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Abstract. We present a universal framework for tamper and leakage
resilient computation on a random access machine (RAM). The RAM
has one CPU that accesses a storage, which we call the disk. The disk is
subject to leakage and tampering. So is the bus connecting the CPU to
the disk. We assume that the CPU is leakage and tamper-free. For a �xed
value of the security parameter, the CPU has constant size. Therefore the
code of the program to be executed is stored on the disk, i.e., we consider
a von Neumann architecture. The most prominent consequence of this is
that the code of the program executed will be subject to tampering.
We construct a compiler for this architecture which transforms any keyed
primitive into a RAM program where the key is encoded and stored
on the disk along with the program to evaluate the primitive on that
key. Our compiler only assumes the existence of a so-called continuous
non-malleable code, and it only needs black-box access to such a code.
No further (cryptographic) assumptions are needed. This in particular
means that given an information theoretic code, the overall construction
is information theoretic secure.
Although it is required that the CPU is tamper and leakage proof, its
design is independent of the actual primitive being computed and its in-
ternal storage is non-persistent, i.e., all secret registers are reset between
invocations. Hence, our result can be interpreted as reducing the prob-
lem of shielding arbitrary complex computations to protecting a single,
simple yet universal component.

1 Introduction

Can cryptographic schemes achieve their security goals when run on non-trusted
machines? This fascinating question has recently resulted in a large body of work
that weakens the traditional assumption of fully trusted computation and gives
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the adversary partial control over the implementation. Such partial control can
either be passive where the adversary obtains information about the internal
computation, or active where the adversary is allowed to change the secret state
and/or the computation of the scheme.

One general solution to the above question is given by the appealing notion
of leakage and tamper resilient compilers introduced in the pioneering works
of Ishai, Prabhakaran, Sahai and Wagner [24, 23]. A compiler takes as input
a description of some arbitrary cryptographic functionality GK and outputs a
transformed functionality G′K′ which has the same input/output behavior as GK
but additionally remains secure in a non-trusted environment. For instance, G′K′

may be secure when the adversary is able to obtain a bounded amount of leakage
from the execution of G′K′ , or when he can change the secret state K′ in some
adversarial way. Formally, security is typically modeled by a simulation-based
notion. That is, whatever the adversary can learn by interacting with G′K′ in the
non-trusted environment, he can also achieve by interacting with the original GK
when implemented on a fully trusted device.

Tamper resilient compilers. Two di�erent lines of work investigate methods for
tamper resilient compilers. The �rst approach designs so-called tamper resilient
circuits [23, 20, 10, 26, 11]. That is, given a functionality GK that, e.g., computes
the AES with key K, the compiler outputs a transformed functionality G′K′ that
achieves simulation-based security even if the adversary can tamper with up
to a constant fraction of the wires independently. While these works allow the
adversary to tamper with the entire circuitry, they typically make very strong
assumptions on the type of tampering. In particular, it is assumed that each
bit of the computation is tampered with independently (so-called set/reset and
toggle attacks). Also, it is not allowed to re-wire the circuit.

The second approach is based on the notion of non-malleable codes [16].
Informally, a code is non-malleable w.r.t. a set of tampering functions if the
message contained in a codeword modi�ed via a function in the family is ei-
ther the original message, or a completely �unrelated� value. A compiler based
on non-malleable codes stores the secret key in an encoded form and the com-
piled functionality decodes the state each time the functionality wants to access
the key. As long as the adversary can only apply tampering functions from the
family supported by the code, the non-malleability property guarantees that
the (possibly tampered) decoded value is not related to the original key. While
non-malleable codes exist for rich families that go far beyond the bit-tampering
adversary discussed above (see, e.g., [16, 27, 15, 1, 6, 7, 17, 19, 2, 8, 9]), the exist-
ing compilers based on non-malleable codes only protect the secret key against
tampering attacks. In particular, the assumption is that the entire circuitry that
evaluates the functionality is implemented on a fully trusted environment and
cannot be tampered with.

In this work we show how to signi�cantly weaken the assumption of tamper-
proof computation. Our solution is also based on non-malleable codes and hence
can achieve strong protection against rich families of tampering functions, but
simultaneously signi�cantly reduces the assumption on tamper proof circuitry



used by the traditional approach described above. In particular, the tamper-
proof circuitry we use (the so-called CPU) is a small and universal component,
whose size and functionality is independent of the functionality that we want to
protect. Notice that this is in contrast to the approach described above, which
requires a speci�cally tailored tamper-proof hardware for each functionality that
we intend to protect. Our solution is hence in spirit of earlier works (e.g., [20])
and reduces the problem of protecting arbitrary complicated computation to
shielding a single, simple component.

One important feature of our construction is to allow tampering with the
program code. In our model the program consists of code built from several
instructions such that each instruction is executed by the tamper-proof CPU
sequentially. Notice that tampering with the program (and hence with the func-
tionality) is allowed as the code is written on the tamperable disk. Hence, the
adversary may attempt to overwrite the code with a malicious program that,
e.g., just outputs the secret key. In our construction we prevent this type of at-
tack by again making sure that any change of the code will enforce in tampering
with the secret key, which itself is protected by a non-malleable code.

We notice that while our construction works generically for any non-malleable
code that satis�es certain composability properties (as explained in more detail
below), we will focus in the following exposition mainly on non-malleable codes in
the split-state setting. In this well-known setting (c.f. [27, 1, 15, 17, 7]) the code-
word consists of two parts and the adversary is allowed to tamper independently
with them in an arbitrary way.

1.1 Our Model

We put forward a generic model of a tamper and leakage resilient von Neu-
mann random access architecture (alternatively called RAM architecture). To
use the established terminology of leakage and tamper resilient compilers, we
phrase the model in terms of computing keyed functionalities GK(·). However,
the model capture arbitrary poly-time computation which keeps a secret state
that is initially K.

RAM schemes. We will use a RAM scheme to denote a RAM architecture R
and a compiler C for R. The RAM R has a disk D and a tamper/leakage-proof
CPU that is connected with the disk through buses. The RAM compiler C takes
as input the description of a functionality G and a key K and outputs an initial
encoding of the disk. Inputs to the program are given by writing it on the disk,
and outputs are received by reading a special section of the disk. The program
runs in activations. An activation denotes the time period of evaluating GK(·) on
some input x. An activation involves several steps of the CPU. In each step, the
CPU loads a constant number of words from the disk (this might include reading
part of the input), executes one computation on the loaded data, and writes the
result back to the disk (this might include writing part of the output). We stress
that our CPU has no persistent internal (secret) storages, i.e., all secret registers
are reset between steps. The CPU contains the following public untamperable



components (i) a program counter pc, (ii) an activation counter ac and (iii) a
self-destruct bit B. The activation counter ac is incremented after each activation,
and the program counter pc speci�es, during each activation, at which position
of the public disk the CPU shall read the next instruction. The value B is a
special self-destruct bit that is initially set to 0, and can once be �ipped by the
CPU. Whenever B is set to 1, the RAM goes into a special �self-destruct� mode
where it is assumed to forever output the all-zero string.

Security. We de�ne security of a RAM scheme via the real-ideal simulation
paradigm. In the real world the compiler C is run in order to produce the initial
contents of the disk. As in previous works on tamper and leakage resilient com-
pilers the pre-processing in the setup is assumed to be tamper and leakage proof
and is executed once at the initialization of the system. Think of it as the setup
running on a separate, possibly more secure machine. In the online phase, the
adversary can specify between steps of the CPU a tampering function Tamper(·)
that modi�es the disk: D ← Tamper(D). It can also specify a leakage function
Leak and will then be given Leak(D). Furthermore, the adversary can ask the
RAM to perform the next step in the computation (for the current activation),
by running the CPU on the (possibly modi�ed) disk. When requesting the next
step it also speci�es a leakage function LeakBs and is given back LeakBs(Bs),
where Bs contains the values that were loaded or stored by the CPU.

Clearly, no computation is secure in the presence of arbitrary leakage and
tampering. We therefore introduce a notion of adversary class to restrict the
tampering and leakage queries that the adversary can submit. We compare the
real execution to a mental experiment featuring a simulator having only black-
box access to the original functionality GK(·). We call this an ideal execution. A
RAM scheme is A-secure if for all e�cient adversaries from A there exists an
e�cient simulator such that for all functionalities G the output distributions of
a real and an ideal execution are computationally close.

We also introduce a notion of secure emulation. An emulator takes as input a
RAM scheme (think of a RAM scheme for an idealised highly secure RAM) and
outputs another RAM scheme (think of a RAM scheme for more real-world-like
highly insecure RAM). We de�ne the notion of security of an emulator such that
if one is given a secure RAM scheme for the idealised RAM and applies a secure
emulator, then one gets a secure RAM scheme for the less secure architecture.
This allows to do modular proofs.

1.2 Motivation and Challenges of our Model

On RAM computation vs. circuits. The reasons why we want to lift the study
of leakage and tamper resilience to the RAM setting are motivated by practice.
It is well known that computing a function using a circuit instead of a RAM
can yield a quadratic blow-up in complexity. Even worse, in a setting as ours,
where the data (the encoding of K) is already laid out, the complexity can su�er
an exponential blow-up, if a given activation only reads a small part of the key.
Furthermore, it seems a simpler task in practice to produce a lot of tamper proof



copies of a small universal piece of hardware than to produce di�erent tamper
proof circuits for di�erent desired functionalities.

On the trusted CPU assumption. As non-malleable codes typically do not have
any homomorphic properties that enable computation,1 we assume a tamper and
leakage-proof CPU that carries out decoding. The CPU is the only part of the
computation that is completely trusted. Notice that while its inputs and outputs
may be subject to leakage and tampering attacks, its computation does not leak
and its execution is carried out un-tampered. Our CPU is small and independent
of the functionality to protect: it merely reads a constant number of encodings
from disk, decodes them, executes some instruction (that can be as simple as a
NAND operation) and writes the encoded result back to the disk. Notice that
in contrast to earlier work on tamper resilient compilers based on non-malleable
codes [16, 27, 17], we allow tampering with intermediate values produced by the
program code, and in fact even with the program code itself. Our result hence
can be interpreted as a much more granular model of computation than [16, 27,
17].

One may object that given such a powerful tamper-proof component a solu-
tion for tamper and leakage resilience is simple. Let us take a look at an adversary
that can apply powerful tampering functions to the state of the disk between
executions of the CPU. To this end, observe that the notion of non-malleable
codes only guarantees that one cannot change the encoded value to some related
value. Nothing, however hinders the adversary to just overwrite an encoding with
a valid encoding of some �xed (known) value. Notice that such an attack may
not only make it impossible to achieve simulation-based security, but moreover
can completely break the scheme.2 The adversary can also copy valid encodings
from some place of the computation to di�erent portions. For instance, he may
attempt to copy the encoding of the secret key directly to the output of the
program. Our transformation prevents these and other attacks by tying together
all encodings with the secret key and the description of the compiled function-
ality. Hence, any attempt to change any intermediate encoding will destroy the
functionality, including the key.

In summary, we show how to reduce the problem of protecting arbitrary
computation against continuous leakage and tampering attacks in the split-state
model, to shielding a simple and universal component. We notice that while our
work minimizes the trusted hardware assumption made in non-malleable code
based compilers, our trusted CPU is signi�cantly more complex than tamper-
proof hardware that has been used in works on tamper resilient circuits (cf.
Section 1.4 for more details on this).

On the counters. In our model the CPU has public untamperable counters.
The reason is that in order to tolerate leakage from the buses (connecting the

1 In fact, a homomorphism would in many cases contradict the non-malleability prop-
erty of the code.

2 Consider a contrived program that outputs the secret key if a certain status bit is
set to 0, but otherwise behaves normally.



CPU and the disk), we must make sure that the state of the CPU changes after
each step. Otherwise, one may execute the following �reset-and-leak attack�. The
tampering functions can reset the disk to previous states an unbounded number
of times, and without the counters, the CPU is also always in the same state at
the start of an execution, so it would read the same values repeatedly. Notice
that, as we allow leakage from the buses, each time the CPU loads a value it
leaks through the bus. So, loading any value repeatedly an unbounded number
of times implies that all the values on the disk could eventually be leaked at
some point. We also stress that we pick a public value for this purpose and not a
secret register as we want to minimize the assumption on the hardware�and of
course secret un-tamperable memory is a much stronger assumption than public
un-tamperable memory.

Moreover, assuming only counters makes our model a strict generalization
of the circuit model: we can make an equivalent circuit where each gate can be
thought of as one invocation of the CPU. Each gate will be identical to the CPU,
except that it has the appropriate counters hard-coded into it. Assuming secret
registers would not make such a transformation to circuitry possible.

On the self-destruct bit. In addition to the counter we use a tamper-proof �self-
destruct� bit in our construction. Firstly, such bit is used to serve the same
purpose as in the tamper-resilient compiler of [17]: it acts as a �ag indicating
that tampering has been detected for the �rst time and, if the execution does
not stop at this point, the adversary can continue to learn information on the
codeword (eventually recovering the whole codeword) which should, of course,
be prevented.3 Moreover, one may notice that without having a self-destruct bit,
it is impossible to tolerate leakage from the buses. Consider, again, the �reset-
and-leak attack� described above. The untamperable program counter enables
the CPU to detect that a �reset� has taken place (i.e., values read from the disk
do not match its internal state). However, at this point it is too late: the values
were already on the buses, and hence subject to leakage. In this case the self-
destruct bit allows the CPU to stop execution the �rst time such tampering is
detected.

We also stress that having one bit, which is in fact �one-time writable�, is
optimal. Moreover, this seems as a reasonable hardware assumption: one can
think of the CPU having a fuse that it can blow once (and check if it was ever
blown).

On minimizing hardware assumptions. We emphasize that the main goal of this
work is to study feasibility to securely execute any computation in the presence
of very strong leakage and tampering attacks (in particular we consider arbitrary
continuous leakage from buses and arbitrary tampering in the split-state model).
We show that indeed this can be achieved by a simple, universal, constant-size

3 For example, the tampering function can make the codeword �valid� or �invalid�
depending on the �rst bit of the codeword, and hence learn the �rst bit based on
the outcome.



CPU that is fully trusted. The CPU does not keep any secret state, and only
has a short public un-tamperable memory that keeps the program counter (of
size logarithmic in the security parameter) and the self-destruct bit. We notice
that one can develop easier solutions if the CPU can keep a large, mutable,
secret state between executions. In this case the CPU could encrypt the disk
and authenticate it using, e.g., a Merkle tree. Of course, keeping a secret state
between executions of the CPU is a much stronger hardware assumption.

1.3 Our Techniques

We construct our RAM scheme in two steps. We �rst formulate a hybrid model,
which is a wishful RAM architecture where there is no leakage from the disk, no
leakage from the bus and where the only allowed tampering is of the following
types: (i) the adversary might copy a word from one position of the disk to
another position on the disk (without looking at the value), and (ii) he might
overwrite a position on the disk with a word of an arbitrary choice. As a �rst step
we show how to compile securely to this hybrid platform. We then show how to
use a non-malleable code to emulate this platform. Below we �rst describe the
compiler, and then the emulator.

The compiler. We construct a RAM scheme for the hybrid architecture described
above. We need to mitigate the fact that the adversary can overwrite values and
copy them around. At setup, a secret label L is sampled uniformly at random
and stored in the �rst position of the secret disk. Then, each value on the disk
is �augmented� with the following information: (i) The position j at which the
value was meant to be stored; (ii) The secret label L; and (iii) The values (a, p)
of the activation counter ac and the program counter pc when the value was
written on disk. Intuitively, adding the secret label (which is unknown to the
adversary) prevents the adversary from replacing values from di�erent positions
of the secret disk with values that do not have the right label (notice that
this label is long enough such that it cannot be guessed by the adversary). This
ensures that all the values containing the label are either from the pre-processing
or computed and stored by the CPU. Hence, they are in a way �authenticated�
by the computation and not introduced by the adversary. On the other hand,
the position j prevents the adversary from copying the corresponding value to
a location di�erent from j, as the CPU will check that j matches the position
from which the value was read.

Note that the adversary can still replace a value at location j with an older
value that was stored at location j before, essentially with the goal of resetting
the scheme to a previous valid state. By checking the values a and p with the
current values of the activation and program counters of the CPU, the CPU
can detect such resetting attacks and self-destruct if necessary. Our analysis
(see Section 6) shows that the probability that an adversary manages to replace
some value on the secret disk (putting the correct label) without generating a
self-destruct, is exponentially small in the security parameter. The use of the
label to prevent moving and resetting values along with the structure of the



compiled program makes our hybrid compiler so-called c-bounded, as required
by the emulator (see below).

Notice that this compiler uses no cryptography, so it is information-theoretic
secure. Hence, if we can emulate the hybrid architecture with information-
theoretic security, the overall security will be information theoretic!

The emulator. The basic idea of the emulator is simple. Given a RAM scheme
for the hybrid model and a non-malleable code, each value of the disk is encoded
using the code. The CPU will then decode the values after loading them, compute
as the CPU of the hybrid scheme and then encode the results and put them back
on disk. Intuitively, a non-malleable code has the property that if a codeword is
changed it either becomes invalid or an encoding of an unrelated value (known
by the adversary). Since codewords can of course be copied around without
modifying them, it seems intuitive that the above emulator should work if the
RAM only allows leakage and tampering that the code is designed to tolerate. We
can in fact take this as an informal de�nition and say that a given non-malleable
code �ts a given RAM architecture (given by the CPU and the adversary class)
if for all hybrid schemes the natural emulator sketched above securely emulates
the hybrid scheme. With this de�nition, we tautologically get that if there is a
non-malleable code �tting a given RAM architecture, then there is also a secure
RAM scheme for that architecture, namely apply the natural emulator to our
secure compiler from above.

We exemplify our approach by showing that the split-state continuous non-
malleable code (CNMC) from [17] �ts a split-state RAM, where the disk is split
into two disks and the adversary is allowed arbitrary independent tampering
of each disk. In contrast to traditional non-malleable codes, continuous non-
malleability guarantees that the code remains secure under continuous attacks
without assuming erasures. The natural emulator uses many encodings, so the
construction requires also some form of composability of non-malleable codes,
where we allow the tampering function to depend on multiple encodings together.
We can show by a generic reduction that composability is preserved for any
continuous non-malleable split-state code.4

We remark that the code construction of [17] is in the common reference
string (CRS) model, meaning that at setup a public string crs is generated and
made available to all parties. Importantly, the security of the code requires that
the adversary is not allowed to modify crs. Similarly, when one uses the code
of [17] within our framework, the CRS is assumed to be un-tamperable and
chosen by a trusted party; for instance, it can be chosen at production time and
be hard-coded into the CPU of the RAM. However, the CRS can be public, and in
particular the tampering and leakage from the disks can fully depend on it. Also
the CRS is generated once and for all, so it perfectly matches our assumption of

4 In [8] Coretti et al. show that the information theoretic construction of [16] in the
bit-wise tampering (and no leakage) model is continuously non-malleable, so in that
setting our compiler would be information theoretic, albeit only protecting against
a weaker adversary class.



having a universal component (the CPU) that can be used to protect arbitrary
computation. The assumption of having a public un-tamperable CRS is not new;
see, e.g., [25, 27] for further discussion.

Bounding RAM scheme. We show by a reduction to the composable CNMC
that there exists a hybrid simulator, attacking the hybrid scheme and having
limited tamper access (only copy and replace), that produces a distribution that
is indistinguishable from the execution of the emulated RAM scheme in the
real world. For this reduction to work, it is important that the hybrid scheme
being emulated has a property called c-boundedness. Informally, this notion says
that each value on the secret disk is touched at most c times, for a constant c.
Without this property, the emulator would touch the corresponding codeword
an unbounded number of times, and continuous leakage from the buses would
reveal the entire code. Our compiler is constructed to have this property. Notice
that it is in particular di�cult to achieve c-bounded schemes in the presence of
tampering, as the hybrid adversary may several times move a given value to the
next position on the secret disk read by the CPU.

1.4 Other Related Work

Many recent works have studied the security of speci�c cryptographic schemes
(e.g., public key encryption, signatures or pseudorandom functions) against tam-
pering attacks [4, 3, 25, 30, 5, 13]). While these works often consider a stronger
tampering model and make less assumptions about tamper-proof hardware, they
do not work for arbitrary functionalities.

Leakage and tamper-proof circuits. A large body of work studies the security of
Boolean circuits against leakage attacks [24, 21, 14, 22, 29, 28]. While most works
on leakage resilient circuit compilers require leakage-proof hardware, the break-
through work of Goldwasser and Rothblum [22] shows how to completely elimi-
nate leak-proof hardware for leakage in the split-state setting. It is an interesting
open question, if one can use the compiler of [22] to implement our CPU and
allow leakage also from its execution. We emphasize that most of the work on
leakage resilient circuit compilers does not consider tampering attacks.

The concept of tamper resilient circuits has been introduced by Ishai, Prab-
hakaran, Sahai and Wagner [23] and further studied in [23, 20, 10, 26, 11]. On
the upside such compilers require simpler tamper-proof hardware,5 but study a
weaker tampering model. Concretely, they assume that an adversary can tam-
per with individual wires (or constant size gates [26]) independently. That is,
the adversary can set the bit carried on a wire to 1, set it to 0 or toggle its value.
Moreover, it is assumed that in each execution at least a constant fraction of

5 To the best of our knowledge each of these compilers requires a tamper-proof gate
that operates on at least k inputs where k is the security parameter. Asymptotically,
this is also the case for our CPU, while clearly from a practical perspective our
tamper-proof hardware is signi�cantly more complex.



the wires is not tampered at all.6 Our model considers a much richer family of
tampering attacks. In particular, we allow the adversary to arbitrarily tamper
with the entire content of the two disks, as long as the tampering is done in-
dependently. In fact, our model even allows the adversary to tamper with the
functionality as the program code is read from the disk. Translating this to a
circuit model would essentially allow the adversary to �re-wire� the circuit.

Finally, we notice that our RAM model can be thought of, in fact, as a
generalization of the circuit model where the RAM program can be, e.g., a
Boolean circuit and the CPU evaluates NAND gates on encodings.

Concurrent and independent work. A concurrent and independent paper [12]
gives a related result on protecting RAM schemes against memory leakage and
tampering. The main di�erence with the setting considered in this paper is
that their model does not cover �reset attacks�, i.e., the tampering functions
are not allowed to keep a backup storage where previous codewords are stored
and continuously tampered. This is enforced in their construction by assuming
perfect erasures.

Technically the solutions are very di�erent. Instead of encoding each element
on the disk via a non-malleable code, the scheme of [12] encodes only the reg-
isters of the CPU to virtually equip it with secret registers, and then uses disk
encryption to secure the disk; this can be phrased as using a non-malleable code
with local properties. Finally, the scheme of [12] incorporates directly an ORAM,
whereas we propose to view this as a separate step. First applying an ORAM
and then our compiler will yield a scheme with the same asymptotic complexity
of the one in [12]. However, as long as non-malleable codes are less e�cient in
practice than symmetric encryption, the scheme of [12] appears more practical.
On the other hand, if we base our construction on an information theoretically
secure code, the whole construction has unconditionally security. The solution
in [12] is inherently computational.

2 Preliminaries

2.1 Notation

For n ∈ N, we write [n] := {1, . . . , n}. Given a set X , we write x← X to denote
that element x is sampled uniformly from X . If A is an algorithm, y ← A(x)
denotes an execution of A with input x and output y; if A is randomized, then
y is a random variable.

Let k ∈ N be a security parameter. We use negl(k) to denote a negligible
function on k. Given two random variables X1 and X2, we write X1 ≈c X2 to
denote that X1 and X2 are computationally indistinguishable meaning that for
all PPT algorithms A we have that Pr[A(X1) = 1]− Pr[A(X2) = 1] ≤ negl(k).

6 In [23, 20] it is allowed that faults are persistent so at some point the entire circuitry
may be subject to tampering.



2.2 Continuous Non-Malleable Codes

In this paper we consider non-malleable codes in the split-state setting and
omit to mention it explicitly for the rest of the paper. A split-state encod-
ing scheme C = (Init,Encode,Decode), is a triple of algorithms speci�ed as
follows: (1) Init, takes as input the security parameter and outputs a public
common reference string crs ← Init(1k); (2) Encode, takes as input a string
x ∈ {0, 1}`, for some �xed integer `, and the public parameters, and outputs
a codeword c = (c0, c1) ← Encode(crs, x) where c ∈ {0, 1}2n; (3) Decode,
takes as input a codeword c ∈ {0, 1}2n and the public parameters, and out-
puts a value x = Decode(crs, c) where x ∈ {0, 1}` ∪ {⊥}. We require that
Decode(crs,Encode(crs, x)) = x for all x ∈ {0, 1}` and for all crs ← Init(1k).
Moreover, for any two inputs x0, x1 (|x0| = |x1|) and any e�cient function T0,T1

the probability that the adversary guesses the bit b in the following game is negli-
gible: (i) sample b← {0, 1} and compute (c0, c1)← Encode(crs, xb), and (ii) the
adversary obtains Decode∗(T0(c0),T1(c1)), where Decode∗ is as Decode except
that it returns a special symbol same? if (T0(c0),T1(c1)) = (c0, c1).

The above one-shot game has been extended to the continuous setting in [17],
where the adversary may tamper continuously with the encoding. In contrast
to the above game, the adversary here obtains access to a tampering oracle
Oqcnm((c0, c1), ·), where (c0, c1) is an encoding of either x0 or x1. The oracle
can be queried up to q times with input functions T0,T1 : {0, 1}n → {0, 1}n
and returns either same? (in case (T0(c0),T1(c1)) = (c0, c1)), or ⊥ (in case
Decode(crs, (T0(c0),T1(c1))) = ⊥), or (T0(c0),T1(c1)) in all other cases. The
only additional restriction is that whenever ⊥ is returned the oracle answers all
further queries with ⊥ (a.k.a. �self-destruct�). Furthermore, in the construction
of [17] the adversary has access to leakage oracles Olbcode(c0, ·), Olbcode(c1, ·), that
can be queried to retrieve up to lbcode bits of information on each half of the
target encoding. The access to the leakage oracles will be useful in our setting
to obtain continuous leakage resilience on the buses. We refer the reader to the
full version of this paper [18] for a precise de�nition of continuous non-malleable
leakage resilient (CNMLR) codes.

Composability. We also introduce a notion of adaptive composability for CNMLR
codes, where the adversary can specify two vectors of messages x0 = (x10, . . . , x

m
0 )

and x1 = (x11, . . . , x
m
1 ) (such that |xi0| = |xi1|) and the oracle Oqcnm(c, ·) is

parametrized by a vector of encodings c = (c0, c1) = ((c10, . . . , c
m
0 ), (c11, . . . , c

m
1 ))

corresponding to either x0 or x1 (depending on the secret bit b above). The tam-
pering functions now have a type T0,T1 : ({0, 1}n)m → {0, 1}n, and the oracle
returns (same?, i) in case c′ = (ci0, c

i
1) for some i ∈ [m]. The leakage oracles are

also parametrized by c0 and c1 and the adversary can leak up to lbcode bits from
each codeword.

Roughly a CNMLR code is adaptively m-composable if no PPT adversary
can guess the value of b with noticeable advantage, even in case the messages in
the two vectors x0, x1 are not �xed at the beginning of the game, but instead



can be chosen adaptively when the game proceeds. A formal de�nition, together
with a proof of the following theorem can be found in the full version.

Theorem 1. Let C = (Init,Encode,Decode) be a (lbcode, q)-CNMLR code. Then
C is also adaptively m-composable for any polynomial m = poly(k).

3 A Generic Leakage and Tamper Resilient RAM

In this section we describe our model of a generic random access machine (RAM)
architecture with a leakage and tamper resilient CPU and with memory and
buses, which are subject to leakage. Our RAM architecture is meant to im-
plement some keyed functionality GK, e.g., an AES running with key K taking
as input messages and producing the corresponding ciphertexts, but the model
also applies to more general computations. The RAM has one tamperable and
leaky disk D, and one CPU, which has a size independent of the function to be
computed. We interchangeably denote the memory used by the CPU by �disk�,
�storage� and �memory�; this might physically be any kind of storage that the
CPU can access. We assume there is a leak-free and tamper-free pre-processing
phase, which outputs an encoding of the functionality GK. One can think of this
as a separate phase where a compiler is run, possibly on a di�erent, more secure
machine.

The initial encoding consists of data and instructions, which we store on the
disk. The input and output of the function (that can be chosen by the user
of the RAM) is stored in some speci�c locations on the disk (say, right after
the program). We allow the exact location of the input and output parameters
to be program speci�c, but assume that access to the disk allows to e�ciently
determine the input and output (in case the disk was not tampered). In the
online phase, the CPU loads an instruction and data from the disk (as speci�ed
by the instruction). Reading from the disk might involve reading part of the
input. Then it computes and stores back the intermediate results on the disk,
and processes the next instruction. The next instruction is found on the disk at
the location given by a program counter pc, which is incremented by one in each
invocation of the CPU and which is reset when the CPU raises a �ag T = 1.
Writing to the disk could involve writing part of the output. The adversary is
allowed to tamper and to leak from the disk between each two invocations of
the CPU; furthermore the adversary is allowed to leak from the bus carrying the
information between the CPU and the disk. In the following, we give a formal
presentation of our model.

Speci�cation of RAM. We use parameters w, τ, d, k ∈ N below, where w is the
word length, τ is length of an instruction type, d speci�es the number of argu-
ments of an instruction, and k is the security parameter. We require w ≥ τ+2kd.
We let the disk D be of length 2k. This is just a convenient convention to avoid
specifying a �xed polynomial-size disk. A poly-time program will access only
polynomially many positions in the disk and all positions not yet written are
by convention 0w, so a disk D can at any time be represented by a poly-sized



data structure. When we pass disks around in the below description, we mean
that we pass such a poly-sized representation. We index a disk with i ∈ [2k].
We also index the disk with bit-strings i ∈ {0, 1}∗, by considering them bi-
nary numbers and then taking the result mod2k. An (τ, d)-bounded instruction
I is de�ned as a quadruple (Y, I,O,Aux) where, Y ∈ {0, 1}τ , I,O ∈ [2k]d and
Aux ∈ {0, 1}w−(τ+2kd). One may think of Y as the type of operation (e.g., a
NAND operation) that is computed by the instruction. The d-tuples I,O de�ne
the position on the disk where to read the inputs and where to write the outputs
of the instruction. The string Aux is just auxiliary information used to pad to
the right length. When we do not write it explicitly we assume it is all-0.

Formally, a RAM R is speci�ed by R = (w, τ, d, Init,Random,Compute) and
consists of:

1. A disk D ∈ ({0, 1}w)2k .
2. Init: An algorithm that takes as input the security parameter 1k, and returns

a public common reference string crs← Init(1k) (to be hard-coded into the
CPU).

3. CPU: A procedure which is formally written as pseudo-code in Fig. 1. The
CPU is connected to the disk by a bus Bs, which is used to load and store data.
It has 2d+1 internal temporary registers: d+1 input registers (R0, R1, . . . , Rd)
and d output registers (O1, . . . , Od); each register can store w bits. CPU has
the public parameters crs hard-coded, and takes as inputs data sent through
the bus, a strictly increasing activation7 counter ac, and a program counter
pc which is strictly increasing within one activation and reset between ac-
tivations. The CPU runs in three steps: (i) d loads, (ii) 1 computation and
(iii) d stores. In the computation step CPU calls Random and Compute to
generate fresh randomness and evaluate the instruction.
(a) Random: This algorithm is used to sample randomness r.
(b) Compute: This algorithm will evaluate one particular instruction. To this

end, it takes data from the temporary registers (R0, . . . , Rd), the counters
ac, pc and the randomness r ← Random as input and outputs the data to
be stored into the output registers (O1, . . . , Od), the self-destruct indicator
bit B which indicates if CPU needs to stop execution, and the completion
indicator bit T which indicates the completion of the current activation.

CPU outputs the possibly updated disk D, the self-destruct indicator (B) and
the completion indicator (T). Notice that the CPU does not need to take B

and T as input as these bits are only written.

Running the RAM involves iteratively executing the CPU. In between exe-
cutions of the CPU we increment pc. When the CPU returns T = 1 we reset
pc = 0 and increment the activation counter ac. When the CPU returns B = 1,
the CPU self-destructs. After this no more execution of the CPU takes place.

Input and output to the program will be speci�ed via the user/adversary
reading and writing the disk. We therefore need a section of the disk that can be

7 We call the time in which the RAM computes the output GK(x) for single x one
activation, and the time in which the procedure CPU is run once, one execution.



Input: (crs, D, pc, ac, LeakBs)
// Loading...

Parse D[pc] as an instruction (Y, I,O,Aux)
Load R0 ← (Y, I,O,Aux)
Initialize the bus Bs = (pc, R0)
for j = 1→ d do
Let locj = I[j] // Load input from disk at position I[j]
Load Rj ← D[locj ]
Set Bs← (Bs, locj , Rj) // Write data from disk to bus

end for

// Computing...
Sample r ← Random
Compute ((O1, . . . , Od), B, T)← Compute(crs, (R0, R1, . . . , Rd), r, pc, ac)
// Storing...

for j = 1→ d do
Let locj = O[j]
Store D[locj ]← Oj // Store output on disk at position locj
Set Bs← (Bs, locj , Oj)

end for

Let λBs = LeakBs(Bs) // Compute leakage from the bus
Output: (D, B, T, λBs)

Fig. 1. Algorithm CPU

read and written at will. We call this the public section. We will model this by
given the adversary full read/write access to Dpub = D[0, 2k−1 − 1] and limited
access to Dsec = D[2k−1, 2k − 1]. We call Dpub the public disk and we call Dsec

the secret disk. Note that D = Dpub‖Dsec. Also note that the CPU is taking
instructions from the public disk; this means that protecting the access pattern
of the program has to be done explicitly.

RAM schemes. Informally, a RAM compiler C takes as input the description of
a functionality G with secret key K, and outputs an encoding of the functionality
itself, to be executed on a RAM R. Formally, a RAM compiler C for R is a PPT
algorithm which takes a keyed-function description G and a key K ∈ {0, 1}∗ as
input, and outputs an encoding of the form ((`P , I, `I , O, `O,X ,Y), ω), called
the program. Here ω = (ωpub, ωsec) such that ωpub, ωsec ∈ ({0, 1}w)` for ` ≤ 2k−1.
When we say that we store ω on the disk we mean that we pad both of ωpub, ωsec

with 0s until they have length 2k−1, giving values ω′pub, ω
′
sec and then we assign

ω′pub‖ω′sec toD. We write `P for the program length, I ≥ `P for the position where
the input will be put on the disk, `I for the length of the input, O ≥ I+`I for the
position where the output is put on the disk, and `O for the length of the output
such that O + `O ≤ 2k−1. We think of the positions 0 to `P − 1 as consisting of
instructions, but make no formal requirement. The mappings X ,Y are used to
parse the inputs (resp., the outputs) of the RAM as a certain number of words
of length w (resp., as a value in the range of GK).



We introduce a class G of functionalities G that a compiler is supposed to
be secure for (e.g., all poly-time functionalities) and a class P of programs that
a compiler is supposed to compile to (e.g., all poly-time programs). We use
C : G → P to denote that on input G ∈ G, the compiler C outputs a program
in P.

We de�ne a RAM scheme RS as the ordered pair (C,R) such thatR is a RAM
and C a compiler for R. The correctness of a RAM scheme is formalized via a
game where we compare the execution of the RAM with the output of the original
functionality GK, upon an arbitrary sequence of inputs (x1, . . . , xN ). Below we
de�ne what it means for a RAM scheme RS = (C,R) to be correct. Informally,
the de�nition says that for any tuple of inputs (x1, . . . , xN ) the execution of the
RAMR and the evaluation of the function GK have identical output distributions
except with negligible probability. This is formalized below.

De�nition 1 (Correctness of a RAM Scheme). We say a RAM scheme RS
is correct (for function class G and program class P) if RS.C : G → P, and for
any function G ∈ G, any key K ∈ {0, 1}∗, and any vector of inputs (x1, . . . , xN )
it holds that Pr[GameRealhon (x1, . . . , xN ) = 0] ≤ negl(k), where the experiment
Game

Real
hon (x1, . . . , xN ) is de�ned as follows:

� Sample crs← R.Init(1k).
� Run the compiler C on crs, (G,K) to generate the encoding ((I, `I , O, `O,X ,
Y), ω)← C(crs, (G,K)), and store it into the disk of R as in D ← ω.

� For i = 1 → N proceed as follows. Encode the input (xi,0, . . . , xi,`I−1) ←
X (xi), store it on the disk D[I + j] ← xi,j (for 0 ≤ j < `I) and run the
following activation loop:
1. Let ac← i and pc← 0.
2. Run CPU and update the disk (D, B, T)← CPU(crs, D, pc, ac).8

3. If B = 1 return 0 and halt.
4. If T = 0, then increment the program counter pc ← pc + 1 and go to

Step 2. If T = 1, let yi ← Y(D[O], . . . , D[O + `O − 1]). If yi 6= GK(xi),
then return 0 and halt.

� Return 1.

Security. We now proceed to de�ne security of a RAM scheme, using the real-
ideal paradigm. In the following we let k denote the security parameter. Consider
a RAM scheme RS = (C,R). First we run C, which takes the description of G
and a key K as inputs and generates an encoding of the form ((I, `I , O, `O,X ,Y),
ω). Then we store ω on the disk D and we advance to the online phase where
the adversary A can run R on inputs of his choice. Formally, he is allowed to
arbitrarily read from and write to Dpub and therefore also D[I], . . . , D[I+ `I −1]
and D[O], . . . , D[O + `O − 1]. Moreover, A can tamper with the secret disk D
between each execution of the CPU. He speci�es a function Tamper and the
e�ect is that the disk is changes to D ← Tamper(D). The adversary can also

8 When we do not specify a leakage function, we assume that it is the constant function
outputting the empty string, and we ignore the leakage in the output vector.



1. Initialization: Sample crs ← R.Init(1k). Sample the key K according to the
distribution needed by the primitive. Initialize the activation counter ac← 0,
the program counter pc ← 0, the self-destruct bit B ← 0, and the activation
indicator T← 0.

2. Pre-processing: Sample an encoding by running the compiler (P, ωpub, ωsec)←
C(crs, (G,K)), where P = (I, `I , O, `O,X ,Y). Store the encoding ω =
(ωpub, ωsec) into the disk D. Give (crs, P, ωpub) to A.

3. Online: Get command CMD from A and act as follows according to the
command-type.
(a) If CMD = (STOP,Oreal) then return Oreal and halt.
(b) If CMD = (LEAK, Leak), compute λ← Leak(D) and give λ to A.
(c) If CMD = (TAMPER,Tamper) then modify D using the tampering function:

D ← Tamper(D).
(d) If CMD = (EXEC, Leak, D′) and B = 0 then proceed as follows:

i. Update the public disk Dpub ← D′.
ii. Run CPU and update the disk: (D, B, T, λBs) ← CPU(crs, D, pc, ac,

Leak).
iii. Give (T, λBs, Dpub) to A.
iv. Check the completion of current activation: If T = 1 then start a new

activation by incrementing the activation counter: ac ← ac + 1 and
re-initializing the program counter: pc← 0.

v. Increment the program counter: pc← pc+ 1 and go to Step 3.

Fig. 2. Real Execution RealRS,A,G(k)

leak from the disk between executions. He speci�es a function Leak and he is
given Leak(D). The adversary also decides when the CPU is invoked, and it gets
to specify a leakage function LeakBs for each invocation obtaining λBs as de�ned
in Fig.1. Besides the leakage from the bus, the procedure CPU is leakage and
tamper proof.

We introduce the notion of an adversary class. This is just a subset A of
all adversaries. As an example, A might be the set of A which leak at most 42
bits in total from the disk and which does the tampering in a split-state manner
(more about this in the following).

We write RealRS,A,G(k) for the output distribution in the real execution and
we let RealRS,A,G = {RealRS,A,G(k)}k∈N. For a formal description see Fig. 2.
A few remarks to the description are in order.

� Adaptivity. We stress that by writing the disk, the adversary is allowed to
query the RAM on adaptively chosen inputs. Also note that the adversary
can always hard-wire known values into a tampering command (e.g., values
that were already leaked from the disk), and specify a tampering function
that changes the content of the disk depending on the hard-wired values.

� Tampering within executions. Notice that the adversary is not allowed to
tamper between two executions of the CPU. This is without loss of generality,
as later we will allow the adversary to know the exact sequence of locations



to be read by the CPU and hence, equivalently, the adversary can just load
some location, tamper and then execute before loading the next location.
This is possible because our RAMs do not allow indirection as in loading
e.g. D[D[127]].

� On the CRS. In case no common reference string is required by the RAM
scheme, we simply assume that R.Init outputs the empty string. In such a
case we sometimes avoid to write crs as input of C, CPU and Compute.

In the ideal execution, the ideal functionality for evaluating G interacts with
the ideal adversary called the simulator S as follows. First sample a key K and
repeat the following until a value is returned: Get a command from S and act
di�erently according to the command-type.

� If CMD = (STOP,Oideal), then return Oideal and halt.
� If CMD = (EVAL, x), give GK(x) to S.

We write IdealS,G(k) for the output distribution in the ideal execution and we
let IdealS,G = {IdealS,G(k)}k∈N.

De�nition 2 (Security of a RAM Scheme). We say a RAM scheme RS is
A-secure (for function class G and program class P) if RS.C : G→ P and if for
any function G ∈ G and any A ∈ A there exists a PPT simulator S such that
RealRS,A,G ≈c IdealS,G.

We introduce a notion of emulation, which facilitates designing compilers
for less secure RAMs via compilers for more secure RAMs. We call a set S of
RAM schemes a class if there exists G and P such that for all RS ∈ S it holds
that RS.C : G → P. We write S : G → P. An emulator is a poly-time function
E : S1 → S2, where S1 and S2 are RAM scheme classes S1 : G → P1 and
S2 : G→ P2. I.e., given a RAM scheme RS1 ∈ S1 for some function class G, the
emulator outputs another RAM scheme RS2 ∈ S2 for the same function class.

De�nition 3 (Secure Emulation). Let S1 : G→ P1 and S2 : G→ P2 be RAM
scheme classes and let E : S1 → S2 be an emulator. We say that E is (A1,A2)-
secure if for all RS1 ∈ S1 and RS2 = E(RS1) and G ∈ G and all A2 ∈ A2 there
exists a A1 ∈ A1 such that RealRS1,A1,G ≈c RealRS2,A2,G.

The following theorem is immediate.

Theorem 2. Let E : S1 → S2 be an emulator. If E is (A1,A2)-secure and
RS1 ∈ S1 is A1-secure, then RS2 = E(RS1) is A2-secure.

4 Main Theorem

Our main result is a secure RAM scheme for the so-called split-state model,
which we review below. This particular model can be cast as a special cases of
our generic RAM model. We use sp to denote the components of the split-state
model, i.e., RSsp = (Csp,Rsp) and the adversary class is called Asp.



In the split-state model we consider the secret disk Dsec split into two parts
D1 and D2, and we require that leakage and tampering is done independently
on the two parts. I.e., each position Dsec[i] on the secret disk is split into two
parts D1[i] and D2[i] of equal length such that Dsec[i] = D1[i]‖D2[i]. We let
D1 = (D1[2

k−1], . . . , D1[2
k−1]) andD2 = (D2[2

k−1], . . . , D2[2
k−1]). The setAsp

consists of all poly-time algorithms which never violate the following restrictions.

Tampering We require that a tampering function is of the form Tampersp =
(Tampersp1 ,Tampersp2 ) and we let Tampersp(Dpub‖Dsec) = Dpub‖(Tampersp1 (D1),
Tampersp2 (D2)). Beside being split like this, there is no restriction on the tam-
pering, i.e., each part of the secret disk can be arbitrarily tampered.

Disk leakage We also require that a disk leakage function is of the form Leaksp =
(Leaksp1 , Leak

sp
2 ) and we let Leaksp(Dpub‖Dsec) = (Leaksp1 (D1), Leak

sp
2 (D2)).

Beside being split like this, we introduce a leakage bound lbdisk and we re-
quire that the sum of the length of the leakage returned by all the leakage
functions Leakspi is less than lbdisk.

Bus leakage We require that a bus leakage function is of the form Leaksp =
(Leaksp1 , Leak

sp
2 ). For a bus (i0, D[i0], i1, D[i1], . . . , i1+2d, D[i1+2d]) we let B =

(D[i1], . . . , D[i1+2d]) and we split B into two parts B1 and B2 by splitting
each word, as done for the disk; the returned leakage is then (i0, i1, i2, . . . ,
i1+2d, Leak

sp
1 (B1), Leak

sp
2 (B2)). Beside being split like this, we introduce a

leakage bound lbbus and we require that the length of the leakage returned
by each function Leakspi is less than lbbus.

Note that by de�nition of the bus leakage, the CPU always leaks the program
counter and the memory positions that are being read. Besides this it gives
independent, bounded leakage on the parts of the words read up from the disk.
Since the leakage and tamper classes for a split-state RAM are fully speci�ed by
lbdisk and lbbus we will denote the adversary class for a split-state RAM simply
by Asp = (lbdisk, lbbus). Let Ssp denote the class of split-state RAM schemes. We
are now ready to state our main theorem.

Theorem 3 (Main Theorem). Let C be a (lbcode, q)-CNMLR code. There ex-
ists an e�cient RAM scheme RS ∈ Ssp and a constant c = O(1) such that RS is
(lbdisk, lbbus)-secure whenever lbdisk + (c+ 1)lbbus ≤ lbcode.

The proof of the above theorem follows in two steps. We �rst de�ne an inter-
mediate model, which we call the hybrid model, where the adversary is only
allowed a very limited form of leakage and tampering. For this model, we give
a hybrid-to-split-state emulator (cf. Theorem 4 in Section 5). Then, we exhibit
a RAM scheme that is secure in the hybrid model (cf. Theorem 5 in Section 6).
Putting the above two things together with Theorem 2 concludes the proof of
Theorem 3.

5 Hybrid-to-Split-State Emulator

We introduce an intermediate security model where the adversary is given only
limited tampering/leakage capabilities. We call this model the hybrid model, and



a RAM that is secure in this model is called a hybrid RAM; as for the split-
state model, also the hybrid model can be cast as a special case of our generic
RAM model. We use hb to denote the components of the hybrid model, i.e.,
RShb = (Chb,Rhb) and we call the adversary class Ahb.

5.1 The Hybrid Model

In the hybrid model the secret disk is not split. However, the tampering is very
restricted: we only allow the adversary to copy values within the secret disk and
to overwrite a location of the secret disk with a known value. In addition very
little leakage is allowed. The adversary class Ahb consists of all poly-time Turing
machines never violating the following restrictions.

Tampering We require that each tampering function is a command of one of
the following forms.
� If Tamper = (COPY, (j, j′)) for j, j′ ≥ 2k−1, then update D[j′]← D[j].
� If Tamper = (REPLACE, (j, val)) for j ≥ 2k−1 then update D[j]← val.

Disk leakage There is no other disk leakage from the secret disk, i.e., the ad-
versary is not allowed any disk leakage queries.

Bus leakage There is only one allowed bus leakage function, say Leakhb = L,
so this is by de�nition the leakage query used on each execution of the CPU.
On this leakage query the adversary is given (i0, i1, i2, . . . , i1+2d).

Note that by de�nition of the bus leakage, the CPU always leaks the program
counter and the memory positions that are being read. Besides this it is given no
leakage. Since the leakage and tamper classes for a hybrid RAM are implicitly
speci�ed, we will denote the adversary class for a hybrid RAM simply by Ahb.

Bounded-access schemes. We later want to compile programs for the hybrid
model into more realistic models by encoding the positions in the disk using a
code. Because of leakage from the bus, this only works if each value is not read
up too many times. We therefore need a notion of a program for the hybrid
model being c-bounding, meaning that such a program reads each value at most
c times, even when the program is under attack by A ∈ Ahb. To de�ne this

notion we use two vectors Q,C ∈ N2k . If the value stored in D[j] is necessarily
known by the adversary, then Q[j] = ⊥. Otherwise, Q[j] will be an identi�er for
the possibly secret value stored in D[j], and for an identi�er id = Q[j] the value
C[id] counts how many times the secret value with identi�er id was accessed by
the CPU. Initially Q[j] = ⊥ for all j and C[j] = 0 for all j. After the initial
encoding ω is stored, we set Q[2k−1 + j] = j for j = 0, . . . , |ωsec| − 1. Then
let ns ← |ωsec|. We use this counter to remember the identi�er for the next
secret. During execution, when the adversary executes (COPY, (j, j′)), then let
Q[j′] = Q[j]. When the adversary executes (REPLACE, (j, val)), then let Q[j] = ⊥.
When the CPU executes, reading positions i0, i1, . . . , id and writing positions
j1, . . . , jd then proceed as follows. For p = 0, . . . , d, if Q[ip] 6= ⊥, let C[Q[ip]] ←
C[Q[ip]]+1. Then proceed as follows. If Q[i0] = Q[i1] = · · · = Q[id] = ⊥, then let



Q[j1] = · · · = Q[jd] = ⊥. Otherwise, let (Q[j1], . . . ,Q[jd]) = (ns, . . . , ns + d − 1)
and let ns← ns+ d. Then for each ji < 2k−1, set Q[ji]← ⊥.

We say that a hybrid RAM scheme RS is c-bounding if it holds for all G ∈
RS.C.G that if RS.C(G) is executed on RS.R under attack by A ∈ Ahb and
the above vectors are computed during the attack, then it never happens that
C[j] > c for any j. Let G denote the class of poly-time functionalities. We use
Shbc : G→ Phb

c to denote the class of hybrid RAM schemes which are c-bounding.

Theorem 4. Let C be a (lbcode, q)-CNMLR code. Let Asp = (lbdisk, lbbus) be a
split-state adversary class such that lbdisk + (c + 1) · lbbus ≤ lbcode. Then there
exists an (Ahb,Asp)-secure emulator E : Shbc → Ssp.

5.2 The Emulator

The proof of Theorem 4 can be found in the full version [18]; here we provide
only a high-level overview. The goal of the emulator E is to transform a hybrid
RAM scheme RShb = (Chb,Rhb) ∈ Shbc into a split-state RAM scheme E(RShb) =
RSsp = (Csp,Rsp). In particular, the emulator needs to specify transformations
for the components of RShb. This includes the contents of the disk as well as
the way instructions are stored and processed by the CPU. Below, we give an
overview of the construction of the emulator.

We emulate a program as follows E(`P , I, `I , O, `O,X ,Y, ωhb) = (`P , I, `I , O,
`O,X ,Y, ωsp), where we simply let ωsp

pub be ωhb
pub. Then for each j ∈ [0, |ωhb

sec|],
let ωsp

sec[j] = (ωsp
sec,1[j], ω

sp
sec,2[j]) be an encoding of ωhb

sec[j] (computed using a
CNMLR code, see Section 2). The CPU Computesp runs as follows. It reads up
the same instruction Dhb[pc] that Computehb would. Then for each additional
position Dhb[i] read up, if i < 2k−1 it lets vi = Dhb[i] and if i ≥ 2k−1 it lets
(v1,i, v2,i) = Dhb[i] and decodes (v1,i, v2,i) to vi. If any decoding fails, then

Computesp self-destructs. Otherwise it runs Computehb on the vj values. Finally,
it encodes all values vj to be stored on Dsp

sec and writes them back to disk. Then
values vj to be stored on Dsp

pub are stored in �plaintext� as vj .

Security of emulation. To argue security of emulation, we need to show that
for all adversaries A ∈ Asp there exists a simulator B ∈ Ahb able to fake A's
view in a real execution with RSsp given only its limited leakage/tampering
capabilities (via REPLACE and COPY commands). The simulator B runs A as a
sub-routine, and works in two phases: the pre-processing and the online phase.
Initially, in the pre-processing B samples crs and creates encodings of 0 for all
the values on the secret disk using the CNMLR code, and puts dummy encodings
(v1, v2)← Encode(crs, 0) on the corresponding simulated virtual disks. For the
positions on the public disk, the simulator can put the correct values, which is
possible as it can read ωhb

pub from Dhb
pub and ω

hb
pub = ωsp

pub. Depending on the queries
in the online phase B will update these virtual disks in the following. TAMPER
queries are simulated easily by applying the corresponding tamper functions to
the current state of the virtual disks D1 and D2. Notice that also the leakage
from the disks and the buses will essentially be done using the contents of the



virtual disks. Hence, the main challenge of the simulation is how to keep these
virtual disks consistent with what the adversary expects to see from an EXEC

query. This is done by a rather involved case analysis and we only give the main
idea here.

We distinguish the case when all the values on the disk that are used by the
CPU to evaluate the current instruction are public (corresponding to the case
Q[j1] = · · · = Q[jd] = ⊥ in the de�nition of c-bounded) and the case where some
are secret. The �rst case may happen if the adversary A replaces the contents
of the secret disks with some encoding of his choice by tampering. Notice that
in this case the simulation is rather easy as B �knows� all the values and can
simulate the execution of the CPU (including the outputs and the new contents
of the disks). If, on the other hand, some values that are used by the CPU in the
current execution are secret, then B's only chance to simulate A is to run CPUhb

in the hybrid game. The di�culty is to keep the state of the secret hybrid diskDhb

consistent with the contents of the virtual disks D1, D2 maintained by A. This
is achieved by careful book-keeping and requires B to make use of his REPLACE
and COPY commands to the single secret disk Dhb. The simulator B manages
this book-keeping by using two records: (i) the vector S that stores dummy
encodings (v1, v2) corresponding to values unknown to B (either generated during
the pre-processing, or resulting from an evaluation of CPUhb on partially secret
inputs); (ii) the backup storage BP that B maintains on the hybrid disk Dhb that
stores a copy of all values that are unknown to the adversary (essentially, the
values on BP correspond to the values that the dummy encodings in S where
supposed to encode). Then the simulator can always copy the corresponding
secret value to the position on Dhb, which corresponds to the value that should
have been inside the encoding on the same position on the two virtual disks. The
trick is that each secret value, i.e., a value that would have an identi�er in the
de�nition of c-boundedness, has an associated dummy encoding generated by
the simulator and a corresponding value on Dhb

pub. The simulator uses the book-
keeping to keep these values �lined up�. All other encodings were not generated
by the simulator, and can therefore be decoded to values independent of the
values in the dummy encodings. These therefore correspond to public values. A
reduction to continuous non-malleability then allows to replace the 0's in the
dummy encoding by the correct values on Dhb.

6 The Hybrid Scheme

In this section we describe an O(1)-bounding, RAM scheme RShb = (Chb,Rhb)
that is secure in the hybrid model. Recall that a hybrid schemes RShb consists
of a hybrid RAM Rhb and a hybrid compiler Chb which takes a functionality G
with secret key K and outputs an encoding of the form (P, ωhb) to be executed
on Rhb. The RAM Rhb consists of a CPU CPUhb, which is speci�ed by two
functions Randomhb and Computehb. Below, we present an outline of our hybrid
RAM scheme RShb and refer the reader to the full version [18] for the details.



Overview. We assume G is described by a �regular program� (i.e., a sequence
of instructions) for computing GK in a �regular� RAM (i.e., a RAM with a disk
and a CPU without any security). This regular program essentially �encodes�
the original functionality in a format that is compatible with the underlying
RAM; for example the key is parsed as a sequence of words that are written in
the corresponding locations of the disk. The RAM needs to be neither tamper
nor leakage resilient, and the �regularity� essentially comes from the fact that
it emulates GK correctly and has no pathological behaviour, like overwriting the
key during an activation. We also need that it reads each value O(1) times. It
is easy to see that one can always translate the functionality into such a regular
program, generically, using, e.g., a bounded fan-out circuit layed out as a RAM
program. We refer the reader to the full version for the complete speci�cations.

Let G be the class of poly-time keyed functions G· (each described a regular
program as outlined above). We show the following theorem.

Theorem 5. There exists an Ahb-secure RAM scheme RShb = (Chb,Rhb) for
function class G and program class Phb

c for c = O(1).

The hybrid scheme. Our hybrid compiler Chb takes as input G ∈ G and is
supposed to produce a compiled program (during the pre-processing phase) to be
run by the hybrid RAM Rhb (during the on-line phase). The compiled program
is placed on the disk from which CPUhb reads in sequence. Our CPU CPUhb =
(Computehb,Randomhb) will be deterministic, and hence Randomhb just outputs
the empty string at each invocation. This means that we only have to specify the
compiler Chb and the function Computehb for a complete speci�cation of RShb.

Recall that the adversary in a hybrid execution is only allowed a limited
form of tampering, by which he can copy values within the secret disk and
replace some value with a known one. The main idea will be to store the regular
program (and all intermediary values) in the disk; each value will be stored in
a special �augmented� form. The augmentation includes: (a) A secret label L
(sampled once and for all at setup, and thus unknown to the adversary); (b)
The position j at which the value is stored; (c) The current values (a, p) of the
activation and program counters (ac, pc) when the value was written. Intuitively,
the secret label ensures that the adversary cannot use the �replace� command
as that would require to guess the value of the label. On the other hand the
position j will allow the CPU to check that it loaded a value from the right
position, preventing the adversary to use the �copy� command to move values
created by the CPU (or at setup) to another location. Finally, the pair (a, p)
prevents the adversary from swapping values sharing the same L and the same
j (i.e., trying to reset the CPU by forcing it the CPU to re-use a previously
encoded value).

Whenever algorithm Computehb of the CPU loads some instruction, it uses
the above augmented encodings to check that it is loading the right instruction,
that the correct location was read, that the label matches, and that the counters
are consistent; if any of the above fails, it self-destructs. Otherwise, it runs the
speci�c instruction of the emulated regular program, and writes the resulting



value to the disk (in the augmented form). A detailed description can be found
in the full version of this paper.

Analysis. Next, we turn to a high-level overview of the security proof (the actual
proof can be found in the full version). Our goal is to prove that the above
RAM scheme is secure in the hybrid model, namely for all adversaries B ∈ Ahb

attacking the RAM scheme in a real execution, there exists a simulator S faking
the view of B only given black-box access to the original functionality GK.

As a �rst step, we prove that the probability by which the adversary suc-
ceeds in using a �replace� command to write some value on the disk with the
correct secret label, and having the CPU read this value without provoking a
self-destruct, is essentially equal to the probability of guessing the secret label
(which is exponentially small). This means we can assume that all the values put
on the disk using a �replace� command do not contain the secret label. In each
execution our CPU CPUhb will check that all loaded values contain the same
label, and will write back values where the augmentation contains this label. It
then follows that all values containing the secret label in the augmentation were
written by the pre-processing or by CPUhb, and it also follows that all values not
having the secret label in the augmentation are known by the adversary: they
were put on disk using a REPLACE command or computed by CPUhb on values
known by the adversary. We then argue that CPUhb (by design) will never write
two values V 6= V ′ sharing the same augmentation (j, L, a, p). This is because the
augmentation includes the strictly increasing pair (a, p), and we also prove that
CPUhb can predict what (a, p) should be for all loaded values in all executions.
It follows from an inductive argument that all values containing the secret label
in the augmentation are correct. Hence all values on the disk are either correct
secret values or incorrect values known by the adversary. So, when CPUhb writes
a result to the disk, it is either an allowed output or a value already known by
the adversary. From the above intuition, it is straight-forward, although rather
tedious, to derive a simulator.
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