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Abstract. We investigate the security of the family of MQQ public key
cryptosystems using multivariate quadratic quasigroups (MQQ). These
cryptosystems show especially good performance properties. In particu-
lar, the MQQ-SIG signature scheme is the fastest scheme in the ECRYPT
benchmarking of cryptographic systems (eBACS). We show that both
the signature scheme MQQ-SIG and the encryption scheme MQQ-ENC,
although using different types of MQQs, share a common algebraic struc-
ture that introduces a weakness in both schemes. We use this weakness
to mount a successful polynomial time key-recovery attack that finds an
equivalent key using the idea of so-called good keys. In the process we
need to solve a MinRank problem that, because of the structure, can be
solved in polynomial-time assuming some mild algebraic assumptions.
We highlight that our theoretical results work in characteristic 2 which
is known to be the most difficult case to address in theory for MinRank
attacks and also without any restriction on the number of polynomials
removed from the public-key. This was not the case for previous Min-
Rank like-attacks against M Q schemes. From a practical point of view,
we are able to break an MQQ-SIG instance of 80 bits security in less
than 2 days, and one of the more conservative MQQ-ENC instances of
128 bits security in little bit over 9 days. Altogether, our attack shows
that it is very hard to design a secure public key scheme based on an
easily invertible MQQ structure.

Keywords. MQ cryptography, MQQ cryptosystems, Equivalent keys,
Good keys, MinRank, Grobner bases

1 Introduction

Multivariate quadratic (M Q) public key schemes are cryptosystems based (in
part) on the NP-hard problem of solving polynomial systems of quadra-tic equa-
tions over finite fields, also known as the M Q-problem. Until the mid 2000’s,
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MQ cryptography was developing very rapidly, producing many interesting and
versatile design ideas such as C* [24], HFE [33], SFLASH [12], UOV [26], TTM
[29], TTS [42]. However, many of them were soon successfully cryptanalysed, and
the biggest surprise was probably the break of SFLASH in 2007 [15], shortly af-
ter it was chosen by the NESSIE European Consortium [3I] as one of the three
recommended public key signature schemes. As a consequence, the confidence in
MQ@ cryptosystems declined, and so did the research in this area as well.

Now, several years later, it seems that there have emerged new important reasons
for renewal of the interest in a new generation of MQ schemes. In the past two
years, the algorithms for solving the Discrete Logarithm (DL) problem under-
went an extraordinary development (for instance, but not limited to [I]). This
clearly illustrates the risk to not consider alternatives to classical assumptions
based on number theory. In parallel, two of the most important standardization
bodies in the world, NIST and ETSI have recently started initiatives for devel-
oping cryptographic standards not based on number theory, with a particular
focus on primitives resistant to quantum algorithms [32J16].

A common characteristic of all M Q schemes is the construction of the public key
as P = ToFoS where F is some easily invertible quadratic mapping, masked by
two bijective affine transformations S and T'. A consequence of these construction
is that some specific properties of the secret-key can be recovered on the public-
key. In particular, one of the most important characteristic of M Q schemes that
allows a successful key-recovery is connected to unexpected high rank defect
on the matrices associated to the public-key. The attacks on TTM [IT], STS
[38137], Rainbow [{I14], HFE and MultiHFE [2725/5]6] are all in essence based
on the problem of finding a low rank linear combination of matrices, known
as MinRank in cryptography [I0]. This problem is NP-hard [I0] and was used
to design a zero-knowledge authentication scheme [13]. Although NP-hard, the
instances of MinRank arising from MQ schemes are often easy, thus providing
a powerful tool for finding equivalent keys in canonical form.

1.1 Owur Contribution

In this paper, we are concerned with the security analysis of a particular fam-
ily of MQ (Multivariate Quadratic) cryptosystems, namely the MQQ schemes
proposed in 2008 [21]. In these schemes the secret map F is derived from multi-
variate quadratic quasigroups (MQQ), which makes the inversion of F especially
efficient. A message-recovery attack was proposed in [30], and later in [19], it was
proven that a direct attack [30] can be done in polynomial-time. In [22], the au-
thors proposed a signature scheme, called MQQ-SIG, based on the same idea
and secure against direct attacks, as well as claimed to be CMA secure. They
made heavy use of the minus modifier, known from HFE-[33], to repair MQQ.
Finally, in [23] the authors proposed an enhanced variant of the MQQ encryp-
tion scheme, called MQQ-ENC. The MQQ-SIG signature scheme is the fastest
scheme in signing in the ECRYPT Benchmarking of Cryptographic Systems
(eBACS) SUPERCOP [4], and is therefore very appealing for practical use.
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We show in this paper that this family of designs has a fundamental weakness
which allows us to mount an efficient key-recovery attack on all known con-
structions based on MQQ. More precisely, we can recover a key, equivalent to
the secret-key, by solving simultaneous instances of MinRank (Theorem [3]) prob-
lems, which due to the structure of the schemes can be solved in polynomial-time.
To do so, we first assume that the field is not too big. That is to say, we assume
that ¢ = O(n) which is indeed the case for most of the parameters proposed so
far for MQQ cryptosystems. Of independent interest, we show that the simulta-
neous MinRank problem is equivalent to a rectangular MinRank (Corollary
problem. For the complexity of our attack, we summarize the first result below:

Theorem 1. Let w,2 < w < 3 be the linear algebra constant. Let P =T o Fo S
be the public mapping of MQQ-SIG or MQQ-ENC consisting of n — r poly-
nomials in n variables over F, (with Char(F,) = 2). F is a set of quadratic
polynomials derived from multivariate quadratic quasigroups (MQQ), while S
and T are invertible matrices used to mask the structure of F. Then, the last
columns of S and T (up to equivalence) can be recovered in O(n*). More gen-
erally, a key equivalent to the secret-key in MQQ-SIG or MQQ-ENC can be
found by solving n — r MinRank instances with N — r matrices from X (N=r)
where N;r +2 < N < n—1. If ¢ = O(n) then each MinRank can be solved
in polynomial-time assuming a mild regularity condition on the public matrices.
Under this condition and assuming ¢ = O(n), we can recover a key equivalent
to the secret-key in

O(n**3), with probability 1 —1/q.

The genericity assumption required in the previous result is that the rank defect
in the skew-symmetric matrices derived from the public polynomials is a not
too big constant. We have implemented our attack in practice and verified that
this assumption is reasonable. We highlight that our theoretical results work in
characteristic 2 which is known to be the most difficult case to address in theory
[2505l6] for MinRank attacks. Also, we emphasize that our attack works without
any restriction on the number of polynomials removed from the public-key (the
minus modifier). This was not the case for previous MinRank like-attacks against
M Q schemes.

If we relax the condition on the size of ¢, we can still bound the complexity
(although, we require a slightly stronger assumption).

Theorem 2 (informal version of Theorem . Let w,2 < w < 3 be the
linear algebra constant. Let P = T o F o S be the public mapping of MQQ-
SIG or MQQ-ENC consisting of n —r polynomials in n variables over Fy (with
Char(F,) = 2). Assuming that the kernels of the skew-symmetric matrices de-
rived from the public-key behave as random subspaces and a genericity condition
on the MinRank modeling, then we can recover a key, equivalent to the secret-key,
in

o (n3w+1> , with probability (1 — %) (1 — qn,l,s). (1)
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The assumption used in Theorem [2| means that we can restrict our attention to
a sub-system of our modeling of the simultaneous MinRank (Theorem [3]) such
that the sub-system is bi-linear with a block of variables of constant size. If the
sub-system behaves as a generic affine bi-linear system, this implies that the
maximum degree reached during a Grobner basis computation is constant [I7].
This is what we observed in practice.

Indeed, in order to verify our assumptions and the correctness of the attack,
we implemented the attack in Magma (Ver. 2.19-10 [§]). The results obtained
confirm the computed theoretical complexity. Using the implementation, we
demonstrated that our attack is very efficient by practically breaking instances
with recommended parameters. For example, we recovered an equivalent key for
MQQ-SIG 160, of claimed security of O(2%°), in 248 operations, i.e. in less than
2 days. Similarly, for MQQ-ENC 128 defined over F, with claimed security of
O(2'28), we recovered an equivalent key in 2°0-6 operations which took a little
bit over 9 days. We also emphasize that the practical results obtained, almost
perfectly match the theoretical complexity bound derived in Section
Altogether, our attack shows that it is very hard to design a secure scheme based
on an easily invertible MQQ structure. It seems that using MQQs successfully in
future MQ designs may require deep insight from quasigroup theory, in order to
obtain the necessary security while preserving the attractive performance level.

1.2 Organization of the Paper

The paper is organized as follows. In Sect. [2] we present the necessary prelimi-
naries about M@ cryptosystems. We also recall the MinRank problem and the
known tools for solving it, as well as the concepts of equivalent keys and good
keys. In Sect. [3| we describe the cryptosystems from the MQQ family, and in
Sect. [f] we uncover the algebraic structure that the two systems, MQQ-SIG and
MQQ-ENC share, and that shows the weaknesses of the cryptosystems. Sect.
is devoted to the presentation of the main idea behind our key recovery attack
on both MQQ-ENC and MQQ-SIG. We further point out the difference in the
attack in odd and even characteristic fields, and present the necessary modifica-
tions of the attack for even characteristic fields. As a result of the analysis, in
Sect. [6] we conclude that the problem of finding good keys can be modeled as a
special instance of MinRank for rectangular matrices. The complexity analysis
of our attack is given in Sect. [7] We conclude the paper in Sect.

2 Preliminaries

2.1 Basic Notations

Throughout this paper, Fy will denote the finite field of ¢ elements, M,y (Fy)
will denote the set of n x m matrices over F; and GL,,(F,) will denote the general
linear group of degree n over IF,. First, we briefly recall the general principle of
MQ public key cryptosystems. This will allow to fix some notations. The public
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key of an MQ cryptosystem is usually given by a multivariate quadratic map
P:F; — F', that is

p1(x, ..., Tn) = Z 75,5)I1$j+25§1)mi+a(1)

1€i<ji<n i=1

pm(zla e ,.Tn) = Z Wf?)lﬂzﬁcj + Z Bl(m)xl -+ &(m)

1<i<i<n i=1

for some coefficients "?l(s]), Ei(s), and a®) e F,.

In our attack, we will see that w.l.0.g. we can restrict our attention to the homo-
geneous components of highest degree, i.e. to the quadratic components. Clas-
sically, a quadratic form can be written as ps(x1,...,2T,) = Z ﬁz(sj)xlazj =

1<i<j<n

2Pz, where z = (z1,...,2,)7 and P) is an n x n matrix describing the
degree-2 homogeneous component of ps. The public key P is obtained by ob-
fuscating a structured central map F : x € F, — (fi(z),..., fm(z)) € Fy".
We denote by ) an n x n matrix describing the homogeneous quadratic part
of fs. In order to hide the structured central map, we choose two secret linear
E| transformations S € GL,(F,), T € GL,,(F,) and define the public key as
P:=ToFolS.

Remark 1. It is known that the matrix of a quadratic form is constructed differ-
ently depending on the parity of the field characteristic. In odd characteristic,

PG) is a symmetric matrix, i.e. ‘B(S) = ﬁf?/? for ¢ # j and ‘Bl(-i-) = 7(5).

Over fields F, of characteristic 2, we cannot choose B in this manner, since
(Fi,j + Vja)ziz; = 27; ;2,25 = 0 for @ # j. Instead, let P& be the upper-

(5) _ ~(s) P i i
ij =%, fori < j. The symmetric form is

obtained by P) := ‘fS(s) +‘J~3(3)T. In this case only the upper-triangular part rep-
resents the according polynomial, and all elements on the diagonal are zero. This
implies that for x,y € IFZ the symmetric bilinear form z7P(*)y is alternating and
has even rank.

triangular representation of pg, i.e. ‘i?

2.2 The MinRank Problem

The problem of finding a low rank linear combination of matrices is a basic linear
algebra problem [I0] known as MinRank in cryptography [13]. The MinRank
problem over a finite field I, is as follows.

MinRank (MR)

Input: n,m,r, k € N, where n < m and My, M, ..., M € My xm(Fy).
Question: Find — if any — a k-tuple (A\1,...,\x) € IE"; such that:

! Note that S and T can actually be chosen to be affine. We restrict ourselves to linear
secrets for the sake of simplicity. However, we mention that the attack can be simply
adapted to work in the affine case (see [27134]).
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k
Rank (Z /\Z Mz — M0> <7

i=1

In Appendix [A] we review some known techniques for solving MinRank.

2.3 Good Keys

Our attack relies on so-called equivalent keys introduced by Wolf and Preneel
[40/41]. We briefly recall below the concept of equivalent keys, and then present
good keys which are at the core of our attack.

Let F = {f1,..-,fm} C Fy[z1,...,2,]™ For k,1 < k < m, we denote by
I®) c {zz;]1 < i < j < n} asubset of the degree-2 monomials. We define
.7—'|I = {f1|1(1), . .,fm|1(m)} where fk|[(k,) = > 'yi(?xixj is the projection

x;zjelk)
of fi to Ik,

Definition 1. Let (F,S,T),(F', S, T") € Fy[z1, ..., 2] ™ XGL, (F) X GL,, (F,).
We say that (F,S,T) and (F',S',T') are equivalent keys, denoted by (F,S,T) ~

(F/ S, T"), if and only if (To FoS =T o F o S') A (ﬂl - ]-‘"I)  that is, F

and F' share the same structure when restricted to a fized set I = {1V ... (™},

Since the relation ~ given by Definition [1|is an equivalence relation [40], the set
of all keys S,T can be partitioned into several equivalence classes. For a large
fraction of all equivalence classes, we can find special representatives S’ and T”
with fixed entries at certain values.

For ease of notation, let S := S~! and T := T~'. Obviously P = T o F o S,
implies that 7 = T o P o S. This leads to the equality below on the quadratic
forms:

§W =5[> #%,B9 |5 vk 1<k <m. (2)

Jj=1

The corresponding system of equations is as follows:

5 =33 P05, (3)

r=1y=1z2=1

Due to the structure of the secret mapping §, we know that certain coefficients
in % are systematically zero. This allows then to obtain cubic equations on
the components of S and T'. In general, the system of equations has too many
variables for being solved efficiently in this form.

The concept of equivalent keys allows to reduce the number of variables by
introducing two linear maps (X, 2) € GL,,,(F,) x GL,,(F,) such that P =T o
Y loYoFoNoN oS If F and F' := X o Fo{2 share the same structure (cf.
Def. , then T/ := TX "' and S’ = 2715 will be equivalent keys. Depending
on Y and (2 we can define a canonical form of the secret-keys and typically fix
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large parts of T and S (see [40J39/41]). We note that it may happen that such
a canonical key does not exist. For example, the Unbalanced Oil and Vinegar
Scheme has such an equivalent key with probability roughly 1 — 1/¢ [36].

The idea of good keys [37] is to further decrease the number of unknowns or
unfixed coefficients in (S’,T”). Here, we do not aim to preserve all the zero
coefficients of F, but just some of them. This way, we have more freedom to
choose X' and {2 and thus further reduce the number of variables. On the other
hand, we can generate less equations. Finding the best trade-off is not obvious
and strongly depends on the underlying structure of F. Formally, we define good
keys through the following definition.

Definition 2 ([37]). Let (F, S, T),(F', S, T") be in Fy[z1, ..., x,])™ xGL, (F,)x
GL(Fy). Let I = {IM ... . 1Y and J = {JO ... J™} such that J*) C
") for all k,1 < k < m with at least one J ) # (. We shall say that
(F', 8", T") € Fylz1, ..., 2n]™ X GL,(Fy) x GL,(Fy) is a good key for (F,S,T)
if and only if:
(ToFoS =T oF oS') 1 (F|, =F|,).
J J

3 MQQ Cryptosystems

The Multivariate Quadratic Quasigroup (MQQ) scheme was proposed in 2008
[21]. The underlying idea is to use bijective multivariate quadratic maps obtained
through the existence of left and right inverses in some quasigroup, in order to
build the trapdoor map F.

Definition 3. Let Q be a set and q : Q X Q@ — Q be a binary operation on Q.
We call (Q,q) a left (resp. right) quasigroup if

Vu,1€Q,37,7€Q:qwT) =7 (resp.q(y,u)="71).
If (Q, q) is both left and right quasigroup, then we simply call it a quasigroup.

Clearly, q defines a bijective map if we fix some w € ). Hence, we can define
two inverse operations ¢\ (%,7) = T and q,(v,%) = 7, called left and right paras-
trophe, respectively. A multivariate quadratic quasigroup (MQQ) is a special
quasigroup, that can be described through a multivariate quadratic map over
some finite field F,. In [2I], Fy is used to built such MQQs of order 2¢, with
parameter d = 5 and bilinear maps q. The central map F is constructed using
a so called quasigroup string transformation of the MQQs, in order to scale the
number of variables.

Definition 4. Let Q := Fg and q; : Q X Q — Q be such that (Q,q;) forms a
quasigroup for 1 < i < £ and some parameter £ which allows to scale the scheme
later on. We fiz some element w € Q, call it leader and define F : Fq@d — IFqu

through
(fla "'7fd) : ql(val)v
(fas1, ooy faa) = 92(T1, T2),

(fle—=vyas1s -+ fea) = qe(Te—1,T0)-
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In order to find pre-images of F, we use the corresponding left-parastrophe oper-
ations of q1,...,q¢. In addition, the authors of [21|] used the Dobbertin bijection
to deal with the linear part of F that comes from q1 (@, T1) for some fized uw € Q
and the fact that they chose bilinear maps q;.

Unfortunately, this trapdoor provided a lot of structure so the MQQ encryption
scheme was broken by a direct attack on the public key [30]. Faugere et al.
showed in [19] that the degree of regularity of the equations generated by the
pubic key can be bounded from above by a small constant. Thus, the complexity
of a direct Grobner basis attack is polynomial.

3.1 MQQ-SIG Signature Scheme

Recently, in [22] a signature scheme was proposed, called MQQ-SIG, which is
based on the same idea but makes heavy use of the minus modifier, known from
HFE-[33]. MQQ-SIG does not use the Dobbertin bijection and the construction
of the quasigroup is different and given by the map q : Fg X Fg — ]Fg:

q(7,y):=B-(I+Ay)-B2-j+B-B-T+F¢, (4)

where T := (z1,22,...,24)7.7 = (Y1,92,---,yq)T, ¢ € FI and By, By, B €
GLd(Fg) are arbitrary. AQ = [O Ul 'Bl - T U2 'Bl - T Ud—l ’Bl ‘f],
is a d x d block matrix where U, i € {1,...d — 1} are upper triangular matrices
over Fy having all elements 0 except the elements in the rows from {1,... i}
that are strictly above the main diagonal.

A key feature of the MQQ-SIG scheme is the application of the minus modifier.
In particular, n/2 of the equations are removed in the public key P, in order to
prevent direct algebraic and MinRank attacks. Therefore, we obtain a signature
expansion of factor two for messages of length n/2. Further the public key is
rather large, since it is defined over Fy. In order to reduce the size of the public
key the designers decided to split the message in two and sign it using the same
trapdoor function twice. The proposed parameters are n € {160,192,224, 256}
for the trapdoor function for security levels of 280, 296, 2112 2128 hinary opera-
tions respectively, and d = 8 for the order 2¢ of the quasigroup.

3.2 MQQ-ENC Encryption Scheme

The encryption scheme MQQ-ENC was recently proposed in [23], and it follows
the same line of design as its predecessors. Again, the internal mapping F is
a quasigroups string transformation and the affine secrets S and 7' are built
from two circulant matrices. The minus modifier is used again, but since it is
an encryption scheme, only a small fixed number r of polynomials is removed.
This destroys the bijectivity of P, so to enable correct decryption a universal
hash function is used, and decryption is performed by going through all possible
pre-images of P. Compared to its predecessors, MQQ-ENC can be defined over
any small field F,» and instead of bilinear quasigroups, the authors used more
general left quasigroups, i.e. mappings that are bijections only in the second
variable.
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Lemma 1 ([35]). Let p be prime and k > 0 be an integer. For all s,1 < s < d,
we define the component qs € Fyr[xy, ..., 2a,y1,...,ya] by:

qs(xla e Tdy Y1y - - 7yd) = pé(yé) + Z az(’sj)xlx_] + Z ﬁfz)ylyj

1<i,j<d s<i,j<d
> wde Y8 e YT, (5)
1<i<d,s<j<d 1<i<d s<i<d

where ps(ys) € {ays,a®y2} for even p, and ps(ys) = a®ys for odd p, for
some a'®) # 0. The function q = (q1,q2,--.,q4) Ff)‘,f — sz, as defined in ,

defines a left multivariate quadratic quasigroup (LMQQ) (ng,q) of order p*@.

Lemma 2. Let (sz,q) be an LMQQ as defined by Lemma . Let D and D,
be d x d nonsingular matrices and ¢, ¢, vectors of dimension d over F,.. Then
§(z,y) := D -q(z, D, - § +¢,) + ¢ is again an LMQQ of order p*@. We say that
q is linearly isotopic to q.

The recommended values for the parameters n, k,r,d,p for a security level of
2128 are d = 8, p = 2 and (n, k,r) € {(256,1,8), (128,2,4), (64,4,2), (32,8,1)}.

4 The Algebraic Structure of MQQ-ENC and MQQ-SIG

We explain the algebraic structure that both MQQ-ENC and MQQ-SIG share.
This is the weaknesses that we are going to exploit to mount our attack.

First of all, we note that the trapdoor of MQQ-SIG can be seen as a very special
case of MQQ-ENC when defined over Fy. Indeed, the quasigroup string trans-
formation only makes use of the left translation (the bijection in the second
variable) of a quasigroup g, i.e. the additional bijectivity in the first variable is
unnecessary. Thus, we can regard the MQQs used in MQQ-SIG as left quasi-
groups without loss of generality. Even more, it can be shown (cf. Proposition
that the MQQs used in MQQ-SIG are linearly isotopic to quasigroups that can
be represented in the form given in Lemma [I] with some additional constraints
on the coefficients.

Proposition 1 ([35]). Let (F%,§) be a quasigroup used in MQQ-SIG. Then §
can be represented by §(Z,y) = B-q(B1-T, B2-Y) +¢ for some invertible matrices
B, By, Ba, a vector ¢, and ¢ = (q1,92, - - -, qq) with

WD) =ve+yet+ Y Wimiy;+ O 0w+ > ey +9),

s<i,j<d s<i<d s<i<d

for all 1 < s < d and coefficients 7(3),61(8), e n®) ¢ Fpe.

1,] v 0

In the sequel, we will investigate the more general trapdoor of MQQ-ENC, since
all the properties of MQQ-ENC apply to MQQ-SIG as well. In order to avoid
redundancy and to provide a clear and simple algebraic description, we exploit
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the following simplification. In the central map F the authors used LMQQs
constructed through Lemmal[2] and not directly LMQQs from Lemmal[I] This was
done to mask the otherwise triangular structure of the LMQQs from Lemma [}
However, the linear isotopy, can actually be absorbed by S and T. First of all,
as we are only considering quadratic coefficients later on, we can safely ignore ¢,
and ¢. Further, the linear transformation D can be absorbed by T, i.e. instead of
using g and the original 7', we work with g and 7' (/» ® D), with ® the matrix
tensor product of the % dimensional identity matrix and D. The same holds for
the transformation of variables S. Instead of working with q and the original
transformation S, we work with (I» ® D, ') - S and §(Z:1,T2) := q(D, 'Z1,T2).
As there is no structure hidden in the first component of ¢, all the systematical
zeros in q and q equal and thus we can assume a central map F with q according
to Lemma Writing the quadratic part of q, = 27Q®)z in its quadratic form
with = (21,...,2Zd,y1,...,%a4)T, we can illustrate the matrix Q) by Figure

B8 || Lm

fl fd+l f2d+1 fn7d+1

Ly o ||

: f2 fa+2 Jad+2 fr—d2

Q) = : 5 '
T4 d-s Ta Foa Foa un

Fig. 1. The quadratic form Fig.2. Matrices of the quadratic forms of the cen-
06 of qs. Gray parts denote tral map F of MQQ-ENC. Gray parts denote some
arbitrary values, white parts arbitrary values, whereas white parts denote system-
denote systematic zeros. atic zeros.

Note that both in odd and even characteristic, the coefficient of y2 does not occur
in Q). In odd characteristic, ps(ys) = a®)ys, i.e. it is always linear. For char-
acteristic 2, we have either p,(ys) = a®y, or ps(ys) = a®y2, but nevertheless,
it is again always linear, and the representation of Q(*) has systematic zeros on
the main diagonal. The central polynomials f; (Definition , with s, 1 <s<m
are illustrated in Figure

Another simplification can be made regarding the secret affine transformations
S and T'. First of all, we neglect linear terms, as we do not use them and they
also never interfere with the coefficients of quadratic monomials. Thus we can
assume S and T to be linear transformations. Note that using coefficients of
linear terms could only speed up the attack, as long as they are not all chosen
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uniformly at random. Second, in [23] as well as in [22], the authors did not choose
S and T purely at random but as a combination of two circulant matrices. This
structure was meant to reduce the key size and speed up the decryption process.
We note that we do not use this special structure to speed up our attack. As we
are recovering (I= ® D;')- S instead of S and T+ (I» ® D) instead of T, for some
randomly chosen D and D,, we lose most of the structure anyway. Therefore we
assume to recover some random matrices in the sequel. Note that this gives a
worst case complexity of our attack.

5 Key-Recovery Attack

In this part, we present an efficient algebraic key-recovery attack on MQQ-ENC
and MQQ-SIG. To do so, we combine a MinRank attack and good keys in order
to recover the columns of S and T.

5.1 High Level Description of the Attack

Remark 2. From now on for better readability, but without loss of generality,
we assume the change of variables: ,,—;4+; — Tn—id+d—j+1- (This corresponds
to moving the white bands in Fig. [I| to the lower right corner.)

Our attack is performed in n — r — 1 steps, and in each Step N, where N €
{n,...r + 2}, we remove the variable zx from all but the first of the public
polynomials P. This is done by finding a good key (S/N,TEV) of a particular
form. At the end of each step, we remove the first polynomial form P, since, at
this point, that is the only polynomial that contains the variable xy and repeat
the procedure with the rest of the polynomials. Thus, at each Step N, w.l.o.g.
we can assume that the size of all public matrices is N. After n — r — 1 steps,
we obtain the equivalent key § =S, 005,y and T =T, p0---0T,. We
can summarize the steps of our attack in Alg.

Algorithm 1 High Level Description of the Key-Recovery Attack

Input: n — r public polynomials P in n variables.

for N :=n down to r 4+ 2 do
Consider that all public polynomials involve < NN variables.

Step N:
Find a good key (Sy,Ty).
Transform the public key as P <« T;V oPo g;\;,
and if N < n remove the first polynomial from P.

end for;
/

Output: The equivalent key S =S, 0-- 05,y and T =Ty p0---0Th.

5.2 Detailed Description of the Attack

We describe in this part the steps performed in Alg. [l We consider first the case
N = n which is a bit different from the others steps.

11
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Step n = N. How to recover a linear component of the secret-key.
Let P be the n — r public polynomials in n variables of an MQQ scheme. From
now on, we denote by P, ... P the corresponding public matrices. As
explained, the public-key is constructed as P = T o F o S where F is a set of
quadratic polynomials constructed as in Sect. [3] and S and T' are two bijective
linear maps used to mask the structure of P. We denote by V), ..., ™ the
quadratic forms of F.

We explain how to recover one column of the secret transformation S using good
keys. This corresponds to the first step performed in Alg. [1] and will allow to
remove the variable z,. Recall from Subsect. that we are looking for two
linear maps (X, 2) € GL,,(F,) x GL,,(F,) such that

P=ToX 'oXYoFoRoN 108

and F’' := X o F o {2 preserves some of the structure of F (cf. Def. [2)). Then,
T :=TX ! and S’ = 2715 will be good keys.

A crucial observation for MQQ-ENC is that the central polynomials f;, do not
contain the monomials z,x; for any ¢,1 < ¢ < n. This means that we preserve
some structure even if we choose X = T and thus a good key 77 = I. In order
to preserve the corresponding systematic zero coefficients, (2 is allowed to map
every variable to every variable, except x,,. We can then choose the good key S’,
or more precisely S =81 = 512, to be of the form given in Figure

—n — 11— —n —1—1 +—n — 11—

—/

0= L7

|
S
I

=

Fig. 3. Unique transformation 2 to obtain the good key S .

Obviously, a good key S - according to Figure |3| — almost always exists. We
can choose the first n — 1 columns of 2 equal to the first n — 1 columns of S.
However, there is a small probability for {2 to not be invertible, in which case, a
good key does not exist.

Lemma 3. If S, ,, =0, then a good key S as given in Figurela does not exist.

Proof. Due to the structure of {2 in Figure 3, we have gn’n()n’n = g/nm. Thus,
Sn.n = 0 implies that ?:m =0and § can not be invertible. a

Remark 3. To guarantee that a good key as in Figure [3|exists with high probabil-
ity, we can randomize the public quadratic forms B0 ... P with a random
invertible matrix Syqnq4 € GL,,(F,). That is, we construct a new equivalent set
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of public polynomials ‘13

rand’
‘Bgza)nd = Slandm(i rand = SSTand th 33 SSrand-

Since Sp, = 0 holds with probability 1/¢, the average number of randomizations
to obtain a nonzero entry at position (¢,¢) is ¢/(¢ — 1). From now on, we will
always assume that — up to randomization — good keys as in Figure |3| exist.

Using a good key T =Tand § asin Figure |3} the algebraic system can be

rewritten as:
/ k Z Z k
( = 17(42 ;Z /ZJ

y=1z=1

We constructed F’ := ¥ o F o {2 such that the monomial z,,z; does not appear
forany i,1 <i < n. ThlsyleldsS (k) =0, forall k,1<k<m,and j,1 <j<n.
Also, for all j # n, we have that 5. . =0 for z ;ﬁ j and 3}, = 1 due to the
structure of §'. This yields a system of m(n — 1) linear equations in (n — 1)
variables (since 57, ,, = 1), given by

Z‘I&’(k)' =0, forall k,1 <k<m,and j,1 <j<n.

Y, "Yyn

After solving the system, we obtain the good key S’. We can then transform the
public polynomials P with the change of variables glx, ie.:

PoS =ToX 'oXoFoRoN 'oS0S = F.

From the previous discussion, the transformed public polynomials P 05 do not
contain the variable z,, in any of the quadratic terms.

Remark 4. To ease the notation, we continue to denote the obtained transformed
polynomials and their matrix representations as before (we regard PoS as being
the public P). Since we removed the variable x,,, we can consider that now the
dimension of the public matrices ) is n — 1. We explain now how to remove
the variables ©,,_1,Zp_2... down to x, ;2.

Step N € {n —1,...,7 + 2} — Using MinRank to recover the entire
secret key. We assume that the dimension of all public matrices B is N €
{n—1,...,74+2}. Observe that the variable x occurs in at most one polynomial
of the central map F, namely fn (cf. Figure . This suggests to find a linear
combination of two public polynomials, w.l.o.g. p1 and pg, with k,1 < k < m
such that xy no longer occurs, so we want to find A € IF; such that:

N—-1
PE AP =87 [ (1 + M) | S. (6)
j=1

13
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To recover such linear combination, we exploit the fact that the rank is invariant
under a bijective linear transformation of variables, i.e. for all k, Rank(P*)) =
Rank(STP*)S). Thus, we can use the rank as distinguisher to recover parts of
T. More precisely, we need to solve the following MinRank instance:

Find \ € F, such that Rank (qu“) n Afp(l)) <N. (7)

The good key (E/N, T/N) given in Fig. is a solution of (7). Indeed, using the two
public polynomials P*),PB*) and thanks to (3), we obtain the following system
of N — 1 quadratic equations in N — 1 variables:

N N
EDHACTECHEES
y=1z=1

By construction, S/]S,kj) =0forall j,1 <j<N. Also, for all j < N and z # j we
have that 5 ; = 0 and &} ; = 1. This gives

N

S (B + A ) 5 =0, forall j, 1<) <n. ®)
y=1
— N — 1 4 N—r—1—

!

_ ) I

Fig. 4. The good key (?;V,TGV).

Applying the same reasoning for all of the public matrices ¥, 1 < k < N—r+1

we obtain the good key (§IN, T/N) The correctness of the procedure follows from
the next theorem.

Theorem 3. Let N be the number of variables in the N — r + 1 public poly-
nomials of MQQ-ENC (or MQQ- SIG) dumng step N € {n —1,...,7+2}. Let

5 = (31N B9 N SN_1N D oand T = (1, t21,t31,.. e r+11) be unknown

vectors. Thus, it holds that (so,to) is a solution of:
7 (wuz;,lw) =01y, VE(1<k<N-—7+1 (9)

if and only if (?;V,T;V) is a good key for MQQ-ENC (respectively MQQ-SIG),
where Sy is obtained from the identity matriz Iy by replacing the last column
with 53, and T;V 18 obtained from Iy by replacing the first column with fg.
Proof. From , we have that:

F* = ?;\Tf (&]3(’“) +f;€ 1&13(1)) ?;\,, Vk,1 <k <N —r+1, or equivalently :

5 = ZZ(‘B(’“HM‘B“) 5 SV <k<N—r+1.

y=1z=1
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Thus, if (glN,T;\,) is a good key, then §
every 1 <4 < N. By construction, for every 1 <i < N, 5, , = 0, for all y # i,

! (7\2 = 0 (or equivalently S’lﬁ,’“t) = 0) for

i,

and 5;; = 1. Hence, (?lN,T/N) is a good key if and only if for every 4, k, s.t.
1<i< Nand 1< k<N —r+1itholds that:

N
k - —
> (B +7aw) sy =0

z=1
The last system is equivalent to @[), so the claim follows. a

Remark 5. Note that Theorem [3|can be applied to Step n as well. In this case it
is known that f;al = 0, so instead of a system of quadratic equations we obtain
a system of linear equations as explained in the previous part. So, Step n = N
is actually just an easier sub-case of the others steps.

6 Modeling Good Keys as MinRank for Rectangular
Matrices

Theorem [3| shows that the problem of finding a good key is equivalent to finding
the intersection of the kernels of some linear combinations of the public matrices.
This can be nicely modeled as a special instance of the MinRank problem for
rectangular matrices.

Corollary 1. Let N, s and T be as in Theorem B Let
P = [BOPE BT v v, Bi =01 [0BDI0]. . 0] v xn (-

be block matrices, where PO is the i-th block in ;. It holds that finding a good
key (?;\,,T;\,) of the form given in Theoremlafor MQQ-ENC (or MQQ-SIG) is
equivalent to solving the MinRank instance defined below:

N—r+1

FindTyy,...,ty_ps1, € Fy s.t. Rank <m+ > t;,l‘m> <N.  (10)
k=2

Proof. Using the Kipnis-Shamir modeling, the MinRank instance (L0) can be
expressed exactly as the system @ The claim follows from Theorem a

In Alg. 2| we summarize our key-recovery attack on MQQ-ENC and MQQ-SIG
based on the results from Theorem [3] Remark [5]and Corollary

7 Complexity of the Key-Recovery Attack

In this part, we show that the complexity of our attack is polynomial. To do
S0, we present a complexity analysis of the Alg. [2l We also present experimental
results which confirm our theoretical results.

15
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Algorithm 2 Key Recovery

Input: n — r public polynomials P in n variables.

for N :=n down to r + 2 do
Consider the dimension of all public matrices B to be N.
If N =n, set b =0, otherwise set b = 1.
Step Rectangular MinRank(N):
Let 3 = (5. n, 55 ns - Sn_1.n, 1) and & = (o1, 85105 N _rip1)
be unknown vectors.
Find a good key (g;V,T/N) by solving the system @ in (E'ﬁ’):

N—r+b
s <<ﬁ + > t;,lmk> = 014 N(n_r), Where if b= 0, then £ = (0,0,...,0);
k=2

for P = [‘ﬂ”l‘l‘“’l ce |§‘B(N7T+1)}1><N(N7'r) and
PBi = [0]...[0]RD0]...]0]1x n(n_r) with PP being the i-th block in ;.
Transform the public key: P < Ty 0P o Sy,
If b = 1 remove the first polynomial from P (P now contains N — r polynomials).
end for;

Output: The equivalent keys S = E; 0---0 §/T+2 and T' = T’H_Q 0---0 T;.

7.1 Theoretical Complexity

The goal of this part is to bound the complexity of solving the algebraic equations
@ arising at each step of Alg. [2l As we will see from the experimental results
(Sect. , it appears that the system @ can be solved efficiently in practice. In
particular, the maximum degree reached during the Grobner basis computation
is bounded by a small constant, 3. We will now theoretically explain this fact.

A strategy for bounding the complexity of solving @D is to consider a subset of
the equations. In particular, the equations of @[) derived from a given k,1 < k <
N —r+1 correspond to a Kipnis-Shamir modeling of the MinRank problem @
To give intuition, we consider a pair of matrices (‘43(1),%(’“)) such that P is

invertible. Setting P* = P*) (‘B(l))_l, we obtain that (7)) is equivalent to:
Find A € F, such that Det(* — M) = 0. (11)

We can compute the roots of the characteristic polynomial, which are the eigen-
values of P* — I, and the corresponding eigenvectors. All such pairs will vanish
the k-th equation of @ We can then substitute each possible eigenvector in the
other equations and solve the linear system involving the remaining unknowns.
We have found a part of the secret-key as soon as the linear system is consistent.
However, the complexity of this approach will depend on the multiplicity of the
eigenvalues. If all the roots of are simple, then the approach described,
allows to solve the system @ in polynomial-time.

Remark 6. In characteristic 2, the previous discussion does not directly apply
since the matrix representation of a public polynomial has always an even rank
(cf. Remark [I). In particular, the situation is as follows:
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— When N is even, the rank of the skew-symmetric matrices ) and P*) is
< N. A drop of the rank will likely yield Rank (B*) + APD) = N — 2. In
this case, we can expect that the MinRank problem has unique solution A.
For this A, the dimension of Ker (‘13(}“) + A‘B(l)) is 2 (in this case, would
have a root of multiplicity > 1). Since 5y y = 1 in , we obtain ¢ solutions
for the good key glN.

— For odd N, the rank of the matrices P and P*) is < N — 1, which means
that is satisfied for any A. In this case, since E’MN =1, for each A € F,

we get a unique solution for the good key glN if the rank defect is minimum,
just one.

To analyse the complexity of this simple approach, we introduce:

Definition 5. Let F, be a field of characteristic 2 and (A, B) € FY*N x FV*N
be a pencil [20] of skew-symmetric matrices. We shall say that the pencil is
generic if for all Ao € Fy,Ker (A + Ao B) is of dimension < 2 if N is even and
< 1 otherwise.

If N is odd, a generic pencil (A, B) means that the pencil is always of maximal
possible rank. If IV is even, the pencil is generic if the rank defect, if any, is
minimal, just one.

Remark 7. For the parameter sets of the MQQ cryptosystems, we can assume
with high probability that the pencils from the public matrices are generic.
n

Indeed, let A(q,n) = H (1 —1/q") be the probability that a n x n matrix over

i=1
F, is invertible. It is known from [28] (and recalled in [, Section 10]) that

the probability that a skew-symmetric matrix is of maximal rank (n — 1) when

n is odd is Proqq = )\(q;?((’qlfi) 73) —L 7; and the probability that it is of rank

> n — 2 when n is even is: Preyen = /\(q2A,((ZT1))/2) (1 T qn—2(§::11)(q_1)> . Having
this in mind, we get that the probability that the pencils in question are generic
is (Proqq)? or (Preyen)?, depending on the parity of n. In either case, for the
parameter sets of MQQ-ENC and MQQ-SIG (as in Section, it can be checked

that the probability is bigger than 0.7.

We first assume that the field ¢ is not too big, typically ¢ = O(n). This is indeed
the case for most of the parameters proposed so far for MQQ cryptosystems.

Theorem 4. Let N € {n—1,...,r + 2} and let F, be a field of characteristic
2 such that ¢ = O(n). Let PO, ... P-4 ¢ FY*N be the skew-symmetric
matrices occurring in Algorithm @ at step Rectangular MinRank(N). If there
exists ig,2 < ig < (N —r +1) such that the pencil (PP, PBC0)) is generic, then,
the system @D of Theorem @ can be solved with probability 1 — 1/q in O(n**2)
operations, where 2 < w < 3 s the linear algebra constant. In total, and under
the assumptions, there exists an algorithm which recovers a key equivalent to the
secret-key in
O(n“+3) operations with probability 1 — 1/q.

17
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The proof can be found in Appendix Theorem [] can be extended even if
we assume that there exists a pencil of matrices for which the rank defect is
small, that is, a constant. More generally, for arbitrary ¢ and N, we show that
we can get a complexity which is independent of the field size and polynomial
in the number of variables. More precisely, the following result holds (proof in
Appendix .

Theorem 5. Let F, be an arbitrary field of characteristic 2 and let N € {n —
1,...,7+2}. We assume that the system @ of Theorem@ is not harder to solve
than a generic affine bi-linear system (Theorem @ Let the matrices PM), ...,
PAN-—r+1) ¢ FfIVXN be as in Algorithm |2 If there exist ig,i; € {2,...,(N —
r+ 1)} such that the pencils (PO L00)) and (PO, P are generic, and
if we assume that the corresponding kernels behave like random, then, for all
Ne{n—1,...,r+2}, the system (9) of Theorem@ can be solved in O(N3%),
with 2 < w < 3 the linear algebra constant. In total, and under the assumptions,
there exists an algorithm which recovers a key equivalent to the secret-key in

3w+l . . . 1 1
O(n ) field operations with probability (1 — 5) (1- ).

qn—3

7.2 Experimental Results

For the parameter sets proposed for MQQ-ENC [23] and MQQ-SIG [22] the
results from Theorem [5| lead to the complexities given in Table [1| and Ta-
ble 2| They have been calculated using the more precise formula C(n,r,q) =
n—1 N+4\%
N:r+2( 3 ) :
Table 1. Theoretical complexities, in terms of Table 2. Theoretical complexi-
field operations, of the key recovery attack on ties, in terms of field operations, of

MQQ-ENC compared to the original decryption the key recovery attack on MQQ-
algorithm. All of the parameters are for claimed SIG compared to the claimed secu-

security of O(2'%%). rity level.

28 | k| n |r|d|| Decryption | Key Recovery | |Security | n |d || Key Recovery
2 [1/256|8]8 225 2563 280 11608 2508

4 [2]128|4]8 228 218:2 29 11928 2529

16 |4] 64 |28 221 2403 212 122418 2547
256|832 |18 220 2325 2128 12568 2562

We have implemented the attack in Magma (Version 2.19-10 [8]) on a workstation
with 32 cores based on Intel Xeon 2.27GHz, with 1TB of RAM memory. The
results of the practical attack are summarized in Table [3] and Table [4

From the tables, we can see that all our experiments, for both MQQ-ENC, and
MQQ-SIG, confirmed that the maximum degree reached during the Groébner
basis computation (dmax) of the system @[) is 3, consistent with Theorem
Furthermore, the results are almost a perfect match with the theoretical calcu-
lations of Theorem [l
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Table 3. Results of the practical attack on MQQ-ENC.

2" k| n |r|d Key Recovery Key Recovery Practical

Theoretical cycles sec dmax
211]64(8]8 2103 91434 5421 3
21|96 |88 2149 2478 111844 3
42|64 |48 2103 2137 6978 3
412|96 |48 2149 2178 109258 3
412/128|4|8 2182 250-6 787214 3
16]4| 32 (2(8 2325 2347 14 3
16]4| 48 |28 2370 2389 251 3
16|4] 64 |28 21403 2416 1783 3

Table 4. Results of the practical attack on MQQ-SIG.

no|r|d Key Recovery Key Recovery Practical
Theoretical cycles sec dmax
64 (328 2103 210-1 560 3
96 (488 244.9 213.2 4822 3
128 64 |8 91482 9146.0 34376 3
160|808 2508 2480 120882 3

8 Conclusion

Mounting a successful key recovery attack against MQQ-ENC and MQQ-SIG
using good keys, we have yet again shown that MinRank is a fundamental prob-
lem in M@ cryptography. We have, however, also shown that it is necessary to
take into account the parity of the characteristic of the field when using Min-
Rank to reveal the good key. Because of the different representation of quadratic
polynomials over fields of characteristic 2, the attack, otherwise valid over odd
characteristic fields, can not be directly applied. Interestingly, this has often been
overlooked in the literature. By unveiling the pitfalls in the attack of the MQQ
schemes arising from the even characteristic of the field, our analysis shows that
the same modification is necessary when attacking similar M Q schemes over
fields of characteristic 2 using MinRank.
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A The MinRank problem

The MinRank problem over a finite field F, is defined as follows.
MinRank (MR)

Input: n,m,r, k € N, where n < m and My, M1,..., Mi € My xm(Fy).
Question: Find — if any — a k-tuple (A1,...,\x) € IF’; such that:

k
Rank (Z /\z Mz — M0> <.

i=1

Kipnis and Shamir [27] proposed to model the MinRank problem as a multi-
variate polynomial system of equations. The basic idea of the modeling is that

the matrix (Zle N M; — M0> has rank < r if and only if there exists a set

of n — r independent vectors in its left kernel. Writing this set as a matrix in
echelon form, yields a system of n (n — r) equations in r (n — r) + k variables
given in matrix form:

1 11 ... Tip k
1 Tp—r1 -+ Tn—rr i=1
Note that, over a finite field, the set of unknown independent vectors can be
written in such a systematic form with high probability. Initially, relineariza-
tion [27] was used to solve this algebraic system. The authors of [I§] proposed
instead to use Grobner bases tools to solve this system. In addition, [I8] noticed
that the system has a specific structure: it is formed by bilinear equations [17].
We recall the complexity of the F5 algorithm for computing a grevlex Grébner
basis of a polynomial system as given in [2/3].
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Theorem 6. The complezity of computing a Grébner basis of a zero-dimensional
(i.e. with a finite number of solutions in the algebraic closure of the coefficient
field) polynomial system of m equations in n variables with Fy is

) (m ) (n + dreg)w> ’
dreg

where dyeg is the degree of regularity of the ideal and 2 < w < 3 the linear algebra
constant.

Informally, deg is the maximum degree reached during a Grobner basis compu-
tation. It has to be noticed that if the degree of regularity does not depend on
the number of variables, the complexity then becomes polynomial in n.

From Theorem [6] we can see that in order to estimate the complexity of finding
the MinRank solution with this modeling, we need a good estimate of the degree
of regularity of the system . Using the fact that is an affine bilinear
system, the following tight bound can be appropriately used for the purpose.

Theorem 7 ([17]). Let X andY be two blocks of variables of sizes nx and ny
respectively. We shall say f € K[X,Y] is bilinear if f(aX,8Y) =af f(X,Y)
for all (o, 8) € K x K. For the grevlex ordering, the degree of regularity of a
generic affine bilinear zero-dimensional system over K[X,Y] is upper bounded
by

dreg < min(nx,ny)+ L.

In particular, this result implies that computing the Grobner basis of generic
affine bilinear zero-dimensional system with min(nx,ny) € O(1) can be done in
polynomial-time.

B Complexity Theorems Proofs

B.1 Proof of Theorem [4l

Proof. W.L.O.G., we can assume that igp = 2 (up to re-ordering the equations).
Let Ao be a root of the degree-N univariate polynomial Det (‘13(2) + X - ’I}(l)).
We denote by Ko = Ker (P2 + A\PBWD) the corresponding kernel.

We first assume that IV is odd. By the genericity assumption, we know that
K> is of dimension one. Since 53\,’ Ny =1in , each K yields an unique 53’
(stated differently, 55’ is the vector generating K5 in a systematic basis). There
is at most ¢ = O(n) distinct values for 53’. We then plug each 53’ in @ which
reduces then to a system of linear equation in the 7. We know that there is at
least one 53’ which leads to a consistent system. If N < n is odd, we can then
solve (9 in O(n**1).

When N is even, the situation is very similar. The only difference is that Ko
is of dimension 2. Since 5y y = 1 in (§), each K yields ¢ = O(n) distinct 53",
There is at most N < n distinct values for 55’. As before, we plug each possible
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55’ in @ which yields a system of linear equation in the . Thus, if N is even,
we can then solve (9) in O(n¥*2).

Note that because of Lemma [3] the system will give a solution with probability
4=1 50 we need to randomize the public polynomials on average qf—l times.
The whole procedure needs to be repeated for every N starting from n—1 down
to r 4+ 2. Note that in the first iteration, when N = n, we actually solve only a

linear system of equations. O

B.2 Proof of Theorem [5l

Proof. Denote by (Z)q = g,ij;gg::g;:g::g:,;)) the Gaussian binomial coef-
ficient, that gives the number of k-dimensional subspaces of an n-dimensional
vector space.

The main idea of the proof is to show that in @D it is enough to consider only
two coordinates of £ in order to get a unique solution for 3’ with overwhelming
probability. Namely, it is enough to consider only the equations corresponding
to ig = 2,41 = 3 (w.l.o.g. up to reordering of equations):

5 (PP +7,80) = Orcw, (13)
B (‘B@ +¥;71Y~T3(1)) =01xn. (14)

For odd N, for both i € {2,3} we have that Dim(Ker(® + XpM)) = 1 for
every A € F,. Denote the set {Ker(? + AMPM)|\ € F,} by R, and the set
{Ker(BO+ABM)|\ € F,} by Rz. We know that, if there exists a good key, it will
be a vector in the vector space that is the intersection Rs N R3. The probability
that the intersection contains another vector space by chance is |R1|-|Ra|/ (]Y) 0

¢®~N), which is very small for big enough N. Similarly, for even N, there exist
A2, Az such that for both i € {2,3}, Dim(Ker(P® + L M)) = 2. Now, if a good
key exists, it will be in the intersection of the kernels and all other elements in
the intersection will be linearly dependent of the good key. Hence, in this case the
probability that we get a solution of the system that is not a good key is the same
as the probability that the two kernels coincide, which equals 1/ (g )q ~ gA—2N)

This again is very small. Thus, in total, with probability of 1— qN—l,m it is enough

to use only equations and (14)).
The task now reduces to solving a bilinear system of equations of bidegree (1,1),
over Fy ﬁgo,l , f;l 1:81N> -+ 5n_1 ] From Theorem such system can be solved
in 0 ("34°)
Again because of Lemma [3] we need to randomize the public polynomials on
average # times. The step of solving the system @D needs to be repeated for
every N starting from n — 1 down to r + 2. Note that, when N = n, we actually
solve only a linear system of equations, which is of smaller complexity.

. . . +4 w
In total, asymptotically, since we have O(n) steps of complexity (9(("3 ) ), we
obtain the total complexity of the attack. O
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