n) statistical

distance of uniform and T is a basis of Λ⊥
q (A) satisfying ∥T ∥ ≤ O(n log q) and

∥T̃ ∥ ≤ O(
√
n log q) with all but negligible probability in n.

In the construction and the simulation of our convertible IBFHE scheme, we
employ the sampling algorithms SampleLeft and SampleRight given in [1], which
can be used to sample relatively short vectors.

Theorem 2 Let A be a rank n matrix in Zn×m
q and let TA be a “short” basis

of Λ⊥
q (A). Let M1 be a matrix in Zn×m1

q and let F 1 = A|M1. Let u be a vector

in Zn
q and σ > ∥T̃A∥ · ω(

√
log(m+m1)). There is a probabilistic polynomial-

time algorithm SampleLeft(A,M1,TA,u, σ) that outputs a vector e ∈ Zm+m1
q

sampled from a distribution statistically close to DΛu
q (F 1),σ. In particular, e ∈

Λu
q (F1).

Theorem 3 Let B be a rank n matrix in Zn×m
q and let TB be a “short” basis

of Λ⊥
q (B). Let R be a matrix in Zk×m

q . Let A be a matrix in Zn×k
q and let F 2 =

A|AR+B. Let u be a vector in Zn
q and σ > ∥T̃B∥ ·∥R∥ ·ω(

√
log(m)). There is

a probabilistic polynomial-time algorithm SampleRight(A,B,R,TB,u, σ) that
outputs a vector e ∈ Zm+k

q sampled from a distribution statistically close to
DΛu

q (F 1),σ. In particular, e ∈ Λu
q (F2).
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2.4 The LWE Hardness Assumption

Let n be a positive integer dimension, let q ≥ 2 be a prime, and let χ be a
probability distribution over Zq. For s ∈ Zn

q , let As,χ and U$ be two distributions
defined as follows:

– As,χ: the probability distribution on Zn
q ×Zq obtained by choosing a random

vector a ∈ Zn
q uniformly, choosing an error term e ∈ Zq according to χ, and

outputting (a, ⟨a, s⟩+ e).
– U$: the uniform distribution over Zn

q × Zq.

For uniformly random s ∈ Zn
q , an (Zq, n, χ)-LWE problem instance consists of

access to a challenge oracle O that outputs samples (a, b) from Zn
q ×Zq according

to, either the probability distribution As,χ, or the uniform distribution U$. The
(Zq, n, χ)-LWE problem allows repeated queries to the challenge oracle O. We
say that an algorithm A decides the LWEZq,n,χ problem if

Adv
(Zq,n,χ)-LWE
A = |Pr[AOs = 1]− Pr[AO$ = 1]|

is non-negligible for a random s ∈ Zn
q , where Os and O$ represent that the oracle

O outputs samples from Zn
q × Zq according to As,χ and U$ respectively.

Regev [49] and Perkert [43] showed that for certain noise distributions χ,
denoted Ψ̄α, the LWE problem is as hard as the worst-case SIVP and GapSVP
under a quantum reduction. Brakerski et al. [15] provided the first classical
hardness reduction of LWE with polynomial modulus.

Definition 2 Consider a real parameter α ∈ (0, 1) and a prime q. Let T = R/Z
denote the group of reals [0, 1) with addition modulo 1. Let Ψα be the distribution
on T obtained by sampling a normal variable with mean 0 and standard deviation
α/
√
2π and reducing the result modulo 1. Let Ψ̄α denote the discrete distribution

over Zq of the random variable ⌊qX⌉ where the random variable X ∈ T has
distribution Ψα.

The following lemma about the distribution Ψ̄α taken from [1] will be needed
to show that decryption works correctly.

Lemma 1 Let e be some vector in Zm and let y ←R Ψ̄α. Then the quantity
|e⊤y| treated as an integer in [0, q − 1] satisfies |e⊤y| ≤ ∥e∥qαω(

√
logm) +

∥e∥
√
m/2 with all but negligible probability in m.

2.5 Vector Decomposition

Let k be an integer dimension, let l = ⌊log2 q⌋+ 1 and N = k · l. Let a, b ∈ Zk
q .

We show a way of decomposing vectors that preserves the inner product [31].
We often break vectors into their bit representations as defined below:
BitDecomp(a): For a ∈ Zk

q , let ai,j be the j-th bit in ai’s binary representa-
tion, bits ordered least significant to most significant. Output the N -dimensional
vector (a1,0, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1). BitDecomp−1(a′): It is the inverse
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of BitDecomp. For a′ = (a1,0, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1), output (
∑

2j ·
a1,j , . . . ,

∑
2j · ak,j). Note that, it is well-defined even if a′ is not a 0/1 vec-

tor.

Flatten(a′): For N -dimensional vector a′, output BitDecomp(BitDecomp−1(a′)),
a N -dimensional vector with 0/1 coefficients.

Powerof2(b): For b = (b1, . . . , bk) ∈ Zk
q , output the N -dimensional vector (b1, 2b1,

. . . , 2l−1b1, . . ., bk, 2bk, . . . , 2
l−1bk).

Claim 1 Let a, b be vectors of some dimension k over Zq, let a′ be any N -
dimensional vector. We have

– ⟨BitDecomp(a),Powerof2(b)⟩ = ⟨a, b⟩.
– ⟨a′,Powerof2(b)⟩ = ⟨BitDecomp−1(a′), b⟩ = ⟨Flatten(a′),Powerof2(b)⟩.

When A is a matrix, let BitDecomp(A), BitDecomp−1(A) or Flatten(A) be the
matrix formed by applying the operation to each row of A separately.

2.6 Indistinguishability Obfuscation

Roughly speaking, an indistinguishability obfuscation (iO) scheme ensures that
the obfuscations of any two functionally equivalent circuits are computationally
indistinguishable. Indistinguishability obfuscation was originally proposed by
Barak et al. [6, 5] as a potential weakening of virtual-black-box obfuscation. We
recall the definition from [27]. A uniform probabilistic polynomial time (PPT)
machine iO is called an indistinguishability obfuscator for a circuit class {Cλ}λ∈N
if the following conditions are satisfied:

– Correctness. For all security parameters λ ∈ N, for all C ∈ Cλ, and for
all input x, we have that Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– Security. For any (not necessarily uniform) PPT distinguisher D, for all
pairs of circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) on all inputs x the
following distinguishing advantage is negligible:

AdvDiO,C0,C1
(λ) := |Pr[D(iO(λ,C0)) = 1]− Pr[D(iO(λ,C1)) = 1]|.

2.7 Puncturable PRFs

A pseudorandom function (PRF) is a function F : K × X → Y such that the
function F (K, ·) is indistinguishable from random when K ← K. Puncturable
PRFs were defined by Sahai and Waters [52] as a simple type of constrained
PRFs [10, 12, 38]. They defined a puncturable PRF as a PRF for which a key
can be given out that allows evaluation of the PRF on all inputs, except for a
designated polynomial-size set of inputs. Formally, a puncturable PRF F (K, ·)
is equipped with additional PPT algorithms (EvalF ,PunctureF ) such that the
following properties hold:
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– Correctness. For every PPT algorithm which on input a security param-
eter λ outputs a set S ⊆ {0, 1}n, for all x ∈ {0, 1}n\S, we have that

Pr[EvalF (K{S}, x) = F (K,x) : K ← K,K{S} ← PunctureF (K,S)] = 1.

– Security. For any PPT algorithmA, the following distinguishing advantage
is negligible:

|Pr[A(S,K{S}, F (K,S)) = 1 : S ← A(λ),K{S} ← PunctureF (K,S)]−
Pr[A(S,K{S}, Uℓ̄·|S|) = 1 : S ← A(λ),K{S} ← PunctureF (K,S)]|,

where F (K,S) denotes the concatenation of F (K,x1), · · · , F (K,xk), S =
{x1, · · · , xk} is the enumeration of the elements of S in lexicographic order,
ℓ̄ denotes the bit-length of the output F (K,x), and Uℓ denotes the uniform
distribution over ℓ bits.

2.8 Keyed-Fully Homomorphic Encryption

A keyed-fully homomorphic encryption scheme consists of the following four
algorithms:

Setup(1κ) takes as input a security parameter κ. It outputs a public key PK, a
decryption key DK and an evaluation key EK.

Enc(PK, b) takes as input a public key PK and a message bit b ∈ {0, 1}. It
outputs a ciphertext C.

Dec(PK,DK, C) takes as input a public key PK, a decryption key DK and a
ciphertext C. It outputs a message bit b.

Eval(PK,EK,C, f) takes as input a public key PK, an evaluation key EK, a tuple
of ciphertexts C = (C1, . . . , Ck) and a Boolean circuit f : {0, 1}k → {0, 1}.
It outputs a ciphertext C.

Correctness. We require that for each (PK,DK,EK) output by Setup(1κ), the
following hold:

Encryption correctness: with overwhelming probability, for all message
bit b ∈ {0, 1}, we have Dec(PK,DK,Enc(PK, b)) = b.

Evaluation correctness: for any k-ciphertexts (C1, . . . , Ck) such that Dec(
PK,DK, Ci) = bi ∈ {0, 1}, and a Boolean circuit f : {0, 1}k → {0, 1}, with
overwhelming probability, we have

Dec(PK,DK,Eval(PK,EK,C = (C1, . . . , Ck), f)) = f(b1, . . . , bk).

Security. The CCA security of keyed-FHE scheme is defined using the following
game between a PPT adversary A and a challenger. The adversary is only al-
lowed to issue the decryption queries before it requests the evaluation key EK to
be exposed in our security definition; thus it is slightly different from the defi-
nition given in [25]. That is, in our model, a keyed-FHE scheme should provide
CCA security when the evaluation key is unavailable to the adversary and remain
CPA-secure when the evaluation key is exposed.
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Setup The challenger runs Setup(1λ) to obtain a public key PK, a decryption
key DK and an evaluation key EK. It sends the public key PK to the adversary
A. In addition, the challenger maintains a list DList, which is set as ∅ initially.

Query phase 1 The adversary A adaptively issues the following queries:
• DecCT⟨C⟩: The challenger uses the decryption key DK to decrypt C

with algorithm Dec. The result is sent back to A. This query is not
allowed to issue if A has queried to RevEK.

• EvalOnCT⟨C = (C1, . . . , Ck), f⟩: The challenger runs Eval(PK,EK,C,
f) to obtain a ciphertext C, which is returned to A. This query is not
allowed to issue if A has queried to RevEK.

• RevEK: The challenger sends the evaluation key EK to A.
Challenge The challenger first selects a message bit b∗ ∈ {0, 1} uniformly at

random. Then, it computes C∗ ← Enc(PK, b∗), and sends the challenge ci-
phertext C∗ to the adversary. Finally, the challenger updates the list by
DList← DList ∪ {C∗}.

Query phase 2 The adversary A continues to adaptively issue the following
queries:
• DecCT⟨C⟩: If C ∈ DList, the challenger returns ⊥. Otherwise, the chal-

lenger uses the decryption key DK to decrypt C with algorithm Dec, and
the result is sent back to A. This query is not allowed to issue if A has
queried to RevEK.

• EvalOnCT⟨C = (C1, . . . , Ck), f⟩: The challenger runs Eval(PK,EK,C,
f) to obtain a ciphertext C, which is returned to A. In addition, if there
exists i ∈ [k] such that Ci ∈ DList, then the challenger updates the list
by DList ← DList ∪ {C}. This query is not allowed to issue if A has
queried to RevEK.

• RevEK: The challenger sends the evaluation key EK to A.
Guess The adversary A outputs its guess b ∈ {0, 1} for b∗ and wins the game

if b = b∗.

The advantage of the adversary in this game is defined as |Pr[b = b∗]− 1
2 | where

the probability is taken over the random bits used by the challenger and the
adversary.

Definition 3 A keyed-FHE scheme is CCA-secure if all probabilistic polynomial
time adversaries have at most a negligible advantage in the above security game.

3 Convertible Identity-based Fully Homomorphic
Encryption

Informally, a convertible IBFHE is an IBFHE with an additional transformation

functionality: given a transformation key TK 7→ĨD for an identity ĨD, which is
generated by the authority, one can transform a ciphertext CT under any identity

into a ciphertext under identity ĨD without changing the underlying plaintext
of CT. Concretely, a convertible IBFHE scheme consists of the following seven
algorithms:
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Setup(1κ) takes as input a security parameter κ. It generates a public parame-
ters PP and a master key MK.

Extract(PP,MK, ID) takes as input the public parameters PP, the master key
MK and an identity ID. It produces a private key SKID for identity ID.

GenerateTK(PP,MK, ĨD) takes as input the public parameters PP, the master

key MK and an identity ĨD. It generates a transformation key TK 7→ĨD for

identity ĨD.
Encrypt(PP, ID, b) takes as input the public parameters PP, an identity ID and

a message bit b ∈ {0, 1}. It outputs a ciphertext CT.
Transform(PP,TK 7→ĨD, ID,CT) takes as input the public parameters PP, a trans-

formation key TK 7→ĨD, and a ciphertext CT for an identity ID. It outputs a

ciphertext C̃T under identity ĨD.
Decrypt(PP,SKID,CT) takes as input the public parameters PP, a private key

SKID and a ciphertext CT. It outputs a message bit b ∈ {0, 1}.
Evaluate(PP, ID,CT , f) takes as input the public parameters PP, a tuple of

ciphertexts CT = (CT1, . . . ,CTk) under an identity ID and a Boolean circuit
f : {0, 1}k → {0, 1}. It outputs a ciphertext CT under identity ID.

Correctness. We require that for each (PP,MK) output by Setup(1κ), the fol-
lowing hold:

Encryption correctness: with overwhelming probability, for all identity ID
and message bit b ∈ {0, 1}, we have Decrypt(PP,Extract(PP,MK, ID),Encrypt(
PP, ID, b)) = b.

Transformation correctness: with overwhelming probability, for all iden-

tity ID, ĨD and message bit b ∈ {0, 1}, let CT ← Encrypt(PP, ID, b), SKID ←
Extract(PP,MK, ID), SKĨD ← Extract(PP,MK, ĨD), TK 7→ĨD ← GenerateTK(PP,

MK, ĨD), and C̃T← Transform(PP,TK 7→ĨD, ID,CT), we have

Decrypt(PP,SKID,CT) = Decrypt(PP,SKĨD, C̃T).

Evaluation correctness: for any k-ciphertexts (CT1, . . . ,CTk) under an
identity ID such that Decrypt(PP,Extract(PP,MK, ID),CTi) = bi ∈ {0, 1},
and a Boolean circuit f : {0, 1}k → {0, 1}, with overwhelming probability, we
have Decrypt(PP,Extract(PP,MK, ID),Evaluate(PP, ID,CT = (CT1, . . . ,CTk),
f)) = f(b1, . . . , bk).

Security. The IND-sID-CPA security of convertible IBFHE scheme is defined
using the following game between a PPT adversary A and a challenger.

Init The adversary submits a target identity ID∗ and a designated identity ĨD.
Setup The challenger first runs Setup(1κ) to obtain a public parameters PP

and a master key MK. Then, it runs GenerateTK(PP,MK, ĨD) to get the

transformation key TK 7→ĨD for identity ĨD, and sends the public parameters
PP and the transformation key TK 7→ĨD to the adversary A.
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Query phase 1 The adversary A adaptively issues the following queries:

• GetSK⟨ID⟩: The challenger runs Extract(PP,MK, ID) to generate the
corresponding private key SKID, which is returned to A. We require that

ID /∈ {ID∗, ĨD}.
Challenge The challenger first selects a message bit b∗ ∈ {0, 1} uniformly at

random. Then, it computes CT∗ ← Encrypt(PP, ID∗, b∗), and sends the chal-
lenge ciphertext CT∗ to the adversary.

Query phase 2 This is same as Query phase 1.
Guess The adversary A outputs its guess b ∈ {0, 1} for b∗ and wins the game

if b = b∗.

The advantage of the adversary in this game is defined as |Pr[b = b∗]− 1
2 |, where

the probability is taken over the random bits used by the challenger and the
adversary.

Definition 4 A convertible IBFHE scheme is IND-sID-CPA secure, if the ad-
vantage in the above security game is negligible for all PPT adversaries.

4 Proposed CCA Secure Keyed-FHE Scheme

Given a convertible IBFHE scheme cIBE = (Setup,Extract,GenerateTK,Encrypt,
Transform, Decrypt, Evaluate) for identities of length ℓ which is IND-sID-CPA
secure, we construct a CCA-secure keyed-FHE scheme. In the construction, we
use a strongly EUF-CMA secure signature scheme S = (Gen,Sign,Vrfy) in which
the verification key output by Gen has length ℓ. The construction of our CCA-
secure keyed-FHE scheme is described as follows.

Setup(1κ) : The setup algorithm first runs cIBE.Setup(1κ) to obtain (PP,MK),

and calls S.Gen(1κ) to obtain a key pair (ṽk, s̃k). Then, it computes

TK 7→ṽk
← cIBE.GenerateTK(PP,MK, ṽk).

Finally, it sets the public key PK = PP, the decryption key DK = MK and

the evaluation key EK = (ṽk, s̃k,TK 7→ṽk
).

Enc(PK, b ∈ {0, 1}) : The encryption algorithm takes as input the public key
PK = PP, and a message bit b ∈ {0, 1}. It proceeds as follows.
1. Run S.Gen(1κ) to obtain a key pair (vk, sk).
2. Compute CT← cIBE.Encrypt(PP, vk, b) and σ ← S.Sign(sk,CT).
3. Output the ciphertext C = (vk,CT, σ).

Dec(PK,DK, C) : The decryption algorithm takes as input the public key PK =
PP, the decryption key DK = MK and a ciphertext C = (vk,CT, σ). This
algorithm first checks whether S.Vrfy(vk,CT, σ) = 1. If not, it outputs ⊥.
Otherwise, it computes SKvk ← cIBE.Extract(PP,MK, vk) and sets b ←
cIBE.Decrypt(PP,SKvk,CT). Then, it outputs the message bit b.
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Eval(PK,EK,C, f) : This algorithm takes as input the public key PK = PP,

the evaluation key EK = (ṽk, s̃k,TK 7→ṽk
), a tuple of ciphertexts C = (C1 =

(vk1,CT1, σ1), . . . , Ck = (vkk,CTk, σk)) and a Boolean circuit f : {0, 1}k →
{0, 1}. For i = 1, . . . , k, it proceeds as follows.
1. Check whether S.Vrfy(vki,CTi, σi) = 1. If not, it outputs ⊥.
2. Compute C̃Ti ← cIBE.Transform(PP,TK 7→ṽk

, vki,CTi).

Next, it calls cIBE.Evaluate to obtain C̃T ← cIBE.Evaluate(PP, ṽk, (C̃T1, . . .,

C̃Tk), f). Then, it computes σ̃ ← S.Sign(s̃k,CT), and outputs the ciphertext

C = (ṽk, C̃T, σ̃).

Correctness. If the underlying convertible IBFHE scheme cIBE satisfies encryp-
tion correctness, transformation correctness and evaluation correctness, it is ob-
vious that the above construction satisfies the correctness requirements of keyed-
FHE.

Theorem 4 If the underlying convertible IBFHE scheme is IND-sID-CPA se-
cure, and the signature scheme S is strongly EUF-CMA secure, then our proposed
keyed-FHE scheme is CCA-secure.

Proof. To prove the CCA security of our proposed keyed-FHE scheme, we con-
sider the following games which is described by its modification from the previous
game.

Game 0. This is the original CCA security game between an adversaryA against
our scheme and a CCA challenger.

Game 1. In this game, we slightly change the way that the challenger answers
the adversary’s DecCT and EvalOnCT queries. Let C∗ = (vk∗,CT∗, σ∗)
be the challenge ciphertext.
When the adversary A issues a DecCT query on ciphertext C = (vk,CT, σ),
the challenger checks whether vk = vk∗, C ̸= C∗ and S.Vrfy(vk,CT, σ) = 1.
If so, the challenger returns ⊥; otherwise, it responds as in Game 0.
When the adversaryA issues anEvalOnCT query on ⟨C = (C1, . . . , Ck), f⟩,
the challenger first parses Ci as (vki,CTi, σi) for each i ∈ [k]. Then, the
challenger checks whether there exists i ∈ [k] such that vki = vk∗, Ci ̸= C∗

and S.Vrfy(vki,CTi, σi) = 1. If so, the challenger returns ⊥; otherwise, it
responds as in Game 0.

Game 2. In this game, at the setup phase, except for the list DList, the chal-
lenger also maintains another list EList, which is set as ∅ initially. We also
modify the way how the adversary A’s DecCT and EvalOnCT queries are

answered. Let PK,DK,EK = (ṽk, s̃k,TK 7→ṽk
) be the public key, decryption

key and evaluation key respectively, generated by the challenger at the setup
phase.
When the adversary A issues a DecCT query on ciphertext C = (vk,CT, σ),

the challenger checks whether vk = vk∗ or vk ̸= ṽk. If so, the challenger

responds as in Game 1; otherwise (i.e., vk = ṽk), it proceeds as follows:
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1. Check whether S.Vrfy(vk,CT, σ) = 1. If not, return ⊥.
2. Search the list EList for a record (m,C). If such record does not exist,

return ⊥; otherwise, send m to A.
When the adversaryA issues anEvalOnCT query on ⟨C = (C1, . . . , Ck), f⟩,
the challenger first parses Ci as (vki,CTi, σi) for each i ∈ [k]. Then, it
checks whether there exists i ∈ [k] such that one of the following condi-
tions holds: 1) vki = vk∗,S.Vrfy(vki,CTi, σi) = 1 and Ci ̸= C∗; 2) vki =

ṽk,S.Vrfy(vki,CTi, σi) = 1 and the list EList does not contain a record
(mi, Ci). If so, the challenger returns ⊥ to A; otherwise, the challenger runs
Eval(PK,EK,C, f) to obtain a ciphertext C, which is returned to A. In ad-
dition, when the ciphertext C ̸=⊥, the challenger checks whether there ex-
ists i ∈ [k] such that Ci ∈ DList. If so, the challenger updates the list by
DList← DList ∪ {C}; otherwise, it proceeds as follows.
1. For each i ∈ [k], if vki = ṽk, the challenger finds the record (mi, Ci) in the

list EList; otherwise (i.e., vki ̸= ṽk), the challenger uses the decryption
key DK to decrypt Ci with algorithm Dec and obtain a message bit mi.

2. The challenger computes m = f(m1, . . . ,mk) and updates the list by
EList← EList ∪ {(m,C)}.

By the following lemmas, we prove these games are computationally indistin-
guishable, and in Game 2, the advantage of the adversary is negligible. Therefore,
we conclude that the advantage of the adversary in Game 0 (i.e., the original
CCA security game) is negligible. This completes the proof of Theorem 4.

Lemma 2 Suppose that the signature scheme S is strongly EUF-CMA-secure.
Then Game 0 and Game 1 are computationally indistinguishable.

Proof. Let C∗ = (vk∗,CT∗, σ∗) be the challenge ciphertext. Define event E: the
adversary A submits a ciphertext C = (vk,CT, σ) such that vk = vk∗, C ̸= C∗

and S.Vrfy(vk,CT, σ) = 1 during its DecCT or EvalOnCT queries. If E does
not happen, Game 0 is identical to Game 1. All we have to do is to prove that
E happens with negligible probability.

Suppose that E happens with non-negligible probability. Then we can build
an algorithm B that breaks strong EUF-CMA security of the signature scheme
S with non-negligible probability. Let C be the challenger corresponding to B in
the strong EUF-CMA security game of the signature scheme S. B is given the
verification key vk∗ of the signature scheme S, and simulates Game 1 to the
adversary A as follows.
B runs Setup to obtain (PK,DK,EK), and sends the public key PK to A. Since

B knows the decryption key DK and the evaluation key EK associated with PK,
thus it is able to answer all queries made by the adversary. At some point, A
asks for the challenge ciphertext. B proceeds as follows.

1. Choose a message bit b∗ ∈ {0, 1} uniformly at random.
2. Compute CT∗ ← cIBE.Encrypt(PK, vk∗, b∗).
3. Issue the signing query on CT∗ to its challenger C to obtain the corresponding

signature σ∗.
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4. Set the challenge ciphertext C∗ = (vk∗,CT∗, σ∗) and send it to the adversary
A.

Suppose E happens during the simulation (i.e., the adversary submits a cipher-
text C = (vk,CT, σ) such that vk = vk∗, C ̸= C∗ and S.Vrfy(vk,CT, σ) = 1
during its DecCT or EvalOnCT queries), B outputs (CT, σ) which is not equal
to (CT∗, σ∗), as its forgery of the signature scheme S. Thus, if E happens with
non-negligible probability, then B can break strong EUF-CMA security of the
signature scheme S with non-negligible probability.

Lemma 3 Suppose that the signature scheme S is strongly EUF-CMA-secure.
Then Game 1 and Game 2 are computationally indistinguishable.

Proof. Let EK = (ṽk, s̃k,TK 7→ṽk
) be the evaluation key. Game 2 is the same

as Game 1 except for the way of answering the adversary A’s DecCT and
EvalOnCT queries when A submits a ciphertext C = (vk,CT, σ) such that

vk = ṽk and S.Vrfy(vk,CT, σ) = 1. Recall that in our security definition of
keyed-FHE, the adversary cannot issue the decryption or evaluation queries if it
requests the evaluation key to be exposed. Since our proposed scheme satisfies
the requirement of evaluation correctness, it is easy to observe that when A
submits a ciphertext C = (vk = ṽk,CT, σ) during its DecCT or EvalOnCT
queries such that C is the return of A’s some EvalOnCT query, the challenger’s
response is the same in Game 1 and Game 2.

Define event E: the adversary A submits a ciphertext C = (vk = ṽk,CT, σ)
during its DecCT or EvalOnCT queries such that S.Vrfy(vk, CT, σ) = 1 and
C is not the response to A’s some EvalOnCT query. If E does not happen,
Game 1 is identical to Game 2. All we have to do is to prove that E happens
with negligible probability.

One can prove that if the signature scheme S is strongly EUF-CMA-secure,
then event E happens with negligible probability. We omit the details due to its
similarity of Lemma 2.

Lemma 4 If the underlying convertible IBFHE scheme is IND-sID-CPA-secure,
then in Game 2, the advantage of the adversary is negligible.

Proof. Suppose there exists an adversary A that achieves a non-negligible ad-
vantage in Game 2. Then we can build an algorithm B that makes use of A to
attack the underlying convertible IBFHE scheme cIBE in the IND-sID-CPA secu-
rity game with a non-negligible advantage. Let C be the challenger corresponding
to B in the IND-sID-CPA security game of the convertible IBFHE scheme cIBE.
B runs A executing the following steps.

Setup B first runs S.Gen twice to obtain two key pairs (vk∗, sk∗) and (ṽk, s̃k).

Then, it submits (vk∗, ṽk) to C as its target identity and designated identity,
and C returns the public parameters PP of the convertible IBFHE scheme

cIBE and the transformation key TK 7→ṽk
for identity ṽk to B. Next, B sets
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the public key PK = PP, the evaluation key EK = (ṽk, s̃k,TK 7→ṽk
), and

sends the public key PK to the adversary A. In addition, B maintains two
lists DList and EList, which are set as ∅ initially.

Query phase 1 The adversary A adaptively issues the following queries:

• DecCT⟨C⟩: B first parses the ciphertext C as (vk,CT, σ). Then, it
checks whether S.Vrfy(vk, CT, σ) = 1. If not, B returns ⊥ to A; oth-
erwise, B proceeds as follows.

1. If vk = vk∗, B returns ⊥ to A.
2. If vk ̸= ṽk, B issues GetSK query on ⟨vk⟩ to its challenger C to

obtain a private key SKvk for identity vk, and uses the private key
SKvk to decrypt CT with algorithm cIBE.Decrypt. The result is sent
back to A.

3. If vk = ṽk and C ∈ DList, B returns ⊥ to A.
4. Otherwise (i.e., vk = ṽk and C /∈ DList), B search the list EList for

a record (m,C). If such record does not exist, B returns ⊥ to A;
otherwise, B sends the message bit m to the adversary A.

• EvalOnCT⟨C = (C1, . . . , Ck), f⟩: For each i ∈ [k], B parses Ci as
(vki,CTi, σi). Then, B checks whether there exists i ∈ [k] such that one
of the following conditions holds: 1) vki = vk∗,S.Vrfy(vki,CTi, σi) = 1

and Ci ̸= C∗; 2) vki = ṽk,S.Vrfy(vki,CTi, σi) = 1 and the list EList
does not contain a record (mi, Ci). If so, B returns ⊥ to A; other-
wise, B runs Eval(PK,EK,C, f) to obtain a ciphertext C, which is re-
turned to A. In addition, when the ciphertext C ̸=⊥, B checks whether
there exists i ∈ [k] such that Ci ∈ DList. If so, B updates the list by
DList← DList ∪ {C}; otherwise, B proceeds as follows.

1. For each i ∈ [k], if vki = ṽk, B finds the record (mi, Ci) in the list

EList; otherwise (i.e., vki ̸= ṽk), B issuesGetSK query on ⟨vki⟩ to its
challenger C to obtain a private key SKvki for identity vki, and uses
the private key SKvki to decrypt CTi with algorithm cIBE.Decrypt
and obtain a message bit mi.

2. B computes m = f(m1, . . . ,mk) and updates the list by EList ←
EList ∪ {(m,C)}.

• RevEK: The challenger sends the evaluation key EK to A.
Challenge Firstly, B asks C for its challenge ciphertext of the convertible IBFHE

scheme cIBE, and receives the ciphertext CT∗. Then, B computes σ∗ ←
S.Sign(sk∗,CT∗), and sets the challenge ciphertext C∗ = (vk∗,CT∗, σ∗). Fi-
nally, B sends C∗ to the adversary A. In addition, B updates the list by
DList← DList ∪ {C∗}.

Query phase 2 The adversary A continues to adaptively issue DecCT, Eval-
OnCT and RevEK queries. B responds as Query phase 1.

Guess The adversary A outputs a bit b ∈ {0, 1}. B also takes b as its output.

It is easy to observe that, B’s simulation is perfect. Thus, ifA has a non-negligible
advantage in Game 2, then B attacks the underlying convertible IBFHE scheme
cIBE in the IND-sID-CPA security game with a non-negligible advantage.
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5 Proposed Convertible IBFHE Scheme

We denote SampleUS(Zn
q ; rS) as a sample algorithm that chooses an element

in Zn
q uniformly at random with the randomness rS , SampleGX(Zq, Ψ̄α; rX) as

a sample algorithm that chooses an element in Zq from the distribution Ψ̄α

with the randomness rX , SampleGY(Zm
q , Ψ̄m

α ; rY ) as a sample algorithm that

chooses an element in Zm
q from the distribution Ψ̄m

α with the randomness rY ,
and SampleURs({−1, 1}m×m; rR) as a sample algorithm that chooses ℓ-elements
in domain {−1, 1}m×m uniformly at random with the randomness rR. Let FD :
KD × {0, 1}∗ → {−1, 1}ℓ, FS : KS × {0, 1}∗ × {0, 1}2κ × [N ]→ RSampleUS, FX :
KX ×{0, 1}∗×{0, 1}2κ× [N ]→RSampleGX, FY : KY ×{0, 1}∗×{0, 1}2κ× [N ]→
RSampleGY, FR : KR × {0, 1}∗ × {0, 1}2κ × [N ] → RSampleURs be puncturable
PRFs, and let PRG : {0, 1}κ → {0, 1}2κ be a pseudorandom generator. Let iO
be a program indistinguishability obfuscator. Our proposed convertible identity-
based (leveled) FHE scheme consists of the following algorithms:

Setup(1κ, 1L): On input a security parameter κ and a number of levels L (max-
imum circuit depth to support), this algorithm first chooses the parameters
(q, n,m, σ, α) as specified in Section 5.1 below. LetN = (2m+1)·(⌊log q⌋+1).

It then invokes TrapGen(q, n) to generate a uniformly random matrix A ∈
Zn×m
q and a short basis TA ∈ Zm×m for Λ⊥

q (A). It also chooses uniformly
random matrices B0, B1, . . . , Bℓ ∈ Zn×m

q , and a uniformly random vector
u ∈ Zn

q . Next, it chooses puncturable PRF keys KD ← KD,KS ← KS ,KX ←
KX ,KY ← KY ,KR ← KR, and creates an obfuscation of the program Pro-
duceCT as PEnc ← iO(κ,ProduceCT),

ProduceCT:
Input: Identity ID ∈ {0, 1}∗, a message b ∈ {0, 1}, and randomness r ∈ {0, 1}κ.
Constants: PRF keys KD,KS ,KX ,KY and KR.

1. Compute id = FD(KD, ID) ∈ {−1, 1}ℓ.
2. Compute t = PRG(r).
3. For each i ∈ [N ], do the following:

(a) compute rS,i = FS(KS , ID, t, i), rX,i = FX(KX , ID, t, i), rY,i =
FY (KY , ID, t, i) and rR,i = FR(KR, ID, t, i);

(b) evaluate (ci,0, ci,1) = ABBEnc0(PPABB, id, rS,i, rX,i, rY,i, rR,i).

4. Set cid =

 c1,0|c⊤1,1
...

cN,0|c⊤N,1

 ∈ ZN×(2m+1)
q and compute CID = Flatten(b · IN +

BitDecomp(cid)).
5. Output: (t, CID).

Fig. 1. Program ProduceCT
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Finally, it outputs the public parameters

PP =
(
PPABB = (A,B0, B1, . . . , Bℓ, u),P

Enc,PRG,FD,FS ,FX ,FY ,FR

)
,

and master key MK =
(
TA,KD,KS ,KX ,KY ,KR

)
.

Extract(PP,MK, ID): On input public parameters PP, a master key MK, and an
identity ID ∈ {0, 1}∗, this algorithm first sets id = FD(KD, ID) = (d1, . . . , dℓ) ∈
{−1, 1}ℓ and evaluates eID ← SampleLeft(A,B0 +

∑ℓ
i=1 diBi, TA, u, σ) to

obtain a short vector in Λu
q (Fid), where Fid = A | B0 +

∑ℓ
i=1 diBi and

eID is distributed as DΛu
q (Fid),σ. Then, it sets sID = (1,−eID) and vID =

Powersof2(sID), and outputs the private key SKID = vID for identity ID.

GenerateTK(PP,MK, ĨD): On input public parameter PP, a master key MK, and

an identity ĨD ∈ {0, 1}∗, this algorithm creates an obfuscation of the program
ConvertTAID as PTrans ← iO(κ,ConvertTAID), and outputs the transforma-

tion key TK 7→ĨD =
(
ĨD,PTrans

)
.

Encrypt(PP, ID, b): On input public parameters PP, an identity ID ∈ {0, 1}∗, and
a message b ∈ {0, 1}, the encryption algorithm first chooses r ∈ {0, 1}κ uni-
formly at random. Then, it computes (t, CID) = PEnc(ID, b, r), and outputs
the ciphertext CT = (t, CID).

Transform(PP,TK 7→ĨD, ID,CT): On input public parameters PP, a transforma-

tion key TK 7→ĨD = (ĨD,PTrans), a ciphertext CT = (t, CID) for an identity ID,
this algorithm computes (t̃, CĨD) = PTrans(ID,CT), and outputs the trans-

formed ciphertext C̃T = (t̃, CĨD).

Decrypt(PP,SKID,CT): The decryption algorithm takes as input public param-
eters PP, a private key SKID = vID, and a ciphertext CT = (t, CID). Observe
that the first ⌊log q⌋+1 coefficients of vID are 1, 2, . . . , 2⌊log q⌋. Among these
coefficients, let vID,i = 2i be in (q/4, q/2]. Let CID,i be the i-th row of CID.
This algorithm computes xi ← ⟨CID,i,vID⟩ and outputs µ′ = ⌊xi/vID,i⌉.

Evaluate(PP, ID,CT , f): The evaluation algorithm takes as input public pa-
rameters PP, a tuple of ciphertext CT = (CT1, . . . ,CTk) under an identity
ID and a Boolean circuit f : {0, 1}k → {0, 1}. It is a remarkable fact that,
Boolean circuits computed over encryptions of binary values can be con-
verted to use only NAND gates [31]. Let CTi = (ti, cti) be an encryption of
bi ∈ {0, 1} for all i ∈ [k], the NAND homomorphic operation is described
below:
NAND(ct1, ct2): To NAND ciphertexts ct1, ct2 ∈ ZN×N

q , output Flatten(IN −
ct1 · ct2).
Let ct be the result of f(ct1, . . . , ctk) through appropriate leveled application
of the NAND homomorphic operation. The algorithm chooses a random value
t ∈ {0, 1}2κ and outputs the resulting ciphertext CT = (t, ct).

ABBEnc0(PPABB, id, rS , rX , rY , rR): On input public parameters PPABB, an iden-
tity id = (d1, . . . , dℓ) ∈ {−1, 1}ℓ and randomness rS ∈ RSampleUS, rX ∈
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ConvertTAID:
Input: Identity ID ∈ {0, 1}∗, and ciphertext CT = (t, CID) ∈ {0, 1}2κ × ZN×N

q .
Constants: PRF keys KD,KS ,KX ,KY and KR.

1. If ID is equal to ĨD, output CT.

2. Compute id = FD(KD, ID) ∈ {−1, 1}ℓ and ĩd = FD(KD, ĨD) ∈ {−1, 1}ℓ.
3. For each i ∈ [N ], do the following:

(a) compute rS,i = FS(KS , ID, t, i), rX,i = FX(KX , ID, t, i), rY,i =
FY (KY , ID, t, i) and rR,i = FR(KR, ID, t, i);

(b) evaluate (ci,0, ci,1) = ABBEnc0(PPABB, id, rS,i, rX,i, rY,i, rR,i).

4. Set cid =

 c1,0|c⊤1,1
...

cN,0|c⊤N,1

 ∈ ZN×(2m+1)
q .

5. Check whether there exists b ∈ {0, 1} such that CID = Flatten(b · IN +
BitDecomp(cid)).
If not, output ⊥.

6. For each i ∈ [N ], do the following:

(a) compute r̃S,i = FS(KS , ĨD, t, i), r̃X,i = FX(KX , ĨD, t, i), r̃Y,i =

FY (KY , ĨD, t, i) and r̃R,i = FR(KR, ĨD, t, i);

(b) evaluate (c̃i,0, c̃i,1) = ABBEnc0(PPABB, ĩd, r̃S,i, r̃X,i, r̃Y,i, r̃R,i).

7. Set cĩd =

 c̃1,0|c̃⊤1,1
...

c̃N,0|c̃⊤N,1

 ∈ ZN×(2m+1)
q and compute CĨD = Flatten(b · IN +

BitDecomp(cĩd)).
8. Output: (t, CĨD).

Fig. 2. Program ConvertTAID

RSampleGX, rY ∈ RSampleGY, rR ∈ RSampleURs, this algorithm proceeds as fol-
lows.

1. Let Fid = A | B0 +
∑ℓ

i=1 diBi ∈ Zn×2m
q .

2. Evaluate s = SampleUS(Zn
q ; rS), x = SampleGX(Zq, Ψ̄α; rX) and y =

SampleGY(Zm
q , Ψ̄m

α ; rY ).
3. Evaluate (R1, . . . , Rℓ) = SampleURs({−1, 1}m×m; rR).

4. Set Rid =
∑ℓ

i=1 diRi and compute z = R⊤
idy.

5. Compute c0 = u⊤s+x ∈ Zq, c1 = F⊤
id s+

[
y
z

]
∈ Z2m

q , and return (c0, c1).

5.1 Parameters and Correctness

Let CT1 = (t1, ct1 = Flatten(b1 · IN + BitDecomp(c1))) be an encryption of
b1 ∈ {0, 1} under an identity ID. Recall that c1 is a N -row matrix whose rows
are encryptions of 0 generated by using ABBEnc0, and the private key vID =
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Powersof2(sID). By Claim 1, we have

ct1 · vID = (b1 · IN + BitDecomp(c1)) · vID = b1 · vID + c1 · sID.

Let c1,i be the i-th row of the matrix c1, and let vID,i be the i-th coefficient of
vID. Algorithm Decrypt only uses the i-th coefficient of ct1 · vID, which is xi =
b1 ·vID,i+ c1,i ·sID. If c1,i is properly generated using ABBEnc0, then the norm of
the inner product c1,i·sID is bounded w.h.p by B = qσℓmαω(

√
logm)+O(σm3/2)

by Lemma 24 of [1]. Similarly as in [31], if B < q/8 and vID,i ∈ (q/4, q/2], then
xi/vID,i differs from b1 by at most (q/8)/vID,i < 1/2, and algorithm Decrypt uses
rounding to output the correct value of b1.

It is clear that our system satisfies transformation correctness if encryp-
tion correctness holds. Regarding evaluation correctness, let CT2 = (t2, ct2 =
Flatten(b2 · IN + BitDecomp(c2))) be an encryption of another bit b2 ∈ {0, 1}
under the same identity ID, where c2 is also a N -row matrix whose rows are
encryptions of 0 generated by using ABBEnc0. We have

NAND(ct1, ct2)·vID = (IN−ct1·ct2)·vID = (1−b1b2)·vID−b2·(c1·sID)−ct1·(c2·sID).

Note that NAND maintains the invariant that if ct1 and ct2 are encryptions of
messages in {0, 1}, then the output ciphertext is also encryption of message in
{0, 1}. After an NAND homomorphic operation, the error is increased by a factor
of at most N + 1.

Recall that we represent the homomorphic function f over encryptions of
binary values as a Boolean circuit that can be converted to use only NAND gates.
Through appropriate leveled application of the NAND homomorphic operation,
the final ciphertext’s error will be bounded by (N+1)L ·B, where L is the NAND-
depth of the circuit. As long as (N + 1)L · B < q/8, the decryption algorithm
will decrypt correctly.

Hence, for the system to work correctly and evaluate a circuit of depth L, we
set the parameters (q, n,m, σ, α) that satisfy the following requirements, taking
n to be the security parameter κ:

– the error term has magnitude at most q/8 w.h.p (i.e. B · (N + 1)L < q/8),
– algorithm TrapGen can operate (i.e. m > 6n log q),
– σ is sufficiently large for SampleLeft and SampleRight (i.e. σ > ℓmω(

√
logm)),

– Regev’s reduction applies [49] (i.e αq > 2
√
n),

– our security reduction applies (i.e. q > 2Q + 4, where Q is the number of
private key queries from the adversary).

5.2 Security

We now state the security theorem of our proposed scheme.

Theorem 5 If the (Zq, n, Ψ̄α)-LWE assumptions holds, the proposed convertible
IBFHE scheme is IND-sID-CPA secure.

Proof. See the full version of this paper.
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6 Conclusion

We introduced a new primitive called convertible IBFHE which is an IBFHE
with an additional transformation functionality. We showed that CCA-secure
keyed-FHE can be constructed from IND-sID-CPA-secure convertible IBFHE
and strongly EUF-CMA-secure signature. Utilizing the recent advances in in-
distinguishability obfuscation, we presented a concrete construction of IND-sID-
CPA-secure convertible IBFHE without random oracles, and yielded the first
CCA-secure keyed-FHE scheme in the standard model. Since indistinguishability
obfuscation is a slightly cumbersome primitive currently, thus it would be inter-
esting to construct an efficient IND-sID-CPA-secure convertible IBFHE without
using indistinguishability obfuscation, even in the random oracle model.

Acknowledgement

We are grateful to the anonymous reviewers for their helpful comments. The
work of Junzuo Lai was supported by National Natural Science Foundation of
China (Nos. 61572235, 61300226), Research Fund for the Doctoral Program of
Higher Education of China (No. 20134401120017), Guangdong Natural Science
Funds for Distinguished Young Scholar (No. 2015A030306045), Natural Science
Foundation of Guangdong Province (No. 2014A030310156), Pearl River S&T
Nova Program of Guangzhou and Fundamental Research Funds for the Central
Universities (No. 21615445). The work of Jian Weng was supported by National
Natural Science Foundation of China (Nos. 61272413, 61472165, 61133014).

References

1. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard
model. In Advances in Cryptology - EUROCRYPT 2010, 29th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30 - June 3, 2010. Proceedings, pages 553–572, 2010. Refer-
ences are to full version: http://crypto.stanford.edu/~dabo/pubs/abstracts/
latticebb.html.

2. S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed dimension
and shorter-ciphertext hierarchical IBE. In Advances in Cryptology - CRYPTO
2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-
19, 2010. Proceedings, pages 98–115, 2010.

3. M. Ajtai. Generating hard instances of the short basis problem. In Automata,
Languages and Programming, 26th International Colloquium, ICALP’99, Prague,
Czech Republic, July 11-15, 1999, Proceedings, pages 1–9, 1999.

4. J. Alwen and C. Peikert. Generating shorter bases for hard random lattices. In
26th International Symposium on Theoretical Aspects of Computer Science, STACS
2009, February 26-28, 2009, Freiburg, Germany, Proceedings, pages 75–86, 2009.

5. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In Advances in Cryp-
tology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings, pages 1–18, 2001.



CCA-Secure Keyed-Fully Homomorphic Encryption 27

6. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6, 2012.

7. M. Bellare and T. Ristenpart. Simulation without the artificial abort: Simplified
proof and improved concrete security for waters’ IBE scheme. In Advances in
Cryptology - EUROCRYPT 2009, 28th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cologne, Germany, April
26-30, 2009. Proceedings, pages 407–424, 2009.

8. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-
lenges. In Theory of Cryptography - 8th Theory of Cryptography Conference, TCC
2011, Providence, RI, USA, March 28-30, 2011. Proceedings, pages 253–273, 2011.

9. D. Boneh, G. Segev, and B. Waters. Targeted malleability: homomorphic encryp-
tion for restricted computations. In Innovations in Theoretical Computer Science
2012, Cambridge, MA, USA, January 8-10, 2012, pages 350–366, 2012.

10. D. Boneh and B. Waters. Constrained pseudorandom functions and their ap-
plications. In Advances in Cryptology - ASIACRYPT 2013 - 19th International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, Bengaluru, India, December 1-5, 2013, Proceedings, Part II, pages 280–300,
2013.

11. D. Boneh and M. Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In Advances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-
21, 2014, Proceedings, Part I, pages 480–499, 2014.

12. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom
functions. In Public-Key Cryptography - PKC 2014 - 17th International Conference
on Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina,
March 26-28, 2014. Proceedings, pages 501–519, 2014.

13. Z. Brakerski, C. Gentry, and S. Halevi. Packed ciphertexts in lwe-based homomor-
phic encryption. In Public Key Cryptography, pages 1–13, 2013.

14. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In ITCS, pages 309–325, 2012.

15. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hard-
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54. D. Stehlé and R. Steinfeld. Faster fully homomorphic encryption. In ASIACRYPT,
pages 377–394, 2010.

55. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In EUROCRYPT, pages 24–43, 2010.

56. B. Waters. Efficient identity-based encryption without random oracles. In EURO-
CRYPT, pages 114–127, 2005.

57. B. Waters. A punctured programming approach to adaptively secure functional
encryption. IACR Cryptology ePrint Archive, 2014:588, 2014.


