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Abstract. Functional Encryption (FE) is an exciting new paradigm
that extends the notion of public key encryption. In this work we explore
the security of Inner Product Functional Encryption schemes with the
goal of achieving the highest security against practically feasible attacks.
While there has been substantial research effort in defining meaningful
security models for FE, known definitions run into one of the following
difficulties – if general and strong, the definition can be shown impossible
to achieve, whereas achievable definitions necessarily restrict the usage
scenarios in which FE schemes can be deployed.

We argue that it is extremely hard to control the nature of usage scenarios
that may arise in practice. Any cryptographic scheme may be deployed
in an arbitrarily complex environment and it is vital to have meaningful
security guarantees for general scenarios. Hence, in this work, we examine
whether it is possible to analyze the security of FE in a wider variety
of usage scenarios, but with respect to a meaningful class of adversarial
attacks known to be possible in practice. Note that known impossibilities
necessitate that we must either restrict the usage scenarios (as done in
previous works), or the class of attacks (this work). We study real world
loss-of-secrecy attacks against Functional Encryption for Inner Product
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predicates constructed over elliptic curve groups. Our main contributions
are as follows:

– We capture a large variety of possible usage scenarios that may arise
in practice by providing a stronger, more general, intuitive frame-
work that supports function privacy in addition to data privacy, and
a separate encryption key in addition to public key and master secret
key. These generalizations allow our framework to capture program
obfuscation as a special case of functional encryption, and allows
for a separation between users that encrypt data, access data and
produce secret keys.

– We note that the landscape of attacks over pairing-friendly elliptic
curves have been the subject of extensive research and there now
exist constructions of pairing-friendly elliptic curves where the com-
plexity of all known non-generic attacks is (far) greater than the
complexity of generic attacks. Thus, by appropriate choice of the
underlying elliptic curve, we can capture all known practically feasi-
ble attacks on secrecy by restricting our attention to generic attacks.

– We construct a new inner product FE scheme using prime order
groups and show it secure under our new, hitherto strongest known
framework in the generic group model, thus ruling out all generic
attacks in arbitrarily complex real world environments. Since our
construction is over prime order groups, we rule out factoring at-
tacks that typically force higher security parameters. Our concrete-
analysis proofs provide guidance on the size of elliptic curve groups
that are needed for explicit complexity bounds on the attacker.

Keywords: functional encryption, practical security, pairing based cryp-
tography, inner-product encryption, generic attacks, simulation based
security.

1 Introduction

Functional Encryption [45,44] (FE) is an exciting new paradigm that generalizes
public key encryption. In functional encryption, each decryption key corresponds
to a specific function. When the holder of a decryption key for the function f
gets an encryption of a message m, the only thing his key allows him to learn is
f(m), but nothing more.

Classic results in the area focused on constructing FE for restricted classes
of functions – point functions or identity based encryption (IBE) [46,12,21,17]
[29,20,3,4] threshold functions [45], membership checking [16], boolean formu-
las [35,11,39], inner product functions [36,39,5] and more recently, even regu-
lar languages [49]. Recent constructions of FE support general functions: Gor-
bunov et al. [34] and Garg et al. [27] provided the first constructions for an
important subclass of FE called “public index FE” (also known as “attribute
based encryption”) for all circuits, Goldwasser et al. [32] constructed succinct
simulation-secure single-key FE scheme for all circuits. In a breakthrough result,
Garg et al. [26] constructed indistinguishability-secure multi-key FE schemes for



all circuits. Goldwasser et al. and Ananth et al. [31,7] constructed FE for Turing
machines. Recently, Functional Encryption has even been generalized to multi-
input functional encryption [30].

Alongside ever-more-sophisticated constructions, there has been significant
work in defining the right security model for FE. Boneh, Sahai and Waters [15]
and O’Neill [43] proposed definitional frameworks to study Functional Encryp-
tion in its general form. These works discussed the subtleties involved in defining
a security model for FE that captures meaningful real world security. Since then
there has been considerable research focus on understanding what security means
for FE and whether it can be achieved [15,43,10,9,6,19]. The strongest, most in-
tuitive notions of security turned out to be impossible to realize theoretically,
while weaker notions restricted the usage scenarios in which FE schemes could
be deployed (more on this below).

Security of Functional Encryption in practice. In this work we explore the se-
curity of Functional Encryption schemes from a practical standpoint, with the
goal of trying to achieve maximum security against all practically feasible at-
tacks. While there has been considerable progress in defining meaningful security
models for FE, existing definitions do not capture a number of real world usage
scenarios that will likely arise in practice. However, it is essential to understand
how Functional Encryption systems behave in complex real world environments,
since this is inevitable in the future of FE. Towards this end, we examine security
features that we believe are desirable in practice, and discuss whether these can
be achieved.

– Can we hide the function? Consider the application of keyword searching on
encrypted data, where the keywords being searched for are sensitive and must
remain hidden. This scenario is well motivated in practice; for example the
FBI might recruit untrusted server farms to perform searches on confidential
encrypted data, but desire not to reveal the words being searched. Can FE
schemes achieve this?

– Can we limit what the adversary learns to only the function’s output? Intu-
itively, a functional encryption scheme should only reveal to a decryptor the
function output, and nothing more. For example, if the function has some
computational hiding properties, can we guarantee that the FE scheme does
not leak any additional information beyond the function output?

– Can an adversary break FE schemes where it can ask for keys after receiving
ciphertexts? In real world applications, it is very likely that an adversary can
receive authorized decryption keys even after it obtains the ciphertext that
it is trying to break. For example, in searchable encryption, the decryption
key corresponding to a search would only be given out after the encrypted
database is publicly available. Similarly in Identity Based Encryption, a user
may receive an email encrypted with his identity before he obtains the cor-
responding secret key. Can one guarantee that an attacker who obtains an
arbitrary interleaving of ciphertexts and keys, can learn nothing beyond the
legitimate function values?



None of the existing security definitions for FE [15,43,10,9,6] provide comprehen-
sive guarantees against all the above usage scenarios. Below, we discuss why this
is the case, and examine alternate approaches to providing meaningful security
guarantees against a wide range of practical attacks, in all the above scenarios.

Recap of security definitions. Before we discuss our approach, it will be useful
to recap existing definitions of security and discuss their restrictions. Known
definitions of security for FE may be divided into two broad classes: Indistin-
guishability (IND) based or Simulation (SIM) based. Indistinguishability based
security stipulates that it is infeasible to distinguish encryptions of any two
messages, without getting a secret key that decrypts the ciphertexts to dis-
tinct values; simulation-based security stipulates that there exists an efficient
simulator that can simulate the view of the adversary, given only the function
evaluated on messages and keys. Both of these notions can be further classified
as follows: [43] described the divide between adaptive (AD) versus non-adaptive
(NA) which captures whether the adversary’s queries to the key derivation or-
acle may or may not depend on the challenge ciphertext; and [33] described
the divide between one versus many, which depends on whether the adversary
receives a single or multiple challenge ciphertexts. Thus, existing definitions of
security belong to the class {1,many} × {NA,AD} × {IND,SIM}.

Standard model woes. Unfortunately, none of the above definitions capture se-
curity in all the usage scenarios discussed above. For example, Boneh et al.
and O’Neill [15,43] showed that IND based definitions do not capture scenarios
where it is required that the user learn only the output of the FE function, for eg.,
when the function hides something computationally. To get around this, [15,43]
proposed SIM based definitions that study FE in the “ideal world-real world”
paradigm. However, the world of SIM security for FE has been plagued with
impossibilities of efficient simulation. Moreover, even the strongest known SIM
based definitions (many-AD-SIM) do not capture function hiding. Even disre-
garding function hiding, [15] showed that many-AD-SIM is impossible even for
very simple functionalities. A weakening of AD-SIM, namely NA-SIM [43] does
not capture scenarios where users may obtain keys after obtaining new third-
party-generated ciphertexts. Despite this severe restriction on usage, NA-SIM
was also shown to be impossible [6], seemingly ruling out security for even those
usage scenarios that are captured.

Does this mean nothing can be said about real world security of FE in sce-
narios not captured by definitions or ruled out by impossibilities for simula-
tion? Given that strong, intuitive definitions capturing real world scenarios are
unachievable, are practitioners doomed to make do with the restricted usage
scenarios offered by IND based security?

There seem to be two complementary directions forward. The first is to seek
notions of security “in-between” IND and SIM that are achievable, thus provid-
ing guarantees for a restricted (but larger than IND) class of usage scenarios
against all efficient attackers. Indeed, there is already research effort pursuing
this agenda [6,9,2]. However, it is extremely hard (if not impossible) to control



the nature of usage scenarios that arise in practice. A second direction is to ex-
amine whether it is possible to address as many usage scenarios as we can, but
restrict ourselves to analyzing security only against classes of attacks that are
known to be practically feasible. This is the approach we take in this work.

In this work we study the practical security of Functional Encryption for
Inner Product predicates, which is the state of the art for general FE [36,39,5].
However, we believe that the ideas developed in this work will be applicable to
all FE schemes that are built from pairings on elliptic curves, which captures
the majority of known FE constructions [12,45,35,17,11,36,39,49].

Real world attacks on elliptic curve based FE. The impossibilities exhibited by
[15,6] work by arguing that there exist scenarios which preclude existence of
a simulator by information theoretic arguments. However, non-existence of a
simulator does not imply real world attacks in the sense of distinguishing between
ciphertexts or recovering any useful information about the message or the key.
Arguably, attacks that cause actual loss of secrecy are the attacks that we care
about in practice, and this is the class of attacks we consider in this work.

For pairing friendly elliptic curves that are used for FE constructions, there
has been extensive research effort studying practically feasible attacks. Attacks
can be of two kinds: those that respect the algebraic structure of the underlying
groups, which are called generic attacks, and those that do not, or non-generic
attacks. Generic attacks are described as algorithms that act oblivious of partic-
ular group representations. Due to its importance and wide applicability, much
research effort has been focused on studying the complexity of generic and non-
generic attacks on pairing-friendly elliptic curves. By now, there is a long line of
work [24,23,8,22] focused on constructing pairing friendly elliptic curves where
the complexity of all known non-generic attacks is extremely high. If such el-
liptic curves are used to build cryptographic schemes, there is strong heuristic
evidence that the only successful practically feasible attacks will be generic in
nature. We stress that we will work with elliptic curve groups of prime order,
and so factoring-based attacks will not be relevant.

A well known mathematical model to study generic attacks is the Generic
Group Model (GGM) [40,48]. In the GGM, all algorithms obtain access to el-
ements of the group via random “handles” (of sufficient length) and remain
unaware of their actual representations. The GGM has a strong track record of
usefulness; indeed, even notable critics of provable security, Koblitz and Menezes,
despite their criticisms, admit that the generic group model has been unreason-
ably successful at resisting attack [37].

Our Results. We investigate the security of inner product FE in the generic
group model under a new strong framework for security, that captures all the
usage scenarios discussed above simultaneously. This rules out a large class of
attacks – namely arbitrary generic attacks – against the scheme deployed in
an arbitrary usage environment. We construct a new inner product FE scheme
based on prime order elliptic curve groups. Our results may be summarized as
follows.



– Capturing arbitrary usage scenarios: We begin by providing a strong, simple
and intuitive framework for security which captures all usage scenarios dis-
cussed above. Our framework captures function hiding in addition to data
hiding; thus it guarantees that CTx and SKf reveal no information about
either x or f beyond what is revealed by f(x). Generalized this way, our
framework can be seen to subsume program obfuscation. We also introduce
the idea of having a separate encryption key in the context of Functional
Encryption. This setting lies between public and symmetric key functional
encryption, in that while the encryption key is not publicly known to all
users, it is also not the same as the master secret key used for generating
secret keys for users in the system. This allows for a division between the
people that create encryptions and the people that issue secret keys. We
believe this setting is well motivated in the real world, since it is often the
case that there is a hierarchy that separates the people that create encrypted
data and people that access it. A real-world example would be an FBI en-
crypted database where police officers can be granted access to parts of the
database, but only FBI personnel can add to the database.

– Resisting generic attacks: We show that our inner product FE scheme is
secure under our strong framework in the Generic Group Model, resolving
the problem left open by [15] and [9]. We obtain unconditional statistical
security for our scheme under our framework in the GGM. Our positive
results also translate to the setting of obfuscation, achieving obfuscation for
hyperplane membership secure against generic attacks.

– Concrete security analysis: Our security analysis is concrete, and as a result
we can show exactly what parameters are needed to (provably) achieve secu-
rity against attackers with different computational resources. For example,
we show that with a pairing-friendly elliptic curve group whose order is a
222-bit prime, an attacker who is restricted to 280 generic computations,
breaks our scheme with at most 2−60 probability of success. Additional se-
curity calculations are provided in Table 1.

Adversary Runtime Success Probability Required Prime Group Order (bit-length)

280 2−60 222 bits

280 2−80 242 bits

2100 2−80 282 bits

2128 2−80 338 bits

2128 2−128 386 bits

Table 1. The table entries contain the bit length of security parameter to achieve the
corresponding level of security.

Our perspective. By showing that our strong security framework is realizable
against all generic attacks, we are providing strong evidence of real-world security
even when the generic model is instantiated in a heuristic manner – in our case
with a suitably chosen pairing-friendly elliptic curve group. Much care and study



is required for how, what, and when security is preserved in such instantiations
– indeed this is a very active and important area of research in our community
for the Random Oracle Model. We believe that guarantees obtained by such
analysis are extremely useful in practice. For example, consider the example
of an IBE used in practice, say in a large organization [1]. Suppose the public
parameters are published, and some user creates and publishes 2n encryptions
for users who have yet to obtain their secret keys. Now, if n out of 2n users are
chosen in some arbitrary, ciphertext-dependent way, and these users obtain their
keys, are the remaining n encryptions secure? Simulation based definitions are
the only definitions we know that capture security of the IBE in such scenarios,
but it was shown by [15] that there cannot exist a simulator for many-AD-SIM
security of IBE. On the positive side, [15] also showed that IBE does satisfy
many-AD-SIM in the Random Oracle Model. We believe that this is evidence
that IBEs indeed provide practical security in scenarios such as the above, even
despite the impossibility of simulation in this scenario.

We do caution that care needs to be exercised in understanding the require-
ments of any application of FE, and there may be applications for which our
guarantees of security against generic attacks do not suffice. Intuitively these are
applications where the main threat is not leaking secret information but in not
being able to actually simulate some view. The only example of such a security
property that we know of is deniability, where only the existence of a simulator
would give plausible deniability to a participant. We stress that our analysis of
generic attacks should not be taken to imply any kind of deniability.

Function privacy and obfuscation. The question of function privacy (or key hid-
ing) was considered by Shen et al. [47], in the symmetric key setting and more
recently by Boneh et al. [13,14] in the public key setting under IND based def-
initions. [47] provide a construction of FE for inner product predicates in the
standard model, under the IND based notion of security, using composite order
groups and assuming hardness of factoring (even when viewed in the GGM). Our
result, on the other hand, is unconditionally statistically secure in the generic
group model, under a strong simulation based definition of security, using prime
order groups. Our construction for inner product FE is inspired by the scheme
of [36] and the works of [28,25,42,39,38]. It implies a program obfuscator for hy-
perplane membership in the generic group model – for details see Appendix D,
a candidate for which was also given by [18] under a strong variant of the DDH
assumption.

Our Techniques. Prior to our work, the only techniques to achieve positive re-
sults for many-AD-SIM security of FE were in the programmable ROM, for the
anonymous IBE and public-index functionalities, based on techniques to build
non-committing encryption in the ROM [15]. We develop new and entirely dif-
ferent techniques to achieve positive results for inner product FE in the GGM
under a definition stronger than many-AD-SIM.

As an illustrative example, consider the scenario where the adversary has
the encryption key. In this setting, the adversary may encrypt any vector of his



choice, and run the decrypt operation with the secret key he is given and the
messages he encrypted to learn relations between them. The simulator needs
to learn what vectors the adversary is encrypting so as to query the function
oracle and program the requisite relations to hold. However, this strategy is com-
plicated by the fact that the adversary need not generate ciphertexts honestly
and attempt to decrypt them honestly; instead he can carry out an arbitrarily
obfuscated sequence of group operations, which may implicitly be encrypting
and decrypting values. Our proof handles this issue by deploying a novel alge-
braic message extraction technique – the simulator keeps track of all algebraic
relations that the adversary is developing, and is able to test if the algebraic
relation depends on some property of an unknown vector v corresponding to a
decryption key. We prove by algebraic means that if this happens, the adver-
sary can only be checking whether v is orthogonal to some other vector u. No
other algebraic relations about v can be checked by the adversary because of
the randomization present in our inner product FE scheme, except with negli-
gible probability. Furthermore, in this case we prove that the vector u can only
be either a vector corresponding to some challenge (honestly generated by the
system, not the adversary) ciphertext, or a vector u that the simulator can fully
extract from the adversary’s algebraic queries.

The generic group model allows us to bypass impossibility because the ad-
versary is forced to perform computations via the generic group oracle which the
simulator can control. At a high level, the simulator keeps track of the queries
requested by the adversary, uses these queries to learn what the adversary is
doing, and carefully programming the oracle to maintain the requisite relations
between group elements to behave like the real world in the view of the adversary.
For further technical details, please see the proof in Section 5.

2 Preliminaries

In Appendix A, we define some standard notation that is used throughout the
paper. We emphasize that all our groups are multiplicative, and any additive
notation refers to computations in the exponent.

2.1 Functional Encryption

A functional encryption scheme FE consists of four algorithms defined as follows.

– Setup(1κ) is a probabilistic polynomial time (p.p.t.) algorithm that takes
as input the unary representation of the security parameter and outputs the
public parameters, encryption key and master secret key (PP,EK,MSK). Im-
plicit in the public parameters PP are the security parameter and a function
class FPP = {f : XPP → YPP}.

– KeyGen(PP,MSK, f) is a p.p.t. algorithm that takes as input the public pa-
rameters PP, the master secret key MSK and a function f ∈ FPP and outputs
a corresponding secret key SKf .



– Encrypt(PP,EK,x) is a p.p.t. algorithm that takes as input the public pa-
rameters PP, the encryption key EK and an input message x ∈ XPP and
outputs a ciphertext CTx.

– Decrypt(PP,SKf ,CTx) is a deterministic algorithm that takes as input the
public parameters PP, the secret key SKf and a ciphertext CTx and outputs
f(x).

Definition 1 (Correctness). A functional encryption scheme FE is correct if
for all (PP,MSK,EK) generated by Setup(1κ), all f ∈ FPP and x ∈ XPP,

Pr[Decrypt
(
KeyGen(PP,MSK, f),Encrypt(PP,EK,x)

)
6= f(x)]

is a negligible function of κ, where the probability is taken over the coins of
KeyGen and Encrypt.

Remark 1. A functional encryption scheme FE may permit some intentional
leakage of information. In this case, the secret SKf or the ciphertext CTx may
leak some legitimate information about the function f or the message x respec-
tively. A common example of this type of information is the length of the message
|x| that is leaked in any public key encryption scheme. This is captured by [15]
via the “empty” key, by [6] by giving this information to the simulator directly
and by [9] by restricting to adversaries who do not trivially break the system
by issuing challenges that differ in such leakage. We use the approach of [6] and
pass on any intentionally leaked information directly to the simulator.

2.2 Generic Group (GG) Model Overview

The generic group model [40,48] provides a method by which to study the se-
curity of algorithms that act oblivious of particular group representations. All
algorithms obtain access to elements of the group via random “handles” (of suffi-
cient length) and remain unaware of their actual representations. In our work we
will require two groups G,GT (called the source and target group respectively)
where G is equipped with a bilinear map e : G×G → GT . Algorithms with generic
access to these may request group multiplications and inverses on either group,
as well as pairings between elements in the source group.

Given group elements in G,GT an adversary will only be able to perform group
exponentiations, multiplications, pairings and equality comparisons. Given this
restricted way in which an adversary is allowed to access the groups G,GT , he is
only able to compute certain relations between elements which we call Admissible
Relations, as defined below.

Definition 2 (Admissible Relations). Consider a group G of order p, which
supports a bilinear map e : G × G → GT . Let g and gT be the generators of
G and GT respectively. Let {Ai}`i=1, {Bi}mi=1 be sets of formal variables taking
values from Zp, representing the exponents of g and gT respectively. Then we
define admissible relations over the set {Ai} ∪ {Bi} to be all relations of the

form
∑
k γkAk

?
= 0 or

∑
k γkBk +

∑
i,j γi,jAiAj

?
= 0 where γk, γi,j ∈ Zp.



Admissible relations capture the only relations an adversary can learn given only
generic access to elements in the source and target group, described in the ex-
ponent for ease of exposition. Thus, exponentiation of a group element becomes
multiplication in the exponent (eg. (gAk)γk becomes gγkAk), multiplication of
two elements in the same group becomes addition in the exponent (

∏
k(gAk)γk

becomes g
∑

k γkAk) and pairing between source group elements becomes multi-

plication in the target group exponent (e(gAi , gAj ) becomes g
AiAj

T ).

We will also need the Schwartz Zippel lemma.

Theorem 1 (Schwartz Zippel Lemma). Let g1, g2 be any two different `-
variate polynomials with coefficients in field Zp. Let the degree of the polynomial
g1 − g2 be t. Then,

Pr
{Xi}`i=1

$←−Zp

[g1(X1, . . . , X`) = g2(X1, . . . , X`)] ≤
t

p

3 Wishful Security for Functional Encryption

In this section, we present the dream version security definition for Functional
Encryption, which captures data hiding as well as function hiding in the strongest,
most intuitive way via the ideal world-real world paradigm. This definition ex-
tends and generalizes the definition of [15,9] to support function hiding in addi-
tion to data hiding (subsuming obfuscation), and encryption key in addition to
public key. In the spirit of multiparty computation, this framework guarantees
privacy for inputs of honest parties, whether messages or functions.

We fix the functionality of the system to be Fκ = {f : Xκ → Yκ}. We will
refer to x ∈ X as “message” and f ∈ F as “function” or “key”. Our framework
consists of an external environment Env who acts as an interactive distinguisher
attempting to distinguish the real and ideal worlds, potentially in an adversarial
manner.

Ideal-World. The ideal-world in a functional encryption system consists of the
functional encryption oracle O, the ideal world adversary (or simulator) S, and
an environment Env which is used to model all the parties external to the ad-
versary. The adversary S and the environment Env are modeled as interactive
p.p.t Turing machines.

Throughout the interaction, O maintains a two-dimensional table T with
rows indexed by messages x1, . . .xrows and columns indexed by functions f1, . . . ,
fcols, and the entry corresponding to row xi and column fj is fj(xi). At a given
time, the table contains all the message-key pairs seen in the interactions with
O until then. O is initialized with a description of the functionality5. The envi-
ronment Env interacts arbitrarily with the adversary S. The interaction between
the players is described below:

5 For eg., for the inner product functionality, O needs to be provided the dimension
of the vectors.



– External ciphertexts and keys:
• Ciphertexts: Env may sendO ciphertext commands (CT,x) upon which
O creates a new row corresponding to x, populates all the newly formed
entries f1(x), . . . , fcols(x) and returns the newly populated table entires
to S.

• Keys: Env may send O secret key commands (SK, f) upon which O
creates a new column corresponding to f , populates all the newly formed
entries f(x1), . . . , f(xrows) and returns the newly populated table entries
to S.

– Switch to public key mode: Upon receiving a command (PK mode) from
Env, O forwards this message to S. From this point on, S may query O for
the function value corresponding to any message x ∈ X of its choice, and
any key in the system. Upon receiving command (x, keys), O updates T as
follows: it adds a new row corresponding to x, computes all the table entries
for this row, and returns the newly populated row entries to S.

At any point in time we allow S to obtain any intentionally leaked information
(as defined in Remark 1) about all the messages and keys present in T from O.
Note that S may add any message or key of its choice to the system at any
point in time through the adversarial environment Env with which it interacts
arbitrarily. Hence, we omit modeling this option in our ideal world. We define
VIEWIDEAL(1κ) to be the view of Env in the ideal world.

Real-World. The real-world consists of an adversary A, a system administrator
Sys and external environment Env, which encompasses all external key hold-
ers and encryptors. The adversary A interacts with other players in the game
through Sys. The environment Env may interact arbitrarily with A. Sys obtains
(PP,EK,MSK) ← Setup(1κ). PP is provided to Env and A. The interaction
between the players can be described as follows:

– External ciphertexts and keys:
• Ciphertexts: Env may send Sys encryption commands of the form

(CT,x) upon which, Sys obtains CTx = Encrypt(EK,x) sends CTx to
A.

• Keys: Env may send Sys secret key commands of the form (SK, f) upon
which, Sys obtains SKf = KeyGen(MSK, f) and returns SKf to A.

– Switch to public key mode: Upon receiving a command (PK mode) from
Env, Sys sends EK to A.

We define VIEWREAL(1κ) to be the view of Env in the real world.
We say that a functional encryption scheme is strongly simulation secure in

this framework, if for every real world adversary A, there exists a simulator S
such that for every environment Env:

{VIEWIDEAL(1κ)}κ∈N
c
≈ {VIEWREAL(1κ)}κ∈N

While simulation based security has been shown impossible to achieve even
for data privacy alone, we will show that the stronger definition presented above



can be achieved against a large class of real world attacks, namely generic attacks.
We believe that this provides evidence that FE schemes enjoy far greater security
in practice.

4 Functional Encryption for Inner Products over Prime
Order Groups

We present a new functional encryption scheme for inner products in the encryp-
tion key setting from prime order bilinear groups. Our scheme starts from the
composite order scheme for inner product FE presented in [36]. It then applies
a series of transformations, as developed in [28,25,41,42,38], to convert it to a
scheme over prime order groups. We will show our scheme to be be fully simula-
tion secure in the generic group model. To begin with, we define some notation
that will be useful to us.

Notation for Linear Algebra over groups. When working over the prime order
group G, we will find it convenient to consider tuples of group elements. Let
v = (v1, · · · , vd) ∈ Zdp for some d ∈ Z+ and g ∈ G. Then we define gv :=
(gv1 , . . . , gvd). For ease of notation, we will refer to (gv1 , . . . , gvd) by (v1, . . . , vd).
This notation allows us to do scalar multiplication and vector addition over
tuples of group elements as:

(gv)a = g(av) and gv · gw = g(v+w).

Finally we define a new function, e, which deals with pairings two d-tuples of
elements v,w as:

e(gv, gw) :=

d∏
i=1

e(gvi , gwi) = e(g, g)v·w,

where the vector dot product v ·w in the last term is taken modulo p. Here g is
assumed to be some fixed generator of G.

Dual Pairing Vector Spaces. We will employ the concept of dual pairing vector
spaces from [38,41,42]. For a fixed dimension d, let B = (b1, . . . , bd) and B∗ =
(b∗1, . . . , b

∗
d) be two random bases (represented as column vectors) for the vector

space Zdp. Furthermore, they are chosen so that
bT1
...

bTd

 · (b∗1 · · · b∗d) = ψ · Id×d, (1)

where Id×d is the identity matrix and ψ
$←− Zp. Lewko [38] describes a standard

procedure which allows one to pick such bases.



We use the notation (B,B∗)← Dual(Z3
p) in the rest of this work to describe

the selection of such basis vectors for d = 3. Furthermore, we overload vector
notation (the usage will be clear from context) by associating with a three tuple
of formal polynomials (a1, a2, a3), the vector of formal polynomials a1b1+a2b2+
a3b3, and with the tuple (a1, a2, a3)∗, the vector a1b

∗
1 + a2b

∗
2 + a3b

∗
3.

Construction. The functionality F : Znp×Znp → {0, 1} is described as F(x,v) = 1
if 〈x ·v〉 = 0 mod p, and 0 otherwise. Let GroupGen be a group generation algo-
rithm which takes as input a security parameter κ and outputs the description
of a bilinear group of order p, where p is a κ-bit prime. In the description of the
scheme and in the proof, we will “work in the exponent” for ease of notation as
described at the beginning of this section.

The four algorithms Setup,KeyGen, Encrypt and Decrypt are defined as fol-
lows.

– Setup(1κ): Let (p,G,GT , e) ← GroupGen(1κ). Let n ∈ Z, n > 1 be the di-
mension of the message space. Pick (B,B∗)← Dual(Z3

p) and let P,Q,R, R0,

H1, R1, H2, R2, . . . , Hn, Rn
$←− Zp. Set

PP = (p,G,GT , e),

EK =
(
P · b1, Q · b2 +R0 · b3, R · b3, {Hi · b1 +Ri · b3}i=ni=1

)
,

MSK =
(
P,Q, {Hi}i=ni=1 , b1, b2, b3, b

∗
1, b
∗
2, b
∗
3

)
.

– Encrypt(EK,x): Let x = (x1, . . . , xn), xi ∈ Zp. Let s, α, r1, . . . , rn
$←− Zp and

construct CTx = (C0, C1, . . . , Cn) as

C0 = s · P · b1,

and for i ∈ [1, n],

Ci = s · (Hi · b1 +Ri · b3) + α · xi · (Q · b2 +R0 · b3) + ri ·R · b3.

– KeyGen(MSK,v): Let v = (v1, . . . , vn), vi ∈ Zp. Let δ1, . . . , δn, ζ, T
$←− Zp

and construct SKv = (K0,K1, . . . ,Kn) as

K0 =

(
−

n∑
i=1

Hi · δi

)
· b∗1 + T · b∗3,

and for i ∈ [1, n],
Ki = δi · P · b∗1 +Q · ζ · vi · b∗2.

– Decrypt(SKv,CTx): Compute b = e(C0,K0) ·
∏i=n
i=1 e(Ci,Ki) and output 1 if

b = e(g, g)0 and 0 otherwise.

Intentionally leaked information as defined in Remark 1 for the above scheme
is n, the dimension of the message and key space. Correctness of the scheme relies
on the cancellation properties between the vectors in B and B∗ as described in
Eqn 1. We provide proof of correctness in Appendix B.



5 Proof of Security

We will now provide a proof that the scheme presented in Section 4 is fully
simulation secure in the generic group model as per the framework presented in
Section 3. We begin by describing the construction of our simulator.

5.1 Simulator Construction

Intuition. Broadly speaking, our simulator will run the adversary and provide
secret keys and ciphertexts to him, as well as simulate the GG oracle. Our
simulator maintains a table where it associates each group handle that it issues
to the adversary with a formal polynomial. Through its interaction with the
generic group oracle (played by S), A may learn relations between the group
handles that it obtains. Note that since we are in the GG model, A will only
be able to learn admissible relations (Definition 2). Whatever dependencies A
learns, S programs these using its table. To do this, it keeps track of what A
is doing via its requests to the GG oracle, extracts necessary information from
A cleverly where required and sets up these (formal polynomial) relations, thus
ensuring that the real and ideal world views are indistinguishable. This is tricky
in the public key mode, where the adversary may encrypt messages of its choice
(using potentially bad randomness) and attempt to learn relations with existing
keys using arbitrary generic group operations. In this case, the simulator needs to
be able to extract the message from the adversary, obtain the relevant function
values from the oracle, and program the dependencies into the generic group.

Formal Construction. Formally, the simulator S is specified as follows:

– Initialization: S constructs a table called simulation table to simulate the
GG oracle (p,G,GT , e). A simulation table consists of two parts one each
for the source group G and the target group GT respectively. Each part is a
list that contains two columns labelled formal polynomial and group handle
respectively. Group handles are strings from {0, 1}2κ. A formal polynomial is
a multivariate polynomial defined over Zp. We assume that there is a canon-
ical ordering amongst the variables used to create the formal polynomial
entries and thus each polynomial may be represented by a unique canonical
representation.

– Setup: Upon receiving the dimension n of message and key space from
O, S executes the setup algorithm of the scheme as follows. He gener-
ates new group handles corresponding to the identity elements of G and
GT . He picks 18 new formal variables that represent the bases (B,B∗) ←
Dual(Z3

p), as well as a new formal variable ψ. Next, S picks new formal

variables P,Q,R,R0, {Hi, Ri}i=ni=1 . He sets up the encryption key and master
secret key by generating new group handles to represent the formal poly-
nomials: EK =

{
(P, 0, 0), (0, 0, R), (0, Q,R0), {(Hi, 0, Ri)}ni=1

}
and MSK ={

P,Q, {Hi}i=ni=1 , b1, b2, b3, b
∗
1, b
∗
2, b
∗
3

}
. He stores these associations in the sim-

ulation table.



– Running the adversary: S runs the adversary A(1κ) and gives it the pub-
lic parameters PP = (p,G,GT , e). This amounts to S providing the adversary
with oracle access to G,GT , e and sending him p.

– Request for Public Key: When S receives the command PK mode from
O, he sends the group handles of EK to A.

– External Ciphertexts and Keys: At any time, S may receive a message
of the form MsgIdxx, f1(x), . . . , fcols(x) from O. In response:
• S follows the outline of the Encrypt algorithm in the following way. He

picks new formal variables s, α, {xi}ni=1, {ri}ni=1 (all indexed by the par-
ticular index MsgIdxx, dropped here for notational convenience). He then
constructs the formal polynomials associated with the following 3-tuples:

C =
{
C0 = (sP, 0, 0),

{
Ci = (sHi, αxiQ, sRi + αxiR0 + riR)

}n
i=1

}
,

and adds each formal polynomial thus generated in C to the simulation
table along with a new group handle.

• S then programs the generic group to incorporate the function val-
ues f1(x), . . . , fcols(x) that were received. To do this, S retrieves the
formal polynomials associated with all the keys in the table {Kj =
(Kj

0 ,K
j
1 , . . . ,K

j
n)}j∈[cols]. Then, for each j, he computes the formal poly-

nomials associated with the decrypt operation between C and Kj , i.e.,
b = e(C0,K

j
0) ·

∏i=n
i=1 e(Ci,K

j
i ). If fj(x) = 0, he sets the resultant ex-

pression to correspond to the group handle for the identity element in
the target group. Else, he generates a new group handle and stores the
resultant expression to correspond to it.

• S then sends the group handles corresponding to C to A.
He acts analogously in the case of a KeyIdxj , fj(x1), . . . , fj(xrows) message by
following the KeyGen algorithm to generate formal polynomials correspond-
ing to a new key and programming the decrypt expressions to correspond to
the received function values.

– Generic Group Operations: At any stage, A may request generic group
operations from S by providing the corresponding group handle(s) and spec-
ifying the requested operation, such as pairing, identity, inverse or group
operation. In response, S looks up its simulation table for the formal poly-
nomial(s) corresponding to the specified group handle(s), computes the op-
eration between the formal polynomials, simplifies the resultant expression
and does a reverse lookup in the table to find a group handle corresponding
to the resultant polynomial. If it finds it, S will return this group handle
to A, otherwise it randomly generates a new group handle, stores it in the
simulation table against the resultant formal polynomial, and returns this
to A. For more details, we refer the reader to Appendix C.

Tracking admissible relations learnt by A: If A requests generic group
operations to compute a polynomial involving a term ψQ2expr where expr
is an expression containing a term of the form

∑n
i=1 civi for some constant

ci ∈ Zp, then S considers this as a function evaluation by A on message that



he encrypted himself. He extracts the message x = (c1, . . . , cn). S then sends
the message (x, keys) to O. Upon receiving MsgIdxx, f1(x), . . . , fcols(x) from
O, S computes the decrypt expressions for the extracted message with all
the keys and programs the linear relations in the generic group oracle as in
the previous step.

In the full version of the paper we show that the real and ideal worlds are
indistinguishable to Env. Formally, we prove the following theorem:

Theorem 2. For all p.p.t. adversaries A, the simulator S constructed in Section
5.1 is such that for all Env with auxiliary input z, {VIEWIDEAL(1κ, z)}κ∈Z+,z∈{0,1}∗

≈ {VIEWREAL(1κ, z)}κ∈Z+,z∈{0,1}∗ in the generic group model.

5.2 Concrete parameters

From the proof of Theorem 2, we observe that the only case for distinguishability
between real and ideal worlds is the hybrid where we move from Generic Group
elements to polynomials in formal variables.

Thus, we have that if the adversary receives q group elements in total from
the groups G and GT , then the probability that he would be able to distinguish
between the real and ideal worlds is

q
(q − 1)

2

t

p

where t is the maximum degree of any formal variable polynomial that could be
constructed in our cryptosystem. It is a maximum of 3 for each element in the
source group for our FE scheme and thus t = 6 considering possible pairings. p
is the order of the group.

5.3 Practical considerations

We observe that every pairing in our scheme is between some element of the
ciphertext and an element of the key. Thus suppose G1,G2,GT , e : G1×G2 → GT
be a set of groups with an asymmetric bilinear map. Then it is easy to see that
our scheme extends to this setting by choosing the ciphertext elements from
G1 and the key elements from G2. Furthermore, our security proof also extends
to this setting, as a generic group adversary is now further restricted in the
set of queries he could make. This allows for a scheme in the faster setting of
asymmetric bilinear maps.

We also note that our scheme is shown to be secure against generic attacks
and that non-generic attacks do exist in all known bilinear groups. However, a
long list of previous research focuses on constructing elliptic curves where the
complexity of any non-generic attack is worse than generic attacks [24,23,8,22,12]
making our work relevant and meaningful. These constructions are practical as
well. Hence we believe that FE constructions over suitably chosen elliptic curve
groups have the potential of being practically secure.
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A Notation

We say that a function f : Z+ → R+ is negligible if f(λ) ∈ λ−ω(1). For two distri-
butions D1 and D2 over some set Ω we define the statistical distance SD(D1,D2)
as

SD(D1,D2) :=
1

2

∑
x∈Ω

∣∣Pr
D1

[x]− Pr
D2

[x]
∣∣

We say that two distribution ensembles D1(λ) and D2(λ) are statistically close
or statistically indistinguishable if SD

(
D1(λ),D2(λ)

)
is a negligible function of

λ.

We say that two distribution ensembles D1(λ),D2(λ) are computationally

indistinguishable, denoted by
c
≈, if for all probabilistic polynomial time turing

machines A, ∣∣Pr[A(1λ,D1(λ)) = 1]− Pr[A(1λ,D2(λ)) = 1]
∣∣

is a negligible function of λ.

We use a
$←− S to denote that a is chosen uniformly at random from the set

S.

B Correctness of Inner Product Scheme

For any SKv and CTx, the pairing evaluations in the decryption part of our
scheme proceed as follows. Terms that are marked (×) are ones that we do not

http://eprint.iacr.org/


care about.

e(C0,K0) = e

(
(sP · b1),

(
(−

n∑
i=1

Hi · δi) · b∗1 + T · b∗3
))

= (−sP
n∑
i=1

Hiδi) · (bT1 · b∗1) + (×)(bT1 · b∗3)

= ψ(−sP
n∑
i=1

Hiδi) (by Equation 1)

e(Ci,Ki) = e ((s(Hi · b1 +Ri · b3) + α · xi · (Q · b2 +R0 · b3) + ri · b3) ,

(δi · P · b∗1 +Q · ζ · vi · b∗2))

= (sHiδiP )bT1 b
∗
1 + (αxiQ ·Qζvi)bT2 b∗2 + (×)(bT1 · b∗2 + bT2 · b∗1 +

bT3 · b∗1 + bT3 · b∗2)

= ψ(sHiδiP + αζQ2xivi) (by Equation 1)

Thus, e(C0,K) ·
i=n∏
i=1

e(Ci,Ki)

= ψ(−sP
n∑
i=1

Hiδi) +

n∑
i=1

(
ψ(sHiδiP + αζQ2xivi)

)
= ψQ2αζ(

n∑
i=1

xivi)

When
∑n
i=1 xivi is 0 mod p, the final answer is always the identity element

of the target group and when it is not, the answer evaluates to a random element

in the target group (as ψ,Q, α, ζ
$←− Zp).

C Generic Group Operations

Whenever A requests the GG oracle for group operations corresponding G,GT
or the pairing operation e, S does the following:

1. Request for Identity: When A requests for the identity element of the
group G, S looks up the simulation table for the formal polynomial 0 in the
part that corresponds to G and returns the group handle corresponding to
it to the adversary. He acts analogously with request for the identity of GT .

2. Request for Inverses: When A requests the inverse of a group handle h in
G, S looks up the formal polynomial associated with h from the simulation
table, denoted by ĥ. He computes the polynomial (−1)ĥ and looks for it
in the simulation table. If he finds an associated group handle, he returns
it to A. If not, he generates a new group handle and adds the association
between (−1)ĥ and the generated handle to the first part of the table. He
returns the newly generated handle to A. He acts analogously for requests
involving handles in GT .



3. Request for group operation: When A requests a group operation on
two group elements h, ` ∈ G, S looks them both up in the simulation table
and obtains their corresponding formal polynomials ĥ and ˆ̀. He computes
the formal polynomial q̂ = ĥ + ˆ̀. S then does a look up in the simulation
table for the polynomial q̂ and if it finds an associated group handle, returns
it to A. If it doesn’t find a group handle corresponding to q̂, it generates a
new group handle and adds this association to the first part of the simulation
table and returns the newly generated handle to A. He acts analogously for
requests involving handles in GT .

4. Request for Pairing operation: When A requests a pairing operation on
two group elements h, ` ∈ G, S looks them both up in the simulation table
and obtains their corresponding formal polynomials ĥ and ˆ̀. He computes
the formal polynomial q̂ = ĥ× ˆ̀, where × denotes polynomial multiplication.
S then does a look up in the simulation table for the polynomial q̂ and if it
finds an associated group handle, returns it to A. If it doesn’t find a group
handle corresponding to q̂, it generates a new group handle and adds this
association to the second part of the simulation table and returns the newly
generated handle to A.

D Obfuscation scheme

In this section we present an obfuscation scheme for hyperplane membership.
We begin by providing a definition for obfuscation schemes from [18].

D.1 Formal definition of obfuscation

Let C = {Cκ}κ∈Z+ be a family of polynomial-size circuits, where Cκ denotes all
circuits of input length κ. A p.p.t. algorithm O is an obfuscator for the family
C if the following three conditions are met.

– Approximate functionality: There exists a negligible function ε such that
for every κ, every circuit C ∈ Cκ and every x in the input space of C,
Pr[O(C)(x) = C(x)] > 1−ε(κ), where the probability is over the randomness
of O. If this probability always equals 1, then we say that O has exact
functionality.

– Polynomial slowdown: There exists a polynomial q such that for every κ,
every circuit C ∈ Cκ, and every possible sequence of coin tosses for O, the
circuit O(C) runs in time at most q(|C|).

– Virtual black-box: For every p.p.t. adversary A and polynomial δ, there
exists a p.p.t. simulator S such that for all sufficiently large κ, and for all
C ∈ Cκ, ∣∣Pr[A(O(C)) = 1]− Pr[SC(1κ) = 1]

∣∣ < 1

δ(κ)
,

where the first probability is taken over the coin tosses of A and O, and the
second probability is taken over the coin tosses of S.



D.2 Construction

Hyperplane membership testing amounts to computing inner-product over a
vector space [18], for which we constructed a functional encryption scheme in
Section 4. The circuit family for hyperplane membership, though, is defined in
a slightly different way because the circuits have the description of a hyperplane
hardwired in them, which is just a vector. More formally, let p be a κ-bit prime
and n a positive integer (n > 1). For a vector v ∈ Znp , let Fv be a circuit which
on input x ∈ Znp outputs 1 if 〈x · v〉 = 0 mod p, and 0 otherwise. We provide
an obfuscator O for the function family Fp,n = {Fv | v ∈ Znp}, basing it directly
on the functional encryption scheme from Section 4.

– Run Setup(1κ) to obtain (PP,MSK,EK). Publish these values as public pa-
rameters.

– Obfuscator O: On input v ∈ Fp,n, execute KeyGen(MSK,v) to get SKv.
Output a circuit with EK and SKv hardwired. On input x, this circuit first
computes CTx ← Encrypt(EK,x), then outputs Decrypt(SKv,CTx).

D.3 Proof of security

We informally mention the reason why construction from D.2 is a valid obfus-
cation scheme.

– Approximate functionality: The scheme O achieves exact functionality
from the exact correctness of the underlying FE scheme.

– Polynomial slowdown: The scheme achieves polynomial slowdown because
of the polynomial runtime of Encrypt and Decrypt algorithms of the under-
lying FE scheme.

– Virtual black-box: The scheme satisfies the virtual black-box property in
the generic group model from the proof of security of the underlying FE
scheme. We defer a formal proof of this last property to the full version.
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