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Abstract. Several well-known public key encryption schemes, including
those of Alekhnovich (FOCS 2003), Regev (STOC 2005), and Gentry,
Peikert and Vaikuntanathan (STOC 2008), rely on the conjectured in-
tractability of inverting noisy linear encodings. These schemes are limited
in that they either require the underlying field to grow with the security
parameter, or alternatively they can work over the binary field but have
a low noise entropy that gives rise to sub-exponential attacks.

Motivated by the goal of efficient public key cryptography, we study the
possibility of obtaining improved security over the binary field by using
different noise distributions. Inspired by an abstract encryption scheme
of Micciancio (PKC 2010), we study an abstract encryption scheme that
unifies all the three schemes mentioned above and allows for arbitrary
choices of the underlying field and noise distributions.

Our main result establishes an unexpected connection between the power
of such encryption schemes and additive combinatorics. Concretely, we
show that under the “approximate duality conjecture” from additive
combinatorics (Ben-Sasson and Zewi, STOC 2011), every instance of
the abstract encryption scheme over the binary field can be attacked in
time 2O(

√
n), where n is the maximum of the ciphertext size and the

public key size (and where the latter excludes public randomness used
for specifying the code). On the flip side, counter examples to the above
conjecture (if false) may lead to candidate public key encryption schemes
with improved security guarantees.

We also show, using a simple argument that relies on agnostic learning of
parities (Kalai, Mansour and Verbin, STOC 2008), that any such encryp-
tion scheme can be unconditionally attacked in time 2O(n/ logn), where n
is the ciphertext size. Combining this attack with the security proof of
Regev’s cryptosystem, we immediately obtain an algorithm that solves
the learning parity with noise (LPN) problem in time 2O(n/ log logn) us-
ing only n1+ε samples, reproducing the result of Lyubashevsky (Random
2005) in a conceptually different way.
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Finally, we study the possibility of instantiating the abstract encryption
scheme over constant-size rings to yield encryption schemes with no de-
cryption error. We show that over the binary field decryption errors are
inherent. On the positive side, building on the construction of matching
vector families (Grolmusz, Combinatorica 2000; Efremenko, STOC 2009;
Dvir, Gopalan and Yekhanin, FOCS 2010), we suggest plausible candi-
dates for secure instances of the framework over constant-size rings that
can offer perfectly correct decryption.

Keywords: public key encryption; noisy codewords; learning parity with noise;
additive combinatorics.

1 Introduction

Public key encryption is one of the most intriguing concepts of modern cryptogra-
phy. Decades after the introduction of the first public key encryption schemes [13,
42, 38, 31, 17], there are still only a handful of candidate constructions. While
public key encryption schemes such as RSA are widely deployed in practice,
their concrete efficiency, including the size of keys and ciphertexts, leaves much
to be desired. In particular, there is still a considerable efficiency gap between the
best known public key encryption schemes and their private key counterparts.

Motivated by the goal of finding new public key encryption schemes with
attractive efficiency features, we study an abstract encryption scheme which
captures a class of known schemes that rely on the hardness of inverting a
noisy linear encoding. This class includes the public key encryption scheme of
Alekhnovich [3], whose security is based on the conjectured intractability of the
“learning parity with noise” (LPN) problem, and the schemes of Regev [40] and
of Gentry, Peikert and Vaikuntanathan (GPV) [18], whose security is based on
the conjectured intractability of the “learning with errors” (LWE) problem.

In all of the above schemes, there is a publicly known linear code which is
typically chosen at random, and the public keys and ciphertexts are generated
by picking a secret uniform random codeword and adding a secret random noise
vector, or alternatively by computing the syndrome of such a noisy codeword.
Among other differences, the schemes differ in the choice of the underlying field
and the distribution from which the noise is picked. In the schemes proposed by
Regev and GPV, the field size grows polynomially with the security parameter
and the noise distribution is a discrete Guassian. The scheme of Alekhnovich
has the advantage of working over the binary field, but its noise distribution is
restricted to noise patterns whose Hamming weight is smaller than the square
root of the ciphertext size and public key size.1

1 We view the code specification as a global public parameter and do not count it
towards the public key size. This is justified by the possibility of picking the code
pseudorandomly or using special classes of codes that can be succinctly described
(cf. [30, 12]).
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The choice of binary field made by Alekhnovich [3] is attractive because of the
potential for better concrete efficiency, especially on light-weight devices [23, 12,
37]. However, the choice of noise distribution made in [3] has a negative impact on
efficiency since the low-weight noise makes a brute-force guessing attack possible.
In particular, if we require the scheme to resist 2t time attacks then this requires
the public keys as well as the ciphertexts to be of size at least Ω(t2), even when
encrypting a single bit. In contrast, the known attacks on the schemes of Regev
and GPV, using lattice algorithms, only require the public keys and ciphertexts
to be of size Θ(t log t). The main question we study is whether it is possible to
obtain a similar or better level of succinctness by using linear codes over the
binary field, thus obtaining a cryptosystem that enjoys the best of both worlds.

1.1 Overview of contribution

Towards a systematic study of the above question, we study an abstract encryp-
tion scheme which unifies the schemes of Regev, GPV, and Alekhnovich, and
allows for arbitrary choices of the underlying field and noise distributions. This
scheme is inspired by an abstract encryption scheme of Micciancio described in
the online talk [33], which unifies the encryption schemes of Regev and GPV.

Our first result unconditionally rules out the possibility of instantiating the
abstract encryption scheme over the binary field to yield an optimally succinct
cryptosystem, in the sense that the ciphertexts and public keys are only O(t)
bits long.2 This result is obtained using a simple argument that relies on a
previous result of Kalai et al. on agnostic learning of parities [24]. Combining
this attack with the security proof of Regev’s cryptosystem [40] immediately
yields an algorithm that solves the learning parity with noise (LPN) problem in
time 2O(n/ log logn) using only n1+ε samples, providing a conceptually different
proof for the main result of Lyubashevsky [29].

Our main result establishes an unexpected connection between the power
of such encryption schemes and additive combinatorics. We show that under
a conjecture from additive combinatorics it is also impossible to obtain near-
optimal succinctness over the binary field in the case in which the decryption
error of a single encryption is a sufficiently small constant. More concretely, every
instance of the abstract encryption scheme over the binary field can be attacked
in time 2O(

√
n), where n is the maximum of the ciphertext size and the public

key size. This suggests that the parameters of Alekhnovich’s original construction
cannot be significantly improved by choosing different noise distributions.

2 Recall that we do not include global public parameters, such as the specification of a
random linear code, in the public key size. Currently, the only plausible candidates
for public key encryption schemes that are optimally succinct in the above sense are
based on special families of elliptic curves. Unlike typical code-based constructions,
these schemes are inherently susceptible to quantum attacks. The work of Sahai and
Waters [43] shows that public key encryption with optimally succinct ciphertexts
can be based on indistinguishability obfuscation and an exponentially strong one-
way function. However, obfuscation-based constructions have large public keys and
their known instances are currently quite far from being practical.
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The high level idea behind this result is as follows. The unified encryption
scheme is parameterized by three independent noise distributions: a distribution
µsk, applied during the key generation, and distributions µ0 and µ1 that are used
for encrypting the messages 0 and 1 respectively. To enable correct decryption
with high probability, it must be the case that the distributions 〈µsk, µ0〉 and
〈µsk, µ1〉 are statistically far (where 〈·, ·〉 denotes the inner product of indepen-
dent random samples). On the other hand, the security of the scheme implies
that noisy linear encoding with respect to these noise distributions must be
one-way, and in particular these distributions should not satisfy certain combi-
natorial properties that enable an adversary to guess the noise and solve the re-
sulting system of linear equations. Our conditional negative results are obtained
by applying the approximate duality conjecture from [8] to establish limits on
the existence of distributions which satisfy the above. On the flip side, counter
examples to the approximate duality conjecture (if false) would give distribu-
tions µsk, µ0, µ1 that can potentially serve as a basis for cryptosystems (over the
binary field) that resist exponential time attacks.

As a secondary contribution of this work, we study the possibility of instan-
tiating the unified scheme over constant-size rings to yield encryption schemes
with no decryption error. We show that over the binary field, a small decryption
error probability is inherent. On the positive side, building on the construction
of matching vector families from [14], which builds in turn on the constructions
of [21, 16], we suggest plausible candidates for secure instances of the framework
over constant-size rings that can offer perfectly correct decryption.

Before providing a more detailed account of our results, we provide some
background on the problem of noisy linear decoding and public key encryption
schemes based on its conjectured hardness.

1.2 Learning parity with noise

The learning parity with noise (LPN) problem is the problem of solving random
linear equations over F2 which are corrupted by some noise. More specifically, in
this problem there is an unknown vector s ∈ Fn2 , and one is given independent
random samples of the form (ai, bi), where ai is a uniform random vector in Fn2 ,
bi = 〈ai, s〉+ ei, and each noise bit ei ∈ {0, 1} is 1 with probability η < 1

2 and 0
otherwise independently of ai (all operations are performed over F2). The goal
is to recover the unknown vector s from these samples. If the noise rate η equals
0 then this can simply be done using Gaussian elimination. When η > 0 the
problem is conjectured to be intractable. Indeed, solving LPN given m samples
can be viewed as the problem of decoding a noisy codeword in a random linear
code of block length m and dimension n, a longstanding open problem in coding
theory.

It is known that the hardness of solving the above search version of LPN with
a uniform random unknown vector s implies the hardness of the decision version
of LPN, namely distinguishing between samples of the form (ai, bi) as above and
uniformly random and independent vectors in Fn+1

2 [10, 5]. From a coding theory
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perspective, this means that if it is hard to decode noisy random codewords in a
random linear code, then the joint distribution (G, b) is pseudorandom, where G
is a random generator matrix of a random linear code and b is a noisy random
codeword in the code.

A naive approach for solving LPN is to search among all vectors in Fn2 to find
a vector s′ which satisfies the largest number of equations. This algorithm takes
2O(n) time and one can show, using the Chernoff bound, that O(n) independent
random samples suffice to ensure that s′ will be the correct solution with high
probability. In [11], Blum et al. showed that, quite surprisingly, one can solve
the LPN problem in time 2O(n/ logn). However, a drawback of this algorithm is
that it requires 2O(n/ logn) independent random samples. In [29] (see also [25]) it
was shown that the number of samples could be reduced to n1+ε at the price of
increasing the running time to 2O(n/ log logn). More specifically, they showed that
using only n1+ε initial independent random samples one can generate additional
“almost fresh” random samples by XORing sufficiently large random subsets of
the initial samples. These new samples can be used in turn as an input to the
algorithm of [11].

1.3 Alekhnovich’s public key encryption scheme

In 2003, Alekhnovich [3] proposed a public key encryption scheme whose security
was based on the intractability of the LPN problem. Roughly speaking, this
scheme can be used to encrypt a bit σ ∈ {0, 1} as follows. Let n be a security
parameter, m = 2n, and k = n1/2−ε for some small constant ε > 0. The key
generation proceeds by choosing a random noise vector e ∈ Fm2 in which each
entry is set to 1 with independent probability η = k/m, a uniform random m×n
matrix G over the binary field, and a uniform random w ∈ Image(G)(that is, w
is uniform in the column span of G). The private key is the noise vector e and the
public key is the m× (n+ 1) matrix G̃ = (G | b) obtained from G by appending
the noisy codeword b = w+ e to the right of the matrix G. (As discussed above,
we do not count G towards the size of the public key.)

The encryption of σ = 0 is a random vector c ∈ Fm2 of the form c = w̃ + ẽ,
where w̃ is a uniform random vector in ker(G̃T ) and ẽ ∈ Fm2 is a random noise
vector distributed identically to (but independently of) the private key e. The
encryption of σ = 1 is a uniform random vector in Fm2 . In order to decrypt
a ciphertext c ∈ Fm2 , one simply outputs the inner product 〈c, e〉. It can be
easily seen that this inner product is a nearly uniform random bit when c is an
encryption of 1, and is equal to the inner product 〈e, ẽ〉 when c is an encryption of
0. By the birthday paradox, the inner product 〈e, ẽ〉 is 0 with probability 1−o(1)
and consequently, by repeating the encryption process polylog(n) times, one can
distinguish between encryptions of 0 and 1 with negligible error probability.

The security of the above scheme can be based on the intractability of the
LPN problem with noise rate η. Indeed, since the matrix G̃ is indistinguishable
from a uniform random matrix, the code from which w̃ is picked is indistin-
guishable from a random linear code, implying that the noisy codeword c is also
pseudorandom. However, by the choice of the noise rate η, the Hamming weight
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of the private key e is bounded by n1/2−ε/2 with overwhelming probability. By
trying all different possibilities for such a private key, the scheme can be attacked
in time 2O(

√
n).

It is instructive to consider the abstract requirements from the noise distri-
butions e and ẽ that are necessary for the correctness and security of the above
scheme. To enable correct decryption with high probability, the inner product
of e and ẽ (where the two noise vectors are independently sampled) should be
statistically far from uniform, i.e., significantly biased towards either 0 or 1. On
the other hand, a sufficient condition for security is that the LPN decision prob-
lem be intractable with respect to both of the noise distributions e and ẽ. The
main question that motivates this work is whether there can be other choices
of noise distributions that satisfy the above correctness requirement and may
provide substantially better security than the original choice of Alekhnovich.

1.4 Learning with errors

The learning with errors (LWE) problem, introduced by Regev for the construc-
tion of his public key encryption scheme [40], is a generalization of the LPN
problem to arbitrary rings Zq (where q is a prime power). More specifically, in
this problem one is given independent random samples of the form (ai, bi) where
now ai is a uniform random vector in Znq , bi = 〈ai, s〉 + ei for a fixed unknown
vector s ∈ Znq and ei is distributed according to some fixed distribution χ on
Zq independently of ai (all operations are performed over Zq). Concretely, the
distribution χ is usually chosen to be some small discrete Gaussian.The goal is
again to recover the unknown vector s.

As was the case with LPN, assuming that the distribution χ is sufficiently far
from uniform, one can solve LWE naively in time qO(n) using O(n log q) samples,
and the algorithm of Blum et al. [11] can be adapted to solve this problem in time
qO(n/ logn) using qO(n/ logn) samples. However, what is remarkable about LWE is
that its hardness can be based on the worst-case hardness of well-studied lattice
problems. This makes all cryptographic constructions based on the hardness
of LWE secure under assumptions on the worst-case hardness of these lattice
problems. See the survey [41] for more details.

1.5 Public key encryption based on learning with errors

As mentioned above, Regev introduced the LWE problem as a basis for the con-
struction of his public key encryption scheme [40] which can be used to encrypt
a bit σ ∈ {0, 1} as follows. Let n be a security parameter, m = (1 + ε)n log q
and q = poly(n). The key generation proceeds by choosing a random noise vec-
tor e ∈ Fmq in which each coordinate is distributed independently according to
a small discrete Gaussian, a uniform random m × n matrix G over Fq, and a
uniform random w ∈ Image(G). The private key is the noise vector e and the
public key is the m× (n+ 1) matrix G̃ = (G | b) obtained from G by appending
the noisy codeword b = w + e to the right of the matrix G.
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The encryption of a bit σ ∈ {0, 1} is a random vector c ∈ Fn+1
q of the form

c = G̃T · ẽ+ vσ where ẽ is a uniform random vector in {0, 1}m and vσ ∈ Fn+1
q is

the vector all of whose coordinates equal 0 except for the (n+ 1)-th coordinate
which equals σ · b q2c. In order to decrypt a ciphertext c ∈ Fn+1

q one computes
σ′ =: cn+1 − 〈x, Pn(c)〉, where Pn : Fn+1

q → Fnq denotes the projection on the
first n coordinates and x is such that w = Gx, and outputs 0 if σ′ is closer to 0
than to b q2c and 1 otherwise. Finally, it can be verified that σ′ = σ · b q2c+ 〈e, ẽ〉.
Consequently, if one chooses the Guassian distribution of the coordinates of e
to be small enough then 〈e, ẽ〉, which is the sum of at most m such independent
Gaussians, would be smaller than b q4c in absolute value with high probability
and therefore would enable one to distinguish between encryptions of 0 and 1
with small error probability. In fact, the error here can be completely eliminated
by truncating the tail of the Gaussian noise distribution.

The main advantage of Regev’s encryption scheme is that while Alekhnovich’s
encryption scheme can be attacked in time 2O(

√
n) by enumerating over all pos-

sible private keys, the best known attacks on Regev’s encryption scheme, using
lattice algorithms, run in time 2O(n). This advantage of Regev’s scheme stems
from the possibility to exploit the large modulus q for picking noise distributions
e and ẽ whose inner product is statistically far from uniform and yet the noisy
decoding problem corresponding to these distributions can be conjectured to
have nearly exponential hardness. Note, however, that since q is polynomial in
n, the ciphertext is of size Ω(n log n) and therefore falls slightly short of being
optimally succinct.

Another related public key encryption scheme, based on the hardness of
LWE, is the public key encryption scheme proposed by Gentry, Peikert and
Vaiknutanathan (GPV) [18] which is described by the authors as a “dual of
Regev’s scheme in which the key generation and the encryption algorithms are
swapped“. A useful property of the encryption scheme of [18] is that it allows
an identity-based encryption in which arbitrary strings are allowed to serve as
public keys.

1.6 Related work

Originating from the seminal work of Ajtai [1], there has been a large body
of research on basing lattice-based cryptosystems on the minimal possible as-
sumptions and improving the efficiency of such provably secure constructions.
In particular, the work of Micciancio and Mol [34] considers the possibility of
replacing the standard Gaussian noise by other noise distributions, which may
admit a more efficient sampling algorithm, while maintaining provable security
under standard assumptions. In contrast, the goal of the present work is to ex-
plore the space of constructions that might be secure, in the sense that they resist
known attacks, regardless of the underlying intractability assumption or the way
security is argued. Moreover, unlike the work on lattice-based cryptography, our
main focus is on constructions that use linear codes over the binary field.

As noted above, the unified encryption scheme we study is inspired by the
abstract encryption scheme described in Micciancio’s online talk [33] which gen-
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eralizes the encryption schemes of Regev and GPV. In particular, as in [33], this
unified scheme relies on duality between noisy codeword encoding and syndrome
encoding. This duality has also been noticed and used in other settings in the
context of lattice-based public key encryption, for example in [34, 44].3

Finally, one should note that the unified scheme we study does not capture
all of the code-based and lattice-based public key encryption schemes from the
literature. For instance, it does not capture the code-based McEliece cryptosys-
tem and its variants [31, 36], as well as lattice- and LWE-based cryptosystems
such as [2, 19, 22, 39, 30, 4, 35, 32]. However, these alternative constructions do
not seem well suited to the goal of obtaining near-optimal succinctness over
binary fields. The former code-based schemes require the public key size to
grow quadratically with the security parameter, whereas the latter lattice-based
schemes do not admit a “native” implementation over binary fields.

2 Our results in more detail

To study the public key encryption schemes of Alekhnovich [3], Regev [40] and
Gentry, Peikert and Vaikuntanathan (GPV) [18] in a unified way, we start by
defining an abstract encryption scheme that captures these encryption schemes.
More specifically, for each of the schemes [3, 40, 18] we define an abstract version
that we call ΠAlek,ΠReg,ΠGPV, respectively, in which the field size as well as
the noise distributions used in the key generation and encryption processes are
allowed to be arbitrary.

Following Miciancio [33], we observe that for an identical choice of parame-
ters all the abstract schemes are equivalent to each other in terms of security:
Given a pair of schemes E,E′ ∈ {ΠAlek,ΠReg,ΠGPV}, there exists an efficiently
computable randomized mapping which for every bit σ ∈ {0, 1} maps the joint
distribution of the public key pk and the encryption of σ using pk in E to the
joint distribution of the public key pk′ and the encryption of σ using pk′ in E′4.

At a high level, all the abstract schemes work as follows (see Table 1 in
the full version [6] for more details). Each of the schemes is parametrized by
integers n < m, a field Fq (whose size may depend on n), a distribution µsk

over Fmq and a pair of distributions µ0, µ1 over Fm+1
q . In all three schemes the

private key is a random noise vector e ∼ µsk. The public key consists of two
parts: A random linear code C : Fnq → Fmq , specified by either a uniform random

3 A different unified view of the schemes of Regev and Alekhnovich was previously
given by Lindner and Peikert [26] who suggested to add an additional noise vector
in the encryption process of Regev’s scheme. This allowed them to argue about the
security of Regev’s scheme using Alekhnovich-style security proof and consequently
reduce key sizes in Regev’s scheme.

4 Note that we do not claim that the original encryption schemes of Alekhnovich,
Regev and GPV are equivalent to each other in terms of security but rather that
for each pair of schemes E,E′ ∈ {Alekhnovich, Regev, GPV} one can change the
field size and noise distributions in E (but not the syntactics of E!) to obtain an
encryption scheme that is equivalent to E′ in terms of security.
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generator matrix GT ∈ Fn×mq (in ΠAlek and ΠReg) or a uniform random parity-

check matrix HT ∈ F(m−n)×m
q (in ΠGPV), together with either a noisy codeword

b = w+e where w is a random codeword in C (inΠAlek andΠReg) or its syndrome
u = HT · e (in ΠGPV).

The encryption process is similar: Let C̃ : Fm−nq → Fm+1
q be the code speci-

fied by the parity-check matrix

G̃T =

(
G b
0Tn −1

)T
,

where G̃ is the (m + 1) × (n + 1) matrix obtained by appending the column b
to the right of the matrix G and adding below a row whose first n entries equal
zero and whose last entry equals −1. Let

H̃ =

(
H
uT

)
be the (m+1)×(m−n) matrix obtained by adding the row uT below the matrix
H, and note that H̃T is a generator matrix for the code C̃. In order to encrypt
a bit σ ∈ {0, 1} one chooses a random noise vector ẽ ∼ µσ. The encryption of σ
is either a noisy codeword b = w̃ + ẽ where w̃ is a uniform random codeword in
C̃ (in ΠAlek and ΠGPV) or its syndrome G̃T · ẽ (in ΠReg).

Finally, in all the three schemes using the private key e one can obtain the
inner product 〈e ◦ (−1), ẽ〉, where e ◦ (−1) denotes the vector obtained from e
by adding −1 below the vector e. To enable decryption one has to choose noise
distributions µsk, µ0 and µ1 such that it is possible to distinguish between the
distributions 〈µsk ◦ (−1), µ0〉 and 〈µsk ◦ (−1), µ1〉 efficiently.

2.1 Unconditional negative result

Our first result shows a simple unconditional attack running in time 2O(n/ logn)

on any instance of the abstract encryption scheme over the binary field. The
attack uses a simple argument based on the algorithm for agnostic learning
of parities of Kalai et al. [24], a powerful algorithm that learns parities with
noise from arbitrary distributions. More specifically, this algorithm is given in-
dependent random samples of the form (ai, bi), where bi = 〈ai, s〉 + ei for a
fixed unknown vector s ∈ Fn2 and (ai, ei) are distributed according to an ar-
bitrary distribution over Fn2 × F2 (In particular, the ei’s may depend on the
ai’s). Assuming that the noise bit ei is non-zero with probability at most η (or
alternatively, bi 6= 〈ai, s〉 with probability at most η), the algorithm returns a
circuit h : Fn2 → F2 that errs with probability at most η on future examples,
that is Pr(ai,bi)[h(ai) 6= bi] ≤ η. The running time and number of samples used

by this algorithm is 2O(n/ logn) which matches the performance of the original
LPN algorithm of [11]. Note that though quite powerful, this algorithm is not
a proper learner since it returns an arbitrary circuit which is not necessarily a
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parity function. For simplicity, assume for now that the algorithm returns the
original vector s.

By the equivalence of the abstract encryption schemesΠAlek,ΠReg andΠGPV

it suffices to show an attack on the encryption scheme ΠReg. The property of
this scheme that we shall use for the attack is that the decryption of a ciphertext
c ∈ Fn+1

2 is cn+1 − 〈s, Pn(c)〉 where Pn : Fn+1
2 → Fn2 denotes the projection on

the first n bits and s ∈ Fn2 is such that w = Gs. Using the public key we generate
2O(n/ logn) samples of the form (Pn(c′), c′n+1 − ξ) where ξ ∈ {0, 1} is a uniform
random bit and c′ is a random encryption of ξ and feed them to the algorithm
for agnostic learning of parities described above. Assuming that the decryption
algorithm has low error probability we have that c′n+1 − 〈s, Pn(c′)〉 = ξ with
probability at least 1−η, or alternatively, 〈s, Pn(c′)〉 6= c′n+1−ξ with probability
at most η. Hence the algorithm of [24] will recover the vector s and consequently
we can recover the private key e = b−Gs.

The attack described above has also some positive consequences to learning,
where it can be used for learning parities corrupted by arbitrary noise distribu-
tions in sub-exponential time using a relatively small number of samples. More
specifically, we observe that Regev’s security proof [40], which shows that his
original encryption scheme is secure assuming the hardness of LWE, can be gen-
eralized to show the security of the abstract encryption scheme under similar
assumptions. In more detail, one can show that any instance of the abstract
encryption scheme over an arbitrary field Fq, using an arbitrary noise distribu-
tion µsk and noise distributions µ0, µ1 of sufficiently high min-entropy, is secure
assuming the hardness of learning linear functions over Fq corrupted by noise
coming from the distribution µsk. We further observe that this security guarantee
holds even assuming the hardness of learning such functions using a relatively
small number of samples.

Stated positively, the above says that any attack on an instance of the ab-
stract encryption scheme as above can be turned into an algorithm that learns
linear functions over Fq corrupted by noise coming from the distribution µsk

using a relatively small number of samples. In particular, the attack described
above can be turned into such an algorithm. We further observe that an instance
of this latter algorithm solves the LPN problem in time 2O(n/ log logn) using n1+ε

samples, reproducing the result of [29] (see also [25]) in a conceptually different
way.

2.2 Conditional negative results

Our main result is a (non-uniform) attack running in time 2O(
√
m) on any in-

stance of the abstract encryption scheme over the binary field in the case in
which the decryption error of a single encryption is a sufficiently small constant,
assuming the ’approximate duality conjecture’ of [8]. For the attacks we first for-
mulate combinatorial properties of the distributions µsk, µ0 and µ1 that imply
an attack on the abstract encryption scheme and then show that these combi-
natorial properties are satisfied assuming the approximate duality conjecture or
its variant. We elaborate on these two parts below.
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Attacks based on combinatorial properties of µsk, µ0, µ1. The main combinatorial
property we shall use for the attacks is sparsity. More precisely, we say that a
distribution µ over Fm2 for m ≥ n is (n, k, ρ)-sparse if there exist k subsets
A1, . . . , Ak ⊆ Fm2 (not necessarily distinct) and k full rank linear transformations

L1, . . . , Lk : Fm2 → Fn2 (not necessarily distinct) such that Prµ
(⋃k

i=1Ai
)
≥ ρ

and Li(Ai) is constant for every i ∈ [k]. In other words, this means that there
exist k affine subspaces V1, . . . , Vk ⊆ Fm2 , of co-dimension n each, such that with
probability at least ρ a random vector sampled from µ falls into the union of
these subspaces.

We show that if an instance of the abstract encryption scheme over the binary
field satisfies that the distribution µsk is (n, k, ρ)-sparse or one of the distributions
µ0 or µ1 is (m+ 1− n+ log k + log(1/ρ), k, ρ)-sparse, and the decryption error
of a single encryption is relatively small compared to ρ, then one can attack this
instance in time O(k). To illustrate the idea behind our attacks assume that we
are attacking ΠAlek and that the distribution µsk is (n, k, ρ)-sparse. In this case
one can search for a ’good’ private key e′ by enumerating over all i ∈ [k] and

solving a corresponding system of linear equations to find a vector e′ ∈
⋃k
i=1 Vi

and a vector x′ ∈ Fn2 such that b = Gx′ + e′. We can further test whether e′ is a
’good’ private key by generating random encryptions of 0 and 1 using the public
key and computing the success probability of e′ in decrypting these encryptions.
Since the distribution µsk is (n, k, ρ)-sparse, with probability at least ρ we will
succeed in finding a ’good’ private key e′ which can be used in turn in order to
decrypt the ciphertext.

The case in which one of the distributions µ0 or µ1 is (m + 1 − n + log k +
log(1/ρ), k, ρ)-sparse is a bit more tricky. In this case it will be convenient to
attack the scheme ΠGPV and by symmetry it suffices to show such an attack in
the case in which µ0 is (m+ 1− n+ log k + log(1/ρ), k, ρ)-sparse. As in the µsk

case, we can still search in time O(k) for e′ ∈
⋃k
i=1 Vi and a vector x′ ∈ Fm−n2

such that c = H̃ · x′ + e′. Our main observation is that since
⋃k
i=1 Vi is not too

large, with high probability over the choice of the matrix H̃, there is no e′ 6= ẽ
such that e′ ∈

⋃k
i=1 Vi and c = H̃x′+e′ for some x′ ∈ Fm−n2 . This implies in turn

that by enumerating over all i ∈ [k] and solving a corresponding system of linear

equations, with high probability one can verify whether ẽ ∈
⋃k
i=1 Vi and if this

is the case one can also find ẽ. It thus suffices to be able to distinguish between
ẽ ∼ µ0 and ẽ ∼ µ1, conditioned on the event that ẽ ∈

⋃k
i=1 Vi. Assuming that

the decryption error is sufficiently small compared to ρ, this can be done by
computing the inner product 〈e(sk) ◦ (−1), ẽ〉 with a random e(sk) ∼ µsk.

Attacks based on the approximate duality conjecture. For a pair of subsets A,B ⊆
Fm2 their duality measure is given by

D(A,B) = Ea∈A,b∈B
[
(−1)〈a,b〉

]
. (1)

Note that D(A,B) = 1 implies that 〈a, b〉 is constant. The question is what can
be said about the structure of A,B when D(A,B) is sufficiently large but strictly

11



smaller than 1. The approximate duality conjecture of [8] (cf., also Conjecture
1.7.2 in [27]) postulates that in this case there exist large subsets A′ ⊆ A, B′ ⊆ B,
of density at least 2−O(

√
m) inside A, B respectively, with D(A′, B′) = 1.

We note that the bound of 2−O(
√
m) in the approximate duality conjecture

is tight, and to see this take A = B =
(
m√
m

)
to be the set of vectors that have

√
m ones. The birthday paradox shows that D(A,B) is a fixed positive constant,

independent of m (in fact, taking vectors of weight α
√
m for α approaching 0

makes D(A,B) approach 1). But it can be verified that for any pair A′ ⊂ A and
B′ ⊂ B satisfying D(A′, B′) = 1, the size of one of the sets A′ or B′ is a 2−

√
m

fraction of |A|. Such a pair is obtained by taking A′ (B′ respectively) to contain
all vectors supported on the first (last, respectively) m/2 coordinates.

In [7] it was shown that assuming the well-known polynomial Freiman-Ruzsa
conjecture from additive combinatorics (cf., [20]), the approximate duality con-
jecture holds when replacing the lower bound 2−O(

√
m) on the ratios |A′|/|A|

and |B′|/B| with the weaker bound of 2−O(m/ logm). Furthermore, in [28] a ver-
sion of the approximate duality conjecture over the reals was shown to hold
(unconditionally) with the stronger bound of 2−O(

√
m). The approximate dual-

ity conjecture has found so far various applications in complexity theory: To
the construction of two-source extractors [8], to relating rank to communication
complexity [7] and to lower bounds on matching vector codes [9].

We show that the approximate duality conjecture implies that in any instance
of the abstract encryption scheme over the binary field one of the distributions
µsk, µ0 or µ1 is sparse which by the above implies an attack on this instance. To
see this suppose that Π is an instance of the abstract encryption scheme over
the binary field in which µsk ◦ (−1), µ0, µ1 are distributed uniformly over subsets
A,B0, B1 ⊆ Fm+1

2 respectively. Then by correctness of the decryption algorithm
we have that either D(A,B0) ≥ 1− ε or D(A,B1) ≤ −(1− ε) for some constant
ε < 1. Without loss of generality assume that D(A,B0) ≥ 1− ε and note that in
this case the approximate duality conjecture implies that there exist subsets A′ ⊆
A, B′ ⊆ B0, of density at least 2−c

√
m inside A, B0 respectively, with D(A′, B′) =

1. The latter implies in turn that dim(span (A′)) + dim(span (B′)) ≤ m + 2.
Consequently, we have that either dim(span (A′)) ≤ m+ 2−n+ 2c

√
m in which

case A′ is contained in the union of 22c
√
m+1 affine subspaces of co-dimension

n and so µsk ◦ (−1) is (n, 22c
√
m+1, 2−c

√
m)-sparse or that dim(span (B′)) ≤

n − 2c
√
m in which case µ0 is (m − n + 2c

√
m, 1, 2−c

√
m)-sparse. This implies

in turn an attack running in time 2O(
√
m) in the case in which the decryption

error is 2−Ω(
√
m). Note that the attack is non-uniform since the attacker needs

to know the subsets A′ and B′.

In order to show such an attack in the case in which µsk, µ0, µ1 are general
distributions, not necessarily uniform over a subset, we prove that the standard
formulation of the approximate duality conjecture implies a generalized version
of it that holds also when the expectation in (1) is taken over arbitrary distribu-
tions. In order to handle larger decryption errors we apply the approximate dual-
ity conjecture iteratively to obtain t = 2O(

√
m) pairs of subsets A1, B1, . . . , At, Bt

such that D(Ai, Bi) = 1 for all 1 ≤ i ≤ t and such that the probability of being

12



contained in the union of Ω(t) such subsets is Ω(1− ε). This implies that either
µsk◦(−1) is (n, 23c

√
m+1, Ω(1−ε))-sparse or µ0 is (m−n+2c

√
m, 2c

√
m, Ω(1−ε))-

sparse which implies in turn an attack that runs in time 2O(
√
m) in the case in

which the decryption error is a sufficiently small constant.
Finally, we note that if the approximate duality conjecture is false, then a

counter example to this conjecture would be a pair of sets A,B ⊆ Fm2 such that
D(A,B) is high but no large pair of subsets A′, B′ of A,B respectively are dual.
In this case, if we let Π be a (possibly non-uniform) instance of the unified
scheme in which µsk, µ0, µ1 are distributed uniformly over the sets A,B ◦0, B ◦1
respectively, then the fact that D(A,B) is high implies that the advantage of the
decryption algorithm in Π is high. On the other hand, the lack of linear struc-
ture in the above distributions makes them secure against our brute-force linear
algebra attacks which could potentially make Π secure against sub-exponential
time attacks.

2.3 Perfectly correct decryption

Our last collection of results is concerned with the possibility of achieving per-
fectly correct decryption in the abstract encryption scheme over constant-size
rings. As mentioned above, when the field size is polynomial in n, one can trun-
cate the tail of the Gaussian noise distribution used in Regev’s original encryp-
tion scheme [40] to achieve a perfectly correct decryption. We investigate whether
one can achieve perfect decryption also over constant-size rings.

Our first result in this regard is negative, showing that over the binary field
any instance of the abstract encryption scheme with perfectly correct decryption
can be attacked in time poly(m). On the positive side, we propose to use the
construction of matching vector families from [14], which builds on the construc-
tions of [21, 16], to obtain candidates for instances of the abstract encryption
scheme over constant-size rings that achieve perfectly correct decryption but
resist poly(m)-time attacks.

It should be noted that Dwork et al. [15] provide a general method for elim-
inating decryption errors in public key encryption schemes. However, applying
their method has a high toll on efficiency and it only guarantees perfectly correct
decryption with high probability over the randomness of the key generation.

2.4 Open problems

We end this section by highlighting several open problems for future research.

The approximate duality conjecture and its implications to public key encryption.
This work presents a new connection between additive combinatorics and public
key encryption by showing non-trivial attacks on any binary instance of an ab-
stract public key encryption scheme that captures the schemes of Alekhnovich
[3], Regev [40] and Gentry, Peikert and Vaikuntanathan [18], assuming the ap-
proximate duality conjecture from additive combinatorics. On the positive side,
if the approximate duality conjecture is false then counter examples to this
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conjecture may lead to candidate binary instances of the abstract encryption
scheme with improved security guarantees. This motivates further study of the
connection between public key encryption from noisy codewords and additive
combinatorics in general and the approximate duality conjecture in particular.

Extending to non-binary fields. Our unconditional results could be possibly ex-
tended to show an attack in time qO(n/ logn) on any instance of the generalized
encryption schemes over an arbitrary finite field Fq, given an algorithm for ag-
nostic learning of linear functions over Fq. However, we are not aware of such
an algorithm over non-binary fields and it seems that the results of [24] do not
immediately apply in this setting. Our conditional results, on the other hand, do
generalize to show an attack in time qO(

√
n) on any instance of the generalized

encryption schemes over an arbitrary constant-size field Fq assuming a variant
of the approximate duality conjecture over such fields (see e.g. Conjecture 1.7.2
in [27]).

Perfectly correct decryption. We have shown that, over the binary field, our
general framework cannot be instantiated to yield an encryption scheme with
perfect decryption. We proposed a plausible approach for obtaining perfect de-
cryption over constant-size rings by using matching vectors. The security of
this construction, as well as the possibility of obtaining perfect security over
constant-size fields, remain to be further studied.

2.5 Paper organization

Some of the material is omitted due to space limitations but can be found in the
full version of this paper [6]. In Section 3 we fix some notation and terminology,
and in Section 4 we formally define the abstract encryption scheme we study. In
Section 5 we present our unconditional attack, running in time 2O(n/ logn), on the
abstract encryption scheme over the binary field and consequences of this attack
to learning. In Section 6 we present combinatorial properties of the distributions
µsk, µ0 and µ1 that imply an attack on the abstract encryption scheme over
the binary field. In Section 7 we show that these latter properties are satisfied
assuming the approximate duality conjecture which implies an attack on the
abstract encryption scheme over the binary field running in time 2O(

√
m).

3 Preliminaries

We start with fixing some notation. For a prime power q let Fq denote the finite
field with q elements. All operations below are performed over Fq and all vectors
are assumed to be column vectors unless otherwise stated. For integers m ≥ n let
M∗m×n(q) denote the set of all m× n full rank matrices over Fq. For an integer
m let Pm : Fm+1

q → Fmq denote the projection on the first m coordinates. Let
0m, 1m denote the all-zeros and all-ones vectors of length m, respectively. For a
pair of vectors u, v let u ◦ v denote their concatenation.
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Let µ be a distribution over Fmq . For an element a ∈ Fmq let Prµ(a) =
Pre∼µ[e = a]. The support supp(µ) of µ is the set containing all elements a ∈ Fmq
for which Prµ(a) > 0. For a subset A ⊆ Fmq we let Prµ(A) = Pre∼µ[e ∈ A] and
we denote by µ|A the distribution µ conditioned on the event that e ∈ A. For a
pair of distributions µ, µ′ over Fmq we denote by 〈µ, µ′〉 the distribution of 〈e, e′〉
where e ∼ µ and e′ ∼ µ′ independently. Finally, we write that a ∈R A if a is
chosen uniformly at random from the set A.

3.1 Public key encryption

A public key encryption scheme Π consists of three randomized polynomial time
algorithms: the key generation algorithm Gen, the encryption algorithm Enc and
the decryption algorithm Dec, which satisfy:

1. The key generation algorithm Gen takes as input the security parameter 1n

and outputs a pair of keys (sk,pk) where sk is the private key and pk is the
public key. We write this as (sk,pk)← Gen(1n).

2. The encryption algorithm Enc takes as input a public key pk and a message
bit σ ∈ {0, 1} and outputs a ciphertext c. We write this as c← Encpk(σ).

3. The decryption algorithm Dec takes as input a private key sk and a cipher-
text c and outputs a bit σ′ ∈ {0, 1}. We assume without loss of generality
that Dec is deterministic and write this as σ′ := Decsk(c).

The advantage of the decryption algorithm is given by

AdvDec(n) = Pr[Decsk(Encpk(1)) = 1]− Pr[Decsk(Encpk(0)) = 1], (2)

where the probabilities in (2) are taken over the internal coin tosses of the algo-
rithms Gen and Enc. We say that the decryption algorithm is perfectly correct
if AdvDec(n) = 1.

A typical choice of parameters in public key encryption schemes is that
AdvDec(n) = 1−η(n) for η(n) which is a negligible function in n. However, in the
case where AdvDec(n) is a fixed constant one can achieve (1 − η(n))-advantage
in the decryption process by repeating the key generation and encryption pro-
cesses polylog(n) times. In this work we are interested in negative results and
our unconditional results hold even when AdvDec(n) is negligible in n. Our con-
ditional results, on the other hand, hold only if a single encryption (without
repetitions) achieves advantage AdvDec(n) = 1 − ε where ε > 0 is a sufficiently
small constant.

A (uniform) attack A on a public key encryption scheme Π is a randomized
algorithm that takes as input a public key pk and a ciphertext c and outputs a
bit σ′ ∈ {0, 1} and we write this as σ′ ← A(pk, c). The advantage of the attack
A is given by

AdvA(n) = Pr[A(pk,Encpk(1)) = 1]− Pr[A(pk,Encpk(0)) = 1], (3)

where the probabilities in (3) are taken over the internal coin tosses of the
algorithms Gen and Enc as well as the attack A. A non-uniform attack A is
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defined similarly to the above except that it is modeled as a non-uniform Boolean
circuit and we say that it has running time t(n) if the associated circuit family
has size t(n).

4 Unified encryption scheme

In what follows we present the formal definitions of the abstract encryption
schemes ΠAlek, ΠReg and ΠGPV and show their equivalence.

General Parameters: Integers m > n, field Fq (q may depend on n),
efficiently samplable distribution µsk over Fmq , a pair of efficiently samplable
distributions µ0, µ1 over Fm+1

q , efficiently computable decryption function g :
Fq → {0, 1}.

ΠAlek scheme:

– Private key: Choose a random vector e ∈ Fmq according to the distribution
µsk. The private key is e.

– Public key: Choose a uniform random matrix G ∈M∗m×n(q) and a uniform

random vector w ∈ Image(G) and let b = w + e. The public key is G̃ =(
G b
0Tn −1

)
.

– Encryption: In order to encrypt a bit σ ∈ {0, 1} choose a random vector
ẽ ∈ Fm+1

q according to the distribution µσ and a uniform random vector

w̃ ∈ ker(G̃T ). The encryption of σ is w̃ + ẽ.
– Decryption: The decryption of a vector c ∈ Fm+1

q is g(〈e ◦ (−1), c〉).

ΠReg scheme:

– Private key: Choose a random vector e ∈ Fmq according to the distribution
µsk. The private key is e.

– Public key: Choose a uniform random matrix G ∈M∗m×n(q) and a uniform

random w ∈ Image(G) and let b = w+ e. The public key is G̃ =

(
G b
0Tn −1

)
.

– Encryption: In order to encrypt a bit σ ∈ {0, 1} choose a random vector
ẽ ∈ Fm+1

q according to the distribution µσ. The encryption of σ is G̃T · ẽ.
– Decryption: The decryption of a vector c ∈ Fn+1

q is g(−〈x◦ (−1), c〉) where
x ∈ Fnq is such that b = Gx+ e.

ΠGPV scheme:

– Private key: Choose a random vector e ∈ Fmq according to the distribution
µsk. The private key is e.

– Public key: Choose a uniform random matrix H ∈ M∗m×(m−n)(q) and let

u = HT · e. The public key is H̃ =

(
H
uT

)
.

– Encryption: In order to encrypt a bit σ ∈ {0, 1} choose a random vector
ẽ ∈ Fm+1

q according to the distribution µσ and a uniform random vector

w̃ ∈ Image(H̃). The encryption of σ is w̃ + ẽ.
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– Decryption: The decryption of a vector c ∈ Fm+1
q is g(〈e ◦ (−1), c〉).

A straightforward computation gives the following.

Claim 1 (Advantage of decryption). For every Π ∈ {ΠAlek, ΠReg, ΠGPV},

AdvDec(n) = Pr[g(〈µsk ◦ (−1), µ1〉) = 1]− Pr[g(〈µsk ◦ (−1), µ0〉) = 1].

The following claim (see [6] for a proof) shows that for an identical setting
of parameters all the abstract encryption schemes defined above are equiva-
lent in terms of security. For an encryption scheme Π and a bit σ ∈ {0, 1} let
(pkΠ ,EncΠpk(σ)) denote the joint distribution of the public key and the encryp-
tion of the bit σ using this public key in Π.

Claim 2 (Equivalence of abstract encryption schemes). For every pair
of encryption schemes Π,Π ′ ∈ {ΠAlek,ΠReg,ΠGPV} there exists a random-
ized mapping ϕΠ→Π′ , computable in time poly(m, q), such that for every bit

σ ∈ {0, 1} the distributions ϕΠ→Π′(pkΠ ,EncΠpk(σ)) and (pkΠ
′
,EncΠ

′

pk (σ)) are
identical.

5 Unconditional attack

In this section we show an unconditional simple attack, running in time 2O(n/ logn),
on any instance of the abstract encryption scheme over the binary field. The at-
tack is based on the following algorithm for agnostic learning of parities (The
theorem below is given as Theorem 2 in [24] for the special case in which

a = log n/1000, b = n/a, ε = 2−n
0.99

and the success probability is 0.99. The
general parameters can be deduced from the proof of this theorem).

Theorem 1 (Agnostic learning of parities, [24]). For any integers a, b such
that ab ≥ n and for any ε > 0 there exists a randomized algorithm running
in time poly

(
ε−2

a

, 2b
)

which satisfies the following guarantees for every distri-
bution D over (x, y) ∈ Fn2 × F2. With probability at least 1 − exp(−n), given
poly

(
ε−2

a

, 2b
)

independent random samples from D, the algorithm outputs a
circuit computing h : Fn2 → F2 such that

Pr(x,y)∼D[h(x) 6= y] ≤ min
s∈Fn2

Pr(x,y)∼D[〈x, s〉 6= y] + ε.

Our main result in this section is the following.

Theorem 2. Let Π ∈ {ΠAlek,ΠReg,ΠGPV} be with q = 2 and AdvDec(n) ≥ ε.
Then for any integers a, b such that ab ≥ n and for any γ > 0 there ex-
ists a (uniform) attack Aagnost on Π running in time poly

(
γ−2

a

, 2b,m
)

with

AdvAagnost(n) ≥ ε− γ − exp(−n).

By setting a = log n/1000, b = n/a and γ = 2−n
0.99

in the above theorem we
obtain the following corollary.
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Corollary 1. Let Π ∈ {ΠAlek,ΠReg,ΠGPV} be with q = 2 and AdvDec(n) ≥ ε.
Then there exists a (uniform) attack Aagnost on Π running in time poly(2n/ logn,m)

with AdvAagnost(n) ≥ ε− 2−n
0.99 − exp(−n).

Proof (Proof of Theorem 2). By Claim 2 it suffices to prove the theorem for
Π =ΠReg and without loss of generality we may assume that the decryption
function g is the identity function over F2. Let D be the distribution over (x, y) ∈
Fn2 × F2 where x = GT · Pm(e′) and y = 〈b ◦ (−1), e′〉 − ξ for ξ ∈R {0, 1} and
e′ ∼ µξ. Note that D can be generated efficiently using the public key G̃. The
attack Aagnost runs the algorithm guaranteed by Theorem 1 with the parameters
a, b and γ/2 on the distribution D and outputs cn+1 − h(Pn(c)). By Theorem
1 we clearly have that the attack runs in time poly

(
γ−2

a

, 2b,m
)
. It remains to

analyze the advantage of the attack in guessing the message bit σ.
For a vector y ∈ Fm2 let

ε(y) := Pr[〈y ◦ (−1), µ1〉 = 1]− Pr[〈y ◦ (−1), µ0〉 = 1],

and note that by Claim 1 we have that AdvDec(n) = E[ε(µsk)]. Let s ∈ Fn2 be
such that w = Gs. Then we have that

Pr(x,y)∼D[〈x, s〉 6= y]

=
1

2
· Pr
[
〈GT · Pm(µ1), s〉 = 〈b ◦ (−1), µ1〉

]
+

1

2
· Pr
[
〈GT · Pm(µ0), s〉 = 1 + 〈b ◦ (−1), µ0〉

]
=

1

2
· Pr
[
〈Pm(µ1), Gs〉 = 〈b ◦ (−1), µ1〉

]
+

1

2
· Pr
[
〈Pm(µ0), Gs〉 = 1 + 〈b ◦ (−1), µ0〉

]
=

1

2
· Pr[〈µ1, (b− w) ◦ (−1)〉 = 0] +

1

2
· Pr[〈µ0, (b− w) ◦ (−1)〉 = 1]

=
1

2
· Pr[〈µ1, e ◦ (−1)〉 = 0] +

1

2
· Pr[〈µ0, e ◦ (−1)〉 = 1]

=
1

2
− 1

2
·
(

Pr[〈µ1, e ◦ (−1)〉 = 1]− Pr[〈µ0, e ◦ (−1)〉 = 1]

)
=

1− ε(e)
2

.

Consequently, with probability at least 1− exp(−n), the circuit h satisfies

Pr(x,y)∼D[h(x) 6= y] ≤ 1− ε(e)
2

+
γ

2
=

1− (ε(e)− γ)

2
.

Suppose that c is an encryption of a bit σ ∈ {0, 1}. Conditioned on the above,
we have that

Pr[cn+1 − h(Pn(c)) = 1 | σ = 1]− Pr[cn+1 − h(Pn(c)) = 1 | σ = 0]

= Pr
[
〈b ◦ (−1), µ1〉 − h(GT · Pm(µ1)) = 1

]
− Pr

[
〈b ◦ (−1), µ0〉 − h(GT · Pm(µ0)) = 1

]
= 1− Pr

[
h(GT · Pm(µ1)) 6= 1 + 〈b ◦ (−1), µ1〉

]
− Pr

[
h(GT · Pm(µ0)) 6= 〈b ◦ (−1), µ0〉

]
= 1− 2Pr(x,y)∼D[h(x) 6= y]

≥ ε(e)− γ.
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Averaging over all e ∼ µsk we obtain that the advantage of the attack is at least

E[ε(µsk)]− γ − exp(−n) = AdvDec(n)− γ − exp(−n) ≥ ε− γ − exp(−n).

6 Attacks based on combinatorial properties of µsk, µ0, µ1

In Sections 6.1 and 6.2 below we present combinatorial properties of the distri-
bution µsk and the pair of distributions µ0, µ1, respectively, that imply an attack
on the abstract encryption scheme over the binary field. In Section 7 we shall
show that assuming the approximate duality conjecture at least one of the distri-
butions µsk, µ0 or µ1 satisfies these combinatorial properties. This will imply in
turn an attack on the abstract encryption scheme over the binary field assuming
the approximate duality conjecture.

The main combinatorial property we shall utilize for the attacks is sparsity,
defined as follows.

Definition 1 ((n, k, ρ)-sparse distribution). Suppose that µ is a distribution
over Fm2 for m ≥ n. We say that µ is (n, k, ρ)-sparse if there exist k subsets
A1, . . . , Ak ⊆ Fm2 and k full rank linear transformations L1, . . . , Lk : Fm2 → Fn2
such that Prµ

(⋃k
i=1Ai

)
≥ ρ and Li(Ai) is constant for every i ∈ [k].

Note that A1, . . . , Ak and L1, . . . , Lk in the definition above are not required to
be distinct. At a high level, asumming that one of the noise distributions µsk,
µ0 or µ1 is sparse one can ’guess’ the noise vector used in the key generation
process (in the case in which µsk is sparse) or in the encryption process (in the
case in which µ0 or µ1 are sparse) by enumerating over all i ∈ [k] and solving a
corresponding system of linear equations.

6.1 Attack based on combinatorial properties of µsk

Lemma 1 (Attack based on combinatorial properties of µsk). Let Π ∈
{ΠAlek,ΠReg,ΠGPV} be with q = 2 and AdvDec(n) ≥ 1− ε and suppose that the
distribution µsk is (n, k, ρ)-sparse. Then there exists a non-uniform attack Ask

on Π running in time (k/ε) · poly(m) with AdvAsk(n) ≥ (ρ− 4
√
ε)/10.

Proof. By Claim 2 it suffices to prove the lemma for Π =ΠAlek and without
loss of generality we may assume that g is the identity function over F2. Since
µsk is (n, k, ρ)-sparse there exist k subsets A1, . . . , Ak ⊆ Fm2 and k full rank

linear transformations L1, . . . , Lk : Fm2 → Fn2 such that Prµsk

(⋃k
i=1Ai

)
≥ ρ and

Li(Ai) is constant for every i ∈ [k].
Our main observation is that if e′ satisfies that b = w′ + e′ for some w′ ∈

Image(G) and in addition

Pr[〈e′ ◦ (−1), µ1〉 = 1]− Pr[〈e′ ◦ (−1), µ0〉 = 1] ≥ 1− ε′ (4)

then decrypting the ciphertext using e′ as the private key achieves advantage
1 − ε′. We search for e′ that satisfies the above by enumerating over all i ∈ [k]
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and solving a corresponding system of linear equations and we test whether e′

satisfies (4) via sampling.
Fix y ∈ Fm2 . By the Hoeffding bound for sampling if we draw ` = m/(

√
ε/2)2

independent random samples e
(0)
1 , . . . , e

(0)
` ∼ µ0 and ` independent random sam-

ples e
(1)
1 , . . . , e

(1)
` ∼ µ1 then∣∣∣∣(Pr[〈y ◦ (−1), µ1〉 = 1]− Pr[〈y ◦ (−1), µ0〉 = 1]

)
(5)

−
(

Pr
j∈[`]

[〈y ◦ (−1), e
(1)
j 〉 = 1]− Pr

j∈[`]
[〈y ◦ (−1), e

(0)
j 〉 = 1]

)∣∣∣∣ ≤ √ε
with probability at least 1−4·2−2m. By union bound this implies in turn that (5)
holds for every y ∈ Fm2 with probability at least 1− 4 · 2−m. In particular, there

exist ` vectors e
(0)
1 , . . . , e

(0)
` ∈ supp(µ0) and ` vectors e

(1)
1 , . . . , e

(1)
` ∈ supp(µ1)

for which (5) holds for every y ∈ Fm2 .

Ask

- For every i = 1, 2, . . . , k:
- Solve the system of linear equations

Lib = LiGx
′ + Li(Ai)

in the indeterminate x′.
- If there is no solution continue to the next i.
- Else let x′ be an arbitrary solution and let e′ := b−Gx′.
- If e′ satisfies that

Pr
j∈[`]

[〈e′ ◦ (−1), e
(1)
j 〉 = 1]− Pr

j∈[`]
[〈e′ ◦ (−1), e

(0)
j 〉 = 1] ≥ 1− 2

√
ε, (6)

output 〈e′ ◦ (−1), c〉, else continue to the next i.
- Else if no e′ satisfies (6), output a random bit.

Inspection reveals that the attack above can be implemented using a non-
uniform circuit of size (k/ε) · poly(m). Next we analyze the advantage of the
attack in guessing the message bit σ. We will show that with probability at
least (ρ−

√
ε)/10 the attack finds e′ which satisfies (6) and that in this case the

advantage of guessing the correct message bit is at least 1−3
√
ε. This will imply

in turn that AdvAsk(n) ≥ (ρ− 4
√
ε)/10.

We start by showing a lower bound on the probability that the attack finds e′

which satisfies (6). Since AdvDec(n) ≥ 1−ε by Claim 1, together with a standard
probabilistic argument, we have that e satisfies

Pr[〈e ◦ (−1), µ1〉 = 1]− Pr[〈e ◦ (−1), µ0〉 = 1] ≥ 1−
√
ε

with probability at least 1 −
√
ε. By (5) this implies in turn that e satisfies (6)

with probability at least 1 −
√
ε. Furthermore, since µsk is (n, k, ρ)-sparse with
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probability at least ρ we have that e ∈
⋃k
i=1Ai. So with probability at least

ρ −
√
ε we have that e satisfies (6) and in addition e ∈ Ai for some i ∈ [k].

Finally, the matrix LiG is non-singular with probability at least 1/10 (say),
independently of the above.

Conditioned on all the above, in the i-th iteration we have that

e′ = b−Gx′ = b−G · (LiG)−1(Lib− Li(Ai)) = b−G · (LiG)−1 · (Lib− Lie) = e.

Consequently we have that the attack finds e′ which satisfies (6) with probability
at least (ρ−

√
ε)/10.

Next we show that if the attack finds e′ which satisfies (6) then the advantage
of guessing the correct message bit using e′ is high. Since e′ = b−Gx′ we have
that

〈e′ ◦ (−1), c〉 = 〈(b−Gx′) ◦ (−1), w̃〉+ 〈(b−Gx′) ◦ (−1), ẽ〉
= 〈b ◦ (−1), w̃〉 − 〈x′, GT · Pm(w̃)〉+ 〈(b−Gx′) ◦ (−1), ẽ〉
= 0− 0 + 〈e′ ◦ (−1), ẽ〉
= 〈e′ ◦ (−1), ẽ〉.

Furthermore, since e′ satisfies (6), by (5) we have that

Pr[〈e′ ◦ (−1), µ1〉 = 1]− Pr[〈e′ ◦ (−1), µ0〉 = 1] ≥ 1− 3
√
ε,

so the advantage of the attack in this case is 1− 3
√
ε.

6.2 Attack based on combinatorial properties of µ0, µ1

Lemma 2 (Attack based on combinatorial properties of µ0, µ1). Let Π ∈
{ΠAlek,ΠReg,ΠGPV} be with q = 2 and AdvDec(n) ≥ 1−ε and suppose that there
exists ξ ∈ {0, 1} such that the distribution µξ is (m+1−n+r, k, ρ)-sparse. Then
there exists a non-uniform attack Aξ on Π running in time k · poly(m) with

AdvAξ(n) ≥ ρ/2− ε− 2k2−r.

Proof. By Claim 2 it suffices to prove the lemma for Π =ΠGPV and by symmetry
we may further assume that ξ = 0. Without loss of generality we may assume
that g is the identity function over F2. Since µ0 is (m + 1 − n + r, k, ρ)-sparse
there exist k subsets A1, . . . , Ak ⊆ Fm+1

2 and k full rank linear transformations

L1, . . . , Lk : Fm+1
2 → Fm+1−n+r

2 such that Prµ0

(⋃k
i=1Ai

)
≥ ρ and Li(Ai) is

constant for every i ∈ [k]. For every i ∈ [k] let Vi =
{
v ∈ Fm+1

2 | Li(v) = Li(Ai)
}

and let S =
⋃k
i=1 Vi . Since AdvDec(n) ≥ 1− ε, by averaging there exists e(sk) ∈

supp(µsk) such that

Pr[〈e(sk) ◦ (−1), µ1〉 = 1]− Pr[〈e(sk) ◦ (−1), µ0〉 = 1] ≥ 1− ε.

Our main observation is that since S is not too large, with high probability
over the choice of the matrix H̃, there is no e′ ∈ S \ {ẽ} such that c = H̃x′ + e′
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for some x′ ∈ Fm−n2 . This implies in turn that by enumerating over all i ∈ [k]
and solving a corresponding system of linear equations, with high probability
one can verify whether ẽ ∈ S and if this is the case one can also find ẽ. It thus
suffices to be able to distinguish between ẽ ∼ µ0 and ẽ ∼ µ1, conditioned on the
event that ẽ ∈ S. Assuming that ε is sufficiently small compared to ρ, this can
be done by computing the inner product 〈e(sk) ◦ (−1), ẽ〉.

A0

- For every i = 1, 2, . . . , k:
- Solve the system of linear equations

Lic = LiH̃x
′ + Li(Ai) (7)

in the indeterminate x′.
- If there is no solution continue to the next i.
- Else let x′ be an arbitrary solution and let e′ := c− H̃x′.
- If e′ satisfies that 〈e(sk)◦(−1), e′〉 = 0 output 0, else continue

to the next i.
- Else if no e′ satisfies the above, output a random bit.

Inspection reveals that the attack above can be implemented using a non-uniform
circuit of size k·poly(m). Next we analyze the advantage of the attack in guessing
the message bit σ.

We say that H̃ is S-good for ẽ if there is no z ∈ S \ {ẽ} such that z − ẽ ∈
Image(H̃). We will show that for every ẽ the probability that H̃ is S-good for ẽ
is at least 1 − k · 2−r. Consequently, for every ẽ there exists a collection Hẽ of
S-good matrices for ẽ such that Pr[H̃ ∈ Hẽ] = 1−k ·2−r. We will then show that
conditioned on the event that H̃ ∈ Hẽ the attack outputs 0 with probability at
least (1 +ρ− ε)/2 when c is an encryption of 0 and it outputs 1 with probability
at least (1− ε)/2 when c is an encryption of 1. This will imply in turn that the
advantage of the attack is at least (1−k2−r)(ρ/2− ε)−k2−r ≥ ρ/2− ε−2k2−r.

We start by showing that for every ẽ the probability that H̃ is S-good for ẽ
is at least 1 − k · 2−r. For this note that for every i ∈ [k] the subspace Vi has
co-dimension m+1−n+r and hence |Vi| = 2n−r and consequently |S| ≤ k2n−r.
Thus by union bound it suffices to show that for every z ∈ S \ {ẽ} it holds that
z − ẽ ∈ Image(H̃) with probability at most 2−n. To see this fix z ∈ S \ {ẽ} and

suppose that z − ẽ ∈ Image(H̃). Since H̃ =

(
H
uT

)
this implies in turn that

Pm(z − ẽ) ∈ Image(H). Furthermore, since z − ẽ 6= 0 and H is full rank we also
have that Pm(z − ẽ) 6= 0. So we obtained that Pm(z − ẽ) is a non-zero point
contained in Image(H), a uniform random (m − n)-dimensional space, which
happens with probability at most 2−n.

Next we show a lower bound on the probability that the attack outputs 0
when c is an encryption of 0, conditioned on the event that H̃ ∈ Hẽ. Since the
event H̃ ∈ Hẽ is independent of the choice of ẽ, by union bound we have that the
events ẽ ∈

⋃k
i=1Ai and 〈e(sk) ◦ (−1), ẽ〉 = 0 hold simultaneously with probability

at least ρ− ε. We will show that if these two events hold then the attack outputs
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0. This will imply in turn that in the case in which c is an encryption of 0,
conditioned on the event that H̃ ∈ Hẽ, the attack outputs 0 with probability at
least ρ − ε and it outputs a random bit otherwise. So it outputs 0 in this case
with probability at least (1 + ρ− ε)/2.

Suppose that ẽ ∈
⋃k
i=1Ai and 〈e(sk) ◦ (−1), ẽ〉 = 0. Then in this case we have

that
Lic = Liw̃ + Liẽ = LiH̃x̃+ Li(Ai),

where i ∈ [k] is such that ẽ ∈ Ai and x̃ is such that w̃ = H̃x̃. Consequently, the
attack will find a solution for (7). Furthermore, we claim that if the attack finds
a solution x′ to (7) for some j ∈ [k] then e′ = c− H̃x′ = ẽ. To see this note that
Lje
′ = Ljc− LjH̃x′ = Lj(Aj) and therefore e′ ∈ S. Furthermore, we have that

e′ − ẽ = (c− H̃x′)− (c− H̃x̃) = H̃(x̃− x′) and so e′ − ẽ ∈ Image(H̃). But due
to our assumption that H̃ is S-good for ẽ this implies in turn that ẽ = e′. So we
have that ẽ = e′ and due to our assumption that 〈e(sk) ◦ (−1), ẽ〉 = 0 this implies
in turn that the attack will output 0.

Finally, we show a lower bound on the probability that the attack outputs 1
when c is an encryption of 1, conditioned on the event that H̃ ∈ Hẽ. Since the
event H̃ ∈ Hẽ is independent of the choice of ẽ, we have that 〈e(sk) ◦ (−1), ẽ〉 = 1
with probability at least 1 − ε. Suppose that this latter event holds. If there is
no solution for (7) for every j ∈ [k] the attack outputs a random bit. Otherwise
if the attack finds a solution x′ for (7) for some j ∈ [k] then similarly to the
above the assumption that H̃ ∈ Hẽ implies that e′ = c − H̃x′ = ẽ. Due to our
assumption that 〈e(sk) ◦ (−1), ẽ〉 = 1 this implies in turn that the attack will
output a random bit. Concluding, we obtained that in the case in which c is an
encryption of 1, conditioned on the event that H̃ ∈ Hẽ, the attack outputs 1
with probability at least (1− ε)/2.

7 Attacks based on the approximate duality conjecture

Recall the definition of the duality measure given in (1). All results presented in
this section assume that the following conjecture holds.

Conjecture 1 (Approximate duality conjecture [8]). For every constant ε > 0
there exists a constant c which depends only on ε such that the following holds.
If A,B ⊆ Fm2 have D(A,B) ≥ ε then there exist subsets A′ ⊆ A and B′ ⊆ B
such that |A′| ≥ 2−c

√
m|A|, |B′| ≥ 2−c

√
m|B| and D(A′, B′) = 1.

Our main result in this section is the following.

Theorem 3. Assuming the approximate duality conjecture (Conjecture 1) there
exist constants ε, γ > 0 such that the following holds. Let Π ∈ {ΠAlek,ΠReg,ΠGPV}
be with q = 2 and AdvDec(n) ≥ 1− ε. Then there exists a non-uniform attack A
on Π running in time 2O(

√
m) with AdvA(n) ≥ γ.

For the proof of the above theorem we first prove two consequences of Con-
jecture 1. The first consequence is a generalized form of this conjecture that
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applies to arbitrary distributions, not necessarily uniform over subsets A,B. For
a pair of distributions µ1, µ2 over Fm2 we define their duality measure as

D(µ1, µ2) = E
[
(−1)〈µ1,µ2〉

]
.

Note that in the special case where µ1, µ2 are uniform distributions over subsets
A,B ⊆ Fm2 respectively then D(µ1, µ2) = D(A,B).

Lemma 3. Assuming Conjecture 1, for every constant ε > 0 there exists a
constant c which depends only on ε such that the following holds. If a pair of
distributions µ1, µ2 over Fm2 have D(µ1, µ2) ≥ ε then there exist subsets A′, B′ ⊆
Fm2 such that Prµ1

(A′) ≥ 2−c
√
m, Prµ2(B′) ≥ 2−c

√
m and D(A′, B′) = 1.

The proof of the above lemma is given in Section 7.1. Note that the prob-
ability of being contained in the sets A′ and B′ in the above lemma is 2−c

√
m

and so using this lemma one can only obtain an attack on the abstract encryp-
tion scheme in the case in which the decryption error of a single encryption is
2−Ω(

√
m). However, we are interested in an attack that works in the case in which

the decryption error of a single encryption is a sufficiently small constant. For
this we apply Lemma 3 iteratively to obtain t ≈ 2c

√
m pairs of subsets Ai, Bi

such that D(Ai, Bi) = 1 for all 1 ≤ i ≤ t and such that the probability of being
contained in the union of Ω(t) of these subsets is Ω(ε).

Lemma 4. Assuming Conjecture 1, for every constant ε > 0 there exists a
constant c which depends only on ε such that the following holds for every integer
t ≤ 2c

√
mε/4. If a pair of distributions µ1, µ2 over Fm2 have D(µ1, µ2) ≥ ε, then

there exist subsets A1, . . . , At ⊆ Fm2 and B1, . . . , Bt ⊆ Fm2 such that D(Ai, Bi) =
1 for all i ∈ [t], and in addition for every I ⊆ [t] it holds that Prµ1

(
⋃
i∈I Ai) ≥

|I| · 2−c
√
m/4 and Prµ2(

⋃
i∈I Bi) ≥ |I| · 2−c

√
m/4.

Note that the sets A1, . . . , At and B1, . . . , Bt in the above lemma may have non-
empty intersections and in particular are not required to be distinct. The proof
of the above lemma is omitted due to space limitations.

In what follows we present the proof of our main Theorem 3 based on Lemma
4.

Proof (Proof of Theorem 3). We will show that assuming Conjecture 1 we have
that the conditions of either Lemma 1 or Lemma 2 hold. Let c be the constant
guaranteed by Lemma 4 for the constant 1−2ε. We shall show that the conclusion
of the theorem holds for

γ = min
{

(1− 4
√
ε)/10, ((1− 2ε)/32− 4

√
ε)/10, (1− 2ε)/64− ε− 2 · 2−c

√
m
}
.

If n ≤ 2c
√
m we clearly have that the distribution µsk is (n, 22c

√
m, 1)-sparse

and consequently Lemma 1 implies an attack in time 2O(
√
m) with advantage

(1− 4
√
ε)/10. Hence from now on we shall assume that n > 2c

√
m.

Let ξ ∈ {0, 1} be such that the decryption function g satisfies g(0) = ξ. Our
main observation is that the assumption that AdvDec(n) ≥ 1 − ε implies that
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Pr[〈µsk◦(−1), µξ〉 = 0] ≥ 1−ε and consequently D(µsk◦(−1), µξ) ≥ 1−2ε. Thus
we may apply Lemma 4 to the distributions µsk ◦ (−1) and µξ and conclude the

existence of t = 2c
√
m(1 − 2ε)/4 subsets A1, . . . , At ⊆ Fm+1

2 and B1, . . . , Bt ⊆
Fm+1
2 such that D(Ai, Bi) = 1 for all i ∈ [t], and in addition for every I ⊆ [t] it

holds that Prµsk◦(−1)(
⋃
i∈I Ai) ≥ |I|·2−c

√
m/4 and Prµξ(

⋃
i∈I Bi) ≥ |I|·2−c

√
m/4.

Fix i ∈ [t]. The fact that D(Ai, Bi) = 1 implies in turn that dim(span (Ai))+
dim(span (Bi)) ≤ m+ 2 and in particular we have that either dim(span (Ai)) ≤
m+ 2− n+ 2c

√
m or dim(span (Bi)) ≤ n− 2c

√
m. Let I ⊆ [t] be the set of all

indices i for which dim(span (Ai)) ≤ m + 2 − n + 2c
√
m. We shall show that if

|I| ≥ t/2 the conditions of Lemma 1 hold while if |I| < t/2 the conditions of
Lemma 2 hold.

We start with the case in which |I| ≥ t/2. Fix i ∈ I and let v1, . . . , vm+1

be a basis for Fm+1
2 such that the subspace spanned by v1, . . . , vm+2−n+2c

√
m

contains span (Ai). Let Li : Fm+1
2 → Fn2 be the linear transformation which

satisfies Li(
∑m+1
j=1 αjvj) = (αm−n+2, . . . , αm+1) for every α1, . . . , αm+1 ∈ F2.

Then Li(Ai) is supported only on the first 2c
√
m + 1 bits and consequently

|Li(Ai)| ≤ 22c
√
m+1. Furthermore, we have that |I| ≤ t = 2c

√
m(1 − 2ε)/4 and

Prµsk◦(−1)(
⋃
i∈I Ai) ≥ (t/2)·2−c

√
m/4 = (1−2ε)/32. This implies in turn that the

distribution µsk◦(−1), and consequently also µsk, are
(
n, 23c

√
m+1(1−2ε)/4, (1−

2ε)/32)-sparse. Lemma 1 implies in turn that the encryption scheme can be
attacked in time 2O(

√
m) with advantage ((1− 2ε)/32− 4

√
ε)/10.

Next we deal with the case in which |I| < t/2. Similarly to the previous
case for every i /∈ I there exists a full rank linear transformation Li : Fm+1

2 →
Fm+1−n+2c

√
m

2 such that Li(Bi) ≡ 0 and Prµξ(
⋃
i/∈I Bi) ≥ (1 − 2ε)/32. This

implies in turn that µξ is
(
m + 1 − n + 2c

√
m, 2c

√
m(1 − 2ε)/4, (1 − 2ε)/32)-

sparse. So by Lemma 2 we have that the encryption scheme can be attacked in
time 2O(

√
m) with advantage (1− 2ε)/64− ε− 2 · 2−c

√
m.

7.1 From uniform to general distributions – proof of Lemma 3

We start with the following lemma which says that every distribution can be
approximated by a distribution which is a convex combination of not too many
uniform distributions.

Lemma 5. Let µ be a distribution with support S, |S| = N , and let t =
log(2N/ε)/ log(1 + ε/2). Then there exist a partition of S into at most t + 2
subsets S0, . . . , St+1 and a distribution χ which is a convex combination of uni-
form distributions on S0, . . . , St such that µ is ε-close to χ.

Proof. Choose an arbitrary element β ∈ S. Let

S0 =

{
α ∈ S \ {β}

∣∣∣∣Prµ(α) ≤ ε

2N

}
,

for all 1 ≤ i ≤ t let

Si =

{
α ∈ S \ {β}

∣∣∣∣ ε2N · (1 + ε/2)i−1 < Prµ(α) ≤ ε

2N
· (1 + ε/2)i

}
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and let St+1 = {β}.
Let χ be the distribution which satisfies

Prχ(α) =


0, α ∈ S0

ε
2N · (1 + ε/2)i−1, α ∈ Si for 1 ≤ i ≤ t
1−

∑
γ∈S\{β} Prχ(γ), α = β.

We clearly have that S0, . . . , St+1 is a partition of S and that χ is a convex
combination of uniform distributions on S0, . . . , St+1.

It remains to show that µ is ε-close to the distribution χ. For this we compute

|µ− χ| = 1

2

∑
α∈S
|Prµ(α)− Prχ(α)| =

∑
α∈S\{β}

(Prµ(α)− Prχ(α))

≤
∑
α∈S0

ε

2N
+

t∑
i=1

∑
α∈Si

ε

2
Prµ(α) ≤ ε

2N
·N +

ε

2

∑
α∈S

Prµ(α) = ε.

We shall also use the definition of the spectrum given below.

Definition 2 (Spectrum). For a distribution µ over Fm2 and ε ∈ [0, 1] let the
ε-spectrum of µ be the set

Specε(µ) =
{
x ∈ Fm2

∣∣∣∣E[(−1)〈x,µ〉
]
≥ ε
}
. (8)

Note that if supp(µ1) ⊆ Specε(µ2) thenD(µ1, µ2) ≥ ε. Conversely, a standard
probabilistic argument shows that if D(µ1, µ2) ≥ ε then Prµ1

(Specε/2(µ2)) ≥
ε/2.

Proof (Proof of Lemma 3). Let c′ be the constant guaranteed by Conjecture 1
for the constant ε/4.

Let µ′1 = µ1|Specε/2(µ2) and note that the fact that D(µ1, µ2) ≥ ε implies
that Prµ1

(Specε/2(µ2)) ≥ ε/2. By Lemma 5 there exists a partition of supp(µ′1)
into t + 2 subsets A0, . . . , At+1 ⊆ Fm2 for t = log(2 · 2m/δ)/ log(1 + δ/2) such
that µ′1 is δ-close to a distribution χ1 which is a convex combination of uniform
distributions on A0, . . . , At+1. Since supp(µ′1) ⊆ Specε/2(µ2) we have that Ai ⊆
Specε/2(µ2) for all 0 ≤ i ≤ t+ 1 and so D(Ai, µ2) ≥ ε/2 for all 0 ≤ i ≤ t+ 1.

Fix 0 ≤ i ≤ t+ 1. Similarly to the above, let µ
(i)
2 = µ2|Specε/4(Ai) and note

that the fact that D(Ai, µ2) ≥ ε/2 implies that Prµ2
(Specε/4(Ai)) ≥ ε/4. By

Lemma 5 there exists a partition of supp(µ
(i)
2 ) into t+2 subsets B

(i)
0 , . . . , B

(i)
t+1 ⊆

Fm2 for t = log(2·2m/δ)/ log(1+δ/2) such that µ
(i)
2 is δ-close to a distribution χ

(i)
2

which is a convex combination of uniform distributions on B
(i)
0 , . . . , B

(i)
t+1. Since

supp(µ
(i)
2 ) ⊆ Specε/4(Ai) we have that B

(i)
j ⊆ Specε/4(Ai) for all 0 ≤ j ≤ t + 1

and so D(Ai, B
(i)
j ) ≥ ε/4 for all 0 ≤ j ≤ t+ 1.

Summarizing, so far we found a collection of subsets {Ai}0≤i≤t+1 and a

collection {B(i)
j }0≤i,j≤t+1 such that:
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– µ′1 = µ1|Specε/2(µ2) is close to a convex combination of uniform distributions
on A0, . . . , At+1.

– µ
(i)
2 = µ2|Specε/4(Ai) is close to a convex combination of uniform distribu-

tions on B
(i)
0 , . . . , B

(i)
t+1 for all 0 ≤ i ≤ t+ 1.

– D(Ai, B
(i)
j ) ≥ ε/4 for all 0 ≤ i, j ≤ t+ 1.

For every 0 ≤ i, j ≤ t+ 1 we can apply Conjecture 1 to the sets Ai, B
(i)
j and

conclude the existence of subsets Ã
(i)
j ⊆ Ai, B̃

(i)
j ⊆ B

(i)
j such thatD(Ã

(i)
j , B̃

(i)
j ) =

1 and |Ã(i)
j | ≥ 2−c

′√m|Ai|, |B̃(i)
j | ≥ 2−c

′√m|B(i)
j |. So in order to prove the lemma

it suffices to show the existence of a constant c and indices 0 ≤ k, ` ≤ t + 1 for

which Prµ1
(Ã

(k)
` ) ≥ 2−c

√
m and Prµ2

(B̃
(k)
` ) ≥ 2−c

√
m.

By the pigeonhole principle, for every 0 ≤ i ≤ t + 1 there exists an index
0 ≤ ji ≤ t+ 1 such that

Prµ2

(
B̃

(i)
ji

)
≥

Prµ2

(⋃t+1
j=0 B̃

(i)
j

)
t + 2

.

Similarly, there exists 0 ≤ k ≤ t+ 1 such that

Prµ1

(
Ã

(k)
jk

)
≥

Prµ1

(⋃t+1
i=0 Ã

(i)
ji

)
t + 2

.

Let A′ = Ã
(k)
jk

and B′ = B̃
(k)
jk

. Then we have that D(A′, B′) = 1 and in order
to bound the probabilities Prµ1

(A′) and Prµ2
(B′) from below it suffices to bound

the probabilities Prµ2

(⋃t+1
j=0 B̃

(k)
j

)
and Prµ1

(⋃t+1
i=0 Ã

(i)
ji

)
from below. For this

we compute

Prµ2

( t+1⋃
j=0

B̃
(k)
j

)
≥ ε

4
· Pr

µ
(k)
2

( t+1⋃
j=0

B̃
(k)
j

)
(Since Prµ2(Specε/4(Ak)) ≥ ε/4)

≥ ε

4
·
(

Pr
χ
(k)
2

( t+1⋃
j=0

B̃
(k)
j

)
− δ
)

(Since µ
(k)
2 and χ

(k)
2 are δ-close)

≥ ε

4
·
(
2−c

′√m − δ
)
,

where the last inequality follows since χ
(k)
2 is a convex combination of uniform

distributions on B
(k)
0 , . . . , B

(k)
t+1 and |B̃(k)

j | ≥ 2−c
′√m|B(k)

j | for all 0 ≤ j ≤ t+ 1.
Similarly, we have that ]

Prµ1

( t+1⋃
i=0

Ã
(i)
ji

)
≥ ε

2
·Prµ′

1

( t+1⋃
i=0

Ã
(i)
ji

)
≥ ε

2
·
(

Prχ′
1

( t+1⋃
i=0

Ã
(i)
ji

)
−δ
)
≥ ε

2
·
(
2−c

′√m−δ
)
.
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Concluding, we have found subsets A′, B′ such that D(A′, B′) = 1 and such
that both Prµ1

(A′) and Prµ2
(B′) are bounded from below by ε

4(t+2) ·
(
2−c

′√m−δ
)
.

The proof is completed by letting δ = 2−c
′√m/2 and t = log(2·2m/δ)

log(1+δ/2) and noting

that with this setting of parameters there exists a constant c which depends only

on ε such that ε
4(t+2) ·

(
2−c

′√m − δ
)
≥ 2−c

√
m for a sufficiently large m.
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44. D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key encryption
based on ideal lattices. In M. Matsui, editor, ASIACRYPT, volume 5912 of Lecture
Notes in Computer Science, pages 617–635. Springer, 2009.

30


