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Abstract. Cryptographic schemes based on the Learning Parity with
Noise (LPN) problem have several very desirable aspects: Low computa-
tional overhead, simple implementation and conjectured post-quantum
hardness. Choosing the LPN noise parameter sufficiently low allows for
public key cryptography. In this work, we construct the first standard
model public key encryption scheme with key dependent message security
based solely on the low noise LPN problem. Additionally, we establish
a new connection between LPN with a bounded number of samples and
LPN with an unbounded number of samples. In essence, we show that
if LPN with a small error and a small number of samples is hard, then
LPN with a slightly larger error and an unbounded number of samples
is also hard. The key technical ingredient to establish both results is a
variant of the LPN problem called the extended LPN problem.

Keywords: Low Noise LPN, Key Dependent Message Security, LPN Hard-
ness Reduction

1 Introduction

The LPN Problem The learning parity with noise (LPN) problem asks to find a
secret binary vector s ∈ Fn2 given noisy linear samples of the form (a, 〈a, s〉+e) ∈
Fn2 × F2 where a is chosen uniformly at random and e is an additive noise
term that occurs with probability ρ. Due to its simplicity and binary arith-
metic, the LPN problem has become a central hub in secret key cryptography
[13,28,30,27,33]. These applications use the high noise LPN problem where the
noise rate ρ < 1/2 is a constant. In the low noise LPN problem, the noise rate
ρ tends asymptotically to 0. Alekhnovich [6] provided a construction of a public
key encryption scheme based on LPN for noise rates ρ = O(1/

√
n). Recently,

more complex cryptographic primitives have been constructed from low noise
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LPN such as chosen ciphertext secure public key encryption [22,31] and com-
posable oblivious transfer [18]. In the original formulation of the LPN problem,
the search algorithm/adversary may demand an unbounded number of samples
whereas the bounded samples version (e.g. used in [6,22,31]) only provides an
a priori bounded number of samples to the search algorithm. So far, it was un-
known whether the hardness of LPN with a bounded number of samples implies
the hardness of LPN with an unbounded number of samples, even if a modest
increase in the noise rate is tolerated.

Key Dependent Message Security A public key encryption scheme is called key
dependent message (KDM) secure, if encryptions of the secret key, or more gen-
erally encryptions of functions of several secret keys are indistinguishable of en-
cryptions of (say) the all-zero message. We will exclusively consider KDM-CPA
security in this work, i.e. KDM adversaries do not have access to a decryption
oracle. While for most natural cryptographic tasks standard notions of secu-
rity are sufficient, the notion of KDM security is relevant for contexts such as
computational soundness [12,2] or when hard-disks are encrypted that store the
corresponding secret key (as mentioned in [15]). It has been shown that stan-
dard IND-CPA (or even IND-CCA) security does not imply KDM security [1,16],
i.e. there exist public key encryption schemes with IND-CPA security relative
to some standard assumption which are provably not KDM secure. Standard
model KDM secure public key public key cryptosystems were constructed from
a variety of assumptions, starting with the construction of Boneh et al [15]. Ap-
plebaum et al. [10] provided both a circular secure public key encryption scheme
from the LWE assumption and a circular secure private key encryption scheme
from the (high noise) LPN problem. The latter scheme was later shown to fulfill
the stronger notion of related-key KDM security by Applebaum [9]. In [8], Ap-
plebaum provided a construction of a KDM secure PKE for arbitrary (bounded
size) circuits from any KDM secure PKE for affine functions. Constructing a
KDM secure public key encryption scheme from low noise LPN has remained an
open problem so far.

1.1 Extended LPN

The central tool we use in our constructions is a version of the LPN problem
called extended decisional LPN problem, or eDLPN in short. The eDLPN prob-
lem can be seen as a special case for q = 2 of the extended LWE problem
introduced O’Neill, Peikert and Waters [35] and proven hard under standard
LWE by Alperin-Sheriff and Peikert [7]. The binary version we use in this work
was first discussed by Kiltz, Masny and Pietrzak [31].

In the eDLPN problem, the adversary’s goal is to distinguish (A,RA, e,Re)
from (A,U, e,Re), where A is a randomly chosen matrix, R is a randomly
chosen low weight matrix, U is a randomly chosen matrix and e follows some
distribution χ. This is similar to the dual formulation of the decisional LPN
problem, where the adversary has to distinguish (A,RA) from (A,U). However,
in the extended decisional LPN problem, the adversary obtains an extra advice



Re about a secret matrix R, where the vector e can have any distribution.
Kiltz, Masny and Pietrzak [31] observed that in the LPN case, this advice can
be extremely useful to enable reductions to simulate faithfully. In particular,
the eDLPN problem can effectively be used as a computational substitute for
the (generalized) leftover hash lemma [29,19] or gaussian regularity lemmata for
lattices [26].

In the full version [21], we provide a generalization of the extended LPN
problem we call leaky LPN (`-LPN), which may be of independent interest. In
the `-LPN problem, the advice given to the adversary can be described by an
arbitrary adversarially chosen leakage function γ from a family L and is not lim-
ited to linear functions as in the extended LPN problem. Clearly, the hardness of
the extended LPN problem follows immediately from the hardness of the leaky
LPN problem when instantiating the leakage functions with linear functions.
If the functions in L output short strings, say strings of at most logarithmic
length, then the hardness of the `-LPN search problem follows immediately from
the standard LPN problem, since all possible leakage values can be efficiently
enumerated (or guessed). The situation is slightly different for decisional prob-
lems. In general, decisional problems become easy if even a single bit of arbitrary
leakage is allowed. However, we only allow the leakage to depend on R and in
particular not on A. We show that a sample preserving search to decision re-
duction of Applebaum et al. [11] is in fact leakage preserving. We can thus base
the hardness of the decisional problem `-DLPN on `-LPN, and therefore on LPN
given that the functions in L only provide short advice.

1.2 KDM Secure Public Key Encryption

We will now provide an overview of our construction of a KDM secure public key
encryption scheme from LPN. The construction is inspired by the public key en-
cryption scheme of Applebaum et al. [10], which however lives in the LWE realm.
The basic idea, as in [10], is to make encryptions of the secret key syntactically
similar to the public key. More specifically, public keys in our scheme will be of
the form (A,y = As + e) where s is the secret key. It follows immediately from
the decisional LPN problem that the public key is pseudorandom. Encryption
takes a message m and computes

C1 = RA

c2 = Ry + Gm,

where the matrix R is chosen from a low weight distribution and G is the gen-
erator matrix of a good, efficiently decodable binary linear code. We remark
that while this scheme bears strong resemblances with (and is inspired by) the
LWE based scheme of [10], it is rather incomparable to the (high noise) LPN
based private key encryption schemes of [10,9] or previous low-noise LPN pub-
lic key encryption schemes [6,22,31]. Notice that standard IND-CPA security of
this scheme follows directly from the fact that y is pseudorandom and thus also



(RA,Ry) is pseudorandom given the public key (A,y), by using the dual for-
mulation of the decisional LPN problem (i.e. (A′,RA′) ≈c (A′,U)). To decrypt
a ciphertext c = (C1, c2), we basically compute

z = c2 −C1s

and recover m from z by using the efficient decoding algorithm for the code
generated by G. Correctness of the scheme follows from the fact that

z = c2 −C1s

= Ry + Gm−RAs

= R(As + e) + Gm−RAs

= Gm + Re.

Since we have chosen R and e from low noise distributions, the term Re has
low weight with high probability. Thus it follows that a decoder of the code
generated by G will be able to recover m from z. We will briefly sketch how
to establish 1-circular security of this scheme, where the adversary gets a single
encryption of the secret key (or an encryption of 0). For the full proof of KDM
security for affine functions, refer to Section 3. An encryption of the secret key
has the form (RA,Ry + Gs). Figure 1 provides the game transform for this
security reduction.

Game public key challenge ciphertext remark

1. Real (A,y = As + e) (RA,Ry + Gs)
2. Real (A,As + e) (RA,R(As + e) + Gs) identical
3. Real (A,As + e) (RA, (RA + G)s + Re) identical
4. H1 (A,As + e) (U, (U + G)s + Re) eDLPN
5. H1 (A,As + e) (U′ −G,U′s + Re) identical
6. H2 (A,As + e) (RA−G,RAs + Re) eDLPN
7. H2 (A,As + e) (RA−G,R(As + e)) identical
8. H3 (A,u) (RA−G,Ru) DLPN
9. H3 (A,u) (U−G,u′) DDLPN
10. H3 (A,u) (U,u′) identical

Fig. 1. The Game Transform for KDM-CPA security

The first three steps shown in Figure 1 do not change the real experiment
but basically rewrite the challenge ciphertext. From step 3 to step 4 we replace
the matrix RA by a uniformly random matrix U. Since we also need the addi-
tional term Re to provide the correct distribution to the adversary, we will use
the extended decisional LPN problem to show that these two experiments are
computationally indistinguishable. In particular, we use A and e provided by
the eDLPN problem to construct a public key, while we use RA and the advice
Re to construct the encryption of the secret key. Then, we replace RA by a
random matrix U, which yields an indistinguishable experiment by the hardness



of eDLPN. Step 4 to 5 is another bridging step which does not change the exper-
iment. Since U is distributed uniformly random, so is the matrix U′ = U + G.
Thus, instead of choosing U uniformly at random we can choose U′ uniformly
at random and set U = U′ −G. From step 5 to step 6 we replace the matrix
U′ by RA. Again, we have to use the extended decisional LPN problem as we
need the extra advice Re. It now becomes clear that we have used steps 3 to
6 to pull the matrix G from the second component of the challenge ciphertext
to its first component, i.e. we have transformed (RA, (RA + G)s + Re) into
(RA−G,RAs+Re). Step 6 to step 7 is another basic bridging step. From step
7 to step 8 we replace the second component As + e of the public key by a ran-
domly chosen u, indistinguishability follows from the standard decisional LPN
problem. From step 8 to step 9 we replace (A,RA,u,Ru) by (A,U,u,u′) for
uniformly random U and u′, indistinguishability follows from the dual formula-
tion of the decisional LPN problem. Finally, from step 9 to step 10, we replace
U −G by U. We can do this since the uniform distribution U is invariant un-
der an additive shift by a constant matrix G. Thus, in the last experiment the
challenge ciphertext is just uniformly random, which concludes this outline.

1.3 Unbounded Samples LPN from Bounded Samples LPN

In the following we will distinguish between bounded and unbounded samples
LPN. We will denote search LPN with a secret of length n, m samples and
noise rate ρ by LPN(n,m, ρ) and decisional LPN with a secret of length n,
unbounded samples and noise rate ρ′ by DLPN(n, ρ′). Our second contribution
is a hardness reduction which bases the hardness of DLPN(n, ρ′) on LPN(n, 2n, ρ).
More specifically, we show that if LPN(n, 2n, ρ) is hard, then DLPN(n, ρ′) is also
hard, where

ρ′ =
1

2
− 1

2
(1− 2ρ)

bρ2nc ≤ 2ρ2n.

For the Learning With Errors (LWE) problem, there exists a statistical random
self reduction [26,10]. The idea of this reduction is to use m ≈ n log(q) seed
samples to generate arbitrarily many fresh samples. The noise rate in the new
samples increases only slightly. Specifically, if (A,y = As + z) is such a given
set of seed samples, then one can generate new samples by drawing e ∈ Zmq from

a discrete gaussian [5,34] and setting a′ = A>e and y′ = e>y. Now it holds

y′ = e>y = e>As + e>z = a′
>

s + 〈e, z〉.

The pair (a′, y′ + e′), where e′ is a gaussian smoothing term, is a proper LWE
sample, as a′ = e>A can be shown to be statistically close to uniform and
〈e, z〉 follows an independent discrete gaussian distribution even conditioned on
a′ = e>A 1.

1This can be established via a Lemma due to Regev [37] or its refinement due
to Peikert [36], which show that the distribution of e remains discrete gaussian even
conditioned on e>A, though the variance of the distribution decreases.



Such an approach, however, cannot be directly transferred to the LPN set-
ting. For the vector a′ = A>e to be statistically close to uniform, e must have
min-entropy ≈ n, and thus high weight. But this in turn means that 〈e, z〉 will
only have a negligibly small bias. We remark that such a high noise sample am-
plification was used Lyubashevsky [32] to cryptanalize LPN in sub-exponential
time, but this technique does not seem to be applicable in the context of an
efficient (i.e. PPT) hardness reduction, especially when the number of samples
is at most polynomial.

Therefore, in our reduction we will replace the statistical tools in the above
reduction by a computational technique based on the eDLPN problem. Again,
we start with a given amount of m = 2n seed samples and generate new samples
from these. While we cannot hope that the samples we generate in this way have
the proper distribution (in the statistical sense), we will be able to show that
the distribution generated in this way is computationally indistinguishable from
the real LPN distribution. More specifically, let (A,y) be the LPN seed samples.
We will compute new samples by choosing a random low weight r and setting
a = A>r and y′ = r>y = 〈r,y〉. Now, assume first that y = As + e. Then it
holds that

y′ = r>As + 〈r, e〉 = 〈a, s〉+ 〈r, e〉.

While (a, y′) syntactically looks like an LPN sample, it is statistically far away
from a correctly distributed sample. There are two issues. First, a = r>A is
not distributed uniformly. Second, the noise term 〈r, e〉 is correlated with a.
The first issue alone could be resolved by assuming the hardness of the DLPN.
To deal with both issues simultaneously, we will resort to the eDLPN problem,
which allows us to present a noise term 〈r, e〉 with the right distribution. More
specifically, the eDLPN problem allows us to replace a = r>A by a uniformly
random a but also provides us with an advice (e, 〈r, e〉) that allows us to simulate
the noise term 〈r, e〉 correctly. On the other hand, if y was chosen uniformly at
random, then the pseudorandomness of (a, y′) = (r>A, r>y) follows easily from
the dual formulation of the LPN problem DLPN. Since we can base the hardness
of all auxiliary problems on LPN(n, 2n, ρ), it follows that DLPN(n, ρ′) is at least
as hard as LPN(n, 2n, ρ). This concludes this outline.

2 Preliminaries

In the following, let λ always denote the security parameter. We call a machine
PPT if it runs in probabilistic (expected) polynomial time. For a search problem
P and an adversary/search algorithm A let AdvP(A) denote the probability of
A finding a solution of a random instance of P. For a decisional problem D
which consists in distinguishing two distributions X and Y and a distinguishing
algorithm D define AdvD(D) = |Pr[D(X) = 1] − Pr[D(Y ) = 1]|. When we
don’t write it explicitly, we will implicitly assume that search algorithms and
distinguishers get 1λ as an additional input. We will denote the Hamming weight
of a vector x ∈ Fn2 by ‖x‖0 = |{i : xi 6= 0}|. For a matrix M ∈ Fm×n2 , we define



the Hamming weight of M by ‖M‖0 = maxi ‖mi‖0 where the mi are the column
vectors of M. It follows easily for all M ∈ Fm×n2 and x ∈ Fn2 that ‖Mx‖0 ≤
‖M‖0 · ‖x‖0. We need asymptotically good, efficiently decodable binary linear
codes for the construction of our KDM secure public key encryption scheme. A
binary linear [k, n] code C is a n dimensional subspace of Fk2 . We call G ∈ Fk×n2

a generator matrix of C if every c ∈ C can be written as c = Gx for some x ∈
Fn2 . We assume codes C come with efficient encoding and decoding procedures
C.Encode and C.Decode, where C.Encode(x) = G · x for some generator matrix
G of C. An error correcting code can efficiently correct an α fraction of errors, if
for every e ∈ Fk2 with ‖e‖0 ≤ αk, it holds that C.Decode(C.Encode(x) + e) = x.
There exists a large corpus of literature of linear codes that can efficiently correct
a constant fraction of errors, for instance concatenated codes [25] or expander
codes [38,39].

2.1 Learning Parity with Noise

We will denote the Bernoulli distribution with parameter ρ ∈ [0, 1/2] on Fm2
by Ber(m, ρ). For an e ←$ Ber(m, ρ), each component ei of e independently
takes the value 1 with probability ρ and 0 with probability 1 − ρ. We write
Ber(ρ) := Ber(1, ρ). We will distinguish between LPN with a bounded and an
unbounded number of samples.

Definition 1 (Learning Parity with Noise). Let χ be an error distribution
on Fm2 and ρ = ρ(λ) ∈ [0, 1/2]. Let A←$ Fm×n2 be chosen uniformly at random,
let s←$ Fn2 be chosen uniformly at random and let e←$ χ.

1. In the bounded samples search problem LPN(n,m,χ), the goal is to find s,
given (A,As + e).

2. In the unbounded samples search problem LPN(n, ρ), the goal is to find s,
given an oracle that outputs an arbitrary number of samples of the form
(a, 〈a, s〉+ e), where a←$ Fn2 and e←$ Ber(ρ).

3. In the bounded samples decisional problem DLPN(n,m,χ), the goal is to
distinguish the distributions (A,As + e) and (A,u), where u ←$ Fm2 is
chosen uniformly at random.

4. In the unbounded samples decisional problem DLPN(n, ρ), the goal is to dis-
tinguish two oracles, namely one that outputs samples of the form (a, 〈a, s〉+
e) (where a ←$ Fn2 and e ←$ Ber(ρ)) from one that outputs samples of the
form (a, u) (where a←$ Fn2 and u←$ F2).

For bounded samples LPN with errors e from the Bernoulli distribution Ber(m, ρ)
we will write LPN(n,m, ρ) for LPN(n,m,Ber(m, ρ)) and also DLPN(n,m, ρ) for
DLPN(n,m,Ber(m, ρ)). By a standard argument, one can show that if e ∈ Fm2
is distributed according to Ber(m, ρ) and z ∈ Fm2 is an arbitrary vector of
weight bρmc, then 〈z, e〉 is distributed according to Ber(ρ′), where ρ′ = 1

2 −
1
2 (1− 2ρ)

bρmc ≤ ρ2m. Following Alekhnovich [6], we will choose the noise pa-
rameter ρ of the form O(1/

√
n) and n,m = Ω(λ2) to be able to use low weight

vectors as trapdoors and have 2λ (conjectured) security for LPN(n,m, ρ).



A series of works have established relations between search and decisional
LPN problems [13,30,11]. The hardness reduction of Applebaum et al. [11] is
sample preserving, i.e. it shows that the hardness of DLPN(n,m,χ) follows di-
rectly from the hardness of LPN(n,m,χ), for any error distribution χ.

Lemma 1 (Applebaum et al. [11]). Let χ be an error distribution on Fm2 and
assume that LPN(n,m,χ) is hard. Then DLPN(n,m,χ) is also hard. More specif-
ically, assume there exists a PPT adversary A that distinguishes DLPN(n,m,χ)
with advantage ε. Then there exists a PPT adversary A′ that breaks LPN(n,m,χ)
with advantage ε2/8.

Let S(m, ρ) denote the distribution on Fm2 which outputs uniformly random
vectors in Fm2 of weight bρmc, i.e. S(m, ρ) is the uniform distribution on the set
M = {x ∈ Fm2 | ‖x‖0 = bρmc}. It is easy to see that if LPN(n,m, ρ) is hard,
then LPN(n,m,S(m, ρ)) is also hard.

Corollary 1. Let A be a PPT adversary that breaks LPN(n,m,S(m, ρ)) with
advantage ε. Then there exists a PPT adversary A′ that breaks LPN(n,m, ρ)

with advantage (1−o(1))ε√
2πmρ(1−ρ)

. Moreover, if there exists a PPT distinguisher D
that distinguishes DLPN(n,m,S(m, ρ)) with advantage ε, then there exists a PPT

adversary A′ that breaks LPN(n,m, ρ) with advantage (1−o(1))ε2

8·
√

2πmρ(1−ρ)
.

For a proof of Corollary 1, refer to the full version [21]. As a convenient
reformulation of the LPN problem, we define the decisional dual LPN problem.

Definition 2. Let A ←$ Fm×n2 , R ←$ Ber(k ×m, ρ), a ←$ Fm2 , U ←$ Fk×n2

and u ←$ Fk2 . The goal of the DDLPN(n,m, k, ρ) problem is to distinguish the
distributions (A,RA,a,Ra) and (A,U,a,u).

The hardness of DDLPN(n,m, k, ρ) follows from DLPN(n,m, ρ) (see e.g. [10]
or [22]) using the fact that for a randomly chosen matrix A we can also sample
a random H such that it holds H ·A = 0 and H is uniformly random (not given
A).

Lemma 2. Let m ≥ 2n. Assume there exists a PPT distinguisher D that dis-
tinguishes the problem DDLPN(n,m, k, ρ) with advantage ε. Then there exists a

PPT adversary A that breaks LPN(n,m, ρ) with advantage ε2

8k2 .

Following Kiltz et al. [31] and Alperin-Sheriff and Peikert [7], we provide
a definition of the extended LPN problem. We only define the extended LPN
problem for Bernoulli error distributions.

Definition 3. Let χ be any distribution on Fm2 . Let A←$ Fm×n2 , R←$ Ber(k×
m, ρ), U←$ Fk×n2 and e←$ χ. The goal of the eDLPN(n,m, k, ρ,χ) problem is
to distinguish the distributions (A,RA, e,Re) and (A,U, e,Re).

The hardness of eDLPN(n,m, k, ρ,χ) can be established from LPN(n,m, ρ).



Lemma 3. Let m ≥ 2n. Then for any distribution χ on Fm2 and any k =
poly(λ) it holds that if there exists a PPT distinguisher D that distinguishes
eDLPN(n,m, k, ρ,χ) with advantage ε, then there exists a PPT adversary A
that breaks LPN(n,m, ρ) with advantage ε2

8k2 .

For a proof of Lemma 3 we refer the reader either to [7] or the full version
of this paper [21].

2.2 Key Dependent Message Secure Public Key Encryption

Syntactically, a public key encryption scheme PKE consists of three PPT algo-
rithms PKE.KeyGen, PKE.Enc and PKE.Dec, such that PKE.KeyGen generates
a pair (pk, sk) of public and secret keys, PKE.Enc takes a public key pk and a
plaintext m and outputs a ciphertext c and PKE.Dec takes a secret key sk and a
ciphertext c and outputs a plaintext m. We say that PKE is correct, if it holds for
all plaintexts m (of size corresponding to λ) that if (pk, sk)← PKE.KeyGen(1λ),
then

PKE.Dec(sk,PKE.Enc(pk,m)) = m,

except with negligible probability over the randomness used by PKE.KeyGen,
PKE.Enc and PKE.Dec. The security notion we consider in this work is key
dependent message security under chosen plaintext attacks. In the security ex-
periment corresponding to this notion, the adversary gets a list of public keys
{pki} and access to an oracle that computes encryptions of functions of the
secret keys. We call such dependencies key cycles, even though the functional
relationships the adversary obtains can be more complex than key cycles.

Definition 4. We say a public key encryption-scheme PKE is ciphertext indis-
tinguishable under key dependent message chosen plaintext attacks (KDM-CPA)
for cycles of length l with respect to a class F of functions mapping l secret keys
to a plaintext, if every PPT-adversary A has success-probability at most negligi-
bly better than 1/2 in the experiment KDM-CPAF,l, i.e. Pr[KDM-CPAF,l(A) =
1] ≤ 1

2 + negl(λ).

Experiment KDM-CPAF,l
For i = 1, . . . , l

(pki, ski)← PKE.KeyGen(1λ)
b←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′.

OKDM(f, j)
If b = 0
f ← 0

c← PKE.Enc(pkj , f({ski}))
Return c

Remark 1. We implicitly assume that sanity checks are performed by the oracle,
i.e. it only accepts KDM queries with f ∈ F and j ∈ {1, . . . , l}. Moreover,
we assume that the KDM oracle may have access to all local variables of the
experiment KDM-CPA, in particular the pki and ski and the bit b.



Applebaum [8] provides a general transfomation which transforms any public
key encryption scheme with KDM security against affine functions into a pub-
lic key encryption scheme with KDM security against arbitrary functions with
circuits of bounded size. Thus, it is sufficient to construct a public key encryp-
tion scheme with KDM security against affine functions to obtain a scheme with
security against the more general class of functions.

3 KDM Secure Public Key Encryption from Low Noise
LPN

In this section we will provide a public key encryption scheme with KDM security
for affine functions based on the hardness of the low noise LPN problem.

Construction 1 Let n,m, k = poly(λ) be positive integers with m > k > n. Let
C be binary linear code of length k and dimension n and efficient encoding and
decoding procedures C.Encode and C.Decode. The public key encrypion scheme
PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) is given by the following algorithms.
The message space of PKE is Fn2 .

PKE.KeyGen(1λ):
A←$ Fm×n2

s←$ Fn2
e←$ Ber(m, ρ)
y← As + e
pk ← (A,y)
sk ← s
Return (pk, sk)

PKE.Enc(pk,m):
Parse pk = (A,b)
R←$ Ber(k ×m, ρ)
C1 ← R ·A
c2 ← R · y + C.Encode(m)
c← (C1, c2)
Return c

PKE.Dec(sk, c):
Parse c = (C1, c2) and sk = s
z← c2 −C1s
m← C.Decode(z)
Return m

3.1 Correctness

We will first show that the scheme PKE is correct.

Lemma 4. Assume that C.Decode can efficiently decode from ρ′ = 4ρ2km er-
rors. Then the scheme PKE is correct.

The condition of Lemma 4 can be met by choosing m, k = Ω(n) and ρ =
O(1/

√
n). Thus, to obtain conjectured 2λ-hardness for LPN, we can take usual

parameter choices of m,n, k = Θ(λ2) and ρ = Θ(1/λ) (as in [6,22,31]).



Proof. Assume that c = (C1, c2) is a ciphertext generated by PKE.Enc. Consider
the term z computed during decryption. It holds that

z = c2 −C1s

= Ry + C.Encode(m)−RAs

= C.Encode(m) + R(As + e)−RAs

= C.Encode(m) + Re

By a Chernoff bound, it holds that ‖e‖ ≤ 2ρm, except with negligible prob-

ability e−
1
3ρm. Also by a Chernoff bound and a union bound, it holds that

‖R‖0 ≤ 2ρk, except with negligible probability m · e− 1
3ρk. Therefore,

‖Re‖0 ≤ ‖R‖0 · ‖e‖0 ≤ 4ρ2km,

except with negligible probability over the choice of e and R. Consequently,
C.Decode will be able to decode m from z.

3.2 KDM-CPA security

We will now prove KDM-CPA security of PKE.

Theorem 1. Let λ be a security parameter and n,m, k, l = poly(λ) with m ≥ 2n
and l ≥ 1. Let ρ = ρ(λ) ∈ [0, 1/2]. Let F = {f : (Fn2 )l → Fn2} be a fam-
ily of affine functions. If eDLPN(n,m, k, ρ,Ber(m, ρ)), DLPN(n, l · m, ρ) and
DDLPN(n,m, k, ρ) are hard, then the scheme PKE is KDM-CPAF,l secure. More
precisely, assume that A is a PPT adversary that breaks the KDM-CPAF,l se-
curity of PKE with advantage AdvKDM-CPA(A) and queries its KDM oracle at
most q = poly(λ) times. Then there exist PPT distinguishers D1 and D2 against
the problem eDLPN(n,m, k, ρ,Ber(m, ρ)), D3 against DLPN(n, l · m, ρ) and D4

against DDLPN(n,m, k, ρ) such that

AdvKDM-CPA(A) ≤ lq · AdveDLPN(D1) + lq · AdveDLPN(D2)

+ AdvDLPN(D3) + lq · AdvDDLPN(D4).

Corollary 2. Let n,m, k, l, ρ and F be as in Theorem 1. If LPN(n, l ·m, ρ) is
hard, then PKE is KDM-CPAF,l secure. More precisely, assume that A is a PPT
adversary that breaks the KDM-CPAF,l of PKE with advantage ε and queries its
KDM oracle at most q = poly(λ) times. Then there exists a PPT adversary A∗

that solves LPN(n, l ·m, ρ) with advantage ε2

128k2l2q2 .

The qualitative statement of Corollary 2 follows directly from Theorem 1
and Lemmas 1, 2 and 3. For the quantitative statement refer to the full version
of this paper [21]. We will now provide a sketch for the proof of Theorem 1. See
the full version [21] for the complete proof.

Proof (Proof Sketch for Theorem 1). Let A be a KDM-CPA adversary against
PKE. Consider the following sequence of hybrid games. For notational conve-
nience we assume that the oracles have access to all local variables of the games
(without explicitly specifying so). We will first provide an overview of game 1 -
8 on the next pages.



Game 1
For i = 1, . . . , l

Ai ←$ Fm×n2

si ←$ Fn2 , ei ←$ Ber(m, ρ)
y← Aisi + ei
pki ← (Ai,yi), sk ← si

b←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′

OKDM(f, j)
If b = 0
f ← 0

R←$ Ber(k ×m, ρ)
C1 ← R ·Aj

c2 ← R · yj + C.Encode(f({ski}))
c← (C1, c2)
Return c

Game 2

s← Fn2
For i = 1, . . . , l

Ai ←$ Fm×n2 , ei ←$ Ber(m, ρ)

y′i ← Ais + ei

s′i ←$ Fn2
si ← s + s′i, yi ← y′i + Ais

′
i

pki ← (Ai,yi), sk ← si
b←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′

OKDM(f, j)
If b = 0
f ← 0

Compute Tf , tf s.t. f({ski}) = Tfs + tf ,

using that ski = s + s′i
R←$ Ber(k ×m, ρ)
C1 ← R ·Aj

c2 ← R · yj + G · (Tfs + tf )

c← (C1, c2)
Return c

Game 3
s← Fn2
For i = 1, . . . , l

Ai ←$ Fm×n2 , ei ←$ Ber(m, ρ)
y′i ← Ais + ei
s′i ←$ Fn2
si ← s + s′i, yi ← y′i + Ais

′
i

pki ← (Ai,yi), sk ← si
b←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′.

OKDM(f, j)
If b = 0
f ← 0

Compute Tf , tf s.t. f({ski}) = Tfs + tf ,
using that ski = s + s′i

R←$ Ber(k ×m, ρ)
C1 ← R ·Aj

c2 ← (C1 + GTf ) · s + Rej + Gtf + C1s
′
j

c← (C1, c2)
Return c

Game 4
s← Fn2
For i = 1, . . . , l

Ai ←$ Fm×n2 , ei ←$ Ber(m, ρ)
y′i ← Ais + ei
s′i ←$ Fn2
si ← s + s′i, yi ← y′i + Ais

′
i

pki ← (Ai,yi), sk ← si
b←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′.

OKDM(f, j)
If b = 0
f ← 0

Compute Tf , tf s.t. f({ski}) = Tfs + tf ,
using that ski = s + s′i

R←$ Ber(k ×m, ρ)

U←$ Fk×n2

C1 ← U

c2 ← (C1 + GTf ) · s + Rej + Gtf + C1s
′
j

c← (C1, c2)
Return c



Game 5
s← Fn2
For i = 1, . . . , l

Ai ←$ Fm×n2 , ei ←$ Ber(m, ρ)
y′i ← Ais + ei
s′i ←$ Fn2
si ← s + s′i, yi ← y′i + Ais

′
i

pki ← (Ai,yi), sk ← si
b←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′.

OKDM(f, j)
If b = 0
f ← 0

Compute Tf , tf s.t. f({ski}) = Tfs + tf ,
using that ski = s + s′i

R←$ Ber(k ×m, ρ)

U←$ Fk×n2

C1 ← U−GTf

c2 ← Us + Rej + Gtf + C1s
′
j

c← (C1, c2)
Return c

Game 6
s← Fn2
For i = 1, . . . , l

Ai ←$ Fm×n2 , ei ←$ Ber(m, ρ)
y′i ← Ais + ei
s′i ←$ Fn2
si ← s + s′i, yi ← y′i + Ais

′
i

pki ← (Ai,yi), sk ← si
b←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′.

OKDM(f, j)
If b = 0
f ← 0

Compute Tf , tf s.t. f({ski}) = Tfs + tf ,
using that ski = s + s′i

R←$ Ber(k ×m, ρ)

C1 ← RAj −GTf

c2 ← RAjs + Rej + Gtf + C1s
′
j

c← (C1, c2)
Return c

Game 7
For i = 1, . . . , l

Ai ←$ Fm×n2

y′i ←$ Fm2
s′i ←$ Fn2
yi ← y′i + Ais

′
i

pki ← (Ai,yi)
b←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′.

OKDM(f, j)
If b = 0
f ← 0

Compute Tf , tf s.t. f({ski}) = Tfs + tf ,
using that ski = s + s′i

R←$ Ber(k ×m, ρ)
C1 ← RAj −GTf

c2 ← Ry′j + Gtf + C1s
′
j

c← (C1, c2)
Return c

Game 8
For i = 1, . . . , l

Ai ←$ Fm×n2

y′i ←$ Fm2
s′i ←$ Fn2
yi ← y′i + Ais

′
i

pki ← (Ai,yi)
b←$ {0, 1}
b′ ← AOKDM(·,·)({pki}, 1λ)
Return 1 iff b = b′.

OKDM(f, j)

U←$ Fk×n2

u←$ Fk2
C1 ← U

c2 ← u

c← (C1, c2)
Return c



– Game 1 is identical to the KDM-CPA experiment, we only replace the
algorithms PKE.KeyGen and PKE.Enc with their instantiations according to
PKE.

– In game 2, we change the experiment in three ways. First, the public and
secret keys are computed from a master secret s. More specifically, we first
choose s ←$ Fn2 uniformly at random and then compute y′i ← Ais + ei for
each index i. We obtain the public and secret keys by rerandomizing s and
y′i correlated way. Specifically, we set si = s + s′i and yi = y′i + Ais

′
i for

a uniformly random and independent s′i. Since si is uniformly random and
independent of s and further

yi = y′i + Ais
′
i = Aisi + ei,

we have that the (pki, ski) are identically distributed to game 1. Thus, this
modification to the experiment did not introduce any statistically difference.
Secondly, we write C.Encode(·) using the generator matrix G of C, which is
also merely a syntactical change.
The third modification consists in changing the way the functions f the
encryption oracle is queried with are evaluated. Since each f is restricted to
be an affine function, we can write it as

f({ski}) =

l∑
i=1

Tisi + t.

for T1, , . . . ,Tl ∈ Fn×n2 and t ∈ Fn2 . Using that si = s + s′i we can write

f({ski}) =

l∑
i=1

Ti(s + s′i) + t

=

(
l∑
i=1

Ti

)
s +

l∑
i=1

Tis
′
i + t.

Therefore, setting Tf =
∑l
i=1 Ti and tf =

∑l
i=1 Tis

′
i + t we can write

f({ski}) = Tfs + tf . Thus, also the third modification does not introduce
any statistical difference.

– In game 3 we change the way c2 is computed. However, plugging in yj =
Ajsj + ej = Aj(s + s′j) + ej and rearranging terms yields

c2 = R · yj + G · (Tfs + tf )

= R · (Aj(s + s′j) + ej) + G · (Tfs + tf )

= (RA + GTf )s + Rej + Gtf + RAs′j

= (C1 + GTf )s + Rej + Gtf + C1s
′
j .

– In game 4, at every call to OKDM the value C1 is chosen uniformly at
random instead of computed by C1 ← RAj . We can show that game 3
and game 4 are computationally indistinguishable, given that the problem
eDLPN(n,m, k, ρ,Ber(m, ρ)) is hard. The reduction loses a factor if lq.



– In game 5 we compute C1 by C1 ← U − GTf . Since U is chosen inde-
pendently and uniformly at random, game 4 and game 5 are identically
distributed from the view of A.

– In game 6 we replace U again by RAj . We can show that game 5 and
game 6 are computationally indistinguishable provided that the problem
eDLPN(n,m, k, ρ,Ber(m, ρ)) is hard. The reduction loses a factor if lq.

– In game 7 we choose the y′i uniformly at random instead of by y′i ← Ais+ei.
We can show that game 6 and game 7 are computationally indistinguishable,
given that DLPN(n, l ·m, ρ) is hard. This reduction is tight.

– In game 8 the values C1 and c2 are chosen uniformly at random. Therefore
the output of OKDM is independent of the challenge bit b and consequently
A’s advantage in game 8 is 0. We can show that game 7 and game 8 are
computationally indistinguishable given that DDLPN(n,m, k, ρ) is hard. This
reduction loses a factor of lq.

4 LPN Sample Amplification

In this Section, we will show that the hardness of LPN with a bounded number
of samples implies the hardness of LPN with an unbounded number of samples,
if one is willing to accept an increase in the amount of noise. Recall that S(2n, ρ)
is the uniform distribution on vectors of weight bρ2nc in Fn2 .

Theorem 2. Let λ be a security parameter, n = poly(λ) be a positive integer
and ρ = ρ(λ) ∈ [0, 1/2]. Let

ρ′ ≥ 1

2
(1− (1− 2ρ)bρ2nc).

If eDLPN(n, 2n, 1, ρ,S(2n, ρ)), DLPN(n, 2n, S(2n, ρ)) and DDLPN(n, 2n, 1, ρ) are
hard, then it holds that DLPN(n, ρ′) is also hard. Precisely, if D is a PPT dis-
tinguisher against DLPN(n, ρ′) that makes at most q queries to its LPN oracle,
then there exist PPT distinguishers D1 against eDLPN(n, 2n, 1, ρ,S(2n, ρ)), D2

against DLPN(n, 2n,S(2n, ρ)) and D3 against DDLPN(n, 2n, 1, ρ) such that

AdvDLPN(D) ≤ q · AdveDLPN(D1) + AdvDLPN(D2) + q · AdvDDLPN(D3).

Corollary 3. Let n, ρ and ρ′ be as in Theorem 2. If LPN(n, 2n, ρ) is hard,
then DLPN(n, ρ′) is also hard. More precisely, if D is a PPT distinguisher which
distinguishes DLPN(n, ρ′) with advantage ε and makes at most q queries to its
LPN oracle, then there exists a PPT adversary A∗ which breaks LPN(n, 2n, ρ)
with advantage

AdvLPN(A∗) ≥ ε2

72q2
.

The qualitative statement of Corollary 3 follows immediately from Theorem 2
and Lemmas 1, 2 and 3. For the quantitative part we refer to the full version of
this paper [21].



Corollary 3 can be seen as a trade-off between noise and extra samples. We
tolerate that the amount of noise required gets squared, while in turn we get an
arbitrary polynomial amount of samples.

Proof (Proof of Theorem 2). We will prove the theorem for the minimal ρ′, i.e.
ρ′ = 1

2 (1 − (1 − 2ρ)bρ2nc). Let D be a PPT distinguisher against DLPN(n, ρ′).
We will provide a series of hybrid experiments Exp1,Exp2,Exp3,Exp4 and show
that from the view of D any two of experiments the are indistinguishable. We
will provide the experiments by defining the sample oracles O the distinguisher
D gets access to.

Experiment Exp1
Initialization:

s←$ Fn2
Oracle OExp1()

a←$ Fn2
e←$ Ber(ρ′)
y ← 〈a, s〉+ e
Return (a, y)

Experiment Exp2
Initialization:

A←$ F2n×n
2

s←$ Fn2
z←$ S(2n, ρ)
r← As + z

Oracle OExp2()
e←$ Ber(2n, ρ)

a← e>A
y ← 〈e, r〉
Return (a, y)

Experiment Exp3
Initialization:

A←$ F2n×n
2

r←$ F2n
2

Oracle OExp3()
e←$ Ber(2n, ρ)

a← e>A
y ← 〈e, r〉
Return (a, y)

Experiment Exp4
Initialization:

-
Oracle OExp4()

a←$ Fn2
y ←$ F2

Return (a, y)

Clearly, experiment Exp1 provides samples from the LPN distribution while
experiment Exp4 provides uniformly random samples. Thus, we need to establish
that from the view of D the experiments Exp1 and Exp4 are indistinguishable.
We will start with the indistinguishability of Exp1 and Exp2. Assume that D
distinguishes with advantage ε1 between Exp1 and Exp2, i.e.

|Pr[Exp1(D) = 1]− Pr[Exp2(D) = 1]| = ε1.

Assume further that q = poly(λ) is an upper bound on the number of samples D
queries. We will construct a PPT distinguisher D1 that distinguishes the problem
eDLPN(n, 2n, 1, ρ,S(2n, ρ)) with advantage ≥ ε1/q. The distinguisher D1 is given
on the left side of Figure 2.

Notice that D1 answers the first i∗ − 1 oracle queries of D exactly like Exp1,
while it answers the last q− i∗ queries like Exp2. In the i∗-th query however, D1

embeds its own challenge. Moreover, notice that D1 is efficient as D is efficient.
To analyze the distinguishing advantage of D1, we will define a sequence of
hybrid experiments H0, . . . ,Hq. Hi is crafted to answer the first i queries like
Exp1, while it answers the last q− i queries like Exp2. Experiment Hi is given on
the right side of Figure 2.

We are now ready to analyze the distinguishing advantage of D1. First assume
that D1’s input is of the form (A, e>A, z, e>z = 〈z, e〉). Observe that since z has



Distinguisher D1

Input: (A, c, z, t)
i∗ ←$ {1, . . . , q}
s←$ Fn2
r = As + z
cnt = 1

b← DOD1
()

return b

Oracle OD1()
If cnt < i∗

a←$ Fn2
e←$ Ber(ρ′)
y ← 〈a, s〉+ e

If cnt = i∗

a← c>

y ← 〈c, s〉+ t
If cnt > i∗

e←$ Ber(2n, ρ)

a← (e>A)>

y ← 〈e, r〉
cnt← cnt+ 1
Return (a, y)

Experiment Hi
Initialization:

A←$ F2n×n
2

s←$ Fn2
z←$ S2n(bρ2nc)
r← As + z
cnt← 1

Oracle OHi()
If cnt ≤ i

a←$ Fn2
e←$ Ber(ρ′)
y ← 〈a, s〉+ e

If cnt > i
e←$ Ber(2n, ρ)

a← (e>A)>

y ← 〈e, r〉
cnt← cnt+ 1
Return (a, y)

Fig. 2. The distinguisher D1 and the hybrid experiments Hi

weight bρmc and e is distributed according to Ber(m, ρ) it holds that 〈z, e〉 is
distributed according to Ber(ρ′). Fix the random choice i∗ = i. Then the sample
oracle OD1

() implemented by D1 behaves identical to the sample oracle of Hi−1.
Consequently, it holds that

Pr[D1(A, e>A, z, e>z) = 1|i∗ = i] = Pr[Hi−1(D) = 1]

and thus, as i∗ is uniformly chosen from {1, . . . , q}

Pr[D1(A, e>A, z, e>z) = 1] =

q∑
i=1

1

q
· Pr[D1(A, e>A, z, e>z) = 1|i∗ = i]

=

q∑
i=1

1

q
· Pr[Hi−1(D) = 1].

Next assume that D1’s input is of the form (A,u, z, e>z). Again, fix the random
choice of i∗ to i∗ = i. Then the sample oracle OD1

() implemented by D1 behaves
identical to the sample oracle of Hi, as 〈z, e〉 is distributed according to Ber(ρ′).
Consequently,

Pr[D1(A,u, z, e>z) = 1|i∗ = i] = Pr[Hi(D) = 1]

and thus

Pr[D1(A,u, z, e>z) = 1] =

q∑
i=1

1

q
· Pr[D1(A,u, z, e>z) = 1|i∗ = i]

=

q∑
i=1

1

q
· Pr[Hi(D) = 1].



Together, this yields

AdveDLPN(D1) = |Pr[D1(A, e>A, z, e>z) = 1]− Pr[D1(A,u, z, e>z) = 1]|

=

∣∣∣∣∣
q∑
i=1

1

q
· Pr[Hi−1(D) = 1]−

q∑
i=1

1

q
· Pr[Hi(D) = 1]

∣∣∣∣∣
=

1

q
|Pr[H0(D) = 1]− Pr[Hk(D) = 1]|

=
1

q
|Pr[Exp2(D) = 1]− Pr[Exp1(D) = 1]|

≥ ε1/q.

Thus, D1 distinguishes eDLPN(n, 2n, 1, ρ,S(2n, ρ)) with advantage ε1/q.
Next, we turn to the indistinguishability of Exp2 and Exp3. Assume towards

contradiction that D distinguishes between Exp2 and Exp3 with advantage ε2,
i.e.

|Pr[Exp2(D) = 1]− Pr[Exp3(D) = 1]| = ε2.

We will construct a PPT distinguisher D2 against DLPN(n, 2n, S(2n, ρ). D2 is
given as follows.

Distinguisher D2

Input: (A, r)

b← DOD2
()

return b

Sample Oracle OD2()
e←$ Ber(2n, ρ)

a← e>A
y ← 〈e, r〉
Return (a, y)

The distinguisher D2 is efficient, as D is efficient. First, assume that D2’s
input is of the form (A,As + z), where s is chosen uniformly from Fn2 and z
is chosen from S(2n, ρ). Then clearly the sample oracle OD2 behaves just as
in Exp2. On the other hand, if D2’s input is of the form (A,u) with u chosen
uniformly random from F2n

2 , then the sample OD2
simulated by D2 behaves like

the sample oracle in Exp3. Consequently, it holds that

AdvDLPN(D2) = |Pr[D2(A,As + z) = 1]− Pr[D2(A,u) = 1]|
= |Pr[Exp2(D) = 1]− Pr[Exp3(D) = 1]|
= ε2.

Thus, the distinguishing advantage of D2 against DLPN(n, 2n,S(2n, ρ)) is ε2.
We will finally turn to showing that from the view of D, Exp3 and Exp4 are

indistinguishable. Assume towards contradiction that D distinguishes between
Exp3 and Exp4 with advantage ε3, i.e.

|Pr[Exp3(D) = 1]− Pr[Exp4(D) = 1]| = ε3.



Assume further D makes at most q = poly(λ) queries to its sample oracle. We
will construct a PPT distinguisher D3 that distinguishes DDLPN(n, 2n, 1, ρ) with
advantage ε3/q. The distinguisher D3 is given on the left side of Figure 3.

Distinguisher D3

Input: (A,a∗, r, y∗)
i∗ ←$ {1, . . . , q}
cnt = 1

b← DOD3
()

return b

Oracle OD3()
If cnt < i∗

e←$ Ber(2n, ρ)

a← (e>A)>

y ← 〈e, r〉
If cnt = i∗

a← a∗>

y ← y∗

If cnt > i∗

a←$ Fn2
y ←$ F2

cnt← cnt+ 1
Return (a, y)

Experiment H′i
Initialization:

A←$ F2n×n
2

r←$ F2n
2

cnt← 1

Oracle OH′
i
()

If cnt ≤ i
e←$ Ber(2n, ρ)

a← (e>A)>

y ← 〈e, r〉
If cnt > i

a←$ Fn2
y ←$ F2

cnt← cnt+ 1
Return (a, y)

Fig. 3. The distinguisher D3 and the hybrid experiments H′i

It is clear that D3 is efficient, once D is efficient. Again, to analyze the
distinguishing advantage of D3, we will define a sequence of hybrid experiments
H′0, . . . ,H

′
q. H

′
i is crafted to answer the first i queries like Exp3, while it answers

the last q − i queries like Exp4. Hybrid H′i is given on the right side of Figure 3.
First assume that D3’s input is of the form (A, e>A, r, e>r). Then it holds that

a∗ = (e>A)>

y∗ = e>r = 〈e, r〉

Now fix a random choice i∗ = i. Then OD3() in D3’s simulation behaves identi-
cally to the sample oracle in H′i. Thus it holds that

Pr[D3(A, e>A, r, e>r) = 1|i∗ = i] = Pr[H′i(D) = 1],

and consequently

Pr[D3(A, e>A, r, e>r) = 1] =

q∑
i=1

1

q
Pr[D3(A, e>A, r, e>r) = 1|i∗ = i]

=

q∑
i=1

1

q
Pr[H′i(D) = 1].

Now suppose that D3’s input is of the form (A,u, r, u′), where u> ←$ Fn2 and
u′ ←$ F2 are chosen uniformly at random. Then it holds that a∗ = u and



y∗ = u′. Again, fix a random choice i∗ = i. Then OD3
() in D3’s simulation

behaves identically to the sample oracle in H′i−1. Thus it holds that

Pr[D3(A,u, r, u′) = 1|i∗ = i] = Pr[H′i−1(D) = 1],

and consequently

Pr[D3(A,u, r, u′) = 1] =

q∑
i=1

1

q
Pr[D3(A,u, r, u′) = 1|i∗ = i]

=

q∑
i=1

1

q
Pr[H′i−1(D) = 1].

Putting all together, we get

AdvDDLPN(D3) = |Pr[D3(A, e>A, r, e>r) = 1]− Pr[D3(A,u, r, u′) = 1]|

=

∣∣∣∣∣
q∑
i=1

1

q
· Pr[H′i(D) = 1]−

q∑
i=1

1

q
· Pr[H′i−1(D) = 1]

∣∣∣∣∣
=

1

q
|Pr[H′k(D) = 1]− Pr[H′0(D) = 1]|

=
1

q
|Pr[Exp3(D) = 1]− Pr[Exp4(D) = 1]|

≥ ε3/q.

Thus, D3 distinguishes DDLPN(n, 2n, 1, ρ) with advantage ε3/q.
We will now turn to the quantitative statement of the theorem. By the tri-

angle inequality it holds that

AdvDLPN(D) ≤ ε1 + ε2 + ε3

≤ q · AdveDLPN(D1) + AdvDLPN(D2) + q · AdvDDLPN(D3).

This concludes the proof.

5 Conclusion

In this work we have constructed the first public key encryption scheme with
KDM-CPA security for affine functions from the low-noise LPN assumption.
Moreover, we have provided a novel connection between LPN with a bounded
number of samples and LPN with an unbounded number of samples. Both results
have analogues in the LWE realm (the KDM-CPA secure scheme of Applebaum
et al. [10] and the LWE random self-reduction of Gentry et al. [26]). Both our
results follow the same blueprint as their LWE counterparts. However, while in
the LWE realm powerful statistical tools such as gaussian regularity [26] and the
leftover-hash lemma [29,19] are available, no comparable statistical techniques
are available in the LPN realm. Instead, our approach, following Kiltz et al.



[31] was to substitute these techniques with computational counterparts based
on LPN. Specifically the extended LPN problem turned out to be very useful
in filling this gap. A natural future direction in this line of work would be to
try to lift further results from the LWE/SIS realm into the LPN realm, such as
identity based encryption [17,3,4,7] or efficient and compact signature schemes
[14,23,24].
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