
Secure Efficient History-Hiding Append-Only
Signatures in the Standard Model

Benôıt Libert1, Marc Joye2, Moti Yung3, and Thomas Peters4

1 Ecole Normale Supérieure de Lyon, Laboratoire LIP (France)
2 Technicolor (USA)

3 Google Inc. and Columbia University (USA)
4 Ecole Normale Supérieure (France)

Abstract. As formalized by Kiltz et al. (ICALP ’05), append-only sig-
natures (AOS) are digital signature schemes where anyone can publicly
append extra message blocks to an already signed sequence of messages.
This property is useful, e.g., in secure routing, in collecting response lists,
reputation lists, or petitions. Bethencourt, Boneh and Waters (NDSS ’07)
suggested an interesting variant, called history-hiding append-only sig-
natures (HH-AOS), which handles messages as sets rather than ordered
tuples. This HH-AOS primitive is useful when the exact order of signing
needs to be hidden. When free of subliminal channels (i.e., channels that
can tag elements in an undetectable fashion), it also finds applications
in the storage of ballots on an electronic voting terminals or in other
archival applications (such as the record of petitions, where we want to
hide the influence among messages). However, the only subliminal-free
HH-AOS to date only provides heuristic arguments in terms of security:
Only a proof in the idealized (non-realizable) random oracle model is
given. This paper provides the first HH-AOS construction secure in the
standard model. Like the system of Bethencourt et al., our HH-AOS
features constant-size public keys, no matter how long messages to be
signed are, which is atypical (we note that secure constructions often suf-
fer from a space penalty when compared to their random-oracle-based
counterpart). As a second result, we show that, even if we use it to sign
ordered vectors as in an ordinary AOS (which is always possible with
HH-AOS), our system provides considerable advantages over existing re-
alizations. As a third result, we show that HH-AOS schemes provide
improved identity-based ring signatures (i.e., in prime order groups and
with a better efficiency than the state-of-the-art schemes).

Keywords: Homomorphic signatures, provable security, privacy, un-
linkability, standard model, superset predicates, archive integrity.

1 Introduction

Append-only signatures (AOS), as introduced by Kiltz, Mityagin, Panjwani and
Raghavan [37], are signature schemes where, given a signature on a multi-block
message (M1, . . . ,Mn), anyone can publicly compute a signature on the message

(M1, . . . ,Mn,Mn+1), for any Mn+1. Kiltz et al. provided both generic construc-
tions, based on any signature scheme, and concrete constructions based on spe-
cific assumptions. They further proved that AOS are equivalent to hierarchical
identity-based signatures [47, 30]. Importantly, the schemes of [37] are inherently
history-preserving in that signed messages are ordered tuples.

In [14], Bethencourt, Boneh and Waters (BBW) noted that certain impor-
tant applications of incremental signature nature require, in fact, a kind of AOS
system that allows authenticating sets (i.e., without divulging any order among
elements) rather than ordered tuples. They suggested a primitive, called History-
Hiding Append-Only Signatures (HH-AOS) that can be seen as a special case
of homomorphic signatures. It allows one to sign a set of messages in such a
way that anyone can subsequently derive a signature on arbitrary supersets of
the initial set. Bethencourt et al. used this primitive to design tamper-evident,
history-hiding and subliminal-free mechanisms (by extending techniques due to
Molnar et al. [42]) for storing ballots on e-voting terminals. To prevent any-
one from injecting subliminal information (e.g., by embedding some information
in derived signatures), it is required that derived signatures be indistinguish-
able from original ones on the resulting superset. Independently, Moran, Naor
and Segev [43] addressed the same problem using write-once memories rather
than digital signatures. They described a deterministic vote-storage mechanism
without relying on cryptographic techniques. Their solution fits within a line
of work, initiated by Micciancio [41], on history-hiding data structures [41, 44],
which recently has been extended to applied systems [8]. While secure against
unbounded adversaries, the Moran et al. technique [43] is significantly more
memory-demanding than [14] and this overhead was proved inherent to deter-
ministic techniques [43]. The HH-AOS approach of Bethencourt et al. [14] thus
appears to remain the most promising method to reliably store n elements in
a history-hiding, tamper-evident and scalable manner, namely, using only O(n)
memory.

It is worth noting that HH-AOS are a more powerful primitive than ordinary
AOS: any HH-AOS can immediately be turned —by means of a hash-based
order-embedding transformation— into an equally efficient regular append-only
signature. HH-AOS schemes are thus more versatile as they can also be used in
all the applications which append-only signatures were initially designed for.

Related Work. Homomorphic signatures were first suggested by Desmedt [24]
as a new concept useful in the validation of computer operation. Johnson et
al. [36] provided security definitions and examples of set homomorphic signa-
tures. Several such constructions in [36, 5, 6] allow for subset derivation (i.e., a
signature on a set allows deriving a signature on arbitrary subsets of that set)
but none of these works considers the dual superset homomorphism case. The
latter was investigated for the first time by Bethencourt et al. [14] who provided
two HH-AOS realizations which both have some limitations pointed at by the
original authors (in essence, demonstrating the associated difficulties with such
a scheme). The first one is a generic construction, based on any signature, where
the public key has linear size in the maximal size of sets to be signed. As a

consequence, this construction requires the signer to determine an upper bound
on the cardinality of sets when generating a key pair. Moreover, this generic
construction is not free of subliminal channels. The reason is that it allows
the party running the signature derivation algorithm to choose certain values
pseudo-randomly (rather than truly randomly), which allows a distinguisher to
infer some information on the derivation history of signatures.

The second construction of [14] is a subliminal-free system built upon the
aggregate signature scheme of Boneh et al. [20]. It eliminates the disadvantages
of the first scheme in that it provides constant-size public keys and removes the
need for an a priori bound on the cardinality of authenticated sets. However,
while practical, this second scheme is only shown secure in the random oracle
model [11]. Recall that it is widely accepted that the random oracle methodology,
while better than providing no proof whatsoever, is an idealization that may have
no standard model instantiation. Indeed, at times, it is provably unrealizable, as
was shown by a number of works (e.g., [21]).

So far, the only apparent way to build a HH-AOS system in the standard
model —let alone with constant-size public keys— is to take advantage of ag-
gregate signatures [34, 35] in order to instantiate the BBW system system [14]
outside the random oracle idealization. (As explained in the full version of the
paper [39], sequential aggregate signatures like [40] do not suffice for this.) This
requires standard model instantiations [25, 35] of Full Domain Hash [12]. As of
now, this is only known under the recent “multi-linear maps” [27], which still
have no practical realizations and serve as polynomial plausibility only. Even
the recent results of Hohenberger et al. [35] rely on indistinguishability obfus-
cation [28], known to exist from multi-linear maps only. Thus, such possible
ideas cannot yield practical schemes based on simple standard assumptions (like
Diffie-Hellman or Decision Linear [16]). In addition, multi-linear maps are quite
new, and the state of their secure implementation remains unclear.

Our Contribution. We describe the first efficient history-hiding append-only
signature with constant-size public keys in the standard model (by “constant” we
mean that it only depends on the security parameter, and not on the cardinality
of sets to be signed). This new scheme further provides perfectly re-randomizable
signatures, which guarantees the absence of subliminal channels.

Our scheme also provably satisfies a definition of unlinkability stronger than
that of [14]. We actually re-cast the syntax of HH-AOS schemes in the definitional
framework of Ahn et al. [5] for homomorphic signatures. The privacy notion of [5]
mandates that derived signatures be statistically indistinguishable from original
signatures, even when these are given to the distinguisher. In [6], Attrapadung et
al. further strengthened the latter privacy notion by considering all valid-looking
original signatures and not only those in the range of the signing algorithm.

Our construction is asymptotically as efficient as the original BBW real-
ization. Even if we ignore its history-hiding property, it favorably compares to
existing append-only signatures [37] in that it appears to be the only known AOS
realization that simultaneously provides the following properties: (i) full security
(i.e., unforgeability in a model where the adversary can adaptively choose its tar-

get message); (ii) constant-size public keys; and (iii) privacy in the sense of the
strongest definition considered in [6]. In comparison, the certificate-based generic
AOS scheme of [37] is easily seen not to reach the latter level of privacy. As for
other fully secure constructions with short public keys, they are all obtained by
applying the Naor transformation [17] to unbounded hierarchical identity-based
encryption systems [38], which build on Waters’ dual system encryption tech-
nique [49]. Since the latter always involves at least two distinct distributions
of valid signatures (or private keys), it seems inherently incompatible with the
information-theoretic privacy notion used in [6].

Our scheme is motivated by ideas that were used in [6] to construct a sub-
set homomorphic signature (namely, a signature on a set authenticates the en-
tire powerset of that set). These ideas, in turn, are augmented by other novel
techniques and ideas. Like [6], we rely on the randomizability of Groth-Sahai
proofs [32] to render signatures perfectly randomizable. However, superset predi-
cates seem harder to handle than their subset counterpart. Indeed, if we disregard
privacy properties, simple constructions5 readily solve the subset case whereas
no such thing is known to work for superset predicates, even when privacy is
not a concern. Like [6], our approach proceeds by generating a fresh ephemeral
public key X = gx for each set to be signed. The underlying private key is split
into n additive shares {ωi}ni=1 such that x =

∑n
i=1 ωi, where n is the cardinality

of the set. Each of these is then used to sign a set element mi in the fashion of
Boneh-Lynn-Shacham [19] signatures, by computing HG(mi)

ωi using a number
theoretic hash function HG : {0, 1}L → G. Although BLS signatures are only
known to be secure in the random oracle model (at least in their original form),
we, in contrast, can prove the security of the scheme in the standard model as
long as HG is programmable [33] in the same way as the hash function used
in [48]. At the same time, we depart from the security proof of [48] in that the
programmability of HG is used in a different way which is closer to the security
proofs of Hofheinz and Kiltz [33]. Recall that programmable hash functions [33]
are number theoretic hash functions where the hash value HG(m) is linked to its
representation gamhbm for given base elements g, h ∈ G. While security proofs
in the standard model often require logg(HG(m)) to be available in the forgery
message and unavailable in signed messages, we proceed the other way around:
at some crucial signing query Msg = {m1, . . . ,mn}, we require HG(m) not to
depend on h for exactly one set element mi ∈ Msg.

Relation to Identity-Based Ring Signatures. Ring signatures, as in-
troduced by Rivest, Shamir and Tauman [45] allow users to anonymously sign
messages on behalf of any ad hoc set of users that includes them. Their typical
application is to allow a source to anonymously reveal a sensitive information
while providing guarantees of trustworthiness.

While ring signatures are known from 2001, rigorous security definitions re-
mained lacking until the work of Bender et al. [13] and efficient constructions

5 For example, as mentioned in [6, Section 5], one can merely sign each set using a
new ephemeral public key that is certified by the long-term key.

in the standard model were only given by Shacham and Waters [46] and by
Chandran et al. [22]. In the identity-based setting, constructing ring signatures
remains a non-trivial problem as generic constructions from ordinary ring sig-
natures do not appear to work.

Identity-based ring signatures are extensions of ring signatures [45] to the
identity-based setting [47]. They are signature schemes wherein users can em-
ploy a private key derived from their identity to sign messages on behalf of
any set of identities that includes theirs. The verifier is convinced that a sig-
nature was created by a ring member but does not learn anything else. Re-
cently, Au et al. [7] described a fully secure identity-based ring signature in the
standard model using composite order groups. Their scheme seems amenable
for constructing a HH-AOS system. However, due to the use of the dual sys-
tem technique [29], it cannot achieve the same level of privacy as our scheme
(as we discuss later on). Interestingly, any HH-AOS scheme, in fact, gives an
identity-based ring signature as the private key of some identity id can consist
of a HH-AOS signature on the singleton {0‖id} which allows the derivation of
a signature on the set {0‖id, 0‖id1, . . . , 0‖idn, 1‖M‖R}, where M is the mes-
sage and R = {id, id1, . . . , idn} is the ring. As detailed in Section 4, we obtain
fully secure identity-based ring signatures based on simple assumptions in prime
order groups, which allow for a much better efficiency and a stronger flavor of
anonymity than [7].

2 Background

2.1 Definitions for History-Hiding Append-Only Signatures

We first recall the original syntactic definition of history-hiding append-only
signatures.

Definition 1 ([14]). An History-Hiding Append-Only Signatures (HH-
AOS) is a tuple of algorithms (Keygen,Append,Verify) with the following speci-
fications.

Keygen(λ): takes as input a security parameter λ ∈ N and outputs a public key
PK and a private key SK = Φ which consists of an initial signature Φ on
the empty set ∅.

Append(PK,Φ, S,m): given a public key PK, a signature Φ for some set S
and a message m ∈ {0, 1}∗, this algorithm outputs ⊥ if Φ is not a valid
signature on the set S or if m ∈ S. Otherwise, it outputs a signature Φ′ on
the augmented set S′ = S ∪ {m}.

Verify(PK,S, Φ): given a public key PK, and a presented signature Φ for a
given set S, this algorithm outputs 1 if Φ is a valid signature for S and 0
otherwise.

Correctness. For any integers λ ∈ N and n ∈ poly(λ), all key pairs (PK,
SK) ← Keygen(λ) and all sets S = {m1, . . . ,mn}, if Φ0 = SK, S0 = ∅ and
Φi ← Append(PK,Φi−1, Si,mi), where Si = Si−1 ∪ {mi}, for i = 1 to n, then
Verify(PK,S, Φn) = 1.

Bethencourt et al. [14] define two security properties of HH-AOS schemes
which are called append-only unforgeability and history-hiding. These properties
can be defined as follows.

Definition 2. A HH-AOS scheme (Keygen,Append,Verify) is append-only un-
forgeable if no PPT adversary has non-negligible advantage in the following
game:

1. The challenger generates a key pair (PK,SK)← Keygen(λ) and hands PK
to the adversary A.

2. On polynomially occasions, the adversary A chooses a set S = {m1, . . . ,mn},
for some arbitrary n ∈ poly(λ). We assume w.l.o.g. that m1, . . . ,mn are
sorted in lexicographical order. For i = 1 to n, the challenger computes Φi ←
Append(PK,Φi−1, Si−1,mi), where Si = Si−1 ∪{mi} for each i ∈ {1, . . . , n}
and with S0 = ∅, Φ0 = SK. Then, Φn is returned to A.

3. A outputs a pair (S?, Φ?) and wins if: (i) Verify(PK,S?, Φ?) = 1; (ii) If
S1, . . . , Sq denote the sets for which A obtained signatures at Step 2, then
Si 6⊆ S? for each i ∈ {1, . . . , q}. The adversary’s advantage is its probability
of success, taken over all coin tosses.

Definition 3. A HH-AOS scheme (Keygen,Append,Verify) is history-hiding
if no PPT adversary has non-negligible advantage in the following game:

1. The challenger generates a key pair (PK,SK) ← Keygen(λ) and gives PK
to the adversary A.

2. The adversary A chooses a set S = {m1, . . . ,mn}, for some n ∈ poly(λ),
and two distinct permutations π0, π1 : {1, . . . , n} → {1, . . . , n}. The chal-

lenger chooses a random bit b
R← {0, 1} and defines m′i = πb(mi) for each

i ∈ {1, . . . , n}. It computes Φi ← Append(PK,Φi−1, Si−1,m
′
i), where Si =

Si−1 ∪ {m′i} for each i ∈ {1, . . . , n} and with S0 = ∅, Φ0 = SK. It returns
Φn to A.

3. A outputs a bit b′ ∈ {0, 1} and wins if b′ = b. The adversary’s advantage is
the distance Adv(A) := |Pr[b′ = b]− 1/2|.

While the above definition is sufficient for applications like vote storage [14],
it can be strengthened in a number of ways. For example, the adversary could
be granted access to a signing oracle before and after Step 2. Alternatively, the
adversary could be given the private key SK at Step 1 of the game. Finally, we
may also ask for security in the statistical (rather than computational) sense.

These stronger security properties will be naturally obtained by viewing HH-
AOS schemes as a particular case of homomorphic signatures in the sense of the
definitions of [5, 6].

2.2 Definitions for Homomorphic Signatures

Definition 4 ([5]). Let M be a message space and 2M be its powerset. Let
P : 2M ×M → {0, 1} be a predicate. A message m′ is said derivable from
M ⊂ M if P (M,m′) = 1. As in [5], P i(M) is defined as the set of messages
derivable from P i−1(M), where P 0(M) := {m′ ∈ M | P (M,m′) = 1}. Finally,
P ∗(M) := ∪∞i=0P

i(M) denotes the set of messages iteratively derivable from M .

Definition 5 ([5]). A P-homomorphic signature for a predicate P : 2M ×
M → {0, 1} consists of a triple of algorithms (Keygen,SignDerive,Verify) such
that:

Keygen(λ): takes in a security parameter λ ∈ N and outputs a key pair (sk, pk).
As in [5], the private key sk is a signature on the empty tuple ε ∈M.

SignDerive
(
pk, ({σm}m∈M ,M),m′): is a possibly probabilistic algorithm that

inputs a public key pk, a set of messages M ⊂ M, a corresponding set of
signatures {σm}m∈M and a derived message m′ ∈ M. If P (M,m′) = 0, it
outputs ⊥. Otherwise, it outputs a derived signature σ′.

Verify(pk,m, σ): is a deterministic algorithm that takes as input a public key
pk, a signature σ and a message m. It outputs 0 or 1.

The empty tuple ε ∈ M satisfies P (ε,m) = 1 for each message m ∈ M. Sim-
ilarly to Ahn et al. [5], we define Sign(pk, sk,m) as the algorithm that runs6

SignDerive(pk, (sk, ε),m) and outputs the result. For any M = {m1, . . . ,mk} ⊂
M, we let Sign(sk,M) := {Sign(sk,m1), . . . ,Sign(sk,mk)} . Finally, we write
Verify(pk,M, {σm}m∈M) = 1 to say that Verify(pk,m, σm) = 1 for each m ∈M .

Correctness. For all key pairs (pk, sk) ← Keygen(λ), for any message set
M ⊂ M and any single message m′ ∈ M such that P (M,m′) = 1, the follow-
ing conditions have to be satisfied: (i) SignDerive(pk, (Sign(sk,M),M),m′) 6=⊥;
(ii) Verify

(
pk,m′,SignDerive(pk, (Sign(sk,M),M),m′)

)
= 1.

Definition 6 ([5]). A P -homomorphic signature scheme is unforgeable if no
PPT adversary has noticeable advantage in the game below:

1. The challenger generates a key pair (pk, sk)← Keygen(λ) and gives pk to the
adversary A. It initializes two initially empty tables T and Q.

2. A adaptively interleaves the following queries.
– Signing queries: A chooses a message m ∈ M. The challenger replies

by choosing a handle h, runs σ ← Sign(sk,m) and stores (h,m, σ) in a
table T . The handle h is returned to A.

– Derivation queries: A chooses a vector of handles ~h = (h1, . . . , hk) and a
message m′ ∈M. The challenger first retrieves the tuples {(hi,mi, σi)}ki=1

from the table T and returns ⊥ if one of them is missing. Otherwise, it
defines M := (m1, . . . ,mk) and {σm}m∈M = {σ1, . . . , σk}. If P (M,m′) =
1, the challenger runs σ′ ← SignDerive

(
pk, ({σm}m∈M ,M),m′

)
, chooses

a handle h′, stores (h′,m′, σ′) in T and returns h′ to A.

6 The intuition here is that any message can be derived when the original signature
contains the signing key.

– Reveal queries: A chooses a handle h. If no entry of the form (h,m′, σ′)
exists in T , the challenger returns ⊥. Otherwise, it returns σ′ to A and
adds (m′, σ′) to the set Q.

3. The adversary A outputs a pair (σ′,m′) and wins if: (i) Verify(pk,m′, σ′) = 1;
(ii) If M ⊂M is the set of messages in Q, then m′ 6∈ P ∗(M).

Ahn et al. [5] considered a strong notion of unconditional privacy that requires
the inability of distinguishing derived signatures from original ones, even when
these are given along with the private key. In [5], it was showed that, if a scheme
is strongly context hiding, then Definition 6 can be simplified by only providing
the adversary with an ordinary signing oracle.

As noted in [6], specific applications may require an even stronger definition.
The following definition makes sense when homomorphic signatures are random-
izable and/or the verifier accepts several distributions of valid signatures.

Definition 7 ([6]). An homomorphic signature (Keygen,Sign,SignDerive,Verify)
is completely context hiding for the predicate P if, for all key pairs (pk, sk)←
Keygen(λ), for all message sets M ⊂ M∗ and all messages m′ ∈ M such that
P (M,m′) = 1, for all signatures {σm}m∈M such that Verify(pk,M, {σm}m∈M) =
1, the distribution

{
(sk, {σm}m∈M , Sign(sk,m′))

}
sk,M,m′ is statistically close to

the distribution of
{(

sk, {σm}m∈M ,SignDerive
(
pk, ({σm}m∈M ,M),m′

))}
sk,M,m′ .

We will be interested in HH-AOS systems, which can be seen as P -ho-
momorphic signatures for superset predicates: namely, for any two messages
Msg1,Msg2 ∈ M, we have P (Msg1,Msg2) = 1 ⇐⇒ Msg1 ⊆ Msg2. Note that
a completely context-hiding homomorphic signature for superset predicates im-
mediately implies a HH-AOS scheme satisfying a stronger privacy property than
Definition 3.

In particular, our construction immediately implies an ordinary (i.e., non-
history-hiding) AOS scheme that allows signing ordered tuples while enjoy-
ing a stronger form of privacy than in [37]. For example, if we consider the
generic AOS [37], which builds on any digital signature, a signature on a vec-
tor (m1, . . . ,mn) is a sequence (σ0, pk1, . . . , σn, pkn, skn) where σi = Sign(ski,
(mi+1‖pki+1)) for each i ∈ {0, . . . , n − 1}, {pki}ni=1 are fresh public keys gen-
erated by the signing algorithm and (pk0, sk0) is the long term key pair of the
scheme. This construction is clearly not completely context-hiding because aux-
iliary public keys {pki}ni=1 appear in an original signature and all its derivatives.

Non-generic AOS schemes can be derived from specific HIBE schemes like the
one of Boneh, Boyen and Goh [15] but, in the standard model, the public param-
eters have length linear in the maximal length of signed messages. For the time
being, the only known way to construct a fully secure AOS without having to fix
a pre-determined maximal message length is to apply Naor’s IBE-to-signature
transformation [17] to an unbounded HIBE scheme [38]. Unfortunately, the se-
curity proof will probably rely on the dual system technique [49] (see also [29])
which is hardly compatible with the privacy notion of Definition 7. The reason is
that this technique involves several computationally indistinguishable classes of

signatures satisfying the same equations although they have different distribu-
tions. The difficulty is that there is usually no way to publicly modify the class
that a given signature belongs to, so that a signature and its derivatives must
be of the same class. Hence, for any original signatures {σm}m∈M outside the
range of Sign(sk, .), Definition 7 cannot be satisfied.

In contrast, using any completely context-hiding HH-AOS, we can obtain
—seemingly for the first time— a completely context-hiding AOS scheme in the
sense of Definition 7, which hides all information about the derivation history of
a signature on an ordered tuple. The construction is detailed in the full version
of the paper [39].

2.3 Programmable Hash Functions

A group hash function H = (PHF.Gen,PHF.Eval) is a pair of algorithms such
that, for a security parameter λ ∈ N, a key κ ← PHF.Gen(λ) is generated by
the key generation algorithm. This key is used to evaluate the deterministic
evaluation algorithm that, on input of a string X ∈ {0, 1}L, computes a hash
value Hκ,G(X) = PHF.Eval(κ,X) ∈ G, where G is a cyclic abelian group.

Definition 8 ([33]). A group hash function HG : {0, 1}∗ → G is (m,n, γ, δ)-
programmable if there exist PPT algorithms (PHF.TrapGen,PHF.TrapEval) such
that:

– For generators g, h ∈ G, the trapdoor key generation algorithm (κ′, tk) ←
PHF.TrapGen(λ, g, h) outputs a key κ′ and a trapdoor tk such that, for any
X ∈ {0, 1}L, (aX , bX)← PHF.TrapEval(tk,X) produces integers aX , bX such
that Hκ′,G(X) = PHF.Eval(κ′, X) = gaXhbX .

– For all g, h ∈ G and for κ ← PHF.Gen(λ), (κ′, tk) ← PHF.TrapGen(λ, g, h),
the distributions of κ and κ′ are statistically γ-close to each other.

– For all generators g, h ∈ G and all keys κ′ produced by PHF.TrapGen, for all
X1, . . . , Xm ∈ {0, 1}L, Z1, . . . , Zn ∈ {0, 1}L such that Xi 6= Zj, the corre-
sponding (aXi , bXi)← PHF.TrapEval(tk,Xi) and (aZi , bZi)← PHF.TrapEval(tk,
Zi) are such that

Pr[bX1 = · · · = bXm = 0 ∧ bZ1 , . . . , bZn 6= 0] ≥ δ ,

where the probability is taken over the trapdoor tk produced along with κ′.

The hash function of [48] hashes L-bit strings M = m1 · · ·mL ∈ {0, 1}L by map-

ping them to Hκ,G(M) = h0 ·
∏L
i=1 h

mi
i using public group elements (h0, . . . , hL).

This function is known [48] to be a (1, n, 0, δ)-programmable hash function where
δ = 1/(8n(L + 1)), for any polynomial n. Using a different technique, Hofheinz
and Kiltz [33] increased the probability δ to O(1/(n

√
L)).

2.4 Hardness Assumption

We consider bilinear maps e : G × G → GT over groups of prime order p. In
these groups, we assume the intractability of the following problem.

Definition 9 ([16]). The Decision Linear Problem (DLIN) in a group G
of prime order p is, given (ga, gb, gac, gbd, η), with a, b, c, d

R← Zp, to decide if
η = gc+d or η ∈R G.

2.5 Structure-Preserving Signatures Secure Against Random
Message Attacks

Structure-preserving signatures [1, 2] (SPS) are signature schemes where mes-
sages, signatures and public keys all consist of elements of an abelian group over
which a bilinear map is efficiently computable. In addition, the verification algo-
rithm proceeds by testing the validity of pairing product equations (as defined
in Appendix A).

We use structure-preserving signatures satisfying a relaxed security notion,
where the adversary obtains signatures on messages it has no control on. In
the following syntax, a structure-preserving signature is a tuple of efficient al-
gorithms (Setup,Keygen,Sign,Verify) where, on input of a security parameter,
Setup produces common public parameters gk (which typically specify the cho-
sen bilinear groups) to be used by all other algorithms. As for algorithms Keygen,
Sign and Verify, they operate as in an ordinary digital signatures.

In our construction, we need an SPS scheme that satisfies a notion of extended
random-message security defined by Abe et al. [3]. In the definition hereunder,
M denotes an efficient message sampler that takes as input common public
parameters gk and outputs a message m as well as the random coins τ used
to sample it. In short, the definition requires the scheme to remain unforgeable
even if the adversary obtains the random coins of M.

Definition 10 ([3]). A signature scheme (Setup,Keygen,Sign,Verify) provides
extended random-message security (or XRMA security) with respect to
a message sampler M if, for any PPT adversary A and any polynomial q ∈
poly(λ), the adversary’s advantage is negligible in the following game.

1. The challenger runs gk← Setup(λ) and (pk, sk)← Keygen(gk). For j = 1 to
q, the challenger runs (mj , τj)←M(gk) and computes σj ← Sign(gk, sk,mj).
The adversary is given (gk, pk, {(mj , τj , σj)}qj=1)

2. The adversary A halts and outputs a pair (m?, σ?). It is declared successful if
Verify(gk, pk,m?, σ?) = 1 and m? /∈ {m1, . . . ,mq}. As usual, A’s advantage
is its probability of success taken over all coin tosses.

As in [3], we will need an XRMA-secure SPS scheme where τ contains the
discrete logarithms of the group elements that m is made of.

3 An Efficient HH-AOS Scheme

The scheme’s design is motivated by [6] to construct a homomorphic subset
signature, which is exactly the dual primitive of HH-AOS. Like the ring signa-
ture of [7], the scheme is also inspired by the Lewko-Waters unbounded HIBE

system [38] in that the signature derivation algorithm implicitly transforms an
n-out-of-n additive secret sharing into a (n+1)-out-of-(n+1) additive sharing of
the same secret. This transformation actually takes place in the exponent as the
shares themselves are not directly available to the derivation algorithm. Lewko
and Waters [38] used a similar technique in the key delegation algorithm of their
HIBE scheme. However, we depart from [38] in that the construction relies on
the partitioning paradigm (i.e., the reduction is unable to sign certain messages
that are used to solve a hard problem in the reduction) rather than the dual
system approach. The reason is that, as pointed out in [6], the latter makes it
harder to construct completely context-hiding schemes.

The construction relies on the properties of the hash function of [48]. A pro-
grammable hash function [33] maps a message m to a group element so that
the discrete logarithm of HG(m) ∈ G may be available with some probabili-
ties. The hash function of [48] maps a L-bit string m ∈ {0, 1}L to the group

element HG(m) = h0 ·
∏L
i=1 h

m[i]
i , for uniformly distributed public group el-

ements (h0, . . . , hL) ∈R GL+1. For any m ∈ {0, 1}L, it is possible to relate
HG(m) to exponents am, bm ∈ Zp such that HG(m) = gamhbm . As defined
in [33], a (m,n)-programmable hash function is a hash function such that, for
all X1, . . . , Xm ∈ {0, 1}L, Z1, . . . , Zn ∈ {0, 1}L with Xi 6= Zj , the probability
that

∧m
i=1 bXi = 0 and

∧n
j=1 bZj 6= 0 is non-negligible.

It is known [48] that Waters’ hash function is (1, q)-programmable with prob-
ability 1/8q(L+ 1). If this hash function is used to instantiate the Boneh et al.
signatures [19] (for which a signature on m consists of HG(m)sk, where sk is
the private key), this allows proving its one-time security (i.e., its security in
a game where the adversary is only allowed one signing query) in the stan-
dard model: the adversary’s unique signing query m is answered by computing
HG(m)sk = (gsk)am from the public key gsk if bm = 0. If the adversary forges a
signature on m? such that bm? 6= 0, the reduction can extract hsk and solve a
Diffie-Hellman instance.

Our idea is to sign a set Msg = {mi}ni=1 by generating a fresh one-time key
pair (x, gx) ∈ Zp×G for a BLS-type signature. The one-time public key X = gx

is certified using the long-term key of a structure-preserving signature. Finally,

Msg = {mi}ni=1 is signed by picking ω1, . . . , ωn
R← Zp such that

∑n
i=1 ωi = x and

generating pairs (σi,1, σi,2) = (HG(mi)
ωi , gωi), so that the verifier can check that∏n

i=1 σi,2 = X and e(σi,1, g) = e(HG(mi), σi,2) for each i. This allows anyone to
publicly add new elements to the set by transforming the sharing {ωi}ni=1 into
a new sharing {ω′i}

n+1
i=1 of the same value. At the same time, it will be infeasible

to publicly remove elements from the signed set.

To guarantee the full context-hiding security, we refrain from letting (σi,1, σi,2)
appear in clear and replace them by perfectly-hiding Groth-Sahai commitments
to (σi,1, σi,2) along with NIWI randomizable proofs (which are recalled Ap-
pendix A) showing that committed values satisfy the appropriate relations.

In the notations hereunder, for any h ∈ G and any vector of group elements
~g = (g1, g2, g3) ∈ G3, the vector

(
e(h, g1), e(h, g2), e(h, g3)

)
∈ G3

T is denoted by
E(h,~g).

Keygen(λ):

1. Choose a SPS scheme ΠSPS = (Setup,Keygen,Sign,Verify) allowing to
sign messages consisting of a single group element. We denote by `sps and
vsps the number of group elements per signature and the number of verifi-
cation equations, respectively, in this scheme. Generate common parame-
ter gk← ΠSPS.Setup(λ) and a key pair (sksps, pksps)← ΠSPS.Keygen(gk)
for this scheme. We assume that gk includes the description of bilinear
groups (G,GT) or prime order p > 2λ with a generator g ∈R G.

2. Generate a Groth-Sahai CRS f = (~f1, ~f2, ~f3) for the perfect witness in-

distinguishability setting. Namely, choose ~f1 = (f1, 1, g), ~f2 = (1, f2, g),

and ~f3 = ~f1
ξ1 · ~f2

ξ2 · (1, 1, g)−1, with f1, f2
R← G, ξ1, ξ2

R← Zp.
3. Choose a vector (h0, h1, . . . , hL)

R← GL+1 which defines the function

HG : {0, 1}L → G that maps any m ∈ {0, 1}L to HG(m) = h0·
∏L
i=1 h

m[i]
i .

The public key is defined to be pk :=
(

gk, f , pksps, {hi}Li=0

)
and the private

key is sk := sksps. The public key defines Σ = {0, 1}L.

Sign(sk,Msg): on input of a message Msg = {mi}ni=1, where mi ∈ {0, 1}L for
each i, and the private key sk = sksps, do the following.

1. Generate a one-time public key X = gx, with x
R← Zp, and a Groth-Sahai

commitment ~CX = (1, 1, X) · ~f1
rX · ~f2

sX · ~f3
tX

, with rX , sX , tX
R← Zp.

2. Generate a structure-preserving signature (θ1, . . . , θ`sps) ∈ G`sps on the
group element X ∈ G. Then, for each j ∈ {1, . . . , `sps}, generate com-

mitments ~Cθj = (1, 1, θj) · ~f1
rθj · ~f2

sθj · ~f3
tθj . Finally, generate NIWI

arguments {~πsps,j}
vsps
j=1 showing that committed variables (X, {θj}

`sps
j=1)

satisfy the verification equations of the structure-preserving signature.

3. Choose ω1, . . . , ωn
R← Zp subject to the constraint

∑n
i=1 ωi = x. Then,

for i = 1 to n, compute (σi,1, σi,2) =
(
HG(mi)

ωi , gωi
)
, where the mes-

sages are indexed in some pre-determined lexicographical order.7 Then,
for each i ∈ {1, . . . , n}, compute Groth-Sahai commitments

~Cσi,1 = (1, 1, σi,1) · ~f1
ri,1 · ~f2

si,1 · ~f3
ti,1

,

~Cσi,2 = (1, 1, σi,2) · ~f1
ri,2 · ~f2

si,2 · ~f3
ti,2

to {(σi,1, σi,2)}ni=1. Next, generate a NIWI argument ~πi that e(σi,1, g) =
e(HG(mi), σi,2). This argument is

(πi,1, πi,2, πi,3) =
(
gri,1HG(mi)

−ri,2 , gsi,1HG(mi)
−si,2 , gti,1HG(mi)

−ti,2
)

and satisfies the equation

E
(
g, ~Cσi,1

)
= E

(
HG(mi), ~Cσi,2

)
·

E
(
πi,1, ~f1

)
· E
(
πi,2, ~f2

)
· E
(
πi,3, ~f3

)
. (1)

7 This follows an observation by Naor and Teague [44] who used lexicographical order-
ing to make sure that the representation does not depend on the order of insertions.

4. Finally, generate a NIWI proof ~πsum that X =
∏n
i=1 σi,2. This proof is

(πs,1, πs,2, πs,3) =
(
grX−

∑n
i=1 ri,2 , gsX−

∑n
i=1 si,2 , gtX−

∑n
i=1 ti,2

)
(2)

which satisfies E
(
g, ~CX ·

∏n
i=1

~C−1σi,2
)

= E
(
πs,1, ~f1

)
·E
(
πs,2, ~f2

)
·E
(
πs,3, ~f3

)
.

Return σ =
(
~CX , {~Cθj}

`sps
j=1, {~πsps,j}

vsps
j=1, {(mi, ~Cσi,1 ,

~Cσi,2 , ~πi)}ni=1, ~πsum
)
.

SignDerive(pk, (σ,Msg),Msg′): given the original message Msg = {mi}ni=1,
return ⊥ if Msg′ 6= Msg ∪ {m′} for some m′ ∈ Σ. Otherwise, parse σ as
above and do the following.

1. Choose ω′1, . . . , ω
′
n+1

R← Zp subject to the constraint
∑n+1
i=1 ω

′
i = 0.

For each index i ∈ {1, . . . , n}, compute updated Groth-Sahai commit-

ments ~C ′σi,1 = (1, 1, H(mi)
ω′
i) · ~Cσi,1 and ~C ′σi,2 = (1, 1, gω

′
i) · ~Cσi,2 . Ob-

serve that the argument ~πi = (πi,1, πi,2, πi,3) still satisfies the equation

E
(
g, ~C ′σi,1

)
= E

(
HG(mi), ~C

′
σi,2

)
· E
(
πi,1, ~f1

)
· E
(
πi,2, ~f2

)
· E
(
πi,3, ~f3

)
as

it only depends on the randomness of commitments.
2. Set σn+1,1 = HG(m′)ω

′
n+1 and σn+1,2 = gω

′
n+1 . Then, pick random

rn+1,1, sn+1,1, tn+1,1
R← Zp, rn+1,2, sn+1,2, tn+1,2

R← Zp and compute
commitments

~C ′σn+1,1
= (1, 1, σn+1,1) · ~f1

rn+1,1 · ~f2
sn+1,1 · ~f3

tn+1,1

~C ′σn+1,2
= (1, 1, σn+1,2) · ~f1

rn+1,2 · ~f2
sn+1,2 · ~f3

tn+1,2

as well as a NIWI argument ~πn+1 showing that e(σn+1,1, g) = e(HG(m′),
σn+1,2), which is obtained as(

grn+1,1 ·HG(m′)−rn+1,2 , gsn+1,1 ·HG(m′)−sn+1,2 ,

gtn+1,1 ·HG(m′)−tn+1,2
)
.

3. Update ~πsum = (πs,1, πs,2, πs,3) by computing

~π′sum = (π′s,1, π
′
s,2, π

′
s,3)

=
(
πs,1 · g−rn+1,2 , πs,2 · g−sn+1,2 , πs,3 · g−tn+1,2

)
.

Note that ~π′sum is a valid proof that X =
∏n+1
i=1 σi,2 since ~πsum only

depends on the randomness of commitments ~CX , {~Cσi,2}ni=1, which have
not been randomized at this point.

4. Re-randomize the commitments ~CX , {~C ′σi,1 , ~C
′
σi,2}

n+1
i=1 , {~Cθj}

`sps
j=1 and the

proofs {~πsps,j}
vsps
j=1, {~πi}n+1

i=1 , ~π′sum. Let ~C ′′X , {~C ′′σi,1 , ~C
′′
σi,2}

n+1
i=1 , {~C ′′θj}

`sps
j=1

and the proofs {~π′′sps,j}
vsps
j=1, {~π′′i }

n+1
i=1 , ~π′′sum be the re-randomized com-

mitment and proofs. Note that, in all of these commitments and proofs,
the underlying exponents have been updated.

Return σ′ =
(
~C ′′X , {~C ′′θj}

`sps
j=1, {~π′′sps,j}

vsps
j=1, {(mi, ~C

′′
σi,1 ,

~C ′′σi,2 , ~π
′′
i)}n+1

i=1 , ~π
′′
sum

)
after having re-organized the indexation of {(mi, ~C

′′
σi,1 ,

~C ′′σi,2 , ~π
′′
i)}n+1

i=1 ac-

cording to the lexicographical order for {mi}n+1
i=1 .

Verify(pk,Msg, σ): given pk, and a message Msg = {mi}ni=1, where mi ∈ Σ for
each i, parse σ as above. Return 1 iff the following checks all succeed.

1. Return 0 if {~πsps,j}
vsps
j=1 are not valid proofs that committed group el-

ements (X, {θj}
`sps
j=1) satisfy the verification equations of the structure-

preserving signature.
2. Return 0 if, there exists i ∈ {1, . . . , n} such that ~πi = (πi,1, πi,2, πi,3)

does not satisfy (1).
3. Return 0 if ~πsum = (πs,1, πs,2, πs,3) is not a valid proof.

Note that message elements {mi}ni=1 can be omitted from the signature if

the signature components {(~Cσi,1 , ~Cσi,2 , ~πi)}ni=1 are organized according to the
lexicographical order of {mi}ni=1.

As in [14], one can finalize the set and prevent any further insertions by
adding a special message of the form “finalize‖#Msg” to the current message
Msg, where #Msg denotes the cardinality of Msg. In this case, the verifier has to
return 0 if Msg contains an element of the form “finalize‖x”, where x 6= #Msg−1.
We also note that, as in [14], multi-sets can be supported by merely appending
a nonce to each added message in order to ensure uniqueness.

The scheme is unconditionally completely context-hiding because, except
{mi}ni=1 (which are re-ordered to appear in lexicographical order at each deriva-
tion), signatures only consist of perfectly hiding commitments and NIWI proofs.
Moreover, in the WI setting, these are uniformly distributed in the space of
valid proofs (as stressed in [32][Section 10]). Since these proofs are also perfectly
randomizable at each derivation, the complete context-hiding property follows.

The unforgeability is proved under the DLIN assumption and the assumption
that the underlying SPS scheme is XRMA-secure. In one step, the proof of
Theorem 1 relies on the programmability of the Waters hash function [48].

The security proof assumes a theoretical upper bound nmax on the cardinality
of sets to be signed. However, we emphasize that this bound does not affect
the efficiency of the scheme whatsoever. In particular, the public key size is
independent of nmax and only depends on the security parameter.

Theorem 1. The scheme is unforgeable assuming that the DLIN assumption
holds in G and that the structure-preserving signature is secure against extended
random message attacks.

Proof. Since the scheme is completely context hiding, we can use a simplified
definition where the adversary only interacts with a signing oracle. The proof
uses a sequence of games where, for each i ∈ {0, 1, 2}, Si denotes the event that
the adversary A wins in Gamei.

Game0: This game is the real game. We denote by S0 the event that the adver-
sary A manages to output a successful forgery. By definition, A’s advantage
is Pr[S0].

Game1: We change the generation of the public key and choose f = (~f1, ~f2, ~f3)
as a perfectly sound Groth-Sahai CRS, for which even an unbounded adver-
sary cannot prove false statements. More precisely, the challenger B sets up
~f1 = (f1, 1, g), ~f2 = (1, f2, g) and ~f3 = ~f1

ξ1 · ~f2
ξ2

, with f1 = gφ1 and f2 = gφ2 ,

for randomly chosen φ1, φ2, ξ1, ξ2
R← Zp. If this modification significantly in-

creases the adversary’s probability of success, we can build a distinguisher
for the DLIN assumption (specifically, the DLIN distinguisher outputs 1 if
the adversary is successful and a random bit otherwise). This implies that,
under the DLIN assumption, this modification does not significantly affect
A’s behavior. We can thus write |Pr[S1]− Pr[S0]| ≤ AdvDLIN(B).

Game2: In this game, we can explicitly use the discrete logarithms (φ1, φ2) =
(logg(f1), logg(f2)) that were defined in Game1 since we are done with the
DLIN assumption. When A outputs a forgery σ?, the challenger B uses
(φ1, φ2) to extract X? from the Groth-Sahai commitment ~C?X contained

in σ? (recall that, due to the modification introduced in Game1, ~C?X is a
perfectly binding commitment). We raise a failure event, called F2, and let
the challenger B abort if the extracted X? was never involved in any signing
query. Clearly, any occurrence of F2 immediately contradicts the extended
random-message security of the SPS system as the adversary only gets to see
structure-preserving signatures on uniformly distributed group elements X.
The reduction is similar to that of [3, Theorem 3] and relies on the XRMA
security of the underlying SPS scheme for the same reason.8 We can thus
write |Pr[S2]− Pr[S1]| ≤ Pr[F2] ≤ AdvXRMA-SPS(B).

In Game2, we will prove that, conditionally on ¬F2, event S2 can only
occur with negligible probability if the Diffie-Hellman assumption holds. Let
(σ?,Msg? = {m?

1, . . . ,m
?
n?}) denote A’s forgery. If F2 does not occur, the group

element X?, which is extracted from the commitment ~C?X contained in σ?,
was used by B in some signing query. Letting j ∈ {1, . . . , q} denote the in-
dex of that query Msgj = {mj,1, . . . ,mj,nj}, we know that that Msgj 6⊆ Msg?

since A would not be a successful forger otherwise. Consequently, there ex-
ists ` ∈ {1, . . . , nj} such that mj,` 6∈ Msg?. Assuming that signed messages
Msg1, . . . ,Msgq are sets of cardinality at most nmax, Lemma 1 constructs an
algorithm B′ breaking the Diffie-Hellman assumption with probability at least
Pr[S2|¬F2]/(16 · q · nmax · (L+ 1)). The probability of event S2|¬F2 can thus be
bounded by Pr[S2|¬F2] ≤ 16 · q · nmax · (L+ 1) ·AdvCDH(B′).

Since Pr[S2] = Pr[S2 ∧ F2] + Pr[S2 ∧ ¬F2] ≤ Pr[F2] + Pr[S2|¬F2], we find

Pr[S0] ≤ AdvDLIN(B) + 2 ·AdvRMA-SPS(B) + 16 · q ·nmax · (L+ 1) ·AdvCDH(B′)

which proves the announced result. ut
8 In short, for each message X for which the XRMA challenger generates a signature,

the reduction needs x = logg(X) to properly run Step 3 of the signing algorithm.

The programmability properties of the Waters hash function are used in the
proof of Lemma 1. In a nutshell, the reduction will have to guess upfront which
one-time public key Xj? will be recycled in the adversary’s forgery among those
involved in responses to signing queries. When answering this signing query,
the reduction will implicitly use the ga part of its given Diffie-Hellman instance
(g, ga, gb) to form the one-time public key Xj? . In addition, if the input of the
j?-th signing query is Msgj? = {mj?,i}

nj?
i=1, we know that at least one element of

Msgj? will be outside the set Msg? = {m?
i }n

?

i=1 chosen by the adversary for its
forgery. If we denote by mj?,` an arbitrary message in Msgj?\Msg?, the reduction
will be successful if HG(mj?,`) = g

amj?,` , for some known amj?,` ∈ Zp, and

HG(m?
i) = g

am?
i ·(gb)bm?i with bm?i 6= 0 for each i ∈ {1, . . . , n?}. The results of [48,

33] guarantee that these conditions are met with non-negligible probability.

Lemma 1. In Game2, if event S2|¬F2 occurs with noticeable probability then
there exists an algorithm B′ solving the CDH problem with probability at least
AdvCDH(B′) ≥ Pr[S2|¬F2]/(16 · q · nmax · (L+ 1)), where nmax is the maximal
cardinality of signed subsets.

Proof. Algorithm B′ takes as input (g, ga, gb) and aims at computing gab using
its interaction with the adversary in Game2.

To this end, B′ begins by choosing (h0, h1, . . . , hL) ∈ GL+1 as in the security
proof of Waters signatures [48]. Namely, for any string m ∈ {0, 1}L, the hash

value HG(m) = h0 ·
∏L
i=1 h

m[i]
i can be written as HG(m) = (gb)J(m) · gK(m) for

certain integer-valued functions J,K : {0, 1}L → Zp that remain internal to the
simulation. In the terminology of programmable hash functions [33],HG will have
to be (1, 2nmax−1)-programmable with non-negligible probability δ. Concretely,
using the technique of [48], the functions J and K are chosen so that, for any
pairwise distinct inputs m,m1, . . . ,m2nmax−1, we have J(m) = 0 mod p and
J(mi) 6= 0 mod p for each i ∈ {1, . . . , 2nmax−1} with non-negligible probability
δ = 1/(16 · nmax · (L+ 1)).

Algorithm B′ begins by drawing j?
R← {1, . . . , q} and starts interacting with

the forger A.

Signing queries: For j ∈ {1, . . . , q}, we let Msgj = {mj,1, . . . ,mj,nj}, with
nj ≤ nmax, be the j-th signing query made by A. These queries are handled
by considering two cases:

– If j 6= j?, B′ chooses a fresh xj
R← Zp, computes Xj = gxj and answers

the query by generating ω1, . . . , ωnj
R← Zp such that

∑nj
i=1 ωi = xj . This

allows answering the query faithfully, by generating commitments and
proofs according to the specification of the signing algorithm.

– If j = j?, B′ implicitly defines Xj? = ga. At this point, B′ considers each
message mj?,i ∈ Msgj? and evaluates J(mj?,i) for each i ∈ {1, . . . , nj?}.
If J(mj?,i) 6= 0 for all i, B′ halts and declares failure. It also aborts if
Msgj? contains more than one message mj?,i such that J(mj?,i) = 0. (A
lower bound on the probability for B′ not to abort will be determined

later on). Otherwise, there exists a unique index ` ∈ {1, . . . , nj?} such
that J(mj?,`) = 0. In this case, we have HG(mj?,`) = gK(mj?,`), so that

B′ can pick ω1, . . . , ω`−1, ω`+1, . . . , ωnj?
R← Zp and set

σi,1 = HG(mi)
ωi σi,2 =gωi for i ∈ {1, . . . , nj?}\{`} ,

as well as

σ`,1 =
(
(ga) · g−

∑nj?

i=1,i 6=` ωi
)K(mj?,`) σ`,2 = (ga) · g−

∑nj?

i=1,i 6=` ωi .

Note that {(σi,1, σi,2)}nj?i=1 have the correct distribution as they implicitly
share a = logg(Xj?) in the exponent. Next, B′ generates commitments
and NIWI proofs as in the real signing algorithm.

Forgery: When A terminates, it outputs a set Msg? = {m?
i }n

?

i=1 with a valid
signature

σ? =
(
~C?X , {~C?θj}

`sps
j=1, {~π

?
sps,j}

vsps
j=1, {(m

?
i , ~C

?
σi,1 ,

~C?σi,2 , ~π
?
i)}n

?

i=1, ~π
?
sum

)
.

At this point, B′ uses the extraction trapdoor (φ1, φ2) = (logg(f1), logg(f2)) of

the commitment to obtain X? and {σ?i,1, σ?i,2}n
?

i=1 from ~C?X and {C?σi,1 , C
?
σi,2}

n?

i=1,
respectively. If one of the following events occurs, B′ aborts and declares failure:

E.1 X? 6= ga: This is the event that B′ fails to correctly predict which one-
time public key Xj would be re-used in A’s forgery among those involved in
signing queries.

E.2 mj?,` ∈ Msg?.
E.3 There exists i ∈ {1, . . . , n?} such that J(m?

i) = 0.

If none of these events occurs, the perfect soundness of the proof ~π?sum guarantees
that B′ can compute

gab =

n?∏
i=1

(σ?i,1

σ?i,2
K(m?i)

) 1
J(m?

i
)
.

We are thus left with assessing the probability for B′ to avoid the failure state
during the game.

Since the choice of j? is independent of A’s view, we do have X? = ga with
probability at least Pr[¬E1] ≥ 1/q. Regarding E2 and E3, since Msgj? 6⊆ Msg?,
we know that there exists k ∈ {1, . . . , nj?} such that mj?,k ∈ Msgj?\Msg?. If

we define the set Msg = (Msgj? ∪Msg?)\{mj?,k}, a sufficient condition for the
desirable event ¬E2 ∧ ¬E3 to come about is to have

J(mj?,k) = 0 and J(m) 6= 0 ∀m ∈ Msg . (3)

Since the cardinality of Msg is at most 2nmax − 1, the results of [48, 33] imply
that condition (3) is satisfied with probability at least 1/(16 · nmax · (L+ 1)). A
lower bound on the probability that ¬E2∧¬E3 and that B′ does not abort at the
j?-th signing query is thus given by 1/(16 · nmax · (L+ 1)). Taking into account
the probability Pr[¬E1] ≥ 1/q, it comes that B′ never aborts with probability
at least 1/(16 · q · nmax · (L+ 1)). ut

For the time being, the most efficient XRMA-secure structure-preserving
signature based on simple assumptions is the construction of Abe et al. [4],
where signatures consist of 8 group elements and the verifier has to compute one
quadratic equation and three linear equations. Also, each one-time public key
X ∈ G must be encoded as a triple (gx, gx1 , g

x
2), for public elements (g1, g2) ∈ G2

and where x = logg(X). Hence, the commitment ~CX must come along with two
other similar commitments. If the SPS scheme of [4] is plugged into our HH-AOS
construction, a set {mi}ni=1 of cardinality n can be signed using 9n + 54 group
elements under the DLIN assumption (which implies the CDH assumption).
Then, the bit-size of the signature amounts to 4608 ·n+27648 if each element of
G has a 512-bit representation. In comparison with [14], our scheme only inflates
signatures by a constant factor.

In Section 4 and in the full version of the paper [39], we discuss further
implications of the above result to the setting of ring signatures and ordinary
(i.e., history-preserving) append-only signatures, where it implies constructions
for arbitrarily long rings or sets.

4 Generic Identity-Based Ring Signatures

An identity-based ring signature is a tuple of efficient algorithms (Setup,Keygen,
Sign,Verify) with the following syntax.

Setup is a randomized algorithm that takes as input a security parameter
λ ∈ N and outputs a master key pair (msk,mpk). Keygen is a possibly random-
ized algorithm that takes as input an identity id and returns a private key did.
Algorithm Sign takes as input a list of identities R = {id1, . . . , idr}, a private
key did for an identity such that id ∈ R and a message M to output a signature
σ ← Sign(mpk, did,R,M). Algorithm Verify inputs mpk, a message M , a list of
identities R = {id1, . . . , idr} and a signature σ. It outputs 1 if σ is deemed valid
for the message M and the ring R and 0 otherwise.

Identity-based ring signatures should satisfy two notions called unforgeability
and anonymity, which can be formalized as below.

Bellare, Namprempre, and Neven [10] showed how to construct identity-based
signatures from any signatures. Galindo, Herranz, and Kiltz [26] extended the
generic construction of [10] to several kinds of identity-based signatures with
special properties but their results do not carry over to the ring signature case.
Boneh and Hamburg [18] gave a generic way to build short identity-based ring
signatures from their spatial encryption primitive. However, their instantiations
require to choose a maximal ring size when the system is set up. It thus remains
interesting to provide a generic construction allowing for full security and rings
of arbitrary size.

Unforgeability. This notion is formalized by a game where the challenger
generates a master key pair (mpk,msk), where mpk is given to the adversary.
Throughout the game, the adversary A is allowed to make private key queries:
it chooses an identity id and obtains a private key did ← Keygen(msk, id). The

adversary is also granted access to a signing oracle: at each query, it chooses a
triple (id,M,R) and the challenger returns ⊥ if id 6∈ R and σ ← Sign(did,M,R)
otherwise. Eventually, the adversary outputs a triple (σ?,M?, R?) and wins if:
(i) Verify(mpk,M?, R?, σ?) = 1; (ii) A did not invoke the signing oracle on a
tuple (id,M?,R?) for any identity id ∈ R?; (iii) No private key query was made
for any id ∈ R?. Note that this model allows the adversary to adaptively choose
the ring R? of identities involved in the forgery. In the weaker model of selective-
ring security, the adversary would be forced to declare R? at the very beginning
of the game, before seeing mpk.

Full Anonymity. This property is defined via the following game. Initially, the
challenger generates a pair (mpk,msk) and gives mpk and msk to the adversary
A. The adversary chooses a message M , a list of identities R = {id1, . . . , idr},
a pair of identities (id0, id1) and two private keys did0 , did1 . If {id0, id1} 6⊆ R or
if did0 , did1 are not valid private keys for the identities id0 and id1, respectively,

the challenger returns ⊥. Otherwise, it challenger flips a fair coin d
R← {0, 1}

and returns σ ← Sign(mpk, didd ,M,R). The adversary eventually outputs a bit
d′ ∈ {0, 1} and wins if d′ = d. As usual, the adversary’s advantage is measured
by the distance Adv(A) := |Pr[d′ = d]− 1/2|.

The above definition of anonymity could be strengthened (as done in [7])
by allowing the adversary to choose the random coins used by the challenger
to generate (mpk,msk). Although the generic construction hereunder does not
guarantee anonymity in the sense of this stronger definition, the specific instan-
tiations obtained from our HH-AOS schemes can be proved secure in that sense.

We also remark that the above definition allows the adversary to come up
with private keys did0 , did1 of its own in the challenge phase. The anonymity
definition of [7] is different and rather allows the adversary to choose the random
coins used in the generation of did0 and did1 . However, the definition of [7] still
forces the challenger to generate did0 and did1 by running the legal key generation
algorithm. In this aspect, our definition is stronger since it allows the adversary to
choose any identity-based private keys did0 , did1 that satisfy the key sanity check
(we assume w.l.o.g. that valid private keys are recognizable) without necessarily
being in the range of the private key generation algorithm. It is easy to verify
that the scheme of [7] does not provide unconditional anonymity in the sense
of the above definition. The reason is its use of groups G of composite order
N = p1p2p3 and the fact that signatures and private keys live in the subgroup of
order p1: if an unbounded adversary chooses did0 , did1 so that did0 does not have
a component of order p2 but did1 does, this adversary can infer the challenger’s
bit by testing if the signature σ has a component of order p2.

Our generic construction thus provides the first fully secure schemes allowing
for rings of arbitrary size while satisfying our definition of anonymity. Let Π =
(Keygen,Sign,SignDerive,Verify) be a completely context-hiding and unforgeable
HH-AOS scheme. Using Π, we can generically construct an identity-based ring
signature as follows.

Setup(λ): run (sk, pk)← Π.Keygen(λ) and output (msk,mpk) = (sk, pk).

Keygen(msk, id): given msk = sk, compute and return did ← Π.Sign(sk, {0‖id}).
Sign(mpk, did,M,R): return⊥ if id 6∈ R. Otherwise, encodeR = {id1, . . . , idr}

and the message M as a set L = {0‖id1, . . . , 0‖idr, 1‖M‖R} of cardinality
r + 1. Then, use did to compute σ ← Π.SignDerive(pk, {(did, {0‖id})}, L),
which is possible since L is a superset of the singleton {0‖id} by construc-
tion.

Verify(mpk,M,R, σ): given mpk = pk, the ring of identitiesR = {id1, . . . , idr}
and the message M , define the set L = {0‖id1, . . . , 0‖idr, 1‖M‖R}. Return
1 if Π.Verify(pk, L, σ) = 1 and 0 otherwise.

Note that, in order to guarantee the unforgeability of the scheme, the ring of
identities R must be appended to the actual message in the last element of L.
Otherwise, the adversary would be able to introduce extra identities in the ring
associated with any given signature.

Theorem 2. The above identity-based ring signature scheme provides unforge-
ability against adaptive-ring attacks assuming that Π is an unforgeable HH-AOS.
Moreover, it provides full anonymity against unbounded adversaries if Π is a
completely context hiding HH-AOS scheme.

Proof. The proof of unforgeability is straightforward as, given a ring signature
forger, one can clearly construct a forger against the underlying HH-AOS. We
thus focus on the anonymity property.

The proof of anonymity is also immediate. We consider a first game, called
Game0, which is the actual attack game. We define Game1 to be identical to
Game0 except that we modify the way to compute the challenge signature in the
challenge phase. Namely, instead of computing the challenge signature as σ ←
Π.SignDerive(pk, {(didd , idd)}, L), the challenger computes a new signature σ ←
Π.Sign(sk, L) on the set L. The complete context-hiding property guarantees
that A’s view will not be affected by this change since σ has exactly the same
distribution in both games. However, in Game1, the challenge signature σ does
not depend on the adversary’s secret bit d ∈R {0, 1}, which is thus independent
of the adversary’s view. ut

Acknowledgments

We thank the anonymous reviewers for useful comments. The first author’s
work was supported in part by the “Programme Avenir Lyon Saint-Etienne
de l’Université de Lyon” in the framework of the programme “Inverstissements
d’Avenir” (ANR-11-IDEX-0007). The last author’s work was supported by the
ERC grant CryptoCloud.

References

1. M. Abe, K. Haralambiev, M. Ohkubo. Signing on elements in bilinear groups for
modular protocol design. Cryptology ePrint Archive: Report 2010/133, 2010.

2. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, M. O. Structure-preserving
signatures and commitments to group elements. In CRYPTO ’10, LNCS 6223,
Springer, 2010.

3. M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, M. Ohkubo. Constant-
Size Structure-Preserving Signatures: Generic Constructions and Simple Assump-
tions. In Asiacrypt’12, LNCS 7658, pp. 4–24, 2012.

4. M. Abe, B. David, M. Kohlweiss, R. Nishimaki, M. Ohkubo. Tagged one-time
signatures: Tight security and optimal tag size. In PKC ’13, LNCS 7778, Springer,
2013.

5. J.-H. Ahn, D. Boneh, J. Camenisch, S. H, a. shelat, B. Waters. Computing on
authenticated data. In TCC ’12, LNCS 7194, Springer, 2012.

6. N. Attrapadung, B. Libert, T. Peters. Computing on authenticated data: New
privacy definitions and constructions. In ASIACRYPT ’12, LNCS 7658, Springer,
2012.

7. M.-H. Au, J. Liu, W. Susilo, J. Zhou. Realizing fully secure unrestricted ID-
based ring signature in the standard model from HIBE. IEEE Trans. Information
Forensics and Security 8(12), 2013.

8. S. Bajaj, R. Sion. HIFS: History independence for file systems. In ACM-CCS ’13,
ACM Press, 2013.

9. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya,
H. Shacham. Randomizable proofs and delegatable anonymous credentials. In
CRYPTO ’09, LNCS 5677, Springer, 2009.

10. M. Bellare, C. Namprempre, G. Neven. Security proofs for identity-based identi-
fication and signature schemes. J. Cryptology 22(1), 2009. Preliminary version in
EUROCRYPT ’04, LNCS 3027, Springer, 2004.

11. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In ACM CCS ’93, ACM Press, 1993.

12. M. Bellare and P. Rogaway. The exact security of digital signatures – How to sign
with RSA and Rabin. In EUROCRYPT ’96, LNCS 1070, Springer, 1996.

13. A. Bender, J. Katz, R. Morselli. Ring signatures: Stronger definitions, and con-
structions without random oracles. J. Cryptology 22(1), 2009. Extended abstract
in TCC ’06, LNCS 3876, Springer, 2006.

14. J. Bethencourt, D. Boneh, B. Waters. Cryptographic methods for storing ballots
on a voting machine. In NDSS ’07, Internet Society, 2007.

15. D. Boneh, X. Boyen, E.-J. Goh. Hierarchical identity-based encryption with con-
stant size ciphertext. In EUROCRYPT ’05, LNCS 3494, Springer, 2005.

16. D. Boneh, X. Boyen, H. Shacham. Short group signatures. In CRYPTO ’04, LNCS
3152, 2004.

17. D. Boneh, M. Franklin. Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3). Earlier version in CRYPTO ’01, LNCS 2139, Springer, 2001.

18. D. Boneh, M. Hamburg. Generalized identity based and broadcast encryption
schemes. In ASIACRYPT ’08, LNCS 5350, Springer, 2008.

19. D. Boneh, B. Lynn, H. Shacham. Short signatures from the Weil pairing. In
ASIACRYPT ’01, LNCS 2248, Springer, 2001.

20. D. Boneh, C. Gentry, B. Lynn, H. Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In EUROCRYPT ’03, LNCS 2656, Springer, 2003.

21. R. Canetti, O. Goldreich, S. Halevi. The random oracle methodology, revisited.
In STOC ’98, ACM Press, 1998.

22. N. Chandran, J. Groth, A. Sahai. Ring signatures of sub-linear size without ran-
dom oracles. In ICALP ’07, LNCS 4596, Springer, 2007.

23. M. Chase, M. Kohlweiss, A. Lysyanskaya, S. Meiklejohn. Malleable proof systems
and applications. In EUROCRYPT ’12, LNCS 7237, Springer, 2012.

24. Y. Desmedt. Computer security by redefining what a computer is. In New Security
Paradigms Workshop (NSPW ’93), 1993.

25. E. Freire, D. Hofheinz, K. Paterson, C. Striecks. Programmable hash functions in
the multilinear setting. In CRYPTO ’13, LNCS 8043, Springer, 2013.

26. D. Galindo, J. Herranz, E. Kiltz. On the generic construction of identity-based
signatures with additional properties. In ASIACRYPT ’06, LNCS 4284, Springer,
2006.

27. S. Garg, C. Gentry, S. Halevi. Candidate multilinear maps from ideal lattices. In
EUROCRYPT ’13, LNCS 7881, Springer, 2013.

28. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, B. Waters. Candidate indis-
tinguishability obfuscation and functional encryption for all circuits. In FOCS ’13,
IEEE Computer Society, 2013.

29. M. Gerbush, A. Lewko, A. O’Neill, B. Waters. Dual form signatures: An approach
for proving security from static assumptions. In ASIACRYPT ’12, LNCS 7658,
Springer, 2012.

30. C. Gentry, A. Silverberg. Hierarchical ID-based cryptography. In ASI-
ACRYPT ’02, LNCS 2501, 2002.

31. J. Groth. Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In ASIACRYPT ’06, LNCS 4284, Springer, 2006.

32. J. Groth, A. Sahai. Efficient non-interactive proof systems for bilinear groups. In
EUROCRYPT ’08, LNCS 4965, Springer, 2008.

33. D. Hofheinz, E. Kiltz. Programmable hash functions and their applications. In
CRYPTO ’08, LNCS 5157, Springer, 2008.

34. S. Hohenberger, A. Sahai, B. Waters. Full domain hash from (leveled) multilin-
ear maps and identity-based aggregate signatures. In CRYPTO ’13, LNCS 8043,
Springer, 2013.

35. S. Hohenberger, A. Sahai, B. Waters. Replacing a random oracle: Full domain hash
from indistinguishability obfuscation. In EUROCRYPT ’14, LNCS 8441, Springer,
2014.

36. R. Johnson, D. Molnar, D. Song, D. Wagner. Homomorphic signature schemes.
In CT-RSA ’02, LNCS 2271, Springer, 2002.

37. E. Kiltz, A. Mityagin, S. Panjwani, B. Raghavan. Append-only signatures. In
ICALP ’05, LNCS 3580, Springer, 2005.

38. A. Lewko, B. Waters. Unbounded HIBE and attribute-based encryption. In EU-
ROCRYPT ’11, LNCS 6632, Springer, 2011.

39. B. Libert, M. Joye, M. Yung, and T. Peters. Secure efficient history-hiding
append-only signatures in the standard model. Cryptology ePrint Archive, http:
//eprint.iacr.org/, 2015.

40. S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, B. Waters. Sequential aggregate
signatures and multisignatures without random oracles. In EUROCRYPT ’06,
LNCS 4004, 2006.

41. D. Micciancio. Oblivious data structures: Applications to cryptography. In
STOC’ 97, ACM Press, 1997.

42. D. Molnar, T. Kohno, N. Sastry, D. Wagner. Tamper-evident, history-
independent, subliminal-free data structures on PROM storage –or– How to store
ballots on a voting machine. In S&P ’06, IEEE Computer Society, 2006.

43. T. Moran, M. Naor, G. Segev. Deterministic history-independent strategies for
storing information on write-once memories. In ICALP ’07, LNCS 4596, Springer,
2007.

44. M. Naor, V. Teague. Anti-persistence: History independent data structures. In
STOC ’01, ACM Press, 2001.

45. R. Rivest, A. Shamir, Y. Tauman. How to leak a secret. In ASIACRYPT ’01,
LNCS 2248, Springer, 2001.

46. H. Shacham, B. Waters. Efficient ring signatures without random oracles. In
PKC ’07, LNCS 4450, Springer, 2007.

47. A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO ’84,
LNCS 196, Springer, 1984.

48. B. Waters. Efficient identity-based encryption without random oracles. In EU-
ROCRYPT ’05, LNCS 3494, Springer, 2005.

49. B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In CRYPTO ’09, LNCS 5677, Springer, 2009.

A Groth-Sahai Proof Systems

In [32], Groth and Sahai described efficient non-interactive witness indistinguish-
able (NIWI) proof systems of which one instantiation relies on the DLIN assump-
tion. This instantiation uses prime order groups and a common reference string
containing three vectors ~f1, ~f2, ~f3 ∈ G3, where ~f1 = (f1, 1, g), ~f2 = (1, f2, g)
for some f1, f2 ∈ G. To commit to a group element X ∈ G, the prover chooses

r, s, t
R← Z∗p and computes ~C = (1, 1, X) · ~f1

r
· ~f2

s
· ~f3

t
. On a perfectly sound

common reference string, we have ~f3 = ~f1
ξ1 · ~f2

ξ2
where ξ1, ξ2 ∈ Z∗p. Commit-

ments ~C = (fr+ξ1t1 , fs+ξ2t2 , X · gr+s+t(ξ1+ξ2)) are extractable as their distribu-
tion coincides with that of Boneh-Boyen-Shacham (BBS) ciphertexts [16] and
the committed X can be extracted using β1 = logg(f1), β2 = logg(f2). In the

witness indistinguishability (WI) setting, the vector ~f3 is chosen outside the

span of (~f1, ~f2), so that ~C is a perfectly hiding commitment. Under the DLIN
assumption, the two kinds of CRS can be exchanged for one another without
the adversary noticing.

To convince the verifier that committed variables satisfy a set of relations,
the prover computes one commitment per variable and one proof element per
equation. Such NIWI proofs can be efficiently generated for pairing-product
equations, which are relations of the type

n∏
i=1

e(Ai,Xi) ·
n∏
i=1

·
n∏
j=1

e(Xi,Xj)aij = tT , (4)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp,
for i, j ∈ {1, . . . , n}.

In pairing-product equations, proving a quadratic equation requires 9 group
elements. Linear equations (i.e., where aij = 0 for all i, j in Eq. (4)) are slightly
more economical to prove as they only cost 3 group elements each.

In [9], Belenkiy et al. showed that Groth-Sahai proofs are perfectly random-

izable. Given commitments {~CXi}ni=1 and a NIWI proof ~πPPE that committed
{X}ni=1 satisfy (4), anyone can publicly compute re-randomized commitments

{~CX ′
i
}ni=1 and a re-randomized proof ~π′PPE of the same statement. Moreover,

{~CX ′
i
}ni=1 and ~π′PPE are distributed as freshly generated commitments and proof.

This property was used in, e.g., [23].

