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Abstract. The BBCRS scheme is a variant of the McEliece public-key
encryption scheme where the hiding phase is performed by taking the
inverse of a matrix which is of the form T + R where T is a sparse ma-
trix with average row/column weight equal to a very small quantity m,
usually m < 2, and R is a matrix of small rank z > 1. The rationale
of this new transformation is the reintroduction of families of codes, like
generalized Reed-Solomon codes, that are famously known for represent-
ing insecure choices. We present a key-recovery attack when z = 1 and
m is chosen between 1 and 1 + R + O( 1√

n
) where R denotes the code

rate. This attack has complexity O(n6) and breaks all the parameters
suggested in the literature.
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Introduction

Post-quantum cryptography. All public key cryptographic primitives
used in practice such as RSA, ElGamal scheme, DSA or ECDSA rely ei-
ther on the difficulty of factoring or computing the discrete logarithm and
would therefore be broken by Shor’s algorithm [24] if a large enough quan-
tum computer could be built. Moreover, even if a large enough quantum
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computer might not be built in the next five years, it should be mentioned
that tremendous progress has been made for computing the discrete log-
arithm over finite fields of small characteristic with the quasi-polynomial
time algorithm of [5]. This lack of diversity in public key cryptography
has been identified as a major concern in the field of information security.
For all these reasons, it would be very desirable to be ready to replace
these schemes by others that would rely on other hard problems. However
only few other proposals have emerged which are essentially hash-based
signature schemes, lattice-based, code-based and multivariate quadratic
based schemes. They are either based on the problem of solving multi-
variate equations over a finite field, the problem of finding a short vector
in a lattice and the problem of decoding a linear code. Those problems
are known for being NP-hard and are therefore believed to be immune to
the quantum computer threat.

The McEliece cryptosystem. Among those, one of the most promising
scheme is the McEliece public key cryptosystem [20]. It is also one of
the oldest public-key cryptosystem. It uses a family of codes for which
there is a fast decoding algorithm (the binary Goppa code family here)
which is used in the decryption process whereas an attacker has only a
random generator matrix of the Goppa code which reveals nothing about
the algebraic structure of the Goppa code that is used in the decoding
process. He has therefore to decode a generic linear code for which only
exponential time decoding algorithms are known. The main advantage
of this system is to have very fast encryption and decryption functions.
Depending on how the parameters are chosen for a fixed security level, this
cryptosystem is about five times faster for encryption and about 10 to 100
times faster for decryption than RSA [8]. Furthermore, it has withstood
many attacking attempts. After more than thirty five years now, it still
belongs to the very few public key cryptosystems which remain unbroken.

The use of Reed-Solomon codes in a McEliece scheme. Goppa
codes are subfield subcodes of Generalized Reed-Solomon codes (GRS
codes in short). This means that a Goppa code defined over Fq is actually
the set of codewords of a GRS code defined over an extension field Fqµ (we
say that µ is the extension degree of the Goppa code) whose coordinates
all belong to the subfield Fq. Actually the fast decoding process of Goppa
codes is the decoder of the underlying GRS code. Roughly speaking, a
Goppa code of length n and dimension n−2tµ defined over Fq can correct
t errors5 and is a subfield subcode of a GRS code that can also correct t

5 but the dimension can be increased to n− tµ in the binary case
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errors which is of the same length n but has a larger dimension n−2t and
is defined over Fqµ . In this sense, the underlying GRS code has a better
error correction capacity than the Goppa code. This raises the issue of
using GRS codes instead of Goppa codes in the McEliece system. The
better decoding capacity of GRS codes translates into smaller public key
sizes for the McEliece scheme which is actually one of the main drawback
of this scheme. This approach has been tried in Niederreiter’s scheme
(whose security is equivalent to the McEliece scheme) but has encountered
a dreadful fate when the Sidelnikov-Shestakov attack appeared [25].

Baldi et al. approach for reviving GRS codes. In their Journal of
Cryptology article [2], Baldi et al. have suggested a new way of using
GRS codes in this context. Instead of using directly such a code, they
multiplied it by the inverse of the sum T +R where T is a sparse matrix
and R is a low rank matrix. By doing this, the attacker sees a code which
is radically different from a GRS code but the legitimate user can still
use the underlying GRS decoder. This thwarts the Sidelnikov-Shestakov
attack completely. However the decoding capacity of the resulting code
is basically scaled down by a factor of 1

m where m denotes the average
weight of rows of the matrix T . It should be noted that the very same
approach has also been tried for the Low-Density-Parity-Check code fam-
ily, LDPC in short, which is notoriously known for being insecure in a
McEliece scheme [22, 4, 3]. In this case, they did not even use the low rank
matrix and despite of this fact the resulting public code obtained by this
multiplication is not an LDPC code anymore (it becomes a moderate-
density-parity-check code) and it seems now that if the attacker wants to
break this scheme he has to be able to solve a generic decoding problem
[21]. There are therefore good reasons to believe that this approach can
be powerful for disguising the secret code structure.

An earlier attempt. Baldi et al. [1] first used this approach with T
being a permutation matrix. In this case m = 1 and nothing is lost in
term of decoding capacity compared to a GRS decoder. In other words,
this allows to decrease the public key size as if we had a GRS code in the
McEliece cryptosystem. This first attempt got broken in [12, 11]. Roughly
speaking the reason of this attack in this case can be traced back to two
facts (i) it turns out that the resulting code is still close to the underlying
GRS code: the intersection of the public code with the secret GRS code
is of co-dimension one; (ii) there is a very powerful way of distinguishing
a GRS code [12] from a random code by computing the dimension of its
square which can be used to unravel the algebraic structure of the public
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code. On the other hand, when the degree of sparseness of T is > 1 the
resulting code does not have a large intersection with a GRS code and
there was some hope to obtain a secure scheme.

Our contribution: an attack which works in the regime 1 < m <
2. In the present article we will show that despite the fact that the public
code is far from being a GRS code, a similar trick that has already been
used to attack successfully in [14] some wild Goppa codes proposed in
[7] when the degree of extension is only 2 can also be used in this con-
text. It consists in computing the dimension of the square of shortenings
of the public code. Because of the hidden structure of the public code,
the squares of some of its shortenings have a smaller dimension than the
squares of shortened random codes of the same dimension. This distin-
guisher is then used to unravel the structure of the matrix T . This gives
an attack of polynomial time complexity which can be used to break the
examples given in [2]. Several were broken in a few hours, and others in a
few days. As an illustration, Example 1 given in [2] with a claimed 90-bit
security can be broken in 2.75 hours on a computer equipped with Xeon
2.27GHz processor and 72 Gb of RAM. This attack works up to values
of m of order 1 +R+O( 1√

n
), where R is the rate of the public code. The

attack we present here can obviously be thwarted by taking values for m
greater than 2, but in this case, since the price to pay is a decrease of the
decoding capacity by a factor of more than 2, we do not obtain better
public key sizes than the ones we obtain by using Goppa codes, or more
generally alternant codes of extension degree 2, provided we choose non
wild Goppa codes in order to avoid the attack of [14]. The complexity of
the present attack is similar to that of [11], namely O(n6) where n is the
code length. More precisely, this attack starts with two steps of respective
complexity O(n3) and O(n5) and then applying the attack of [11] whose
complexity is O(n6) operations in the base field.

Note. Due to space limitation, several proofs are omitted. A longer ver-
sion of the present paper including the missing proofs can be found online.

1 GRS Codes and the Square Code Construction

We recall in this section a few relevant results and definitions from coding
theory and bring in the fundamental notion of square code construction.

Definition 1 (Generalized Reed-Solomon code). Let k and n be
integers such that 1 6 k < n 6 q where q is a prime power. The code
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GRSk (x,y) of dimension k is associated to a pair (x,y) where x is an
n-tuple of distinct elements of Fq and y ∈ (F×q )

n
, is defined as:

GRSk (x,y)
def
=
{

(y1p(x1), . . . , ynp(xn)) | p ∈ Fq[X],deg p < k
}
.

The first work that suggested to use GRS codes in a public-key encryption
scheme was [23]. But Sidelnikov and Shestakov [25] showed that for any
GRS code it is possible to recover in polynomial time a pair (x,y) defining
it, which is all that is needed to decode efficiently such codes and is
therefore enough to break any McEliece type cryptosystem [20] that uses
GRS codes.

Definition 2 (Componentwise products). Given two vectors a =
(a1, . . . , an) and b = (b1, . . . , bn) ∈ Fnq , we denote by a ? b the componen-
twise product

a ? b
def
= (a1b1, . . . , anbn).

The star product a ? b should be distinguished from a more common
operation, namely the canonical inner product:

a · b def
=

n∑
i=1

aibi.

Definition 3 (Product of codes & square code). Let A and B be
two codes of length n. The star product code denoted by A ? B of A
and B is the vector space spanned by all products a ? b where a and b
range over A and B respectively. When B = A then A ? A is called
the square code of A and is rather denoted by A 2.

Proposition 1. Let A be a code of length n, then

dim(A 2) 6 min

{
n,

(
dim(A ) + 1

2

)}
.

Proposition 2. Let A ⊂ Fnq be a code of dimension k. The complexity
of the computation of a basis of A 2 is O(k2n2) operations in Fq.

See for instance [11], for proofs of Propositions 1 and 2.

The importance of the square code construction becomes clear when we
compare the dimension of the square of structured codes like GRS codes
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with the dimension of the square of a random code. Roughly speaking,
given a code of dimension k, the dimension of its square is linear in k if
it is a GRS code and quadratic if it is a random code as explained in the
two following propositions.

Proposition 3. GRSk (x,y)2 = GRS2k−1 (x,y ? y) .

Proof. See for instance [18, Proposition 10].

Remark 1. This property can also be used in the case 2k − 1 > n. To
see this, consider the dual of the Reed-Solomon code, which is itself a
generalized Reed-Solomon code [17, Theorem 4, p.304].

Theorem 1. Let A be a random code of length n and dimension k such
that n >

(
k+1
2

)
. Then, for all integer ` <

(
k+1
2

)
,

Prob

(
dim A 2 6

(
k + 1

2

)
− `
)

= O
(
q−` · q−(n−(k+1

2 ))
)
, (k → +∞).

Proof. See [10].

Remark 2. A slightly weaker result was already obtained in the papers
[15, 16] (see also [19]).

For this reason, GRSk (x,y) can be distinguished from a random linear
code of the same dimension by computing the dimension of the associated
square code. In [15, 16], this phenomenon was already observed for q-ary
alternant codes (in particular Goppa codes) at very high rates whose
duals are distinguishable from random codes by the very same manner.
Subsequently, the very same phenomenon lead to attacks on GRS based
cryptosystems [12, 11], to a polynomial time attack on Wild Goppa codes
over quadratic extensions [14] and to a polynomial time attack on alge-
braic geometry codes [13].

Historically, the star product of codes has been used for the first time by
Wieschebrink to cryptanalyze a McEliece-like scheme [6] based on sub-
codes of Reed-Solomon codes [26]. The use of the star product here is
nevertheless different from the way it is used in [26]. In Wieschebrink’s
paper, the star product is used to identify, given a certain low codimen-
sional subcode C of a GRS code GRSk (x,y), a possible pair (x,y).
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This is achieved by computing C 2 which turns out to be GRSk (x,y)2 =
GRS2k−1 (x,y ? y) with a high probability. The Sidelnikov and Shes-
takov algorithm is then used on C 2 to recover a possible (x,y ?y) pair to
describe C 2 as a GRS code, and hence, a pair (x,y) is deduced for which
C ⊂ GRSk (x,y).

2 Description of the Scheme

The BBCRS public-key encryption scheme given in [2] can be summarized
as follows:

Secret key.
– Gsec is a generator matrix of a GRS code of length n and dimen-

sion k over Fq.
– Q

def
= T +R where T is an n× n non-singular sparse matrix with

elements in Fq and average row weight m � n. Note that m is
not necessarily an integer. For example m = 1.4 means that 40%
of the rows of T have weight equal to 2 and the other 60% have
weight equal to 1.

– R is a rank-z matrix over Fq such that Q is invertible. In other

words there exist α
def
= (α1, . . . , αn) and β

def
= (β1, . . . , βn) such

that R
def
= αTβ and αi and βi are z × 1 full rank matrices defined

over Fq for all i ∈ {1, . . . , n} and z 6 n.
– S is a k × k random invertible matrix over Fq.

Public key.

Gpub
def
= S−1GsecQ

−1. (1)

Encryption. The ciphertext c ∈ Fnq of a plaintext m ∈ Fkq is obtained

by drawing at random e in Fnq of weight less than or equal to n−k
2m

(recall that m denotes the density of the matrix T ) and computing

c
def
= mGpub + e.

Decryption. It consists in performing the three following steps:
1. Guessing the value of eR.

2. Calculating c′
def
= cQ−eR = mS−1Gsec+eQ−eR = mS−1Gsec+

eT and using the decoding algorithm of the GRS code to recover
mS−1 from the knowledge of c′.

3. Multiplying the result of the decoding by S to recover m.

Remark 3. In [2], the authors suggest to take m = 1 + n−k−3
n ≈ 2−R for

the density of T .
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Further details on the construction of the matrix T . We deal with
the case m 6 2. According to [2] the matrix T is constructed6 as follows.

1. Choose a permutation matrix P . Replace each 1 by a random element
of F×q .

2. Set t
def
= bn−k2 c, δt

def
= t− b tmc and `

def
= b(m− 1)nc. Choose a random

set C of δt columns and a random set J2 of ` rows of P .
3. For all i ∈ J2, we denote by π(i) the integer such that P i,π(i) 6= 0. For

each i ∈ J2, choose a random element j ∈ C \ π(i) and add a random
element of F×q at position (i, j).

We also tested another construction allowing to have row and column
weight upper bounded by 2. The sparse matrix T is constructed as T =
T 1 + T 2 where:

– T 1 is of the form T 1 = D1P 1, where D1 is diagonal invertible and
P 1 is a permutation matrix;

– T 2 = D2P 2, where D2 is diagonal with (m − 1)n nonzero diagonal
coefficients and P 2 is a permutation matrix;

– The matrices do not overlap, that is, there is no pair (i, j) with 1 6
i, j 6 n such that both (T 1)ij and (T 2)ij are nonzero.

Our attack works for both choices of the matrix T . The experimental
results in Sec. 6 rely on the first construction for T .

2.1 Previous attacks and discussion on the parameters

The BBCRS scheme has been subject to an attack [11] in the case m = 1,
i.e. the matrix T is a permutation matrix and z = 1, i.e. the matrix R
has rank 1. The attack presented here holds for m < 1 +R+O( 1√

n
) and

z = 1. The relevance of choosing higher m or z is discussed in Section 7.

The attack of the present article uses in its last step the attack [11] on
the original system [1].

2.2 Notation

It will be convenient to bring the following notation.

6 Actually, the authors propose three constructions for T and express a clear prefer-
ence for the one described in the present article.
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– Cpub is the code with generator matrix Gpub;

– Csec is the GRS code with generator matrix Gsec, we assume that
it is specified by its dual (which is itself a GRS code) as C⊥sec =
GRSn−k (x,y);

– J1 is the set of positions which correspond to rows of T of Hamming
weight 1. The elements of J1 are called the positions of degree 1. For
any row i ∈ J1 of T , we define j(i) as the unique column of T for
which Tij(i) 6= 0;

– J2 is the set of positions which correspond to rows of T of Hamming
weight 2. The positions in J2 are called the positions of degree 2.
When i belongs to J2, let j1 and j2 be the columns of T for which we
have Tij1 6= 0 and Tij2 6= 0. We define similarly j(i) as the set {j1, j2}
in this case.

2.3 Structure of the public code

The following result explains how Cpub and Csec and their duals are re-
lated.

Lemma 1.

Cpub = Csec(T +R)−1 (2)

C⊥pub = C⊥sec(T +R)T . (3)

Proof. The first equality follows immediately from (1), whereas the second
one was is observed in [2, p.6, Equation (8)] where a parity-check matrix
for the public code Cpub is expressed in terms of a parity-check matrix of
the secret code. This can be proved as follows. For all c ∈ Csec, c

′ ∈ C⊥sec,

(c(T +R)−1) · (c′(T +R)T ) = (c(T +R)−1(T +R)) · c′ = c · c′ = 0.

Moreover, since Q = T + R is invertible, we get dim C⊥sec(T + R)T +
dim Csec(T +R)−1 = n, hence the codes are dual to each other.

3 The fundamental tool: shortening and puncturing the
dual of the public code

Puncturing and shortening will play a fundamental role in the attack.
Recall that for a given code C ⊂ Fnq and a subset I of code positions the
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punctured code PI (C ) and shortened code SI (C ) are defined as:

PI (C )
def
=
{

(ci)i/∈I | c ∈ C
}

;

SI (C )
def
=
{

(ci)i/∈I | ∃c = (ci)i ∈ C such that ∀i ∈ I, ci = 0
}
.

Given a subset I of the set of coordinates of a vector u, we denote by
PI (u) the vector u punctured at I, that is to say, indexes that are in I
are removed.

First let us recall the influence of these operations on GRS codes.

Lemma 2. Let x,y be two n–tuples of element sof Fq such that x has
pairwise distinct entries and y has only nonzero entries. Let k < n and
I ⊆ {1, . . . , n}. Then

PI (GRSk (x,y)) = GRSk (PI (x) ,PI (y)) (4)

SI (GRSk (x,y)) = GRSk−|I| (PI (x) ,yI) , (5)

for some yI ∈ Fn−|I|q depends only on y and I.

Next, with these notions at hand, it follows that the dual of the public
code punctured in J2 is very close to a GRS code. We will also need to
understand the structure of versions of this code which are shortened in
positions belonging to J1 and then punctured in J2. It turns out that
these codes too are close to GRS codes. First of all, puncturing C⊥pub in
the positions belonging to J2 gives “almost” a GRS code, as shown by:

Lemma 3. Let u = (ui)i∈J1 and v = (vi)i∈J1 be vectors in Fn−|J2|q de-
fined by

ui = xj(i)

vi = Tij(i)yj(i).

Let D
def
= C⊥secT

T , then

PJ2 (D) ⊆ GRSn−k (u,v) . (6)

Lemma 4. Let λ and µ be vectors of Fnq such that RT = λTµ and let

C⊥sec(λ)
def
= C⊥sec ∩< λ >⊥, C⊥pub(λ)

def
= C⊥sec(λ)(T T +RT ). Then,

PJ2
(
C⊥pub(λ)

)
⊆ GRSn−k (u,v) , (7)
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Moreover if J1 contains an information set7 of C⊥secT
T and T T is invert-

ible, then there exist a and b in Fn−|J2|q such that for any c in PJ2
(
C⊥pub

)
,

there exists a vector p in GRSn−k (u,v) for which

c = p+ (p · b)a. (8)

In particular, PJ2
(
C⊥pub

)
⊆ GRSn−k (u,v) + < a >.

If we puncture with respect to J2 shortened versions of C⊥pub in positions
belonging to J1, then we observe a similar phenomenon, namely

Lemma 5. Let I1 be a subset of code positions which is a subset of J1.

Let s
def
= |I1| and assume that s 6 n− k. Then there exist vectors a,u,v

in Fn−s−|J2|q such that:

PJ2
(
SI1

(
C⊥pub

))
⊆ E + < a > (9)

and E is a subcode of GRSn−k−s (u,v).

4 Key-Recovery Attack

4.1 Outline

Our key-recovery attack starts with a parity-check matrix Hpub of the
(public) code Cpub. The main goal is to recover matrices T and R, where

Hpub(T T +RT )
−1

is a parity check matrix of a GRS code, T is a low
density square matrix and R a rank 1 matrix. Recall that in our termi-
nology, rows of T belonging to J1 are positions of degree 1, and those in
J2 are positions of degree 2. It implies, thanks to (3), that some columns
of Hpub belong to J1 and the others are in J2.
Our attack is composed of three mains steps having the following objec-
tives:

1. Detecting columns of Hpub that belong to J2, and then deducing
those of J1.

7 In coding theory, an information set of a code C of dimension k is a set of k positions
I such that the knowledge of a codeword c ∈ C on the positions in I determines
entirely the codeword. Equivalently, if G denotes a k × n generator matrix of the
code, then the k × k submatrix of G given by extracting the columns indexed by I
is invertible.
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2. Transforming columns of J2 into degree 1 columns by linear combi-
nations with columns of J1.

3. At this stage, the public code has been transformed into another code
C such that there exists a secret GRS code C ′sec and a matrix Π +R′

where Π is a permutation matrix and R′ is rank-1 matrix such that:

C = C ′sec(Π +R′). (10)

The third step consists then in applying the attack developed in [11]
which is purposely devised to recover a pair (Π,R′) from C as outlined
in Section 2.1.

The purpose of the next sections is to describe more precisely the first
two steps of the attack.

4.2 A distinguisher of the public code

The attack uses in a crucial way a distinguisher which discriminates the
public code from a random code of the same dimension. It is based on
square code considerations. The point is the following: if we shorten
the dual C⊥pub of the public code in a large enough set of positions I,

then the square code
(
SI
(
C⊥pub

))2
has dimension strictly smaller than

that of
(
SI
(
C⊥rand

))2
where Crand is a random code of the same dimen-

sion as Cpub. The code
(
SI
(
C⊥rand

))2
has dimension which is typically

min
{
n− |I|,

(
kI+1

2

)}
where kI stands for the dimension of SI

(
C⊥rand

)
.

In general, kI is equal to n− k − |I| since dim C⊥rand = dim C⊥pub = n− k
whereas we generally have:

dim
(
SI
(
C⊥pub

))2
6 3(n− k) + |J2| − 3|I| − 1. (11)

In other words, when 3(n−k)+ |J2|−3|I|−1 < min
{
n− |I|,

(
kI+1

2

)}
we

expect to distinguish Cpub from a random code of the same dimension.
We write here “generally” because there are some exceptional cases where
such an inequality does not hold. However in the case when I ⊂ J1, this
inequality always holds.

Proposition 4. Let I ⊆ J1, then dim
(
SI
(
C⊥pub

))2
6 3(n− k)− 3|I| −

1 + |J2|.
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Remark 4. It turns out that a similar inequality also generally holds when
I contains degree 2 positions. However in this case, the situation is more
complicated and it might happen in rare cases that this upper-bound is
not met but, roughly speaking, when it happens, the actual result remains
close to this upper bound. Experimentally, we observed that (11) was
satisfied even when I contained positions of J2.

Remark 5. The use of shortening is important since in general the (dual)
public code itself is non distinguishable because its square equals the
whole ambient space. However, for a part of the parameters proposed in
[2], the dual public code is distinguishable from a random code without
shortening. See §6 for further details.

4.3 Description of the attack

First step – Distinguishing between positions in J1 and J2

Roughly speaking the attack builds upon an algorithm which allows to
distinguish between a position of degree 1 and a position of degree 2. It
turns out now that once we are able to distinguish the public code from
a random one by shortening it in a set of positions I such that:

dim
(
SI
(
C⊥pub

))2
< min

{
n− |I|,

(
n− k − |I|+ 1

2

)}
, (12)

we can puncture SI
(
C⊥pub

)
in a position i that does not belong to I and

this allows to distinguish degree 1 positions from degree 2 positions. The
dimension of the square code of this punctured code will differ drastically
when i is a degree 1 position (or a certain type of degree 2 position) or a
“usual” degree 2 position. When i is a degree 1 position it turns out that

dim
(
SI
(
C⊥pub

))2
= dim

(
Pi
(
SI
(
C⊥pub

)))2
, (13)

whereas for “usual” degree 2 positions we observe that

dim
(
SI
(
C⊥pub

))2
= dim

(
Pi
(
SI
(
C⊥pub

)))2
+ 1. (14)

Sometimes (in the “non usual” cases), we can have positions of degree 2
for which

dim
(
SI
(
C⊥pub

))2
= dim

(
Pi
(
SI
(
C⊥pub

)))2
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as for degree 1 positions. This happens for instance if shortening in I
“induces” a degree 1 position in i. This arises mostly when the position i
of degree 2 is such that j(i) = {j1, j2} where either j1 = j(i′) or j2 = j(i′)
for a position i′ of degree 1 that belongs to I. This phenomenon really
depends on the choice of I. However, by choosing several random subsets
I we quickly find a shortening set I for which the degree 2 position we
want to test behaves as predicted in (14).

Procedure to compute J2

– Choose a set of random subsets I1, . . . , Is (in our experimentations
we always chose s ≈ 20) whose cardinals satisfy (12).

– For i = 1, . . . , s compute SIi
(
C⊥pub

)2
and call J2(i) this set of posi-

tions satisfying

dimSIi
(
C⊥pub

)2
6= dimPj

(
SIi
(
C⊥pub

)2)
.

– Set J2 = J2(1) ∪ · · · ∪ J2(s).

Second step – Transforming degree 2 positions into degree 1
ones

Proposition 5. Let i1 ∈ J1 and i2 ∈ J2 be a position associated to
i1. Let D(α, i1, i2) be an n × n matrix which is the identity matrix with
an additional entry in column i2 and row i1 that is equal to α. Define

C
def
= C⊥pubDα,i1,i2. If α = −Ti2j1

Ti1j1
, then there exists R′ of rank at most one

such that

C = C⊥sec(T
′T +R′

T
) (15)

where T ′ differs from T only in row i2 and column j1, the corresponding
entry being now equal to 0.

This proposition is exploited as follows, we first compute for a degree 1
position i1 the set of degree 2 positions i2 such that j(i1) ∈ j(i2). These
positions i2 can be detected by checking if i2 has now become a degree

1 position for S{i1}
(
C⊥pub

)
(this is the case if and only if j(i1) ∈ j(i2)).

Once such a pair (i1, i2) has been found we try all possible values for
α ∈ F×q until we obtain a code C for which the corresponding T ′ contains
a row of index i2 which is now of Hamming weight 1. That is to say: i2
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became a position of degree 1 for C . This can be easily checked by using
the previous technique to distinguish between a position of degree 1 or 2.

In other words, when we are successful, we obtain a new code C for which
there is one more row of weight 1. We iterate this process by replacing
C⊥pub by C and J1 by J1∪{i2} until we do not find such pairs (i1, i2). For
the values of m chosen in [2] and with rows of T which were all of weight
1 or 2 we ended up with T ′ which was a permutation matrix and a code
C which was linked to the secret code by

C = C⊥sec(Π +R′)

where Π is a permutation matrix and R′ a matrix of rank at most 1.
To finish the attack, we just apply the attack described in [11, Sec.4 ] to
recover Csec.

Case of remaining degree-2 positions

It could happen that the previoulsy decribed method is unsufficient to
transform every degree 2 position into a degree 1. It could for instance
happen if there is a position i of degree 2 such that for all position i′ of
degree 1, j(i′) /∈ j(i). In such a situation, no position of degree 1 can be
used to eliminate this position of degree 2.

This problem can be addressed as soon as the set of positions of degree
1 contains an information set of the code. We describe the strategy to
conclude the attack in such a situation.

Let C be the code obtained after performing the two steps of the attack
and assume that there remains as nonempty set J2 of positions of degree
2, which are known (since they have been identified during the first step
of the attack). Here is the strategy

1. Puncture C at J2. The punctured code is of the form

C ′(I +R′) (16)

where C ′ is a GRS code, I is the identity matrix and R′ a rank 1
matrix.

2. Perform the attack of [11] on PJ2 (C ). We get the knowledge of a
support x′ a multiplier y′ and a rank 1 matrix R′ such that

C ′ = GRSk
(
x′,y′

)
(I +R′).
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Moreover, we are able to identify the polynomials P1, . . . , Pk yielding
the rows of the public matrix Gpub.

3. For all x ∈ Fq which is not in the support x′ of C ′, compute the
column 

P1(x)
P2(x)

...
Pk(x)


and join it to the matrix Gpub. By this manner we get new positions
of degree 1 which can be used to eliminate the remaining positions of
degree 2.

Remark 6. In our experiments, this situation never happened: we have
always eliminated all the degree 2 positions using Proposition 5.

5 Limits and Complexity of the Attack

5.1 Choosing appropriately the cardinality of I

By definition of the density m, the sets J1 and J2 have respective cardi-
nalities (2−m)n and (m− 1)n. In what follows, we denote by R the rate
of the public code namely R = k/n. Let us recall that the attack shortens
the dual of a public code which is of dimension n − k. The cardinality
of I is denoted by a. We list the constraints we need to satisfy for the
success of the attack.

1. The shortened code should be reduced to the zero space, which implies
that a < n− k.

2. The code punctured at J2 must contain an information set, that is to
say:

n− k 6 |J1|. (17)

It is clear that (17) is equivalent to m 6 1 +R.
3. The computed square code in Proposition 4 should also be different

from the full space which implies:

3(n− k − a) + |J2| − 1 < n− a (18)

One can easily check that (18) is equivalent to:

a >
1

2

(
(1 +m)n− 3k

)
. (19)
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4. Finally, to have good chances that the dimension of the square code
reaches the upper bound given by Proposition 4, we also need:

3(n− k − a) + |J2| − 1 <

(
n− k − a+ 1

2

)
(20)

which is equivalent to the inequality:

a2 +
(

5− 2(n− k)
)
a+ (n− k)2 − 5(n− k) + 2(1−m)n > 0 (21)

Considering (21) as an inequality involving a degree-2 polynomial in

a, we can check that its discriminant is equal to ∆
def
= 8(m− 1)n+ 25,

so that its roots are a0 and a1 where:

a0
def
= n− k − 5

2
− 1

2

√
∆ and a1

def
= n− k − 5

2
+

1

2

√
∆. (22)

Let us recall that in order to have (21) satisfied, we should have a 6 a0
or a > a1. Because of the constraint a < n− k and since a1 > n− k,
the only case to study is a 6 a0. Combining (19) with a 6 a0, we
obtain:

1

2

(
(1 +m)n− 3k

)
6 a0.

which is equivalent to the following inequality involving this time a
degree-2 polynomial in m:

n2m2 + 2n(1− n− k)m+ 2kn+ k2 − 10k + n2 − 2n > 0. (23)

The discriminant of this polynomial is n2(8k + 1) and the roots are:

m0
def
= 1+R− 1

n
−
√

8

n
R+

1

n2
and m1

def
= 1+R− 1

n
+

√
8

n
R+

1

n2
·

Because of the fact that m 6 1 +R from (17), and since m1 > 1 +R,
we conclude that the attack can be applied as long as m 6 m0, that
is to say:

m 6 1 +R− 1

n
−
√

8

n
R+

1

n2
· (24)

5. Finally, the last step of the attack consists in performing the attack
of [11].

Remark 7. This upper-bound is roughly 1+R. In [2], the authors suggest
to choose m ≈ 2 − R for rates R > 1

2 , which is well within the reach of
the present attack.
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5.2 Estimating the complexity

As explained in Proposition 2, the square of a code of dimension k and
length n can be computed in O(n2k2). Let us study the costs of the steps
of the attack.

– Step 1. Finding the positions of degree 2. For a constant number
of subsets I of length a 6 a0 where a0 is defined in (22), we shorten
C⊥pub and compute its square. If a is close to a0 then, the shortened

code has dimension n − k − a = O(
√
n). Hence, the computation of

its square costs O(n3). Thus this first step costs O(n3) operations in
Fq.

– Step 2. Transforming degree-2 positions into degree 1 po-
sitions. This is the most expensive part of the attack. For a given
position i1 ∈ J1, the computation of positions i2 of degree 2 such
that8 j(i1) ∈ j(i2) consists essentially in shortening the dual public
code at i1 and applying to the shortened code the first step. This costs
O(n3). Then, the application of Proposition 5 to transform i2 requires
to proceed to at most q linear combinations and, for each one, to check
whether the position became of degree 1. Each check has mostly the
same cost as the first step, that is O(n3). Thus, the overall cost to
reduce one position of degree 2 is O(n4) and hence the cost of this
second step is O(n5).

– Step 3. According to [11], it is in O(n6).

6 Experimental Results

Table 1 gathers experimental results obtained when the attack is pro-
grammed in Magma V2.20-3 [9]. The attacked parameters are taken from
[2, Tables 3 & 4] The timings given are obtained with Intel R© Xeon
2.27GHz and 72 Gb of RAM. Our programs are far from being opti-
mized and probably improved programs could provide better timings and
memory usage.

The running times for codes of length 346 are below 5 hours and those for
codes of length 546 can be a bit longer than one day. The total memory
usage remains below 100Mb for codes of length 346 and 500Mb for codes
of length 546.

8 Equivalently, there exists an integer j such that T i1,j 6= 0 and T i2,j 6= 0.
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(q, n, k, z) m Step 1 Step 2

(347, 346, 180, 1) 1.471 15s 18513s (≈5 hours)
(347, 346, 188, 1) 1.448 8s 10811s (≈3 hours)
(347, 346, 204, 1) 1.402 10s 8150s (≈2.25 hours)
(347, 346, 228, 1) 1.332 15s 9015s (≈2.5 hours)
(347, 346, 252, 1) 1.263 36s 10049s (≈2.75 hours)
(347, 346, 268, 1) 1.217 3s 14887s (≈4 hours)
(347, 346, 284, 1) 1.171 3s 7165s (≈2 hours)

(547, 546, 324, 1) 1.401 60s 58778s (≈16 hours)
(547, 546, 340, 1) 1.372 83s 72863s (≈20 hours)
(547, 546, 364, 1) 1.328 100s 72343s (≈20 hours)
(547, 546, 388, 1) 1.284 170s 85699s (≈24 hours)
(547, 546, 412, 1) 1.240 15s 157999s (≈43 hours)
(547, 546, 428, 1) 1.211 15s 109970s (≈30,5 hours)

Table 1. Running times

Remark 8. Since the algorithms include many random choices, the identi-
fication of pairs (i1, i2), where i1 ∈ J1 and i2 ∈ J2 such that j(i1) ∈ j(i2)
might happen quickly or be rather long. This explains the important gaps
between different running times.

Remark 9. Actually some parameters proposed in [2] were directly distin-
guishable without even shortening. This holds for (q, n, k) = (347, 346, 268),
(q, n, k) = (347, 346, 284) and (q, n, k) = (547, 546, 428) with m respec-
tively equal to 1.217, 1.171 and 1.211. This explains why the first step is
quicker for these examples.

Remark 10. The examples [346, 180]347 and [346, 188]347 do not satisfy
(24). However, they are distinguishable by shortening and squaring and
the attack works on them. Because of some cancellation phenomenon for
positions of degree 2 which we do not control, it may happen that the up-
per bound in Proposition 4 is not sharp and that some shortenings of C⊥pub
turn out to be distinguishable while our formulas could not anticipate it.

The above remark is of interest since it points out that our attack might
work for values of m above 1 +R.
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7 Concluding Remarks

The papers [4, 3, 1, 2] can be seen as an attempt of replacing the permu-
tation matrix in the McEliece scheme by a more complicated transfor-
mation. Instead of having as in the McEliece scheme a relation between
the secret code Csec and the public code Cpub of the form Csec = CpubΠ
where Π is a permutation matrix, it was chosen in [4, 3] that

Csec = CpubT

where T is a sparse matrix of density m or as

Csec = Cpub(T +R)

where T is as before and R is of very small rank z (the case of rank 1
being probably the only practical way of choosing this rank as will be
discussed below) as in [1, 2]. It was advocated that this allows to use
for the secret code Csec, codes which are well known to be weak in the
usual McEliece cryptosystem such as LDPC codes [4, 3] or GRS codes [1,
2]. Interestingly enough, it turns out that for LDPC codes this basically
amounts choosing a McEliece system where the density of the parity-check
matrix is increased by a large amount and the error-correction capacity
is decreased by the same multiplicative constant. The latter approach
has been studied in [21], it leads to schemes with slightly larger decoding
complexity but that have at least partial security proofs.

In the case of GRS codes, the first attempt [1] of choosing for T a permu-
tation matrix was broken in [11, Sec.4]. It was suggested later on [2] that
this attack can be avoided by choosing T of larger density. In order to
reduce the public key size when compared to the McEliece scheme based
on Goppa codes, rather moderate values of m between 1 and 2 (m = 1.4
for instance) were chosen in [2]. We show here that the parameters pro-
posed in [2] can be broken by a new attack computing first the dimension
of the square code of shortened versions of the dual of the public code
and using this to reduce the problem to the original problem [1] when T
is a permutation matrix. This attack can be avoided by choosing larger
values for m and/or z, but this comes at a certain cost as we now show.

Increasing z. Increasing z = 1 to larger values of z avoids the attack
given here, though some of the ideas of [11] might be used in this new
context to get rid of the R part in the scheme and might lead to an attack
of reasonable complexity when z = 2 by trying first to guess several
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codewords which lie in the code C
def
= C⊥secT

T ∩ C⊥pub (this code is of

codimension at least z in C⊥pub). Once C is found, we basically have to
recover T and the approach used in this paper can be applied to it. To
avoid such an attack, rather large values of z have to be chosen, but the
decryption cost becomes prohibitive by doing so. Indeed, decryption time
is of order qzC where C is the decoding complexity of the underlying
GRS code. Choosing z = 2 is of questionable practical interest and z > 2
becomes probably unreasonable.

Increasing m. Choosing values for m close enough to 2 will avoid the
attack presented here. However this also reduces strongly the gain in key
size when compared to the McEliece scheme based on Goppa or alternant
codes. Indeed, assume for simplicity m = 2. We can use in such a case
for the secret code a GRS code over Fq of dimension k = n− 2t and add
errors of weight 6 t

2 in the BBCRS scheme. The public key size of such
a scheme is however not better than choosing in the McEliece scheme a
Goppa code of the same dimension n−2t but which is the subfield subcode
of a GRS code over Fq2 of dimension n − t, and which can also correct
t
2 errors. This Goppa code has the very same parameters and provides
the same security level. For this reason, one loses the advantages of using
GRS codes when choosing m close to 2. Thus, to have interesting key
sizes and to resist to our attack m should be smaller than 2 and larger
than 1 + R. One should however be careful, since, as explained in §6, it
is still unclear whether the attack fails for m closely above 1 +R.

On the other hand, it might be interesting for theoretical reasons to un-
derstand better the security of the BBCRS scheme for larger values of
m. There might be a closer connection than what it looks between the
BBCRS scheme with density m and the usual McEliece scheme with
(possibly non-binary) Goppa codes of extension degree m. The connec-
tion is that the case m = 2 is in both cases the limiting case where the
distinguishing approach of [11, 14] might work (in [14], the attack only
works because wild Goppa codes are studied and this brings an addi-
tional power to the distinguishing attack). It should also be added that it
might be interesting to study the choice of Csec being an LDPC code and
Csec = Cpub(T +R) since here adding R of small rank can also change
rather drastically the property of Cpub being an LDPC code (which is at
the heart of the key attacks on McEliece schemes based on LDPC codes).
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