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Abstract. Composite-order bilinear groups provide many structural fea-
tures that are useful for both constructing cryptographic primitives and
enabling security reductions. Despite these convenient features, however,
composite-order bilinear groups are less desirable than prime-order bi-
linear groups for reasons of both efficiency and security. A recent line of
work has therefore focused on translating these structural features from
the composite-order to the prime-order setting; much of this work fo-
cused on two such features, projecting and canceling, in isolation, but a
result due to Seo and Cheon showed that both features can be obtained
simultaneously in the prime-order setting.
In this paper, we reinterpret the construction of Seo and Cheon in the
context of dual pairing vector spaces (which provide canceling as well
as useful parameter hiding features) to obtain a unified framework that
simulates all of these composite-order features in the prime-order set-
ting. We demonstrate the strength of this framework by providing two
applications: one that adds dual pairing vector spaces to the existing
projection in the Boneh-Goh-Nissim encryption scheme to obtain leak-
age resilience, and another that adds the concept of projecting to the
existing dual pairing vector spaces in an IND-CPA-secure IBE scheme
to “boost” its security to IND-CCA1. Our leakage-resilient BGN appli-
cation is of independent interest, and it is not clear how to achieve it
from pure composite-order techniques without mixing in additional vec-
tor space tools. Both applications rely solely on the Symmetric External
Diffie Hellman assumption (SXDH).

1 Introduction

Since their introduction in 2005 by Boneh, Goh, and Nissim [9], composite-order
bilinear groups have been used to construct a diverse set of advanced cryp-
tographic primitives, including (hierarchical) identity-based encryption [30,32],
group signatures [12,13], functional encryption [26,29], and attribute-based en-
cryption [31]. The main assumptions used to prove the security of such schemes
are variants of the subgroup decision assumption, which (in the simplest case)



states that, for a bilinear group G of order N = pq, without an element of order
q it should be hard to distinguish a random element of G from a random element
of order p. Such assumptions crucially rely on the hardness of factoring N .

Beyond this basic assumption and its close variants, many of these schemes
have exploited additional structural properties that are inherent in composite-
order bilinear groups. Two such properties, projecting and canceling, were for-
mally identified by Freeman [18]; projecting requires (roughly) that there exists
a trapdoor projection map from G into its p-order subgroup (and a related map
in the target group GT ), and canceling requires that elements in the p-order and
q-order subgroups cancel each other out (i.e., yield the identity when paired).
Additionally, Lewko [27] identified another property, parameter hiding, that re-
quires (again, roughly) that elements in the p-order subgroup reveal nothing
about seemingly correlated elements in the q-order subgroup.

While therefore quite attractive and rich from a structural standpoint, the
use of composite-order bilinear groups comes with a number of drawbacks, both
in terms of efficiency and security. Until a recent construction of Boneh, Rubin,
and Silverberg [11], all known composite-order bilinear groups were on super-
singular, or Type-1 [19], curves. Even in the prime-order setting, supersingular
curves are already less efficient than their ordinary counterparts: speed records
for the former [4,43] are approximately six times slower than speed records for the
latter [5]. In the composite-order setting, it is furthermore necessary to increase
the size of the modulus by at least a factor of 10 (from 160 to at least 1024 bits)
in order to make the assumption that N is hard to factor plausible. Operations
performed in composite-order bilinear groups are therefore significantly slower;
for example, Guillevic [22] recently observed that computing a pairing was 254
times slower. (This slowdown also extends to the non-supersingular construction
of Boneh et al., and indeed to any composite-order bilinear group.) Furthermore,
from a security standpoint, a number of recent results [23,25,21,1,2] demonstrate
that it is possible to efficiently compute discrete logarithms in common types of
supersingular curves, so that one must be significantly more careful when work-
ing over supersingular curves than when working over their non-supersingular
counterparts.

One natural question to ask is: to what extent is it possible to obtain the
structural advantages of composite-order bilinear groups without the disadvan-
tages? Although the structural properties described above might seem specific
to composite-order groups, both Freeman and Lewko are in fact able to express
them rather abstractly and then describe how to construct prime-order bilinear
groups in which each of these individual properties are met; they also show how
to translate the subgroup decision assumption into a generalized version, that
in prime-order groups is implied by either Decision Linear [8] or Symmetric Ex-
ternal Diffie Hellman (SXDH) [6]. Lewko’s approach is based on the framework
of dual pairing vector spaces, as developed by Okamoto and Takashima [39,40].
This framework has been particularly useful for enabling translations of cryp-
tosystems employing the dual system encryption methodology in their security
reductions.



In contrast, Meiklejohn, Shacham, and Freeman [37] showed that it was
impossible to achieve projecting and canceling simultaneously under a “natu-
ral” usage of Decision Linear; as a motivation, they presented a blind signature
scheme that seemingly relied upon both projecting and canceling for its proof
of security. Recently, Seo and Cheon [45] showed that it was actually possible
to achieve both projecting and canceling simultaneously in prime-order groups,
and Seo [44] explored both possibility and impossibility results for projecting. To
derive hardness of subgroup decision in their setting, however, Seo and Cheon
rely on a non-standard assumption and show that this implies the hardness of
subgroup decision only in a very limited case. They also provide a prime-order
version of the Meiklejohn et al. blind signature that is somewhat divorced from
their setting: rather than prove its security directly using projecting and can-
celing, they instead alter the blind signature, introduce a new property called
translating, and then show that the modified blind signature is secure not in
the projecting and canceling setting, but rather in a separate projecting and
translating setting.

Subsequently, Herold et al. [24] presented a new translation framework called
“polynomial spaces” that achieves projecting in a natural and elegant way, and
can also be augmented to simultaneously achieve canceling. Like the prior result
of Seo and Cheon, they employ a non-standard hardness assumption to obtain
subgroup decision hardness when projecting and canceling are both supported.
Interestingly, their approach does not seem to provide a way of achieving just
canceling with subgroup decision problems relying on standard assumptions like
SXDH or DLIN, as is achieved by dual pairing vector spaces. Integrating the
benefits of dual pairing vector spaces into something like the polynomial spaces
approach remains a worthwhile goal for future work. The framework in [24]
also extends to the setting of multilinear groups, as do approaches based on
eigenspaces, as demonstrated for example in [20].

Our contributions. In this paper, we present in Section 3 an abstract presen-
tation of the projecting and canceling pairing due to Seo and Cheon [45]. Our
presentation is based on dual pairing vector spaces (DPVS) [39,40], and it can
be parameterized to yield projection properties of varying strength. This per-
spective yields several advantages. First, all the power of DPVS is embedded
inside this construction and can thus be exploited as in prior works. Second, we
observe that many instances of subgroup decision problems in this framework
are implied by the relatively simple SXDH assumption.

The advantages of our perspective are most clear for our BGN applica-
tion, which we present in Section 4. If one starts with the goal of making the
composite-order BGN scheme leakage resilient (i.e., providing provable security
even when some bits of the secret key may have been leaked), the first obstacle
one faces is the uniqueness of secret keys. Since the secret key is a factorization
of the group order, there is only one secret key for each public key, making the
common kind of hash proof argument for leakage resilience (as codified by Naor
and Segev [38], for example) inapplicable. The DPVS techniques baked into our
projecting and canceling prime-order construction remove this barrier quite nat-



urally by allowing secret keys to be vectors that still serve as projection maps
but can now be sampled from subspaces containing exponentially many potential
keys. This demonstrates the benefits of adding canceling and parameter hiding
to applications that are designed around projection.

As an additional application, in Section 5, we present an IND-CCA1-secure
identity-based encryption (IBE) scheme that uses canceling, parameter hiding,
and weak projecting properties in its proof of security. Although efficient con-
structions of IND-CCA2-secure IBE schemes have been previously obtained by
combining IND-CPA-secure HIBE schemes with signatures [15], we nevertheless
view our IBE construction as a demonstration of the applicability of our unified
framework. Furthermore, our new construction does not aim to amplify secu-
rity by adding new primitives; instead, it explores the existing security of the
IND-CPA-secure IBE due to Boneh and Boyen [7] (which cannot be IND-CCA2
secure, as it has re-randomizable ciphertexts), and observes that, by modifying
the scheme in a rather organic way and exploiting the (weak) projecting and
canceling properties of the setting, we can prove IND-CCA1 security directly.
Hence, we view this as an exploration of the security properties that can be
proved solely from the minimalistic spirit of the Boneh-Boyen scheme.

Our two applications serve as a proof of concept for the usefulness of ob-
taining projecting and canceling simultaneously in the prime-order setting, and
a demonstration of how to leverage such properties while relying only on rel-
atively simple assumptions like SXDH. We believe that the usefulness of our
framework extends beyond these specific examples, and we intend our work to
facilitate future applications of these combined properties.

Our techniques. To obtain a more user-friendly interpretation of the projecting
and canceling pairing construction over prime-order groups, we begin by observ-
ing that it is essentially a concatenation of DPVS. Dual pairing vector spaces
were first used in prime-order bilinear groups by Okamoto and Takashima [39,40]
and have since been employed in many works, in particular to instantiate dual
system technique [46] in the prime-order setting [29,41,27]. These previous uses
of DPVS typically relied on the canceling property, variants of subgroup decision
problems, and certain parameter hiding properties that are present by design in
DPVS. One particularly nice feature of DPVS constructions is that a large fam-
ily of useful subgroup decision variants can be proven to follow from standard
assumptions like SXDH for asymmetric groups and DLIN for symmetric groups;
viewing the construction of a projecting and canceling pairing as a natural ex-
tension of DPVS therefore has the twin benefits that it provides a clear guide
on how to derive certain subgroup decision variants from standard assumptions,
and that it comes with all the built-in tools that DPVS offers.

In particular, DPVS includes a suite of vector-space-based tools for prov-
ing leakage resilience, similar to ones used in previous works [38,14,16,36,34,17].
This enables us to combine the projecting-supported limited homomorphic func-
tionality of the BGN encryption scheme with provable leakage resilience. DPVS
also supports a toolkit developed for dual system proofs (e.g., [35,41,42]), which



is what enables us to boost our IBE to full IND-CCA1 security with just the
addition of projection.

2 Definitions and Notation

In this section, we define bilinear groups and the three functional properties we
would like them to satisfy: projecting, canceling, and parameter hiding. For the
first two, we use the definitions of Freeman [18] (albeit in a somewhat modified
form); for parameter hiding, on the other hand, we come up with a new formal
framework. In addition to these functional properties, we consider the notion of
subgroup decision in bilinear groups, in which a random element of a subgroup
should be indistinguishable from a random element of the full group. The variant
we define, called generalized correlated subgroup decision, is very general: in
addition to seeing random elements of subgroups, we allow an attacker to see
elements correlated across subgroups (e.g., elements of different subgroups with
correlated randomness), and require that it is still difficult for him to distinguish
between correlated elements of different subgroups. We then see in Section 3that
many specific instances of this general notion are implied by more standard
notions of subgroup decision in prime-order groups.

2.1 Bilinear groups

In what follows, we refer to a bilinear group as a tuple G = (N,G,H,GT , e, µ),
where N is either prime or composite, |G| = |H| = kN and |GT | = ℓN for
some k, ℓ ∈ N, and e : G × H → GT is a bilinear map; i.e., e is an efficient
map that satisfies both bilinearity (e(xa, yb) = e(x, y)ab for all x ∈ G, y ∈ H,
a, b ∈ Z/NZ) and non-degeneracy (if e(x, y) = 1 for all x ∈ G then y = 1
and if e(x, y) = 1 for all y ∈ H then x = 1). In some bilinear groups, we may
additionally include generators g and h of G and H respectively (if G and H are
cyclic), information about meaningful subgroups of G and H, or some auxiliary
information µ that allows for efficient membership testing in G and H (and
possibly more). In what follows, we refer to the algorithm that is used to generate
such a G as BilinearGen. Beyond the security parameter, BilinearGen takes in an
additional parameter n that specifies the number of desired subgroups; i.e., for

(N,G,H,GT , e, µ)
$
←− BilinearGen(1k, n), we have G = ⊕n

i=1Gi and H = ⊕n
i=1Hi

(where typically Gi and Hi are cyclic).
In terms of functional properties of bilinear groups, we first define both pro-

jecting and canceling ; our definitions are modified versions of the ones originally
given by Freeman [18]. We give three flavors of projecting. The first, weak pro-

jecting, considers projecting into a single subgroup of the source group, without
requiring a corresponding map in the target group. The second, which we call
simply projecting, most closely matches the definition given by Freeman, and con-
siders projecting into a single subgroup in both the source and target groups.
Lastly, we define full projecting, which considers projecting into every subgroup
individually. As we will see in Section 3, we can satisfy all of these flavors by
tweaking appropriate parameters in our prime-order construction.



Definition 2.1 (Weak projecting). A bilinear group G = (N,G,H,GT , e, µ)
is weakly projecting if there exist decompositions G = G1⊕G2 and H = H1⊕H2,

and projection maps πG and πH such that πG(x1) = x1 for all x1 ∈ G1 and

πG(x2) = 1 for all x2 ∈ G2, and similarly πH(y1) = y1 for all y1 ∈ H1 and

πH(y2) = 1 for all y2 ∈ H2.

Definition 2.2 (Projecting). A bilinear group G = (N,G,H,GT , e, µ) is pro-
jecting if there exist subgroups G′ ⊂ G, H ′ ⊂ H, and G′

T ⊂ GT such that there

exist non-trivial maps πG : G → G′, πH : H → H ′, and πT : GT → G′

T such

that πT (e(x, y)) = e(πG(x), πH(y)) for all x ∈ G, y ∈ H.

Definition 2.3 (Full projecting). A bilinear group G = (N,G,H,GT , e, µ) is
fully projecting if there exists some n ∈ N and decompositions G = ⊕n

i=1Gi, H =
⊕n

i=1Hi, and GT = ⊕n
i=1GT,i, and non-trivial maps πGi : G → Gi, πHi : H →

Hi, and πTi : GT → GT,i for all i such that πTi(e(x, y)) = e(πGi(x), πHi(y)) for
all x ∈ G, y ∈ H.

Definition 2.4 (Canceling). A bilinear group G = (N,G,H,GT , e, µ) is can-
celing if there exists some n ∈ N and decompositions G = ⊕n

i=1Gi and H =
⊕n

i=1Hi such that e(xi, yj) = 1 for all xi ∈ Gi, yj ∈ Hj, i 6= j.

2.2 Parameter hiding

Beyond projecting and canceling, we aim to define parameter hiding. As men-
tioned in the introduction, this property roughly says that elements in one sub-
group should not reveal anything about related elements in other subgroups, and
was previously used, without a formal definition, by Lewko [27]. In essence, pa-
rameter hiding in composite-order groups is a simple consequence of the Chinese
Remainder Theorem, which tells us that if we sample a random value modulo
N = pq, its reductions modulo p and q are uncorrelated. In the prime-order
setting, a form of parameter hiding can be instantiated from dual pairing vec-
tor spaces, leveraging the fact that if one commits to only certain parts of dual
orthonormal bases over F

n
p , there is remaining ambiguity in the hidden basis

vectors.
The main difficulty in providing a formal definition for parameter hiding is

that it is not as self-contained a feature as projecting and canceling: elements
within subgroups may be related to elements in other subgroups in a myriad
of ways, and their relation to one another may depend both on the form of the
element (which can involve any function on the exponents) and on the subgroups.
We therefore do not try to consider all types of correlations, but instead focus
on one simple type, defined as follows:

Definition 2.5. For a bilinear group G = (N,G = ⊕n
i=1Gi, H = ⊕n

i=1Hi, GT , e,
{gi}

n
i=1, {hi}

n
i=1), an element x ∈ Z/NZ, and indices 1 ≤ i1, i2 ≤ n, an x-

correlated sample from the subgroup Gi1⊕Gi2 is an element of the form gαi1 ·g
αx
i2

for α
$
←− Z/NZ.



We also consider correlated samples in H, but for convenience we define a
y-correlated sample from the subgroup Hi1 ⊕Hi2 to be an element of the form

hβy
i1
· hβ

i2
for β

$
←− Z/NZ. Although we choose this type of correlation mainly

for ease of exposition (and because we encounter it in Section 5), our discussion
below could be adjusted to accommodate more general types of correlation,
which would remain compatible with our prime-order construction in Section 3.

Intuitively then, parameter hiding says that, under certain restrictions about
which subgroup elements one is allowed access to, the distributions over x-
correlated samples and random samples should in fact be the same, even when
x is known. (We need some restrictions because there may be testable relation-
ships between the images of various generators in the target group.) To con-
sider the distributions we can use— i.e., what additional information we might
give out besides the samples—we consider distributions D parameterized by
sets Sph

G = {Sph
G,gen, S

ph
G,sam, S

ph
G,cor}, S

ph
H = {Sph

H,gen, S
ph
H,sam, S

ph
H,cor}, and C; intu-

itively, Sph
G and Sph

H tell us which elements to include in the distribution, and C
tells us which correlated samples to change to random. Formally, these sets are
defined as follows:

– Sph
G,gen indicates which subgroup generators to include: For all si ∈ Sph

G,gen,
include gsi in D.

– Sph
G,sam is a multiset that indicates which random samples to include: For all

ti = (t1,i, . . . , tmi,i) ∈ Sph
G,sam, include a random sample from Gt1,i ⊕ . . . ⊕

Gtmi,i
in D.

– Sph
G,cor is a set that indicates which correlated samples to include: For all

ci = (xi, c1,i, c2,i) ∈ Sph
G,cor, include gac1,i · g

axi
c2,i

in D, where a
$
←− Z/NZ.

– Sph
H is defined analogously to Sph

G .

– C indicates which correlated samples to change: For all ci = (bi, c
′

i) ∈ C, if

bi = 0 then c′i ∈ Sph
G,cor and if bi = 1 then c′i ∈ Sph

H,cor; i.e., we require that

C ⊆ {0× Sph
G,cor} ∪ {1× Sph

H,cor}.

Given all these sets, we now require that they are well-behaved in the fol-
lowing two ways: (1) for any changed x-correlated sample, do not reveal the
corresponding subgroup generators on either side of the pairing, and (2) do not
change correlated samples for the same value x in the same subgroups on oppo-
site sides of the pairing. Formally, we express these requirements as

– Don’t include generators for switched samples: For all (bi, (xi, c1,i, c2,i)) ∈ C,

sj ∈ Sph
G,gen, and sℓ ∈ Sph

H,gen, sj 6= c1,i, c2,i and sℓ 6= c1,i, c2,i.

– Don’t switch x-correlated samples in overlapping subgroups of G and H: For
all (0, (xi, c1,i, c2,i)), (1, (xj , c1,j , c2,j)) ∈ C, either xi 6= xj or c1,i 6= c1,j , c2,j
and c2,i 6= c1,j , c2,j .

To see why these restrictions can be necessary, consider trying to establish
that an x-correlated sample in G1 ⊕ G2 is identical to a random sample in
G1 ⊕G2, and suppose we are given h1 and h2. If we are given gα1 g

αx
2 (for some



random, unknown α), then—assuming we are using a canceling pairing—we can
compute e(g1, h1)

α and e(g2, h2)
αx. When working with specific instantiations,

there may be a known relationship between e(g1, h1) and e(g2, h2). (In fact, for
our IBE construction, e(g1, h1) = e(g2, h2)

−1.) In this case, if x is known then
we can test for an x-correlation in the target group, and hence distinguish an x-
correlated sample from a random one. Similarly, if we have x-correlated samples
gα1 g

αx
2 and hβx

1 hβ
2 , then pairing these yields the identity, which distinguishes

them from random.

Definition 2.6 (Parameter hiding). We say that a group G = (N,G,H,GT ,
e, µ) satisfies parameter hiding with respect to a well-behaved distribution D =

(Sph
G , Sph

H , C) if D is identical to the distribution in which the correlated samples

indicated by C are replaced with random samples.

Example 2.1. As an example, consider the distribution D defined by Sph
G =

{{1, 2}, ∅, {(x, 1, 2), (x, 3, 4)}}, Sph
H = {{1, 2, 5, 6}, {(3, 4), (3, 4)}, {(y, 1, 2), (y, 3,

4)}}, and C = {(0, (x, 3, 4)), (1, (y, 3, 4)} for any x, y ∈ Z/NZ such that x 6= y; we
can easily check that these sets are well-behaved in the sense defined above. Then

parameter hiding holds for G = (N,G,H,GT , e, µ) if for a, b, c, d, s, t, u, v, w, z
$
←−

Z/NZ,

(N,G,H,GT , e, µ, g1, g2, h1, h2, h5, h6, h
a
3h

b
4, h

c
3h

d
4, h

ty
1 ht

2, h
zy
3 hz

4, g
s
1g

sx
2 , gw3 g

wx
4 )

is identical to

(N,G,H,GT , e, µ, g1, g2, h1, h2, h5, h6, h
a
3h

b
4, h

c
3h

d
4, h

ty
1 ht

2, h
v
3h

z
4, g

s
1g

sx
2 , gw3 g

u
4 ).

In our uses of parameter hiding in Section 5, we restrict ourselves to this one
example. Again, this is due to the difficulty of providing a fully general definition
of parameter hiding, as certain types of correlated samples require more entropy
than others. We nevertheless do not find it to be overly limiting to consider this
one example, as it keeps our constructions in Section 5 simple and tailored to
the requirements that we need. We also use a variant of parameter hiding in
the proof for our leakage-resilient BGN variant presented in Section 4. Here,
the flexibility in the hidden parameters is leveraged to allow the simulator to
a leak on a secret key before fully committing to a complete basis (i.e., before
determining how to form an appropriate ciphertext).

2.3 Generalized correlated subgroup decision

Beyond functional properties of bilinear groups, we must also consider the types
of security guarantees we can provide. The assumption we define, generalized cor-
related subgroup decision, considers indistinguishability between subgroups in a
very general way: given certain subgroup generators and “correlated” elements
across subgroups (i.e., elements in different subgroups that use the same random-
ness), it should still be hard to distinguish between elements of other subgroups.

Formally, we consider sets Ssgh
G = {Ssgh

G,gen, S
sgh
G,sam}, Ssgh

H = {Ssgh
H,gen, S

sgh
H,sam},



T1 = {(ℓ1, λ1), . . . , (ℓm, λm)}, and T2 = {(ℓ′1, λ
′

1), . . . , (ℓ
′

m+1, λ
′

m+1)}, and an in-
dicator bit b. (We assume without loss of generality that T2 is the larger set.)

Intuitively, Ssgh
G and Ssgh

H tell us which group elements an adversary is given,
and (T1, T2, b) tell us what the challenge terms should look like. We have the
following requirements:

– Ssgh
G,gen indicates which subgroup generators to include: Give out gsi for all

si ∈ Ssgh
G,gen.

– Ssgh
G,sam indicates which samples to include: For each

ti = ((ℓ1,i, λ1,i), . . . , (ℓmi,i, λmi,i)) ∈ Ssgh
G,sam

, give out ga1

ℓ1,i
· . . . ·g

ami

ℓmi,i
and ga1

λ1,i
· . . . ·g

ami

λmi,i
for a1, . . . , ami

$
←− Z/NZ. These

elements are correlated, in that the same randomness is used for both.

– The bit b indicates which group the challenge element comes from: b = 0
indicates G, and b = 1 indicates H.

– The sets T1 and T2 must differ in exactly one pair; i.e., there must exist a
unique pair P such that P /∈ T1 but P ∈ T2. For this pair P = (ℓ, λ), we
cannot give out the subgroup generators on either side of the pairing, so we
require si 6= ℓ and si 6= λ for any si ∈ Ssgh

G,gen or si ∈ Ssgh
H,gen.

If P ∈ ti for some ti ∈ Ssgh
G,sam ∪ Ssgh

H,sam, then T1 ∩ ti 6= ∅; i.e., P can
appear only in random samples that also contain another component in the
challenge term. Then, assuming b = 0 (and replacing g with h if b = 1), our
challenge elements are of the form T := (ga1

ℓ1
· . . . · gam

ℓm
, ga1

λ1
· . . . · gam

λm
) and

T ′ := (ga1

ℓ1′
· . . . · g

am+1

ℓ′
m+1

, ga1

λ′

1
· . . . · g

am+1

λ′

m+1
) for a1, . . . am+1

$
←− Z/NZ.

Assumption 2.1 (Generalized correlated subgroup decision) For all tu-

ples (Ssgh
G , Ssgh

H , T1, T2, b) satisfying the requirements specified above and for any

n ∈ N, for any PPT adversary A given G
$
←− BilinearGen(1k, n) and the elements

specified by Ssgh
G and Ssgh

H , it is hard to distinguish between values T defined by

(b, T1) and values T ′ defined by (b, T2).

As an example, consider the case in which n = 6 and Ssgh
G = {{1, 2}, {((1, 2),

(3, 4))}}, Ssgh
H = {{1, 2, 5, 6}, {((1, 2), (3, 4)), ((3, 4), (5, 6))}}, T1 = {(1, 2), (5, 6)},

T2 = {(1, 2), (3, 4), (5, 6)}, and b = 0. In this case, the concrete assumption is:
Given G and generators g1, g2, h1, h2, h5, h6, correlated samples from G1 ⊕ G3

and G2 ⊕ G4, correlated samples from H1 ⊕ H3 and H2 ⊕ H4, and correlated
samples from H3 ⊕H5 and H4 ⊕H6, it should be hard to distinguish correlated
samples from G1⊕G5 and G2⊕G6 from correlated samples from G1⊕G3⊕G5

and G2 ⊕G4 ⊕G6.

3 A Prime-Order Bilinear Group Satisfying All Features

Our ultimate goal in this section is to define a prime-order bilinear group that
satisfies all three of the properties defined in the previous section: projecting,



canceling, and parameter hiding; additionally, we want to require that subgroup
decision is hard in this group. Our construction can be viewed as an abstraction
of the construction of Seo and Cheon [45], which they prove satisfies (regular)
projecting, canceling, and a somewhat restrictive notion of subgroup decision.
In contrast, our construction satisfies canceling and parameter hiding, is flexible
enough to achieve any of the three flavors of projecting we defined in the pre-
vious section (depending on the parameter choices), and comes equipped with
reductions for more general instances of subgroup decision.

Notationally, we augment the bilinear groups G discussed in the previous
section: we now focus only on the case when the group order is some prime p,
and consider G = (p,B1, B2, BT , E, µ) built on top of G = (p,G,H,GT , e); this
means B1, B2, and BT may contain multiple copies of G,H, and GT respectively,
and that the map E uses e as a component. Because we are moving to bigger
spaces, we also include a value µ that allows us to test membership in B1 and
B2; as an example, consider B1 ⊂ G × G. Then, while an efficient membership
test for G implies one for G×G, additional information µ may be necessary to
allow one to (efficiently) test for membership in B1.

Our construction crucially uses dual pairing vector spaces, which were in-
troduced by Okamoto and Takashima [39,40] and have been previously used to
provide pairings E : Gn ×Hn → GT , built on top of pairings e : G×H → GT ,
that satisfy the canceling property. As we cannot have a cyclic target space if we
want to satisfy projecting, however, we instead need a map whose image is Gd

T

for some d > 1. Intuitively, we achieve this by piecing together d “blocks,” where
each block is an instance of a dual pairing vector space; the construction of Seo
and Cheon is then obtained as the special case in which d = n, and regular dual
pairing vector spaces are obtained with d = 1. We begin with a key definition:

Definition 3.1 (Dual orthonormal). Two bases B = (~b1, . . . ,~bn) and B
∗ =

(~b∗1, . . . ,
~b∗n) of F

n
p are dual orthonormal if ~bj ·~b

∗

j ≡ 1 mod p for all j, 1 ≤ j ≤ n,

and ~bj ·~b
∗

k ≡ 0 mod p for all j 6= k.

We note that one can efficiently sample a random pair of dual orthonormal
bases (B,B∗) by sampling first a random basis B and then solving uniquely for

B
∗ using linear algebra over Fp; we denote this sampling process as (B,B∗)

$
←−

Dual(Fn
p ). By repeating this sampling process d times, we can obtain a tuple

((B1,B
∗

1), . . . , (Bd,B
∗

d)) of d pairs of dual orthonormal bases of Fn
p . We denote

the vectors of Bi as (~b1,i . . . ,~bn,i), and the vectors of B∗

i as (~b∗1,i, . . . ,
~b∗n,i). We

then give the following definition:

Definition 3.2 (Concatenation). The concatenation of bases (B1, . . . ,Bd) of

F
n
p is a collection of n vectors (~v1, . . . , ~vn) in F

dn
p , where each ~vj := ~bj,1|| . . . ||~bj,d.

Alternatively, we can view each ~vj as a d× n matrix, where the i-th row is ~bj,i.
We denote the concatenation of (B1, . . . ,Bd) as Concat(B1, . . . ,Bd).

To begin our construction, we build off G = (p,G,H,GT , e, g, h), where g
and h are generators of G and H respectively, and consider groups B1 ⊂ Gdn



and B2 ⊂ Hdn. Notationally, we write an element of B1 as gA, where A =
(αi,j)

d,n
i,j=1 is a d×nmatrix and gA := (gα1,1 , . . . , gα1,j , . . . , gα1,n , gα2,1 , . . . , gαd,n).

We similarly write elements of B2 as hB for a d× n matrix B = (βij)
d,n
i,j=1, and

furthermore define the bilinear map E : B1 ×B2 → Gd
T as

E(gA, hB) :=

(

n
∏

k=1

e(gα1,k , hβ1,k), . . . ,

n
∏

k=1

e(gαd,k , hβd,k)

)

. (1)

Observe that the i-th coordinate of the image is equal to e(g, h)Ai·Bi mod p, where
Ai and Bi denote the i-th rows of A and B respectively. Then, to begin to see
how our construction will satisfy projecting and canceling, we have the following
lemma:

Lemma 3.1. Let (~v1, . . . , ~vn) = Concat(B1, . . . ,Bd) and (~v∗1 , . . . , ~v
∗

n) = Concat(
B
∗

1, . . . ,B
∗

d), where (Bi,B
∗

i ) are dual orthonormal bases of Fn
p . Then

E(g~vj , h~v
∗

j ) = (e(g, h), . . . , e(g, h)) ∀j and E(g~vj , h~v
∗

k) = (1T , . . . , 1T ) ∀j 6= k.

Proof. By definition of the pairing,

E(g ~vj , h
~v∗

k) =
(

e(g, h)
~bj,1·~b

∗

k,1 , . . . , e(g, h)
~bj,d·~b

∗

k,d

)

for any j and k. If j = k, then the fact that (Bi,B
∗

i ) are dual orthonormal for

all i implies by definition that ~bj,i · ~b
∗

j,i ≡ 1 mod p for all i and j, and thus

E(g~vj , h~v
∗

j ) = (e(g, h), . . . , e(g, h)). For the second property, we again use the

definition of dual orthonormal bases to see that ~bj,i ·~b
∗

k,i ≡ 0 mod p for all j 6= k,

and thus E(g~vj , h~v
∗

k) = (1T , . . . , 1T ). ⊓⊔

While Lemma 3.1 therefore shows us directly how to obtain canceling, for
projecting we are still mapping into a one-dimensional image. To obtain more
dimensions, it turns out we need only perform some additional scalar multipli-
cation. We give the following definition:

Definition 3.3 (Scaling). Define C = (ci,j)
d,n
i,j=1 to be a n×d matrix of entries

over Fp\{0}. Given bases (B1, . . . ,Bd) of F
n
p , we define the scaling of these bases

by C to be new bases (D1, . . . ,Dd), where Di = (c1,i~b1,i, . . . , cn,i~bn,i) for all i,
1 ≤ i ≤ d. We denote the scaling of (B1, . . . ,Bd) by C as Scale(C,B1, . . . ,Bd).

Intuitively then, we use the entries in the i-th column of C to scale the vectors
in the basis Bi and obtain the basis Di. As we still have ~bj,i ·~b

∗

k,i ≡ 0 mod p for
j 6= k, multiplication by a scalar will not affect this and we still satisfy canceling.
The scalar values do, however, build in extra dimensions into the image of our
pairing, as demonstrated by the following lemma:

Lemma 3.2. Let (B1, . . . ,Bd) and (B∗

1, . . . ,B
∗

d) be sets of bases for Fn
p such that

(Bi,B
∗

i ) are dual orthonormal for all i. Define (~v1, . . . , ~vn) := Concat(D1, . . . ,Dd)



and (~v∗1 , . . . , ~v
∗

n) := Concat(B∗

1, . . . ,B
∗

d), where (D1, . . . ,Dd) = Scale(C,B1, . . . ,
Bd) for some C ∈Mn×d(Fp). Then

E(g~vj , h~v
∗

j ) = (e(g, h)cj,1 , . . . , e(g, h)cj,d) ∀j and

E(g~vj , h~v
∗

k) = (1T , . . . , 1T ) ∀j 6= k.

Proof. By definition of the pairing,

E(g~vj , h~v
∗

k) =
(

e(g, h)cj,1
~bj,1·~b

∗

k,1 , . . . , e(g, h)cj,d
~bj,d·~b

∗

k,d

)

for any j and k. If j = k, then the fact that (Bi,B
∗

i ) are dual orthonormal for

all i implies by definition that ~bj,i · ~b
∗

j,i ≡ 1 mod p for all i and j, and thus

cj,i~bj,i · ~b
∗

j,i ≡ cj,i mod p and E(g~vj , h~v
∗

j ) = (e(g, h)cj,1 , . . . , e(g, h)cj,d). For the
second property, we again use the definition of dual orthonormal bases to see
that ~bj,i · ~b

∗

k,i ≡ 0 mod p for all j 6= k, and thus cj,i~bj,i · ~b
∗

k,i ≡ 0 mod p and

E(g~vj , h~v
∗

k) = (1T , . . . , 1T ). ⊓⊔

We are now ready to give our full construction of an algorithm BilinearGen′,
parameterized by integers n and d, and a distribution Dn,d on n×d matrices, to
achieve a setting G = (p,B1, B2, BT , E, µ) such that B1 ⊂ Gdn, B2 ⊂ Hdn, and
BT = Gd

T . We present this construction in Algorithm 1, and demonstrate that
it satisfies projecting, canceling, parameter hiding, and subgroup decision.

The generality of this construction stems from the choices of d, n, and D;
in fact, by choosing different values for these parameters, we can satisfy each of
the different flavors of projecting from Section 2. To satisfy fully projecting, we
choose C from a distribution over matrices of full rank n and use d ≥ n. If we
use a less restrictive distribution, we obtain weaker projection capabilities and
a more efficient construction (as we can have d < n) when projecting onto all
subgroups individually is not needed: to achieve (regular) projecting, we can use
d > 1 and pick C to be of rank > 1, and to achieve weak projecting we can in
fact use d = 1 and pick C to be the vector consisting of all 1 entries. (This last
case is equivalent to working in regular dual pairing vector spaces.)

Theorem 3.1. For all values of n ≥ 2, the bilinear group G
$
←− BilinearGen′(1k,

n, d,Dd,n) satisfies canceling, fully projecting as defined in Definition 2.3 for

d ≥ n when Dd,n is defined over full-rank matrices, projecting as defined in

Definition 2.2 for d > 1 when Dd,n is defined over matrices of rank > 1, and
weak projecting as defined in Definition 2.1 for d = 1.

Proof. Given that our construction was specifically designed to satisfy the con-
ditions for Lemma 3.2, we immediately obtain canceling. To satisfy projecting,
we additionally need to construct the projection maps πij and argue that they
satisfy the requirements of Definition 2.3 (in the case that C is full rank). By
the way our subgroups are defined, each projection map π1i within the group B1

must map an arbitrary element ga1~v1+···+an~vn of B1 to gai ~vi ∈ B1,i; similarly, π2i

must map ha∗

1~v
∗

1+···+a∗

n~v
∗

n ∈ B2 to ha∗

i ~v
∗

i ∈ B2,i. For π1i, we observe that it can



Algorithm 1 BilinearGen′: generate a bilinear group G that satisfies projecting
and canceling

Input: d, n ∈ N; distribution Dd,n over matrices in Mn×d(Fp); security parameter
1k.

1. (p,G,H,GT , e)
$
←− BilinearGen(1k, 1).

2. Pick values g and h such that G = 〈g〉 and H = 〈h〉.

3. Sample d pairs (Bi,B
∗

i )
$
←− Dual(Fn

p ) to obtain two sets (B1, . . . ,Bd) and
(B∗

1, . . . ,B
∗

d) of bases of F
n
p , where (Bi,B

∗

i ) are dual orthonormal.

4. Sample C = (cij)
d,n
i,j=1

$
←− D and compute (D1, . . . ,Dd) := Scale(C,B1, . . . ,Bd).

5. For all i, 1 ≤ i ≤ n, define B1,i := 〈g
~vi〉 and B2,i := 〈h

~v∗

i 〉, where (~v1, . . . , ~vn) :=
Concat(D1, . . . ,Dd) and (~v∗1 , . . . , ~v

∗

n) := Concat(B∗

1, . . . ,B
∗

d).
6. Define B1 := ⊕n

i=1B1,i ⊂ Gdn, B2 := ⊕n
i=1B2,i ⊂ Hdn, and BT := Gd

T . Define the
pairing E : B1 ×B2 → BT as in Equation 1.
7. Finally, to be able to check that an element gM ∈ Gdn for M = (mij)

d,n
i,j=1 is

an element of B1, we observe that the vectors ~v1, . . . , ~vn span an n-dimensional
subspace V of Fdn

p . Thus, there must be another subspace, call it W, of dimension
dn − n, that contains all vectors in F

n
p that are orthogonal to vectors in V. Given

µ2 := (h~w1 , . . . , h~w(d−1)n), where the {~wi}
(d−1)n
i=1 are a basis of W, one can therefore

efficiently check if gM ∈ B1 by checking if E(gM , h~wi) = (1T , . . . , 1T ) for all i,
1 ≤ i ≤ (d− 1)n.

Analogously, given µ1 := (g ~w∗

1 , . . . , g
~w∗

(d−1)n), one can check if hA ∈ B2 by checking

if E(g ~w∗

i , hA) = (1T , . . . , 1T ), where {~w
∗

i }
(d−1)n
i=1 are a basis for the subspace W

∗ of
F
n
p consisting of vectors orthogonal to vectors in the span of ~v∗1 , . . . , ~v

∗

n.
8. Output G := (p,B1, B2, BT , E, (µ1, µ2)).

be computed efficiently by anyone knowing ~vi and another vector in F
dn
p that is

orthogonal to ~vk for all k 6= i. The situation for π2i is analogous.
As for the projection maps πT,i required for the target space, we define πT,i

to map an element e(g, h)a1C1+···+anCn to e(g, h)aiCi , where we recall Ci denotes
the i-th row of the scaling matrix C (Ci is thus a vector in F

d
p for all i).

Finally, we show that the required associativity property holds, namely that
E(π1,i(g

M ), π2,i(h
A)) = πT,i(E(gM , hA)) for all elements gM ∈ B1, h

A ∈ B2,
and for all i, 1 ≤ i ≤ d. To see this, observe that gM ∈ B1 implies that gM =
gα1~v1+···+αn~vn for some α1, . . . , αn ∈ Fp, and similarly that hA = hβ1~v

∗

1+···+βn~v
∗

n .
We therefore have that

E(π1,i(g
M ), π2,i(h

A)) = E(gαi~vi , hβi~v
∗

i ) = e(g, h)αiβiCi ,

where this last equality follows from Lemma 3.2. On the other hand, we have
that

πT,i(E(gM , hA)) = πT,i(

n
∏

k=1

e(g, h)αkβkCk) = e(g, h)αiβiCi ,

and the two quantities are therefore equal.
A similar argument applies to obtaining more limited projections when C

has lower rank. ⊓⊔



It remains to prove that our construction also satisfies parameter hiding
and subgroup hiding. For the latter property, our definition in Section 2.3 is
highly general and we cannot prove that all instances of generalized correlated
subgroup decision reduce to any one assumption. Instead, we show that certain
“nice” instances of the assumption follow from SXDH.

Before we define a nice instance, we first restrict our attention to the case
where n = 8, d = 1, C is a matrix with all 1 entries. For succinctness here and in
later sections, we use BasicGen(1k) = BilinearGen′(1k, 8, 1,D), where D produces
matrices with all 1 entries; i.e., we use BasicGen to produce the specific setting
in which we are interested in Section 5.

We consider two variants of this setting, which differ only in the auxiliary
information µ. For µ as defined above in Algorithm 1, we show that the required
instances of the correlated subgroup decision assumption are implied by SXDH.
We additionally consider a case where µ is augmented to contain the following
three pieces of information: (1) the vectors ~v7, ~v8, ~v

∗

7 , and ~v∗8 ; (2) a random basis
for the span of (~v1, . . . , ~v6) inside F

8
p; and (3) a random basis for the span of

(~v∗1 , . . . , ~v
∗

6) inside F
8
p. With this µ, one can then perform a membership test for

G1⊕ . . .⊕G6 on some element g~v by computing a basis for the orthogonal space
of the span of (~v1, . . . , ~v6), pairing against h raised to these vectors, and taking a
dot product in F

8
p. While this additional information in µ makes some instances

of subgroup decision easy, instances entirely within G1⊕ . . .⊕G6 and H1⊕ . . . H6

are still implied by SXDH. To refer to this instance with augmented µ in what
follows, we call it the augmented construction. Now, by “nice,” we mean that
the instance of the assumption behaves as follows: if the challenge terms are in
H (the situation is analogous if they are in G), then there is a single pair in
S that is common to the challenge sets T1 and T2 that appears in all tuples in
Ssgh
G,sam that also contain the differing pair. In other words, the given correlated

samples from the opposite side of the challenge that include the differing space
must also be attached to a particular space that is guaranteed to be present in
the challenge term. As we will see, this feature turns out to be convenient for
reducing to SXDH, as demonstrated by the following lemmas. For the augmented
construction, we additionally restrict to instances where each correlated sample
ti in Ssgh

G,sam or Ssgh
H,sam is contained within the set S := {(1, 2), (3, 4), (5, 6)} (this

is to avoid the additional information in µ from compromising the hardness).

Lemma 3.3. For the augmented construction, the nice instances of the general-

ized correlated subgroup decision assumption, where additionally each correlated

sample ti in Ssgh
G,sam or Ssgh

H,sam is contained within the set {(1, 2), (3, 4), (5, 6)},
are implied by the SXDH assumption.

Proof. We consider a nice instance of the generalized correlated subgroup deci-
sion assumption parameterized by sets Ssgh

G and Ssgh
H containing singletons and

tuples of the pairs (1, 2), (3, 4), (5, 6) and challenge sets T1 and T2 differing by
one pair. We assume without loss of generality that the differing pair is (3, 4),
that (1, 2) is a common pair to both T1, T2, and the challenge terms are in G.

We assume we are given an SXDH challenge of the form (g, h, ga, gb, T ),
where T = gab or is random in G. We will simulate the specified instance of the



generalized correlated subgroup decision assumption. We first choose a random
dual orthonormal bases pair F,F∗ for F

8
p. We then implicitly define B,B∗ as

follows:
~b1 = a~f3 + ~f1, ~b2 = a~f4 + ~f2, ~b3 = ~f3, ~b4 = ~f4,

~b5 = ~f5, ~b6 = ~f6, ~b7 = ~f7, ~b8 = ~f8

~b∗1 = ~f∗

1 ,
~b∗2 = ~f∗

2 ,
~b∗3 = ~f∗

3 − a~f∗

1 ,
~b∗4 = ~f∗

4 − a~f∗

2 ,

~b∗5 = ~f∗

5 ,
~b∗6 = ~f∗

6 ,
~b∗7 = ~f∗

7 ,
~b∗8 = ~f∗

8 .

We note that (B,B∗) are properly distributed, since applying a linear transfor-
mation to randomly sampled dual orthonormal bases while preserving orthonor-
mality produces equivalently distributed bases. We observe that ~v7, ~v8, ~v

∗

7 , ~v
∗

8 are
known, as are the spans of {~v1, . . . , ~v6} and {~v

∗

1 , . . . , ~v
∗

6}. Thus we can produce
the specified auxiliary information µ.

Since we have h, g, ga, we can produce all generators except h3, h4. Since (3, 4)
is the differing pair for the challenges, these generators cannot be required. Since
all generators are known on the G side, any correlated samples in G are easy to
produce. To produce correlated samples for tuples containing (1, 2) and (3, 4) in
H, we simply choose random exponents t′, z ∈ Fp and implicitly set t = az + t′.
We can then produce

ht
1h

z
3 = ht′ ~f∗

1 +z ~f∗

3 , ht
2h

z
4 = h−t′ ~f∗

2 −z ~f∗

4 .

To produce the challenge terms, we compute

T
~f3(gb)

~f1 , T
~f4(gb)

~f2 .

If (5, 6) is also common to T1, T2, we can use the generators g5, g6 to add on
properly distributed terms in these subgroups as well. ⊓⊔

The same proof can also be applied more generally when µ is not augmented,
resulting in:

Lemma 3.4. For G
$
←− BasicGen(1k), all nice instances of the generalized cor-

related subgroup decision assumption are implied by SXDH.

Finally, we prove that parameter hiding holds for the augmented construction
as well.

Lemma 3.5. Parameter hiding, as in Example 2.1, holds for the augmented

construction.

Proof. This is essentially Lemmas 3 and 4 in [27], and is a consequence of the
following observation. We consider sampling a random pair of dual orthonormal
bases F,F∗ of F8

p, and let A be an invertible 2× 2 matrix over Fp. We consider

the 8 × 2 matrix F whose columns are equal to ~f3 and ~f4. Then FA is also
an 8 × 2 matrix, and we form a new basis B from F and A by taking these



columns in place of ~f3, ~f4. To form the dual basis B∗, we similarly multiply the
matrix with columns ~f∗

3 ,
~f∗

4 by the transpose of A−1. It is noted in [27] that the
resulting distribution of B,B∗ is equivalent to choosing this pair randomly, and
in particular, this distribution is independent of the choice of A. Lemma 4 in [27]
observes that if we take x 6= y and define ~x to be the transpose of (1, x) and ~y
to be the transpose of (y,−1), then choosing random scalars γ, λ in Fp and a
random matrix A over Fp yields that the joint distribution of λA−1~x and γAT ~y
is negligibly close to the uniform distribution over F2

p × F
2
p. This is precisely our

parameter hiding requirement, where A represents the ambiguity in our precise
choice of the generators ~b3,~b4,~b

∗

3,
~b∗4, conditioned on the span of {~b3,~b4} and

the span of {~b∗3,
~b∗4} being known (in addition to the other individual ~bi and ~b∗i

vectors for i /∈ {3, 4}). ⊓⊔

Finally, although we do not use any non-nice instances of the generalized cor-
related subgroup decision assumption in this work, it is interesting to ask which
of the more complex instances can be reduced to SXDH or other static assump-
tions. For values of d > 1, the additional structure required to achieve projecting
seems to make directly reducing a large space of assumptions to SXDH difficult.
Nonetheless, we are able to rely only on SXDH for our projecting leakage-resilient
BGN variant through the use of hybrid transitions that incrementally change the
rank of the scaling matrix C. We leave it as an interesting question for future
work to further explore the minimal assumptions for supporting a broader class
of subgroups decision variants.

4 A Leakage-Resilient BGN Variant

A very elegant use of the projecting property in the composite-order setting is
the public key encryption scheme of Boneh, Goh, and Nissim [9], a scheme that is
designed to allow arbitrary additions and one multiplication of ciphertexts. The
basic group operation is used for ciphertext addition, while the bilinear map is
applied during ciphertext multiplication. The secret key is then a projection map
(which equates to a factorization of the group order) that allows the decryptor
to strip off the blinding factors of the underlying ciphertexts, even after their
interaction has migrated to the target group.

While these limited homomorphic properties make the BGN scheme appeal-
ing, the rigid structure of keys can be a source of frustration when one attempts
to augment its functionality or security guarantees. Having the secret key re-
veal a factorization of the group order means that different users must generate
different groups, and it additionally means that the secret key is uniquely deter-
mined (information-theoretically) from the public key. This presents a challenge,
for instance, if one wants to design a variant with provable guarantees of leakage
resilience.

Proofs of leakage resilience for public key encryption schemes typically follow
a strategy inspired by the hash proof paradigm of Naor and Segev [38]. This
paradigm starts with a scheme that has many possible secret keys for each public



key. A hybrid argument is used, where the first step changes to a malformed—
or invalid —ciphertext, that decrypts to different messages under the different
secret keys associated to a fixed public key. A bound on the total leakage of the
secret key is then used to argue that the adversary cannot tell which of the many
possible secret keys the challenger is holding. Thus, even though the challenger
may be holding a secret key that decrypts the challenge ciphertext correctly, he
may as well be a holding a key that decrypts it to a random message. It is then
possible to argue that the scheme remains secure under leakage.

If we wish to apply this kind of proof strategy to a version of the BGN
scheme, we first need a way of allowing many secret keys for each public key.
The DPVS framework we described in the previous section provides a natural
answer. In this framework, the projection map is no longer a factorization, but
rather a vector that comes from a suitably high-dimensional space to allow for
many possibilities. This makes it rather easy to imagine a BGN variant that
preserves the somewhat-homomorphic properties of ciphertexts, yet allows for
an exponential number of secret keys per public key.

It is already well-known that applying DPVS and similar techniques for de-
signing vector spaces in the exponent is a useful approach for achieving leakage
resilience. For example, Lewko et al. [36] demonstrated that leakage resilience
can be incorporated quite easily into dual system encryption proofs by com-
bining mechanisms for canceling, parameter hiding, and the fact that the dot
product of sufficiently long vectors over Fp has convenient information-theoretic
properties (roughly, the dot product modulo p is a good two-source extractor).
The same high level of compatibility exists between our framework and the pre-
existing leakage resilience techniques, thus allowing us to repurpose the same
linear algebraic underpinnings that implement projecting and canceling in our
framework to achieve leakage resilience for a BGN-type scheme.

4.1 The scheme

As in the original BGN scheme, we will assume that the message space is
small to allow efficient decryption. We use our framework from Section 3 with
n = d = 4. For the matrix distribution D, we consider all matrices whose
second and third rows form a rank-1 submatrix. The setting we then work

in is G
$
←− BilinearGen′(1k, 4, 4,D). Rather than use this framework generi-

cally, as we do in Section 5, we re-purpose the matrix C and basis vectors
(~v1, ~v2, ~v3, ~v4), (~v

∗

1 , ~v
∗

2 , ~v
∗

3 , ~v
∗

4) ∈ F
16
p —defined in Step 4 and Step 5 of Algorithm 1

respectively—and use them explicitly in our construction and proofs. Below, we
use Ci to denote the i-th row of the scaling matrix C (for i ∈ {1, 2, 3, 4}).

– Setup(G): Pick r, r∗
$
←− Fp and define ~u :=

∑

i ~vi, ~u
∗ :=

∑

i ~v
∗

i , ~w := r~v2,
and ~w∗ := r∗~v∗2 . Choose ~y uniformly at random from the set of vectors in
F
4
p such that ~y · C2 = 0, noting that ~y · C3 = 0 then holds automatically as

well. Output pk = (g, g~u, g ~w, h~u∗

, h~w∗

) and sk =
(

~y, skT = e(g, h)~y·(
∑

i
Ci)
)

.



Note that, by construction, ~y · (
∑

i Ci) = ~y · (C1 + C4) and, by Lemma 3.2,

E(g~u, h~u∗

) =
(

e(g, h)
∑

j
cj,1 , . . . , e(g, h)

∑
j
cj,4
)

.

– Enc(pk ,m): We have two types of ciphertexts: Type A and Type B. If we
want to be able to perform homomorphic operations on any pair of cipher-
texts, a single ciphertext could include both types. To form a Type A ci-

phertext, choose s
$
←− Fp and compute ctA := gm~u+s~w. To form a Type

B ciphertext, choose s∗
$
←− Fp and compute ctB := hm~u∗+s∗ ~w∗

. Output
ct = (ctA, ctB). (Or just ctA or ctB , depending on the desired homomorphic
properties.)

– Eval(pk , ct1, ct2): We describe two evaluation cases: addition of Type A ci-
phertexts (the operations are analogous for Type B ciphertexts), and mul-
tiplication of a Type A and Type B ciphertext (which can then be further
added in the target space BT ).

First pick a random value t
$
←− Fp. If ct1 and ct2 are Type A, then return

ct = ct1 · ct2 · g
t~w. If ct1 is Type A and ct2 is Type B, then return ct =

E(ct1, ct2) · E(g ~w, h~w∗

)t.

– Dec(sk , ct): To decrypt a ciphertext (ct1, ct2, ct3, ct4) ∈ G4
T , compute

4
∏

i=1

ct
yi

i = skm
T .

Using knowledge of skT , exhaustively search for m (this is possible since
we have a small message space). If ct is Type A, then compute ct′ =
E(ct,Enc(pk , 1)) and decrypt ct′ (and analogously for a Type B ciphertext).

To see that decryption is correct, observe that

∏

i

ct
yi

i =
∏

i

e(g, h)myi

∑
j
cj,i = e(g, h)m

∑
i

∑
j
yicj,i

= e(g, h)m
∑

j

∑
i
yicj,i = e(g, h)m

∑
j
~y·Cj

= skm
T .

To see that evaluation is correct, observe that if ct1 encrypts m1 and ct2
encrypts m2 then

ct = gm1~u+s1 ~w · gm2~u+s2 ~w · gt~w = g(m1+m2)~u+(s1+s2+t)~w,

which is a properly distributed Type A encryption of m1+m2. Pairing a Type A
ct1 and a Type B ct2 similarly yields a properly distributed encryption of m1m2

in the target space, just as in BGN.

4.2 Security analysis

The security model we use is leakage against non-adaptive memory attacks, as
defined by Akavia et al. [3, Definition 3]. Briefly, the attacker first declares a



leakage function f mapping secret keys to {0, 1}ℓ for a suitably small ℓ. The
attacker then receives pk and f(sk), and proceeds as in a standard IND-CPA
game; i.e., it outputs two messages m0 and m1, receives an encryption of mb,
and wins if it correctly guesses b. As in the case of the original BGN scheme, it
suffices to argue security for challenge ciphertexts generated in G/H, as security
for the ciphertexts generated via the multiplicative homomorphism follows from
the security of ciphertexts in the base groups. While there are several other
interesting models for leakage-resilient PKE security, we choose to work with this
one, as it is clean and simple and thus allows us to give a concise demonstration
of the use of our framework.

Theorem 4.1. If SXDH holds in G and ℓ ≤ log(p−1)−2k, the above construc-

tion is leakage resilient with respect to non-adaptive memory attacks.

As in the typical hash proof system paradigm, we first define invalid cipher-
texts that have more blinding randomness than honestly generated ciphertexts.
Initially, these are still decrypted consistently by the set of secret keys corre-
sponding to a fixed public key. After having transitioned to a game with an
invalid challenge ciphertext, however, we gradually adjust the respective distri-
butions of secret keys and ciphertexts to arrive at a game where, in the adver-
sary’s view, it seems that the secret key decrypts the ciphertext randomly.

In the course of these game transitions, we use SXDH in multiple ways. First
we use it to change from an honest to an invalid ciphertext by bringing in an
additional blinding factor in a new subgroup. This is just a “nice” instance of
subgroup decision. We will also use it to make changes to the rank of particu-
lar submatrices inside the scaling matrix C. This technique is inspired by the
observation in [10] that DDH implies a rank-1 matrix in the exponent is hard
to distinguish from a rank-2 matrix. To make the crucial switch from a secret
key that properly decrypts the challenge ciphertext to a key that decrypts it
incorrectly, we rely on an information-theoretic argument leveraging a form of
parameter hiding, along with the leakage bound. Essentially, the simulator uses
the remaining ambiguity in the underlying parameters (conditioned on the public
key) to help it create an invalid challenge ciphertext after supplying the leakage.
The proof of Theorem 4.1 can be found in the full version of our paper [28].

5 An IBE with IND-CCA1 Security

In this section, we discuss how to obtain an IND-CCA1-secure identity-based
encryption scheme. Although IND-CCA2-secure IBE schemes have already been
constructed, we view this as a demonstration of our techniques rather than an
application of independent interest.

Our technique for proving IND-CCA1 security extends from the observation
due to Lewko and Waters [33] that dual system proofs can be interpreted as a
reduction from a full security game to a weak game in which the attacker does not
have access to the public parameters. Using this technique, we first define such
a weak game for IND-CCA1 security, and then prove that our IBE construction



satisfies it. Next, leveraging a weak form of projection, we reduce the full IND-
CCA1 security to this weaker notion by first expanding the system to have extra
components in a space that is not reflected in the public parameters, and then
projecting to play the weak game in that space.

In the full version of our paper [28], we formulate our IBE and proof in
a unified framework that can be instantiated in either prime-order groups or
in composite-order groups. In the prime-order setting, we obtain the following
result:

Theorem 5.1. If SXDH holds in G
$
←− BilinearGen′(1k, 8, 1,D), where D pro-

duces the vector ~1, then the instantiation of our IBE construction is IND-CCA1

secure.
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