
Interactive Message-Locked Encryption and
Secure Deduplication

Mihir Bellare1 and Sriram Keelveedhi

Dept. of Computer Science and Engineering, University of California San Diego, USA.

Abstract. This paper considers the problem of secure storage of out-
sourced data in a way that permits deduplication. We are for the first
time able to provide privacy for messages that are both correlated and de-
pendent on the public system parameters. The new ingredient that makes
this possible is interaction. We extend the message-locked encryption
(MLE) primitive of prior work to interactive message-locked encryption
(iMLE) where upload and download are protocols. Our scheme, provid-
ing security for messages that are not only correlated but allowed to
depend on the public system parameters, is in the standard model. We
explain that interaction is not an extra assumption in practice because
full, existing deduplication systems are already interactive.

1 Introduction

The secure deduplication problem. Cloud storage providers such as
Google, Dropbox and NetApp [31, 41, 51] derive significant cost savings from
what is called deduplication. This means that if Alice and Bob upload the same
data m, the service provider stores only one copy that is returned to Alice and
Bob upon download.

Enter security, namely the desire of clients to keep their data private from
the server. Certainly, Alice and Bob can conventionally encrypt their data un-
der their passwords and upload the ciphertext rather than the plaintext. But
then, even if they start from the same data m, they will end up with different
ciphertexts CA, CB , foiling deduplication. The corresponding cost increase for
the server would ultimately be passed to the clients in higher storage fees. It is
thus in the interest of the parties to cooperate towards storage that is secure but
deduplicatable.

Douceur et al. [30] provided the first solution, called convergent encryption
(CE). The client encrypts its plaintext m with a deterministic symmetric en-
cryption scheme under a k that is itself derived as a deterministic hash of the
plaintext m. If Alice and Bob start with the same m, they will arrive at the
same ciphertext, and thus deduplication is possible. Despite lacking an analy-
sis until recently [12], CE has long been used in research and commercial sys-
tems [2, 4, 5, 18, 26, 27, 29, 35, 39, 46, 47, 52, 54], an indication of practitioners’
interest in secure deduplication.
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Scheme(s) Type
Messages

STD/ROM
Correlated Param. dep.

CE, HCE1, HCE2, RCE [12] MLE Yes No ROM
XtDPKE, XtESPKE, ... [12] MLE Yes No STD

BHK [10] MLE Yes No STD
ABMRS [1] MLE No Yes RO

FCHECK iMLE Yes Yes STD

Fig. 1. Features of prior schemes (first four rows) and our scheme (last
row). We achieve security for the first time for messages that are both correlated and
parameter dependent. Our scheme is in the standard model. The advance is made
possible by exploiting interaction.

MLE. Bellare, Keelveedhi and Ristenpart (BKR) [12] initiated a theoretical
treatment of secure deduplication aimed in particular at answering questions
like, what security does CE provide and what can one prove about it? To this
end they defined a primitive they called message-locked encryption (MLE). An
MLE scheme specifies algorithms K,E,D,T. To encrypt m, let k←$ K(p,m),
where p is a system-wide public parameter, and return ciphertext c←$ E(k,m).
Decryption m← D(k′, c) recovers m as long as k′←$ K(p,m) is any key derived
from m. Tags, produced via t ← T(c), are a way to test whether the plaintexts
underlying two ciphertexts are the same or not, all encryptions of m having the
same tag but it being hard to find differing plaintexts with matching tags.

Any MLE scheme enables deduplication. Alice, having mA, computes and
retains a key kA←$ K(p,mA) and uploads cA←$ E(k,mA). The server stores cA.
Now Bob, having mB , computes and retains a key kB ←$ K(p,mB) and uploads
cB ←$ E(k,mB). If the tags of cA and cB match, which means mA = mB , then
the server deduplicates, storing only cA and returning it to both Alice and Bob
upon a download request. Both can decrypt to recover the common plaintext.
CE is a particular MLE scheme in which key generation is done by hashing the
plaintext.

MLE security. BKR [12] noted that MLE can only provide security for unpre-
dictable data. (In particular, it cannot provide semantic security.) Within this
range, two data dimensions emerge:

1. Correlation: Security holds even when messages being encrypted, although
individually unpredictable, are related to each other.

2. Parameter-dependence: Security holds for messages that depend on the pub-
lic parameters.

These dimensions are orthogonal, and the best would be security for correlated,
parameter-dependent messages. This has not been achieved. What we have is
schemes for correlated but parameter-independent messages [10,12] and for non-
correlated but parameter-dependent messages [1]. This past work is summarized
in Fig. 1 and we now discuss it in a little more detail.
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Prior schemes. The definition of BKR [12], following [6], was security for corre-
lated but parameter-independent messages. For this notion they proved security
of CE in the ROM, gave new, secure ROM schemes, and made partial progress
towards the challenging task of security without ROs. An efficient scheme in
the standard model, also for correlated but parameter-independent messages,
was provided in [10] assuming UCE-secure hash functions. (Specifically, against
statistically unpredictable sources.)

Abadi, Boneh, Mironov, Raghunathan and Segev (ABMRS) [1] initiated
treatment of security for parameter dependent messages, which they termed
lock-dependent security. Achieving this is challenging. They gave a ROM so-
lution that uses NIZK proofs to provide proofs of consistency. But to achieve
security for parameter-dependent messages they were forced to sacrifice secu-
rity for correlated messages. Their result assumes messages being encrypted are
independently distributed.

Questions and goals. The question we pose and address in this paper is, is it
possible to achieve the best of both worlds, meaning security for messages that
are both correlated and parameter dependent? This is important in practice. As
indicated above, schemes for secure deduplication are currently deployed and in
use in many systems [2,4,5,18,26,27,29,35,39,46,47,52,54]. In usage, messages are
very likely to be correlated. For example, suppose Alice has uploaded a ciphertext
c encrypting a paper m she is writing. She edits m to m′, and uploads the new
version. The two plaintexts m,m′ could be closely related, differing only in a few
places. Also, even if messages of honest users are unlikely to depend on system
parameters, attackers are not so constrained. Lack of security for parameter-
dependent messages could lead to breaches. This is reflected for example in the
BEAST attack on CBC in SSL/TLS [32]. We note that the question of achieving
security for messages that are both correlated and parameter dependent is open
both in the ROM and in the standard model.

Contributions in brief. We answer the above questions by providing a dedu-
plication scheme secure for messages that are both correlated and parameter
dependent. Additionally, our scheme is standard-model, not ROM. The key new
ingredient is interaction. In our solutions, upload and download are interactive
protocols between the client and server. To specify and analyze these protocols,
we define a new primitive, interactive MLE or iMLE. We provide a syntax and
definitions of security, then specify and prove correct our protocols.

iMLE turns out to be interesting in its own right and yields some other ben-
efits. We are able to provide the first secure deduplication scheme that permits
incremental updates. This means that if a client’s message changes only a little,
for example due to an edit to a file, then, rather than create and upload an
entirely new ciphertext, she can update the existing one with communication
cost proportional only to the distance between the new and old plaintexts. This
is beneficial because communication is a significant fraction of the operating ex-
penditure in outsourced storage services. For example, transferring one gigabyte
to the server costs as much storing one gigabyte for a month or longer in popular
storage services [3,40,49]. In particular, backup systems, an important use case
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for deduplication, are likely to benefit, as the operations here are incremental by
nature. Incremental cryptography was introduced in [8, 9] and further studied
in [14,22,34,50].

Interaction? One might question the introduction of interaction. Isn’t a non-
interactive solution preferable? Our answer is that we don’t “introduce” interac-
tion. It is already present. Upload and download in real systems is inherently and
currently interactive, even in the absence of security. MLE is a cryptographic
core, not a full deduplication system. If MLE is used for secure deduplication,
the uploads and downloads will be interactive, even though MLE is not, due to
extra flows that the full system requires. Interaction being already present, it
is natural to exploit it for security. In doing so, we are taking advantage of an
existing resource rather than introducing an entirely new one.

MLE considered a single client. But in a full deduplication system, there
are multiple clients concurrently executing uploads and downloads. Our iMLE
model captures this. iMLE is thus going further towards providing security of
the full system rather than just a cryptographic core. We know from experience
that systems can fail in practice even when a “proven-secure” scheme is used if
the security model does not encompass the full range of attacker capabilities or
security goals of the implementation. Modeling that penetrates deeper into the
system, as with iMLE, increases assurance in practice.

We view iMLE as a natural extension of MLE. The latter abstracted out an
elegant primitive at the heart of the secure deduplication problem that could
be studied in isolation. We study the full deduplication system, leveraging MLE
towards full solutions with added security features.

Duplicate faking. In a duplicate faking attack, the adversary concocts and
uploads a perverse ciphertext c∗ with the following property. When honest Alice
uploads an encryption c of her message m, the server’s test (wrongly) indicates
that the plaintexts underling c∗, c are the same, so it discards c, returning c∗ to
Alice upon a download request. But when Alice decrypts c∗, she does not get
back her original plaintext.

Beyond privacy, BKR [12] defined an integrity requirement for MLE called
tag consistency whose presence provides security against duplicate faking at-
tacks. The important tag consistency property is possessed by the prior MLE
schemes of Fig. 1 and also by our new iMLE schemes.

Deterministic schemes provide tag consistency quite easily and naturally.
But ABMRS [1] indicate that security for parameter-dependent messages re-
quires randomization. Tag consistency now becomes challenging to achieve. In-
deed, providing it accounts for the use of NIZKs and the corresponding cost and
complexity of the ABMRS scheme [1].

In the interactive setting, we capture the requirement underlying tag consis-
tency by a recovery condition that is part of our soundness definition and require-
ment. Soundness in particular precludes duplicate faking attacks in the interac-
tive setting. Our scheme provides soundness, in addition to privacy for messages
that are both correlated and parameter dependent. Our FCHECK solution uses
composable point function obfuscation [17] and FHE [19–21,28,36,38,55].
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Closer look. We look in a little more detail at the main definitional and
scheme contributions of our work.

Public parameters for an iMLE scheme are created by an Init algorithm.
Subsequently, a client can register (Reg), upload (Put) and download (Get).
Incremental schemes have an additional update (Upd). All these are interactive
protocols between client and server. For soundness, we ask that deduplication
happens as expected and that clients can recover their uploaded files even in
the presence of an attacker which knows all the files being uploaded and also
read the server’s storage at any moment. The latter condition protects against
duplicate-faking attacks. Our security condition is modeled on that of BKR [12]
and requires privacy for correlated but individually unpredictable messages that
may depend on the public parameters.

Our FCHECK construction, described and analyzed in Section 4, achieves
soundness as well as privacy for messages that are both correlated and param-
eter dependent, all in the standard model, meaning without recourse to ran-
dom oracles. The construction builds on a new primitive we call MLE-Without-
Comparison (MLEWC). As the name indicates, MLEWC schemes are similar
to MLE schemes in syntax and functionality, except that they do not support
comparison between ciphertexts. We show that MLEWC can be realized in the
standard model, starting from point function obfuscation [17] or, alternatively,
UCE-secure hash function families [10]. However, comparison is essential to en-
able deduplication. To enable comparison, FCHECK employs an interactive pro-
tocol using a fully homomorphic encryption (FHE) scheme [19–21,28,36,38,55],
transforming the MLEWC scheme into an iMLE scheme.

We then move on to the problem of incremental updates. Supporting incre-
mental updates over MLE schemes turns out to be challenging: deterministic
MLE schemes cannot support incremental updates, as we show in the full ver-
sion [11], while randomized MLE schemes seem to need complex machinery such
as NIZK proofs of consistency [1] to support incremental updates while retaining
the same level of security as deterministic schemes, which makes them unfit for
practical usage. We show how interaction can be exploited to solve this problem.
We describe an efficient ROM scheme IRCE that supports incremental updates.
The scheme, in its simplest form, works like the randomized convergent encryp-
tion (RCE) scheme [12], where the message is encrypted with a random key using
a blockcipher in counter (CTR) mode, and the random key is encrypted with a
key derived by hashing the message. We show that this indirection enables in-
cremental updates. However, RCE does not support strong tag consistency and
hence cannot offer strong security against duplicate faking attacks. We overcome
this in IRCE by including a simple response from the server as part of the upload
process. We remark that IRCE is based off a core MLE (non-interactive) scheme
permitting incremental updates, interaction being used only for tag consistency.
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Run(1λ,P, inp)

n← 1; i← 1; M← ε; a[1, 1]← inp[1]; a[2, 1]← inp[2]

While T[n] = False

(a[n, i+ 1], M, T[n])←$ P[n, i](1λ,a[n, i], M)

If n = 2 then n← 1; i← i+ 1 else n← 2

Ret last(a[1]), last(a[2])

Msgs(1λ,P, inp, r)

n← 1; i← 1; j ← 1; a[1, 1]← inp[1]; a[2, 1]← inp[2]; M← ε

While T[n] = False

(a[n, i+ 1], M, T[n])←$ P[n, i](1λ,a[n, i], M; r[n, i]); M[j]← M; j ← j + 1

If n = 2 then n← 1; i← i+ 1 else n← 2

Ret M

Fig. 2. Top: Running a 2-player protocol P. Bottom: The Msgs procedure returns the
messages exchanged during the protocol when invoked with specified inputs and coins.

2 Preliminaries

We let λ ∈ N and 1λ denote the security parameter and its unary repre-
sentation. The empty string is denoted by ε. We let |S| denote the size of a
finite set S and let s←$ S denote sampling an element from S at random and
assigning it to s. If a, b ∈ N and a < b, then [a] denotes the set {1, . . . , a} and
[a, b] denotes the set {a, . . . , b}. For a tuple x, we let |x| denote the number of
components in x, and x[i] denote the i-th component, and last(x) = x[|x|],
and x[i, j] = x[i] . . .x[j] for 1 ≤ i ≤ j ≤ |x|. A binary string s is identified with
a tuple over {0, 1}. The guessing probability of a random variable X, denoted
by GP(X), is defined as GP(X) = maxx Pr[X = x]. The conditional guessing
probability GP(X |Y ) of a random variable X given a random variable Y are
defined via GP(X |Y ) =

∑
y Pr[Y = y] ·maxx Pr[X = x|Y = y].

The Hamming distance between s1, s2 ∈ {0, 1}` is given by HAMM(s1, s2) =∑`
i=1(s1[i]⊕ s2[i]). We let patchHAMM(s1, δ) be the string s such that s[i] = s1[i]

if i 6∈ δ and s[i] = ¬s1[i] if i ∈ δ and diffHAMM(s1, s2) = {i : s1[i] 6= s2[i]}.
Algorithms are randomized and run in polynomial time (denoted by PT)

unless otherwise indicated. We let y ← A(a1, . . . ; r) denote running algorithm
A on a1, . . . with coins r and assigning the output to y, and let y←$A(a1, . . .)
denote the same operation with random coins. We let [A(a1, . . .)] denote the set
of all y that have non-zero probability of being output by A on inputs a1, . . ..
Adversaries are either algorithms or tuples of algorithms. A negligible function
f approaches zero faster than the polynomial reciprocal; for every polynomial p,
there exists np ∈ N such that f(n) ≤ 1/p(n) for all n ≥ np.

We use the code-based game playing framework of [16] along with extensions
of [53] and [12] when specifying security notions and proofs.

A two player q-round protocol P is represented through a 2 × q-tuple
(P[i, j])i∈[2],j∈[q] of algorithms where P[i, j] represents the action of the i-th
player invoked for the j-th time. We let P[1] denote the player who initiates
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the protocol, and P[2] denote the other player. Each algorithm is invoked with
1λ, an input a, and a message M ∈ {0, 1}∗, and returns a 3-tuple consisting of
an output a′, an outgoing message M′ ∈ {0, 1}∗, and a boolean T to indicate
termination. The Run algorithm (Fig. 2) captures the execution of P, and Msgs
(Fig. 2) returns the messages exchanged in an instance of P, when invoked with
specified inputs and coins.

Adversarial model. A secure deduplication system (built from an iMLE
scheme) will operate in a setting with a server and several clients. Some clients
will be controlled by an attacker, while others will be legitimate, belonging to
honest users and following the protocol specifications. A resourceful attacker,
apart from controlling clients, could gain access to server storage, and interfere
with communications. Our adversarial model captures an iMLE scheme running
in the presence of an attacker with such capabilities.

We now walk through an abstract game G, and explain how this is achieved.
The games in the rest of the paper, for soundness, security, and other properties
of iMLE largely follow this structure. The game G sets up and controls a server
instance. The adversary A is invoked with access to a set of procedures. Usually,
the objective of the game involves A violating some property guaranteed to
legitimate clients like L, such as ability to recover stored files, or privacy of
data.

The Msg procedure can send arbitrary messages to the server and can be
used to create multiple clients, and run multiple instances of protocols, which
could deviate from specifications.

The Init and Step procedures control a single legitimate client L. The Init
procedure starts protocol instances on behalf of L, using inputs of A’s choice.
The Step procedure advances a protocol instance by running the next algorithm.
Together, these procedures let A run several legitimate and corrupted protocol
instances concurrently.

The State procedure returns the server’s state, which includes stored ci-
phertexts, public parameters, etc.. In some games, it also returns the state and
parameters of L. State provides only read access to the server’s storage. This
restriction is necessary. If A is allowed to modify the storage of the server, then
it can always tamper with the data stored by the clients, making secure dedu-
plication impossible.

We assume that A can read, delay and drop messages between the server and
legitimate clients. However, A cannot tamper with message contents, reorder
messages within a protocol, or redirect messages from one protocol instance to
another. This assumption helps us simplify the protocol descriptions and proofs.
Standard, efficient techniques can be used to transform the protocols from this
setting to be secure in the presence of an attacker that can tamper and reorder
messages [7].

3 Interactive message-locked encryption

Definition. An interactive message-locked encryption scheme iMLE consists of
an initialization algorithm Init and three protocols Reg,Put,Get. Initialization
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Main(1λ) // RecA
iMLE(1

λ)

win← False; σS ←$ Init(1λ)

AReg,Init,Step,Msg,State(1λ); Ret win

Reg // Set up the legitimate client L.

(σC , σS)←$ Run(Reg, ε, σS)

Init(P, inp) // Start a protocol with L.

If P 6∈ {Put,Get} then ret ⊥
p← p + 1; j ← p; PS[j] = P

a[j, 1] ← inp; N[j] ← 1; M[j] ← ε; Ret j

Msg(P, i, M) // Send message to server.

If P 6∈ {Reg,Put,Get,Upd} then ret ⊥
(σS , M, N, T)←$ P[2, i](1λ, σS , M); Ret M

Step(j) // Advance by one step.

P← PS[j]; n← N[j]; i← rd[j]

If T[j, n] then return ⊥
If n = 2 then inp← σS else inp← a[j, i]

(outp, M[j], T[j, n])←$ P[n, i](1λ, inp, M[j])

If n = 2 then

σS ← outp; N[j]← 1; rd[j]← rd[j] + 1

Else a[j, i+ 1]← outp; N[j]← 2

If T[j, 1] ∧ T[j, 2] then WinCheck(j)

Ret M[j]

WinCheck(j) // Check if A has won.

If PS[j] = Put then

(σC ,m)← a[j, 1]

f ← last(a[j]); T [f ]← m

If PS[j] = Get then

(σC , f)← a[j, 1]; m′ ← last(a[j])

win← win ∨ (m′ 6= T [f ])

Fig. 3. The Rec game. The State procedure returns σS , σC .

Init sets up server-side state: σS ←$ Init(1λ). Each protocol P consists of two
players - a client P[1] (meaning that the client always initiates), and a server
P[2]. All server-side algorithms P[2, ·] take server-side state σS as input, and
produce an updated state σ′S as output. The Reg protocol registers new users;
here, Reg[1] takes no input and returns client parameters σC ∈ {0, 1}∗. The Put
protocol stores files on the server; here, Put[1] takes plaintext m ∈ {0, 1}∗ and
σC as inputs, and outputs an identifier f ∈ {0, 1}∗. The Get protocol retrieves
files from the server; here, Get[1] takes identifier f and σC as inputs, and outputs
plaintext m ∈ {0, 1}∗.

Soundness. We require two conditions. First is deduplication, meaning that
if a client puts a ciphertext of a file already on the server, then the storage
should not grow by the size of the file. A small increase towards book-keeping
information, that is independent of the size of the file, is permissible. More
precisely, there exists a bound ` : N → N such that for all server-side states
σS ∈ {0, 1}∗, for all valid client parameters (derived through Reg with fresh
coins) σC , σ

′
C , for all m ∈ {0, 1}∗, the expected increase in size of σ′′S over σ′S

when (f ′, σ′S)←$ Run(Put, (σC ,m), σS) and (f ′, σ′′S)←$ Run(Put, (σ′C ,m), σ′S) is
bounded by `(λ).

The second condition is correct recovery of files: if a legitimate client puts
a file on the server, it should be able to get the file later. We formalize this
requirement by the Rec game of Fig. 3, played with an adversary A, which gets
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access to procedures Reg, Init,Step,Msg,State. We provide an overview of
these procedures here.

The Reg procedure sets up a legitimate client L by running
Run(1λ,Reg, (ε, σS)) . The Init procedure lets A run protocols on behalf of L.
It takes input inp and P, where P has to be one of Put,Get, and inp should be
the a valid input for P[1, 1]. A new instance of P is set up, and A is returned
j ∈ N, an index to the instance. The Step procedure takes input j, advances
the instance by one algorithm unless the current instance has terminated. The
outgoing message is returned to A. The inputs and outputs of the protocol steps
are all stored in an array a. The State procedure returns σS , σC .

If an instance j has terminated, then Step runs WinCheck, which maintains
a table T . If j is an instance of Put, then m and identifier f are recovered from
a[j] and T [f ] gets m. If j is an instance of Get, then WinCheck obtains f and
the recovered plaintext m′, and checks if T [f ] = m′. If this fails, either because
T [f ] is some value different from m′, or is undefined, then WinCheck sets the
win flag, which is the condition for A to win the game. We associate advantage
AdvreciMLE,A(λ) = Pr[RecA

iMLE(1λ)] with iMLE and A. For recovery correctness, we
require that the advantage should be negligible for all PT A.

Security. The primary security requirement for iMLE schemes is privacy of
unpredictable data. Unpredictability (plaintexts drawn from a distribution with
negligible guessing probability) is a prerequisite for privacy in MLE schemes [12],
as without unpredictability, a simple brute-force attack can recover the contents
of a ciphertext by generating keys from all candidate plaintexts and checking if
decrypting the ciphertext with the key leads back to the candidate plaintext. A
similar argument extends unpredictability as a requirement to secure deduplica-
tion schemes as well. We formalize unpredictability as follows.

A source S is an algorithm that on input 1λ and a string d ∈ {0, 1}∗ returns
a pair of tuples (m0,m1). There exist m : N → N and ` : N × N → N such
that |m0| = |m1| = m(λ), and |m0[i]| = |m1[i]| = `(λ, i) for all i ∈ [m(λ)].
All components of m0 and m1 are unique. The guessing probability GPS(λ) of
S is defined as maxi,b,d(GP(mb[i])) when (m0,m1)←$ S(1λ, d). We say that S
is unpredictable if GPS(·) is negligible. We say that S is a single source if it
only outputs one tuple, but satisfies the other conditions. We say that S is an
auxiliary source if it outputs a string z ∈ {0, 1}∗ along with m0,m1 and if it
holds that guessing probability conditioned on z is negligible.

The Priv game of Fig. 4, associated with iMLE, a source S and an adversary
A, captures privacy for unpredictable messages independent of the public pa-
rameters of the system. As with Rec, the game starts by running σS ←$ Init(1λ)
to set up the server-side state. The game then runs S to get (m0,m1), picks
a random bit b, and uses mb as messages to be put on the server. Then, A is
invoked with access to Reg,Put, Step,Msg and State. The Reg,State, and
Msg oracles behave in the same way as in Rec. The Step oracle here is similar
to that of Rec, except that it does not invoke WinCheck. Adversary A can
initialize an instance of Put with a plaintext mb[i] by calling Put(i).
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Main(1λ) // PrivS,A(1λ)

b←$ {0, 1}; p← 0; σS ←$ Init(1λ)

m0,m1←$ S(1λ, ε)

b′←$ APut,Upd,Step,Msg,Reg,State(1λ)

Ret (b = b′)

Reg

(σC , σS)←$ Run(Reg, ε, σS)

Put(i) // Start a Put instance

p← p + 1; PS[p] = Put

a[p, 1]←mb[i]

N[p]← 1; M[p]← ε; Ret p

State

If cheat = False then

done← True; ret σS

else ret ⊥

Main(1λ) // PDPrivS,A(1λ)

b←$ {0, 1}; p← 0; σS ←$ Init(1λ)

b′←$ APtxt,Put,Upd,Step,Msg,Reg,State(1λ)

Ret (b = b′)

Ptxt(d)

m0,m1←$ S(1λ, d)

Msg(P′, M) // Send a message to the server

If P′ 6∈ {Reg,Put,Get,Upd} then ret ⊥
(σS , M, T)←$ P′[2](1λ, σS , M)

Ret (σS , M, N, T)

Step(j) // Advance instance by a step.

P← PS[j]; n← N[j]; i← rd[j]

If T[j, n] or done then return ⊥
If n = 2 then inp← σS else inp← a[j, i]

(outp, M[j], T[j, n])←$ P[n, i](1λ, inp, M[j])

If n = 2 then

σS ← outp; N[j]← 1; rd[j]← rd[j] + 1

else a[j, i+ 1]← outp; N[j]← 2

If n = 1 and T[j, n] then

Tf [a[j, 1]]← last(a[j])

Fig. 4. The Priv and PDPriv security games. Apart from Main, the games share the
same code for all procedures. The PDPriv game has an additional Ptxt procedure.

We associate advantage AdvpriviMLE,S,A(λ) = 2 Pr[PrivS,A
iMLE(1λ)]−1 with a iMLE

a source S and an adversary A. We require that the advantage should be negli-
gible for all PT A for all unpredictable PT S.

The PDPriv game of Fig. 4 extends Priv-security to messages depending on
the public parameters of the system, a notion termed lock-dependent security in
[1]. Here, we term this parameter-dependent security. In this game, the adversary
A gets access to a Ptxt procedure, which runs S(1λ, σS) to get m0,m1. The
other procedures follow Priv. A simpler approach is to run S with σS when the
game starts (i.e. in main) as in Priv. However, this leads to trivial constructions
where Init is a dummy procedure, and the system parameters are generated
when the first client registers. This is avoided in PDPriv by letting A decide,
through Ptxt, when S is to be run. We associate advantage AdvldpriviMLE,S,A(λ) =

2 Pr[PDPrivS,A
iMLE(1λ)] − 1 with a scheme iMLE a source S and an adversary A.

We require that advantage should be negligible for all PT A for all unpredictable
PT S.
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Put[1]((pk, sk),m) Put[2](σS , ε)

cf ←$ Epk(m) pk, cf
−−−−−−−−→ cr←$ Ef(1

λ, pk, 0κ(λ))

ci←$ Ef(1
λ, pk, 0); cn ← ci

For (p, c) ∈ fil do

cp←$ Ef(1
λ, pk, p)

cc←$ Ef(1
λ, pk, c)

c′←$ Evf(1
λ, pk, cmp,

cf , cp, cc, cr, cn, ci)

cr, cn, ci ← c′cr, cn
←−−−−−−−−p← Df(1

λ, sk, cr)

n← Df(1
λ, sk, cn) n

−−−−−−−−→ (p, c)← fil[n]
p, c

←−−−−−−−−If n 6= 0 then

c1 ← ε; k ← K(1λ, p,m)

If D(1λ, k, c) 6= m then ret ⊥
Else

p←$ P(1λ); k ← K(1λ, p,m)

c1←$ E(1λ, k,m)

c2 ← Epk(k) c1, c2, p, u, n
−−−−−−−−→ If c1 6= ε then

nf ← nf + 1; i← nf
fil[i]← (p, c1)

c2 ← SiffE(own, (u, i), c2)i
←−−−−−−−−If n 6= 0 and i 6= n then ret ⊥

else ret i

Reg[1](ε) Reg[2](σS)

(pk, sk)←$ Kf ε
−−−−−−−−→ u←$ {0, 1}λ \U

U← U ∪ {u}u
←−−−−−−−−Ret (pk, sk, u)

Get[1]((pk, u, sk), f) Get[2](σS , ε)

u, f
−−−−−−−−→ c2 ← own[u, i]; (p, c1)← fil[i]

If c2 = ⊥ then c1 ← ⊥c1, c2
←−−−−−−−−If c1 = ⊥ then ret ⊥

k ← Df(1
λ, sk, c2)

Ret D(1λ, k, c1)

Fig. 5. The FCHECK scheme over FHE = (Kf ,Ef ,Df ,Evf) and MLEWC = (P,E,K,D).

4 The FCHECK scheme

In this section, we describe the the FCHECK construction, which achieves sound-
ness as well as security for messages that are both correlated and parameter-
dependent, all in the standard model. As we noted in the introduction, prior
to our work, achieving parameter-dependent correlated input security was open
even in the random oracle model. We are able to exploit interactivity as a new
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Main(1λ) // WPRIVS,A(1λ)

(m0,m1, z)←$ S(1λ, ε); b←$ {0, 1}
For i ∈ [|mb|] do

p[i]←$ P(1λ); k[i]←$ K(1λ,p[i],mb[i])

c[i]←$ E(1λ,k[i],mb[i])

b′←$ A2(1λ,p, c, z); Ret (b = b′)

Main(1λ) // CDIPFOS,A
OS (1λ)

(p, z)←$ S(1λ); b←$ {0, 1}
For i ∈ [|p|] do

If b = 1 then

(α, β)← p[i]; F[i]←$ Obf(1λ, (α, β))

Else

(α′, β′)← p[i] ; α←$ {0, 1}|α
′|; β←$ {0, 1}|β

′|

F[i]←$ Obf(1λ, (α, β))

b′←$ A(1λ,F[i], z); Ret (b = b′)

Fig. 6. The WPRIV game on the left, and the and CDIPFO game on the right.

ingredient to design a scheme that achieves security for parameter-dependent
correlated messages.

Our approach starts by going after a new, seemingly weak primitive, one
we call MLE-Without-Comparison (MLEWC). As the name indicates, MLEWC
schemes are similar to MLE schemes in syntax and functionality, except that they
do not support comparison between ciphertexts. We show that MLEWC can be
realized in the standard model, starting from point function obfuscation [17]
or, alternatively, UCE-secure hash function families [10]. However, comparison
is essential to enable deduplication. To enable comparison, FCHECK employs
an interactive protocol using a fully homomorphic encryption (FHE) scheme
[19–21, 28, 36, 38, 55], transforming the MLEWC scheme into an iMLE scheme.
We view FCHECK as a theoretical construction, and not an immediately practical
iMLE scheme.

MLE Without Comparison (MLEWC). A scheme MLEWC = (P,E,K,D)
consists of four algorithms. Parameters are generated via p←$ P(1λ). Keys are
generated via k←$ K(1λ, p,m), where m ∈ {0, 1}µ(λ) is the plaintext. Encryp-
tion E takes p, k,m and returns a ciphertext c←$ E(1λ, k,m). Decryption D
takes input k, c and returns m ← D(1λ, k, c), or ⊥. Correctness requires that
D(1λ, k, c) = m for all k ∈ [K(1λ, p,m)], for all c ∈ [E(1λ, k,m)], for all p ∈
[P(1λ)], for all m ∈ {0, 1}κ(λ) for all λ ∈ N.

The WPRIV game with MLEWC, an auxiliary source S and an adversary A
is described in Fig. 6. The game runs S to get two vectors m0,m1, and forms c by
encrypting one of the two vectors, using a fresh parameter for each component,
or by picking random strings. A should guess which the case is. We associate
advantage AdvwprivMLEWC,S,A(λ) = 2 Pr[WPRIVA,S

MLEWC(1λ)] − 1. For MLEWC to be
WPRIV-secure, advantage should be negligible for all PT adversaries A for all
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unpredictable PT auxiliary sources S. Note that unlike PRIV, here, a fresh
parameter is picked for each encryption, and although we will end up using
WPRIV-secure schemes to build parameter-dependent iMLE, in the WPRIV
game, the source S is not provided the parameters.

Fully homomorphic encryption (FHE) [36]. An FHE scheme FHE =
(Kf ,Ef ,Df ,Evf) is a 4-tuple of algorithms. Key generation Kf(1

λ) returns (pk, sk),
encryption Ef(1

λ,) takes pk, plaintext m ∈ M(λ), and returns ciphertext c,
and decryption returns m′ ← Df(1

λ, sk, c) on input sk and ciphertext c, where
m = ⊥ indicates an error. The set of valid ciphertexts is denoted by C(λ) =
{c : Df(1

λ, sk, c) 6= ⊥, (pk, sk) ∈ [Kf(1
λ)]}. Decryption correctness requires that

Df(1
λ, sk,Ef(1

λ, pk,m)) = m for all (pk, sk) ∈ [Kf(1
λ)], for all m ∈M(λ) for all

λ ∈ N.

Let 〈.〉 denote an encoding which maps boolean circuits f to strings denoted
by 〈f〉 such that there exists PT Eval which satisfies Eval(〈f〉, x) = f(x) for
every valid input x ∈ {0, 1}n, where n is the input length of f . Evaluation Evf
takes input a public key pk, a circuit encoding 〈f〉 and a tuple of ciphertexts
c such that |c| is the input length of f and returns c′←$ Evf(1

λ, pk, 〈f〉, c).
Evaluation correctness requires that for random keys, on all functions and all
inputs, Evf must compute the correct output when run on random coins, except
with negligible error.

The FCHECK scheme. Let FHE = (Kf ,Ef ,Df ,Evf) be an FHE scheme, and
let MLEWC = (P,E,K,D) be a MLEWC scheme where K is deterministic. The
FCHECK[FHE,MLEWC] iMLE scheme is described in Fig. 5. The Init algorithm
is omitted: it lets U← ∅, and lets fil and own be empty tables.

In FCHECK, clients encrypt their plaintexts with MLEWC to be stored on
the server, but pick a fresh parameter each time. The server’s storage consists of
a list of ciphertext-parameter pairs c[i],p[i]. When a client wants to put m, for
each such c[i],p[i], the server should generate a key k[i] ← K(1λ,p[i],m) and
check if D(1λ,k[i], c[i]) = m.

A match means that a duplicate ciphertext already exists on the server, while
no match means that m is a fresh plaintext. The search for a match should be
carried without the server learning m and is hence done over FHE ciphertexts
of the components. The client sends pk and cf ←$ Ef(1

λ, pk,m) and the server
encrypts each c[i],p[i] to get cc and cp and runs Evf on the cmp circuit described
below with these values.

cmp(m, p, c, r, n, i)

If D(1λ,K(1λ, p,m), c) = m and r = 0κ(λ) then return p, i+ 1, i+ 1
Else return r, n, i+ 1

The client is provided the encryptions of r and n in the end. If n = 0, no match
was found, and the client picks p←$ P(1λ), computes c← E(1λ,K(1λ, p,m),m),
and sends p, c to be stored on the server. Otherwise, n refers to the index of
the match, and serves as the tag, and r refers to the parameter in the match.
Now the client computes k ← K(1λ, r,m), encrypts it under its private key, and
stores the result on the server. The Reg and Get protocols proceed in a simple
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manner, and are described in Fig. 5. It can be checked that FCHECK performs
deduplication as expected, and we show this formally in the full version.

E(1λ, kH, k,m)

c0←$ Obf(1λ, k, 0))

For i ∈ [|m|] do

ci←$ Obf(1λ, k‖〈i, `〉‖m[i], 0)

Ret c0, . . . c|m|

D(1λ, kH, k, c0, . . . cn)

If Eval(1λ, c0, k) = ⊥ then ret ⊥
For i ∈ [n] do

If Eval(1λ, ci, k‖〈i, `〉‖0) = 1 then

mi ← 0

else mi ← 1

Ret m1‖ . . . ‖mn

Fig. 7. The HtO MLEWC scheme, with a CR hash HF and a point obfuscation
scheme OS. Here, parameters are generated via P(1λ) which runs Kh(1λ) and returns
the output, while message-derived keys are generated by letting K(1λ, kH,m) return
k ← H(1λ, kH,m).

Theorem 1. If MLEWC is a correct MLEWC scheme then
FCHECK[MLEWC,FHE] is Rec-secure.

Proof sketch. Observe that that whenever a client puts m, and a match is
found in Put[2, 1], the client asks for the p, c pair corresponding to the index
with the match, and checks by itself that this pair is a valid ciphertext for m.
This, combined with the immutability of fil and own leads to perfect recovery
correctness.

Theorem 2. If MLEWC is WPRIV-secure and FHE is CPA-secure, then
FCHECK[MLEWC,FHE] is PDPriv-secure.

Proof sketch. We replace the c2 components with encryptions of random strings,
and use the CPA security of FHE to justify this. Now, only the p, c pairs of the
plaintexts reside on the server, and hence we can hope to show that if there
exists an adversary A that can guess the challenge bit from only the p, c values,
then such an A can be used to build another adversary B which breaks WPRIV
security of MLEWC.

But this cannot be accomplished right away. When A asks the game to run
Put with some mb[i], then B cannot simulate Put[2, 1] which looks through p, c
for a match for mb[i] without knowing mb[i]. The proof first gets rid of the search
step in Put[2, 1] and then builds B. We argue that the search step can be avoided.
The adversary A, with no knowledge of the messages that the unpredictable
source S produced, would have been able to use Msg to put a ciphertext for a
mb[i] only with negligible probability.

Constructing MLEWC schemes. To get an iMLE scheme via FCHECK, we
still need to construct a MLEWC scheme. The lack of comparison means that
MLEWC schemes should be easier to construct compared to MLE schemes, but
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constructions must still overcome two technical challenges: encrypting messages
with keys derived from the messages themselves, and dealing with correlated
messages. We explore two approaches to overcoming these two challenges. The
first utilizes a special kind of point-function obfuscation scheme, and the second
uses a UCE-secure [10] hash function. This construction, which we describe in
the full version. is straightforward. We start with a hash function family, HF =
(Kh,H). Parameter generation picks a hash key kH. Given m, the key is generated
as k ← H(1λ, kH,m, 1

λ), and ciphertext as c← H(1λ, kH, k, 1
|m|)⊕m. Decryption,

on input k, c removes the mask to recover m.
We now elaborate on the first approach, which builds a MLEWC scheme from

a composable distributional indistinguishable point-function obfuscation scheme
(CDIPFO) [17]. To give a high level idea for why CDIPFOs are useful, we note
that point-function obfuscation is connected to encryption secure when keys
and messages are related [25]. Moreover, CDIPFOs, due to their composability,
remain secure even when obfuscations of several correlated points are provided
and thus enable overcoming the two challenges described above.

Let α, β ∈ {0, 1}∗. We let φα,β : {0, 1}∗ → {β,⊥} denote the function that
on input γ ∈ {0, 1}∗ returns β if γ = α, and ⊥ otherwise. We call α the special
input, and β the special output. A point function obfuscator OS = (Obf,Eval) is
a pair of algorithms. Obfuscation takes (α, β) and outputs F←$ Obf(1λ, (α, β)),
while Eval takes F, and a point γ and returns y←$ Eval(1λ,F, γ). Correctness
requires that Eval(1λ,Obf(1λ, α, β), α) = β for all α, β ∈ {0, 1}∗, for all λ ∈ N.

A PF source S outputs a tuple of point pairs p, along with auxiliary infor-
mation z. There exist m : N→ N and ` : N× N→ N such that |p| = m(λ), and
|p[i, 0]| = `(λ, 0) and |p[i, 1]| = `(λ, 1) for all i ∈ [m(λ)]. Guessing probability
GPS(λ) is defined as maxi(GP(p[i, 0]|z)) when (p, z)←$ S(1λ). We say that S
is unpredictable if GPS(·) is negligible.

Distributional indistinguishability for point function obfuscators is captured
by the CDIPFO game (Fig. 6) associated with OS, an PF source S, and an adver-
sary A. At a high level, the game either provides OS-obfuscations of point func-
tions from S, or from a uniform distribution, and to win, the adversary A should
guess which the case is. We associate advantage AdvcdipfoOS,S,A(λ) = 2 Pr[CDIPFOA,S

OS (1λ)]−
1 with OS,S and A and say that OS is CDIPFO-secure if advantage is negli-
gible for all PT A for all unpredictable PT S. Bitansky and Canetti show that
CDIPFOs can be built in the standard model, from the t-Strong Vector Decision
Diffie Hellman assumption [17].

Let HF = (Kh,H) denote a family of CR hash functions. The Hash-then-
Obfuscate transform HtO[HF,OS] = (P,E,K,D) associates an MLEWC scheme
with HF and OS as in Fig. 7, restricting the message space to `-bit strings. At
a high level, a key is generated by hashing the plaintext m with HF, and m
is obfuscated bit-by-bit, with the hash as the special input. Decryption, given
the hash, can recover m from the obfuscations. Correctness follows from the
correctness of OS, and the following theorem shows WPRIV-security.

Theorem 3. If HF is CR-secure, and OS is CDIPFO-secure, then HtO[HF,OS]
is WPRIV-secure.
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The proof of the theorem and some remarks on HtO appear in the full version.

5 Incremental updates

In this section, we define iMLE with incremental updates, and provide a con-
struction which achieves this goal. Building MLE schemes which can support
incremental updates turns out to be challenging. On the one hand, it is easy to
show that deterministic MLE schemes cannot support incremental updates. We
elaborate on this in full version. On the other hand, randomized MLE schemes
seem to need complex machinery such as NIZK proofs of consistency [1] to
support incremental updates while retaining the same level of security as de-
terministic schemes, which makes them unfit for practical usage. We show how
interaction can be exploited to achieve incremental updates in a practical man-
ner, by building an efficient ROM iMLE scheme IRCE that supports incremental
updates. We fix Hamming distance as the metric. In the full version, we define
incremental updates w.r.t edit distance, and extend IRCE to work in this setting.

An interactive message-locked encryption scheme iMLE with updates sup-
ports an additional protocol Upd along with the usual three protocols Reg,Put,
and Get. The Upd protocol updates a ciphertext of a file m1 stored on the
server to a ciphertext of an updated file m2. Here, Upd[1] (i.e. the client-side
algorithm) takes inputs f , σC , and two plaintexts m1,m2, and outputs a new
identifier f2 ∈ {0, 1}∗.

Now, the Rec game (Fig. 3) which asks for correct recovery of files also
imposes conditions on update, namely that if a legitimate client puts a file on
the server, it should be able to get the file later along with updates made to the
file. This is captured by letting the adversary pick Upd as the protocol in the
Init procedure. The WinCheck procedure, which checks if the adversary has
won, is now invoked at successful runs of Upd additionally. It infers the value
of f used in the update protocol as well as the updated plaintext m2 and sets
T [f ]← m2, thus letting the adversary to win if a get at f does not return m2.

We say that a scheme iMLE has incremental updates if the communication
cost of updating a ciphertext for m1 stored on the server to a ciphertext for m2

is a linear function of HAMM(m1,m2) and log |m2|. More formally, there exists a
linear function u : N×N→ N such that for all client parameters σC , for all server-
side states σS ∈ {0, 1}∗, for all plaintextsm1,m2 ∈ {0, 1}∗ such that |m1| = |m2|,
for all coins r1, r2, for all f ∈ {0, 1}∗, if (m1, σ

′
S)← Run(Get, (σC , f), σS ; r1), and

(f ′, σ′′S) ← Run(Upd, (σC ,m1,m2), σS ; r2), and f ′ 6= ⊥, then
|Msgs(Upd, (σC ,m1,m2), σS ; r2)| ≤ HAMM(m1,m2)u(log |m1|, λ).

Preliminaries. A deterministic symmetric encryption (D-SE) scheme SE =
(E,D) is a pair of algorithms, where encryption returns c ← E(1λ, k,m) on
input plaintext m ∈ {0, 1}∗ and key k ∈ {0, 1}κ(λ), and decryption returns
m← D(1λ, k, c). Correctness requires D(1λ, k,E(1λ, k,m)) = m for all plaintexts
m ∈ {0, 1}∗ for all keys k ∈ {0, 1}κ(λ) for all λ ∈ N. We say that SE supports
incremental updates w.r.t Hamming distance if there exists an algorithm U such
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Init(1λ)

p←$ {0, 1}κ(λ); U← ∅; fil← ∅; own← ∅; Ret σS = (p,U,fil,own)

Reg[1](ε) Reg[2](σS)

k←$ {0, 1}κ(λ) ε
−−−−−−−−→ u←$ {0, 1}λ \U; U← U ∪ {u}

u, p
←−−−−−−−−Ret (k, u, p)

Get[1]((k, u, p), t) Get[2](σS)

u, t
−−−−−−−−→ (c1, c2)← fil[t]; c3 ← own[u, t]

If c3 = ⊥ then (c′1, c
′
2)← (⊥,⊥)c1, c2, c3

←−−−−−−−−If c1 = ⊥ then ret ⊥
k2 ← D(1λ, k, c3)

Ret D(1λ, k2 ⊕ c2, c1)

Fig. 8. The Init algorithm, and Reg and Get protocols of the IRCE iMLE scheme.

that U(1λ,E(1λ, k,m1), diff(m1,m2)) = E(1λ, k,m2) for all plaintexts m1,m2 ∈
{0, 1}∗ for all keys k ∈ {0, 1}κ(λ) for all λ ∈ N.

Key-recovery security is defined through game KRA
SE(1λ) which lets adversary

A query an oracle Enc with a plaintext m then picks k←$ {0, 1}κ(λ) and returns
E(1λ, k,m); A wins if it can guess k.

The CPA security game CPAA
SE(1λ), picks b←$ {0, 1} and k←$ κ(λ), runs

A with access to Enc, and responds to queries m by returning c ← E(k,m) if
b = 1 and returning a random |c|-bit string if b = 0. To win, the adversary should
guess b. We define advantages AdvkrSE,A(λ) = Pr[KRA

SE(1λ)] and AdvcpaSE,A(λ) = 2 ·
Pr[CPAA

SE(1λ)]−1 and say that SE is KR-secure (resp. CPA-secure) if AdvkrSE,A(·)
(resp. AdvcpaSE,A(·)) is negligible for all PT A. The CTR mode of operation over a
blockcipher, with a fixed IV is an example of a D-SE scheme with incremental
updates, and KR and CPA security.

A hash function H with κ(λ)-bit keys is a PT algorithm that takes p ∈
{0, 1}κ(λ) and a plaintext m returns hash h ← H(p,m). Collision resistance
is defined through game CRA

H(1λ), which picks p←$ {0, 1}κ(λ), runs adversary
A(1λ, p) to get m0,m1, and returns True if m0 6= m1 and H(p,m1) = H(p,m2).
We say that H is collision resistant if AdvcrH,A(λ) = Pr[CRA

H(1λ)] is negligible for
all PT A.

A table T is immutable if each entry T [t] can be assigned only one value after
initialization. Immutable tables supports the Set-iff-empty, or SiffE operation,
which takes inputs a table T , an index f , and a value m. If T [f ] = ⊥ then
T [f ]← m and m is returned; otherwise T [f ] is returned.

The IRCE scheme. Let H denote a hash function with κ(λ)-bit keys and κ(λ)-
bit outputs, and let SE = (E,D) denote a D-SE scheme with κ(λ)-bit keys, where
ciphertexts have same lengths as plaintexts and incremental updates are sup-
ported through an algorithm U. The IMLE scheme IRCE[SE,H] is described in
figures 8 and 9. We call the construction IRCE, expanding to interactive ran-
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domized convergent encryption. since it resembles the randomized convergent
encryption (RCE) scheme of [12].

To describe how IRCE works, let us consider a IMLE scheme built around
RCE. In RCE, to put m on the server, the client encrypts m with a random
key ` to get c1, and then encrypts ` with km = H(p,m) to get c2, where p is
a system-wide public parameter. Then, km is hashed once more to get the tag
t = H(p, km). The client sends t, c1, c2 and the server stores c1, c2 in a table fil at
index t. If another client starts with m, it will end up with the same t, although it
will derive a different c′1, c

′
2, as ` is picked at random. However, when this client

sends t, c′1, c
′
2, the server knows that fil[t] is not empty, meaning a duplicate

exists, and hence will drop c′1, c
′
2, thereby achieving deduplication. The second

client should be able to recover m by sending t to the server, receiving c1, c2,
recovering ` from c2 and decrypting c1. However, the problem with RCE is that,
when the first client sends t, c1, c2, the server has no way of checking whether
c1, c2 is a proper ciphertext of m, or a corrupted one. Thus, the second client,
in spite of storing a ciphertext of m on the server might not be able to recover
m — this violates our soundness requirement. We will now fix this issue with
interaction.

The Put protocol in IRCE differs in that, if the server finds that fil[t] 6= ⊥ then
it responds with h, c′2, where (c′1, c

′
2) ← fil[t] and h ← H(p, c′1). Now, the client

can check that H(p,E(1λ, c′2 ⊕ km,m)) = h which means that whenever dedu-
plication happens, the client can check the validity of the duplicate ciphertext,
which in turn guarantees soundness. The Put protocol is specified in Fig. 9, and
is a bit more involved than our sketch here. Specifically, the clients are assigned
unique identifiers which are provided during Put. The message-derived key km
is also encrypted to get c3 (under per-client keys) and stored on the server, in
a separate table own, which enables checking that a client starting a get pro-
tocol with an identifier did put the file earlier. If the client is the first to put a
ciphertext with tag t, then the server still returns H(p, c1), c2, c3 so that external
adversaries cannot learn if deduplication occurred. We note that in Fig. 9, the
fil and own tables are immutable, and this will help in arguing soundness of the
scheme.

The Init algorithm (Fig. 8) sets up the fil and own tables, and additional
server-side state, and picks a key p for H, which becomes the public-parameter of
the system. The Reg protocol (Fig. 9) sets up a new client by creating a unique
client identifier u, and providing the client p. The client also picks a secret key
k without the involvement of the server. The Get protocol (Fig. 9) recovers a
plaintext from the identifier, which in the case of IRCE is the tag.

IRCE supports incremental updates, as described in Fig. 9. If the client wants
to update m to m2, it does not have to resend all of c1, c2, c3. Instead, it can
use the same key ` and incrementally update c1, and compute new values for c2
and c3, along with the new tag t2. If the server finds that fil[t2] is not empty,
the same check as in Put is performed.

It is easy to see that IRCE performs deduplication, and supports incremental
updates. In the full version, we formally state and prove the deduplication and
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Put[1]((k, u, p),m) Put[2](σS)

`←$ {0, 1}κ(λ); c1 ← E(1λ, `,m)

km ← H(p,m); c2 ← km ⊕ `; c3 ←
E(1λ, k, km)

t← H(p, km) u, c1, c2, c3, t
−−−−−−−−→ (c1, c2)← SiffE(fil, t, c1, c2)

h← H(p, c1)

c3 ← SiffE(own, (u, t), c3)h, c′2, c
′
3

←−−−−−−−−If c3 6= c′3 then ret ⊥
`′ ← c′2 ⊕ km
c′′1 ← E(1λ, `′,m)

h′ ← H(p, c′′1 )

If h = h′ then ret t Else ret ⊥
Upd[1]((k, u, p), t,m1,m2) Upd[2](σS)

k1 ← H(p,m1); k2 ← H(p,m2)

δ ← diff(m1,m2); t2 ← H(p, k2)

cd ← k1 ⊕ k2; t1 ← H(p, k1)

c3 ← E(1λ, k, k2) u, t1, t2, c3, cd, δ
−−−−−−−−→ If own[u, t1] 6= ⊥ then

c3 ← SiffE(own, (u, t), c3)

c1, c2 ← fil[t1]

c′1 ← patch(c1, δ)

c′2 ← c2 ⊕ cd
(c′1, c

′
2)← SiffE(fil, t2, c

′
1, c

′
2)

Else (c′1, c
′
2)← (⊥,⊥)

h← H(p, c′1)h, c′2, c
′
3

←−−−−−−−−If c3 6= c′3 then ret ⊥
c′′1 ← E(1λ, c′2 ⊕ k2,m2); h′ ← H(p, c′′1 )

If h = h′ then ret t2; Else ret ⊥

Fig. 9. The Put and Upd protocols of the IRCE iMLE scheme. The fil and own tables
are immutable, and support the set-iff-empty operation (SiffE) explained in text.

incremental updates properties. We also provide a proof of the following the-
orem which shows that IRCE is Rec-secure (which, along with deduplication,
establishes soundness).

Theorem 4. If H is collision resistant and SE is a correct D-SE scheme, then
IRCE[H,SE] is Rec-secure.

Proof sketch. To win the Rec game, the adversary A must put a plaintext m
on the server, possibly update it to some m′, complete a Get instance with the
identifier for m or m′ and show that the result is incorrect.

The proof uses the immutability of fil and own to argue that the ciphertext
stored in the server could not have changed between the failed Get instance and
the last time the plaintext was put/updated. However, Put and Upd both ensure
that the hash of the ciphertext stored on the server matches with the hash of a
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correctly formed ciphertext for the plaintext being put/updated. Consequently,
whenever A breaks Rec-security, it is in effect finding a pair of colliding inputs,
namely the hash inputs involved in the comparison. A CR adversary B can be
built which has the same advantage as the Rec-advantage of A.

The following theorem (the proof of which appears in the full version) shows
that IRCE is Priv-secure in the ROM, assuming that SE is secure. Let IRCERO

denote the ROM analogue of IRCE, formed by modelling H as a random oracle.

Theorem 5. If SE is CPA-secure and KR-secure, then IRCERO[SE] is Priv-
secure.

Proof sketch. In Priv, the source S outputs m0,m1, the game picks b←$ {0, 1}
and adversary A can put and update components of mb, and finally gets to learn
the server-side state. To win, A should guess b.

First, the c3 components are changed to encrypt random strings instead of
message-derived keys km[i]; CPA security of SE makes this change indistinguish-
able by A. The proof then moves to a game where RO responses are no longer
consistent with the keys and tags being generated. For instance, if S or A queries
the RO at p‖mb[i], it gets a response different from km[i]. The remainder of the
proof involves two steps. First, we show that once we stop maintaining RO con-
sistency, the adversary gets no information about the ` values used to encrypt
the messages, and hence guessing b means breaking either the CPA security or
key recovery security of SE. Second, we argue that neither S nor A can detect
that RO responses are inconsistent. This is because S does not know p, a prefix
to the key and tag generation queries. An A that detects the inconsistency will
break the CPA security of SE.
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