
Public-Key Encryption Indistinguishable
Under Plaintext-Checkable Attacks

Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

ENS, Paris, France ?

Abstract. Indistinguishability under adaptive chosen-ciphertext attack
(IND-CCA) is now considered the de facto security notion for public-
key encryption. However, the security guarantee that it offers is some-
times stronger than what is needed by certain applications. In this pa-
per, we consider a weaker notion of security for public-key encryption,
termed indistinguishability under plaintext-checking attacks (IND-PCA),
in which the adversary is only given access to an oracle which says
whether or not a given ciphertext encrypts a given message. After for-
malizing the IND-PCA notion, we then design a new public-key encryption
scheme satisfying it. The new scheme is a more efficient variant of the
Cramer-Shoup encryption scheme with shorter ciphertexts and its secu-
rity is also based on the plain Decisional Diffie-Hellman (DDH) assump-
tion. Additionally, the algebraic properties of the new scheme also allow
for proving plaintext knowledge using Groth-Sahai non-interactive zero-
knowledge proofs or smooth projective hash functions. Finally, in order
to illustrate the usefulness of the new scheme, we further show that, for
many password-based authenticated key exchange (PAKE) schemes in
the Bellare-Pointcheval-Rogaway security model, one can safely replace
the underlying IND-CCA encryption schemes with our new IND-PCA one.
By doing so, we were able to reduce the overall communication complex-
ity of these protocols and obtain the most efficient PAKE schemes to date
based on the plain DDH assumption.

1 Introduction

Public-key encryption (PKE) is one of the most fundamental primitives in cryp-
tography, allowing users to exchange messages privately without the need for
pre-established secrets. The basic security notion for (probabilistic) public-key
encryption is indistinguishability of encryptions under chosen-plaintext attacks
(IND-CPA) [18], also known as semantic security. Informally speaking, this notion
states that any passive adversary capable of eavesdropping on the communica-
tion between two parties should not be able to obtain any information about the
encrypted messages.

While IND-CPA security may suffice for certain applications, it does not pro-
vide any guarantee against active attacks, in which the adversary may modify

? CNRS – UMR 8548 and INRIA

2 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

existing ciphertexts or inject new ones into the communication and obtain infor-
mation about the decrypted messages. In fact, as shown by Bleichenbacher [9]
in his attack against RSA PKCS #1, one can sometimes break an existing PKE
scheme simply by knowing whether an existing ciphertext is valid or not.

In order to address the problem of active attacks, several notions of security
have been proposed, such as indistinguishability under non-adaptive chosen-
ciphertext attack (IND-CCA1) [28], indistinguishability under adaptive chosen-
ciphertext attack (IND-CCA2 or IND-CCA) [30], non-malleability under chosen-
plaintext attack (NM-CPA) or adaptive chosen-ciphertext attack (NM-CCA) [13,14].
Among these, as shown by Bellare et al. [5], the IND-CCA notion is the strongest
one and implies all of the other ones. Unlike the IND-CPA notion, the IND-CCA
security notion states that the adversary should not be capable to learning any
information about the underlying message of a given ciphertext even when given
access to the decryption of other ciphertexts of its choice.

Indistinguishabiliy under Plaintext-Checkable Attacks. Even though
IND-CCA is now considered the de facto security notion for public-key encryption,
the security guarantee that it offers is sometimes stronger than what is needed
by certain applications. Since stronger security guarantees usually result in a loss
of efficiency, different security goals, such as oneway-ness, and different attack
capabilities, such as plaintext-checkable attacks [29], have been considered as al-
ternatives to the IND-CCA security notion. While in oneway-ness, the goal of the
adversary is to recover the underlying encrypted message, in plaintext-checkable
attacks, the adversary is given access to a plaintext-checking oracle that answers,
on a given pair (m, c), whether c encrypts m or not.

In this paper, we first revisit the notion of oneway-ness under plaintext-
checkable attacks (OW-PCA) by Okamoto and Pointcheval [29] and describe an
indistinguishability-based variant for it. In the new notion, termed indistin-
guishability under plaintext-checkable attacks (IND-PCA), the adversary should
not be able to learn any information about an encrypted message even when
given access to a plaintext-checking oracle. As we show in Section 2, the new
notion is also equivalent to the IND-CCA notion when the message space is small
(polynomial in the security parameter) since it is possible to enumerate all the
possible messages in this case.

A new IND-PCA encryption scheme. After defining the IND-PCA notion, our
first main contribution is to design a new public-key encryption scheme which
formally meets the new notion. The new scheme is a more efficient variant of the
Cramer-Shoup encryption scheme [11], whose ciphertext consists of only 3 group
elements. Like the Cramer-Shoup encryption scheme, the security of new scheme
is also based on the plain Decisional Diffie-Hellman (DDH) assumption [27].

In addition to being quite efficient, the new scheme can also be used with
Groth-Sahai Non-Interactive Zero-Knowledge Proofs [20] and smooth projective
hash functions (SPHF) [12], for proving plaintext knowledge. To illustrate this

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 3

fact, we design two different constructions of SPHFs for the new scheme, each
providing a different security-efficiency trade-off.

Since IND-PCA implies IND-CCA for short messages, the new scheme can also
replace IND-CCA schemes in applications where the message space is small. This
is the case, for instance, when bits have to be encrypted as in [2].

Applications to PAKE. After proposing the new scheme, our second main con-
tribution is to show that, for many password-based authenticated key exchange
(PAKE) in the Bellare-Pointcheval-Rogaway (BPR) security model [6], one can
safely replace the underlying IND-CCA encryption schemes with an IND-PCA one.
In particular, we revisit the frameworks by Gennaro and Lindell [17], by Groce
and Katz [19], and by Katz and Vaikuntanathan [26], and show that one can
replace the underlying IND-CCA encryption schemes in their constructions with
an IND-PCA encryption scheme. In all of these cases, we were able to reduce the
overall communication complexity of the original protocols by at least one group
element.

More precisely, in the case of the Gennaro-Lindell framework [17], which is
a generalization of the PAKE scheme by Katz, Ostrovsky, and Yung [23], we
were able to obtain a quite clean 2-flow protocol with 7 group elements in total,
instead of 8 group elements in 3 flows [22] or 10 group elements in 3 flows in
[16,24,25]. The security of the new scheme is based on the DDH in the underlying
group and assumes a trusted common reference string (CRS). In addition to
avoiding the use of IND-CCA encryption schemes, our instantiation also avoids
the use of one-time signatures and message authentication codes. Although it
was already known that one of the two ciphertexts could be generated using
an IND-CPA encryption scheme [4,10,22], IND-CCA security was always required
for the generation of the other ciphertext in all concrete instantiations of the
KOY/GL framework.

In the case of the Groce-Katz (GK) framework [19], which is a generalization
of the PAKE scheme by Jiang and Gong [21] that additionally provides mutual
authentication, we were able to obtain a scheme with a total communication
complexity of 7 group elements instead of the original 8 by using an IND-PCA
encryption scheme to generate the second flow. Moreover, in cases where mutual
authentication is not needed, one could further improve the overall efficiency of
these protocols by removing the third flow. The resulting scheme would only
have 2 flows and require the exchange of 6 group elements in total. The security
of the new scheme is based on the plain DDH assumption and on the security of
the underlying pseudorandom number generator and assumes a trusted CRS.

Finally, in the case of Katz-Vaikuntanathan (KV) framework [26], we were
able to obtain a PAKE scheme with a total communication complexity of 10 group
elements instead of the current 12 in [8]. As in [8, 26], our new scheme only has
a single round of communication and assumes a trusted CRS. Its security proof
is based on the plain DDH assumption.

4 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

Expind−bES,A (K)
CTXT← empty list
(pk, sk)← KG(K)
(`∗,M0,M1)← A(FIND : pk, ORACLE(·))
C∗ ← Enc`

∗
(pk,Mb)

b′ ← A(GUESS : C∗, ORACLE(·))
if (`∗, C∗) ∈ CTXT then return 0
else return b′

Fig. 1. Indistinguishability Security Notions for Labeled Public-Key Encryption
(IND-CPA when ORACLE =⊥, IND-PCA when ORACLE = OPCA, and IND-CCA when
ORACLE = OCCA)

Organization. Section 2 recalls standard definitions for public-key encryption
and smooth projective hash proof functions (SPHFs) and describes some of the
most classic instantiations of these primitives. Section 3 introduces our new
IND-PCA encryption scheme and the associated SPHFs along with its security
proof. The new scheme is a variant of the Cramer-Shoup encryption scheme [11]
with shorter ciphertexts. Section 4 presents the security models for password-
based authenticated key exchange (PAKE) used in our security proofs. Section 5
describes three PAKE constructions based on the frameworks by Gennaro and
Lindell [17], by Groce and Katz [19], and by Katz and Vaikuntanathan [26],
whose security proofs appear in the full version [1].

2 Public-Key Encryption

2.1 Definition

A (labeled) public-key encryption scheme is defined by three algorithms:

– KG(1K) generates a key pair: a public key pk and a secret key sk;
– Enc`(pk,M ; r) encrypts the message M under the key pk with label `, using

the random coins r;
– Dec`(sk, C) decrypts the ciphertext C, using the secret key sk, with label `.

The correctness requires that for all key pairs (pk, sk), all labels `, all random
coins r and all messages M ,

Dec`(sk,Enc`(pk,M ; r)) =M.

The main security notion is the so-called indistinguishability of ciphertexts, de-
picted in Fig. 1, in which the adversary chooses two messages M0 and M1 and a
label `∗ (FIND phase), and then has to guess which of the two has been encrypted
in the challenge ciphertext C∗ = Enc`

∗
(pk,Mb; r) for a random bit b (GUESS

phase). The adversary has access to an oracle ORACLE which may update some
list of forbidden challenges CTXT, and it wins if and only if he guessed correctly

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 5

IND-CPA IND-PCA IND-CCA

for small messages
6

counter-example: ElGamal

Fig. 2. Relations between IND-CPA, IND-PCA, and IND-CCA (normal arrows are implications,
strike out arrows are separations)

the bit b (i.e., it outputs b′ = b) and (`∗, C∗) is not in CTXT. The advantages
are:

AdvindES (A) = Pr[Expind−1ES,A (K) = 1]− Pr[Expind−0ES,A (K) = 1]

AdvindES (t, q) = max
A≤t,q

{AdvindES (A)},

where A ≤ t, q are adversaries running within time t and asking at most q queries
to ORACLE.

Depending on the definition of ORACLE, one gets three different security no-
tions:

– if ORACLE =⊥, the adversary just has access to the public key, and one gets
the IND-CPA notion, CPA meaning Chosen-Plaintext Attack ;

– if ORACLE(`, C) outputs the decryption of C under the label ` (Dec`(sk, C))
and adds (`, C) to CTXT, one gets the IND-CCA notion, CCA meaning Chosen-
Ciphertext Attack ;

– if ORACLE(`, C,M) just answers whether the decryption of C under the label
` is M and adds (`, C) to CTXT, one gets the IND-PCA notion, PCA meaning
Plaintext-Checking Attack, as proposed in [29].

2.2 Relations with the IND-CPA and IND-CCA Security Notions

It is well known that IND-CCA implies IND-CPA (i.e., an encryption scheme
IND-CCA-secure is IND-CPA-secure), and it is clear that IND-PCA implies IND-CPA.
Let us now show that relations between IND-CPA, IND-PCA, IND-CCA are as de-
picted in Fig. 2. In all this paper, when we speak of small messages, we mean
that it is possible to enumerate all the possible messages (i.e., the message space
has a cardinal polynomial in the security parameter).

IND-CCA =⇒ IND-PCA. One just has to remark that the OPCA oracle can
be simulated by the OCCA oracle, and the restrictions are compatible (the same
list CTXT will be generated): given a query (`,M,C) to the OPCA oracle, the
simulator can simply ask for (`, C) to the OCCA oracle. This perfectly simulates
the OPCA oracle.

6 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

IND-PCA =⇒ IND-CCA, for Small Messages. In case of small messages for
the encryption scheme, we remark that the OCCA oracle can be simulated by the
OPCA oracle, and the restrictions are compatible too: given a query (`, C) to the
OCCA oracle, the simulator can simply ask for (`,M,C) to the OPCA oracle, for
all the messages M (we insist that by small messages, we mean we can enumer-
ate them in polynomial time).If no message M matches, the simulator outputs
⊥, otherwise it outputs the unique matching message (since the encryption is
perfectly binding, at most one message can match). This perfectly simulates the
OCCA oracle.

2.3 Classical Schemes

ElGamal Encryption Scheme [15]. The ElGamal (EG) encryption scheme
is defined as follows, in a cyclic group G of prime order p, with a generator g:

– EG.KG(1K) generates the secret key sk = x
$← Zp and the public key pk =

y = gx;
– EG.Enc(pk = y,M ; r), for a group element M ∈ G and a scalar r ∈ Zp,

generates the ciphertext C = (u = gr, e = yrM);
– EG.Dec(sk = x,C = (u, e)) computes M = e/ux.

This encryption scheme is well-known to be IND-CPA under the DDH assumption,
which states that it is hard to distinguish a Diffie-Hellman tuple (ga, gb, gab) from
a random tuple (ga, gb, gc), for random scalars a, b, c $← Zq:

Advind-cpaEG (t) ≤ Advddh
G (t).

Cramer-Shoup Encryption Scheme [11]. The labeled Cramer-Shoup (CS)
encryption scheme is defined as follows, in a cyclic group G of prime order p,
with two generators g1, g2, together with a hash function HCS randomly drawn
from a collision-resistant1 hash function family H from the set {0, 1}∗ × G2 to
the set G\{1}:

– CS.KG(1K) generates the secret key sk = (s, a, b, a′, b′)
$← Zp and the public

key pk = (h = gs1, c = ga1g
b
2, d = ga

′

1 g
b′

2);
– CS.Enc`(pk = (h, c, d),M ; r), for a label `, a group element M ∈ G and a

scalar r ∈ Zp, generates the ciphertext C = (u1 = gr1, u2 = gr2, e = hrM,v =
(cdξ)r), where ξ = HCS(`, u1, u2, e);

– CS.Dec`(sk = (s, a, b, a′, b′), C = (u1, u2, e, v)) first checks whether v =

ua+ξa
′

1 · ub+ξb
′

2 , for ξ = HCS(`, u1, u2, e). If the equality holds, it outputs
M = e/us1, otherwise it outputs ⊥.

This encryption scheme is well-known to be IND-CCA under the DDH assumption
and the collision-resistance of the hash function family:

Advind-ccaCS (t, qd) ≤ 2Advddh
G (t) + Succcoll

H (t) + 3qd/p,

where qd is the number of queries to the OCCA oracle.
1 Second-preimage resistance is actually sufficient.

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 7

Remark 1. A family H of hash functions from a set X to a set Y is said (t, ε)-
collision-resistant if for any adversary A running within time t, on a random
element H $← H, its probability to output x 6= x′ such that H(x) = H(x′) is
bounded by ε. We denote Succcoll

H (t) the best success probability any adversary
can get within time t.

2.4 Smooth Projective Hash Functions

Projective hash function families were first introduced by Cramer and Shoup [12].
Here we use the formalization from [8]: Let X be the domain of these functions
and let L be a certain subset of this domain (a language). A key property of
these functions is that, for words C in L, their values can be computed by using
either a secret hashing key hk or a public projection key hp but with a witness
w of the fact that C is indeed in L. More precisely, a smooth projective hash
function (SPHF) over L ⊆ X is defined by four algorithms.

– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk, L, C) derives the projection key hp, possibly depending on the

word C;
– Hash(hk, L, C) outputs the hash value from the hashing key, for any word
C ∈ X;

– ProjHash(hp, L, C,w) outputs the hash value from the projection key hp, and
the witness w, for a word C ∈ L.

On the one hand, the correctness of the SPHF assures that if C ∈ L with w a
witness of this fact, then Hash(hk, L, C) = ProjHash(hp, L, C,w). On the other
hand, the security is defined through the smoothness, which guarantees that, if
C 6∈ L, Hash(hk, L, C) is statistically indistinguishable from a random element,
even knowing hp.

Note that HashKG and ProjKG can just depend partially on L (i.e., can only
depend on a superset L̂): we then note HashKG(L̂) and ProjKG(hk, L̂, C). In ad-
dition, if ProjKG does not depend on C, and verify a slightly stronger smoothness
property (called adaptive smoothness, which holds even if C is chosen after hp),
we say the SPHF is a KVSPHF. Otherwise, it is said to be a GLSPHF. A KVSPHF
is stronger than a GLSPHF (in particular, a KVSPHF is a GLSPHF), and some
applications require KVSPHF.

More precisely, if ProjKG does not use C and, if for any function from the
set of projection keys to X \ L, on the probability space hk

$← HashKG(L),
hp ← ProjKG(hk, L,⊥), the distributions {(hp, H) | H ← Hash(hk, L, C)} and
{(hp, H) | H $← Π} are ε-close, where Π is the output set of the hash function,
then the SPHF is an ε-smooth KVSPHF. If ProjKG uses C (or not) and if, for
any C 6∈ L, on the probability space hk

$← HashKG(L), hp ← ProjKG(hk, L, C),
the distributions {(hp, H) | H ← Hash(hk, L, C)} and {(hp, H) | H $← Π} are ε-
close, then the SPHF is an ε-smooth GLSPHF. See [8] for more details on GLSPHF
and KVSPHF.

Let us now recall SPHFs for the ElGamal and Cramer-Shoup encryption
schemes, proposed in [8, 12,17].

8 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

ElGamal Encryption Scheme. EG admits an efficient KVSPHF for the lan-
guage LM = {C | ∃r, C = EG.Enc(pk,M ; r)}, with L = G2 the superset of the
ciphertexts:

hk = HashKG(L) = (α, β)
$← Z2

p hp = ProjKG(hk, L,⊥) = gαyβ

H = Hash(hk, LM , C) = uα(e/M)β H ′ = ProjHash(hp, LM , C, r) = hpr

Cramer-Shoup Encryption Scheme. CS admits an efficient GLSPHF for the
language L`M = {C | ∃r, C = CS.Enc`(pk,M ; r)}, with L the superset of the
ciphertexts:

hk = HashKG(L) = (α, β, γ, δ)
$← Z4

p

hp = ProjKG(hk, L, C) = gα1 g
β
2 h

γ(cdξ)δ

H = Hash(hk, L`M , C) = uα1u
β
2 (e/M)γvδ

H ′ = ProjHash(hp, L`M , C, r) = hpr,

where ξ = HCS(`, u1, u2, e).
CS also admits an efficient KVSPHF for the language L`M [8]:

hk = HashKG(L) = (α1, α2, β, γ, δ)
$← Z5

p

hp = ProjKG(hk, L, C) = (hp1 = gα1
1 gβ2 h

γcδ, hp2 = gα2
1 dδ)

H = Hash(hk, L`M , C) = uα1+ξα2

1 uβ2 (e/M)γvδ

H ′ = ProjHash(hp, L`M , C, r) = (hp1hp
ξ
2)
r,

where ξ = HCS(`, u1, u2, e).

3 The Short Cramer-Shoup Encryption Scheme

The labeled Short Cramer-Shoup (SCS) encryption scheme is a variant of the
above Cramer-Shoup encryption scheme, but with one less element. It is defined
as follows, in a cyclic group G of prime order p, with a generator g, together with
a hash function HSCS randomly drawn from a collision-resistant2 hash function
family H from the set {0, 1}∗ ×G2 to the set G\{1}:

– SCS.KG(1K) generates the secret key sk = (s, a, b, a′, b′)
$← Zp and the public

key pk = (h = gs, c = gahb, d = ga
′
hb
′
);

– SCS.Enc`(pk = (h, c, d),M ; r), for a label `, a group element M ∈ G and a
scalar r ∈ Zp, generates the ciphertext C = (u = gr, e = hrM,v = (cdξ)r),
where ξ = HSCS(`, u, e);

2 Second-preimage resistance is actually enough, as for the original Cramer-Shoup
encryption scheme.

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 9

– SCS.Dec`(sk = (s, a, b, a′, b′), C = (u, e, v)) first computes M = e/us and
checks whether v = ua+ξa

′
(e/M)b+ξb

′
, for ξ = HSCS(`, u, e). If the equality

holds, it outputs M , otherwise it outputs ⊥.

We show below it is IND-PCA under the DDH and the collision-resistance as-
sumptions:

Advind-pcaSCS (t) ≤ Advddh
G (t) + Succcoll

H (t) + 2(qp + 1)/p,

where qp is the number of queries to the OPCA oracle. But before that, we build
a GLSPHF and a KVSPHF for the SCS scheme.

3.1 Smooth Projective Hash Functions

Let us now define smooth projective hash functions. We use the formalization
from [8] to explain where these SPHFs come from. The reader not acquainted
with it may skip the definitions via matrix/vectors and just look at the resulting
GLSPHF and KVSPHF.

GLSPHF. The following matrix and vectors lead to an SPHF for the language
L`M = {C | ∃r, C = SCS.Enc`(pk,M ; r)}, with L the superset of the ciphertexts:

Γ (C) =
(
g h cdξ

) λ = (r)
λ · Γ = (gr, hr, (cdξ)r)
Θ(C) = (u, e/M, v)

where ξ = HSCS(`, u, e). The matrix Γ depends on ξ, and thus on the word C.
Hence, this is a GLSPHF:

hk = HashKG(L) = (α, β, γ)
$← Z3

p hp = ProjKG(hk, L, C) = gαhβ(cdξ)γ

H = Hash(hk, L`M , C) = uα(e/M)βvγ H ′ = ProjHash(hp, L`M , C, r) = hpr

KVSPHF. We could also use the following matrix and vectors:

Γ (C) =

(
g 1 h c
1 g 1 d

) λ = (r)
λ · Γ = (gr, gξr, hr, (cdξ)r)
Θ(C) = (u, uξ, e/M, v)

where ξ = HSCS(`, u, e). The matrix Γ does not depend anymore on ξ, nor on
the word C in general. Hence, this is a KVSPHF:

hk = HashKG(L) = (α1, α2, β, γ)
$← Z4

p

hp = ProjKG(hk, L, C) = (hp1 = gα1hβcγ , hp1 = gα2dγ)

H = Hash(hk, L`M , C) = uα1+α2ξ(e/M)βvγ

H ′ = ProjHash(hp, L`M , C, r) = (hp1hp
ξ
2)
r

10 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

3.2 IND-PCA Security Proof

Let us now prove the IND-CPA security as advertised at the beginning of this
section. We first recall the security game in Game G0, and present a series of
indistinguishable games to show the advantage of the adversary is negligible [7,
31].
Game G0: The adversary A is given a public key pk = (h = gs, c = gahb, d =

ga
′
hb
′
), generated with the secret key sk = (s, a, b, a′, b′)

$← Z5
p, as well as an

unlimited access to an OPCA oracle with input a tuple (`,M,C) that consists
of a ciphertext C and an alleged plaintext M with the label `. This oracle
answers whether C really encrypts M or not. At some point, the adversary
outputs a label `∗ and two message M0 and M1, and receives the encryption
C∗ = (u∗, e∗, v∗) ofMδ with the label `∗. After more calls to the OPCA oracle,
the adversary outputs a bit δ′, its guess on the bit δ. Note that the adversary
is not allowed to query the OPCA oracle on any tuple (`∗,M,C∗).
More precisely, C∗ is generated with a random scalar r∗ $← Zp, as C∗ =
(u∗ = gr

∗
, e∗ = hr

∗
Mδ, v

∗ = (cdξ
∗
)r
∗
), where ξ∗ = HSCS(`

∗, u∗, e∗). The
OPCA oracle, on input (`,M,C = (u, e, v)), unless (`, C) = (`∗, C∗), checks
both equations: e ?= usM and v ?= ua+ξa

′ · (e/M)b+ξb
′
, for ξ = HSCS(`, u, e).

Then, AdvG0
(A) = Advind-pcaSCS (A).

Game G1: In this game, we reject all queries (`,M,C = (u, e, v)) to the OPCA
oracle, where (`, u, e) 6= (`∗, u∗, e∗) but ξ∗ = ξ. This game is computation-
ally indistinguishable from the previous one under the collision-resistance of
HSCS: |AdvG1

(A) − AdvG0
(A)| ≤ Succcoll

H (t), where t is approximately the
running time of A.

Game G2: We first simplify the simulation of the OPCA oracle: it just checks the
second equation: v ?= ua+ξa

′ · (e/M)b+ξb
′
, for ξ = HSCS(`, u, e), so that we do

not need to know s in this game anymore. It can only make a difference if this
equation is satisfied while the first was not: this means that e = us

′
M and

v = ua+ξa
′ ·(e/M)b+ξb

′
, for ξ = HSCS(`, u, e), with h = gs and∆s = s′−s 6= 0.

However, we can see that the probability for v to satisfy the above equation
while e does not is negligible (actually upper-bounded by 1/p) since a, a′, b, b′
are unknown. See a more complex case in Game G6, where even more infor-
mation is available to the adversary. One thus gets |AdvG2

(A)−AdvG1
(A)| ≤

qp/p, where qp is the number of queries to the OPCA oracle.
Game G3: We are now given a Diffie-Hellman tuple (g,X = gx, Y = gy, Z =

gz), with z = xy. We set h← X (which means that s = x), but let the rest
of the setup as before: a, b, a′, b′ $← Zp and δ $← {0, 1}. This is possible since
we do not know s anymore since Game G2. For the challenge ciphertext, we
set u∗ ← Y (which means that r∗ = y) and e∗ ← ZMδ. For v∗, since we do
not know r∗, we use the verification equation: v∗ ← Y a+ξ

∗a′ · Zb+ξ∗b′ , for
ξ∗ = HSCS(`

∗, u∗, e∗). Since z = xy, we have a perfect simulation of v∗ as in
the previous game, hence AdvG3

(A) = AdvG2
(A):

v∗ = gy(a+ξ
∗a′)+xy(b+ξ∗b′) = (g(a+xb) · gξ

∗(a′+xb′))y

= ((gahb) · (ga
′
hb
′
)ξ
∗
)y = (cdξ

∗
)r
∗
.

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 11

Game G4: We are now given a random tuple (g,X = gx, Y = gy, Z = gz),
with z independently chosen. The simulation is the same as in the previous
game: |AdvG4(A)−AdvG3(A)| ≤ Advddh(t), where t is essentially the running
time of the adversary A.

Game G5: We now choose z uniformly at random in Zp \ {xy} instead of Zp.
This game is statistically indistinguishable from the previous one. Hence we
have: |AdvG5

(A)− AdvG4
(A)| ≤ 1/p.

Game G6: We now randomly choose g $← G, and x, y, z $← Zp (with z 6= xy) to
define the random tuple (g,X = gx, Y = gy, Z = gz) as in the previous game,
but with the knowledge of the exponents. We thus know again s = x. We can
go back with the full simulation of the OPCA oracle: it additionally checks
whether e = usM or not. It can again make a difference if this equation
is not satisfied while the other one was: this means that e = us

′
M and

v = ua+ξa
′ ·(e/M)b+ξb

′
, for ξ = HSCS(`, u, e), with h = gs and∆s = s′−s 6= 0.

First, if (`, u, e) = (`∗, u∗, e∗) but v 6= v∗, since that implies ξ = ξ∗, we can
safely answer negatively. We thus now have to deal with the cases (`, u, e) 6=
(`∗, u∗, e∗), where ξ∗ 6= ξ (since we have already dealt with collisions in ξ
and ξ∗ in Game G1).
As in Game G2, we have to show that the probability for v to satisfy the
above equation while e does not is negligible since a, b, a′, b′ are unknown.
This is a bit more subtle than in GameG2, since more relations are available
to the adversary. This proof would thus also apply for the GameG2. Anyway,
with the given relations, any v could be possible: a powerful adversary might
know, where u = gr and ∆z = z − xy,

c = gahb

d = ga
′
hb
′

v∗ = u∗a+ξ
∗a′ · (e∗/Mδ)

b+ξ∗b′

= gy(a+ξ
∗a′) · gz(b+ξ∗b′)

v = ua+ξa
′ · (e/M)b+ξb

′

= gr(a+ξa
′) · grs′(b+ξb′)

logg c = a+ s · b
logg d = a′ + s · b′
logg v

∗ = y · (a+ ξ∗a′) + z(b+ ξ∗b′)
= y · (logg c+ ξ∗ logg d) +∆z · (b+ ξ∗b′)

logg v = r · (a+ ξa′) + rs′(b+ ξb′)
= r · (logg c+ ξ logg d+∆s · (b+ ξb′))

This system can be turned into
logg c
logg d

logg v
∗ − y · (logg c+ ξ∗ logg d)

logg v − r · (logg c+ ξ logg d)

 =

1 0 s 0
0 1 0 s
0 0 ∆z ∆zξ

∗

0 0 r∆s r∆sξ

 ·

a
a′

b
b′

where the determinant is clearly ∆z∆s(ξ

∗ − ξ). Since we assumed z 6= xy,
∆z 6= 0, and no collision on the hash function HSCS, the determinants are all

12 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

non-zero, in which cases the expected values for v are unpredictable, hence
|AdvG6

(A) − AdvG5
(A)| ≤ qp/p, where qp is the number of queries to the

OPCA oracle.
Game G7: We now choose v∗ at random, independently of Y and Z.

To show this does not change anything, we first show that what A sees does
never depend on the four variables a, b, a′, b′, but only depends on α = a+xb
and β = a′ + xb′, except for v∗: The only information A has from a, b, a′, b′

comes from the answers of the OPCA oracle, where we first check that e ?= uxM
and then, if that equality holds, that v ?= ua+ξa

′ · (e/M)b+ξb
′
. But when e =

uxM , ua+ξa
′ · (e/M)b+ξb

′
= u(a+ξa

′)+x(b+ξb′) = u(a+xb)+ξ(a
′+xb′) = uα+ξβ ,

therefore the second verification can be replaced by v ?= uα+ξβ , which only
depends on α and β.
If we denote v∗ = gγ , we have γ = y(a+ ξ∗a) + z(b+ ξ∗b′), which is linearly
independent of α and β (when a, a′, b, b′ are unknowns) since z 6= xy, and so
γ looks completely random to the adversary, and so does v∗ too: AdvG7

(A) =
AdvG6(A).

Game G8: We now choose z uniformly at random in Zp instead of Zp \ {xy}.
This game is statistically indistinguishable from the previous one. Hence we
have: |AdvG8(A)− AdvG7(A)| ≤ 1/p.

Game G9: We now choose e∗ at random, independently of Z and Mδ.
To show this does not change anything either, we review the previous game:
– the simulator chooses random scalars x, y, z to define the random tuple

(g,X = gx, Y = gy, Z = gz), as well as random scalars α, β to define
c = gα, d = gβ , and δ $← {0, 1};

– for the OPCA oracle on (`,M,C = (u, e, v)), one checks e ?= uxM and
v ?= uα+ξβ , for ξ = HSCS(`, u, e);

– for the challenge ciphertext, one sets u∗ ← Y , e∗ ← ZMδ, and v∗
$← G.

Since Z was used in e∗ only (and nowhere else), a random Z or a random e∗

are indistinguishable: AdvG9(A) = AdvG8(A). In addition, δ does not appear
anywhere, hence AdvG9

(A) = 0.

4 PAKE Security Models

In this section, we recall the BPR security model [6] and the extension proposed
by Abdalla, Fouque, and Pointcheval (AFP) [3]. Then, in the next section, we
will present several protocols secure in the basic BPR model, but also in the
AFP model and with forward-secrecy.

4.1 The Bellare-Pointcheval-Rogaway Security Model

Users and Passwords. Each client C ∈ C holds a password πC , while each
server S ∈ S holds passwords πS,C for each client C.

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 13

Protocol Execution. The adversary A can create several concurrent instances
U i of each user U ∈ C ∪ S, and can interact with them via the following oracle
queries:

– Execute(Ci, Sj): this query models a passive attack in which the adversary
eavesdrops on honest executions between a client instance Ci and a server
instance Sj . The output of this query consists of the messages that are
exchanged during an honest execution of the protocol between Ci and Sj

(i.e., the transcript of the protocol);
– Send(U i, U ′j ,M): this query models an active attack, in which the adversary

may intercept a message and modify it, create a new message, or simply
replay or forward an existing message, to the user instance U ′j in the name
of the user instance U i. The output of this query is the message that U ′j
would generate after receiving M . A specific message Start can be sent to
a client, in the name of a server, to initiate a session between this client and
this server;

– Reveal(U): this query models the misuse of the session key that has been
established. The output of this query is the session key, if it has been set.

– Corrupt(C): this query models the client corruption. The output of this
query is the password πC .

– Corrupt(S,C, π): this query models the server corruption. The output of
this query is the stored password πS,C . In addition, if π 6= ⊥, πS,C is then
changed to π.

This is a slight variant of the so-called weak corruption model in BPR, since the
long term secrets (passwords) only are leaked, and not the internal states, in
case of corruption. But contrarily to BPR, in case of server corruption, we also
leak the password even in case of a password change request. However, this does
not affect the security notion since, in both the original BPR model and in ours,
any corruption query makes the password corrupted, and so the Test-query is
not allowed anymore on instances of these players (see below), since they are no
longer fresh.

Partnering. Before actually defining the secrecy of the session key, and thus
implicit authentication, we need to introduce the notion of partnering: Two in-
stances are partnered if they have matching transcripts, which means that, for
one user, its view is a part of the view of the other user. One should note that
the last flow can be dropped by the adversary, without letting the sender know.
The sender of this last flow thus thinks that the receiver got the message and
still computes the session key.

Security. To actually define the semantic security of a PAKE scheme, the adver-
sary A has access to a challenge oracle Test(U i), available only once, to evaluate
the indistinguishability of a specific session key. A random bit b is chosen and
the Test-query, for some user instance U i is answered as follows: if b = 1, return
the session key of U i, and otherwise, return a random session key. At the end of

14 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

the game, the adversary A has to output a bit b′, as a guess for b. The success
probability Succ of A is the probability that b′ = b, while its advantage is defined
by Adv = 2 · Succ− 1.

Note that there are natural restrictions for the Test-query: the tested in-
stance must be fresh, which means that this is not a trivial case, where trivial
cases are no key or known key. More precisely, there are two definitions of fresh-
ness, whether we consider the forward-secrecy, or not:

– basic freshness: an instance U i is fresh (fresh) if,
• a session key has been defined;
• no Reveal-query has been asked to U i, or to his partner, if there is one;
• the password of the client C has not been corrupted (either via a query
Corrupt(C) or via a query Corrupt(·, C, ·)), where C = U is U is a client
or U i’s partner is an instance Cj of C

– forward-secure freshness: similar to basic freshness except for the last part,
where only corruptions before U i defined his key can make this instance
unfresh.

In case of Test-query to an unfresh instance, the answer is ⊥, which means that
the adversary cannot have any advantage in these cases. A PAKE is considered
BPR-secure if the advantage of any adversary A, running within time t, in the
previous experiment is bounded by qs × 2−m + negl(K), where qs is the number
of active sessions (handled with Send queries), and m is the min-entropy of the
password distribution. Intuitively this means that to win, the adversary has to
do an on-line dictionary attack, which only enables it to test one password per
session.

4.2 The Abdalla-Fouque-Pointcheval Security Model

It extends the model with multiple Test-queries, which are all answered with
the same bit b. Queries asked to unfresh instances are answered by ⊥.

5 PAKE Constructions

In this section, we present three PAKE constructions: the first one follows the
Gennaro-Lindell (GL) framework [17]. The second one follows the Groce-Katz
(GK) framework [19], and the third one follows the one-round Katz-Vaikunta-
nathan (KV) framework [26]. They all make use of public-key encryption schemes
that admit SPHFs on the languages of the ciphertexts of a given message.

5.1 Public-Key Encryption Schemes

In all our constructions, we will consider a labeled IND-PCA encryption scheme
ES = (KG,Enc,Dec) and an IND-CPA encryption scheme ES′ = (KG′,Enc′,Dec′)

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 15

so that SPHFs (either GLSPHFs or KVSPHFs according to the protocol) exist for
the following families of languages:

L`π = {c | ∃r, c = Enc`(pk, π; r)} L′π = {c | ∃r, c = Enc′(pk′, π; r)},

with the global parameters and the public keys pk and pk′ in the common ref-
erence string CRS. We also suppose that HashKG and ProjKG, for both L`π and
L′π, do not depend on π nor `, and thus, just (respectively) on the supersets

L = {c | ∃`,∃π,∃r, c = Enc`(pk, π; r)} L′ = {c | ∃π,∃r, c = Enc′(pk′, π; r)}.

5.2 GL–PAKE Construction and GL–SPOKE

GL–PAKE. Our first two-flow construction is depicted in Fig. 3, where × is a
commutative operation between hash values such that if A is a uniform hash
value and B is any hash value, A × B is uniform (often hash values live in a
group and × is just the group law). The session key generated by the client is
denoted KC , while the one generated by the server is denoted KS .

Client C (πC) CRS: (parameters, pk, pk′) Server S (πS,C)
hkC

$← HashKG(L′)
hpC ← ProjKG(hkC , L

′,⊥)
` = (C, S, hpC)

rC
$← ; cC ← Enc`(pk, πC ; rC)

hpC , cC−−−−−−−−−→ ` = (C, S, hpC)

rS
$← ; cS ← Enc′(pk′, πS,C ; rS)

hkS
$← HashKG(L`πS,C

)
hpS , cS←−−−−−−−−− hpS ← ProjKG(hkS , L

`
πS,C

, cC)

H ′C ← ProjHash(hpS , L
`
πC
, cC , rC) H ′S ← ProjHash(hpC , L

′
πS,C

, cS , rS)

HS ← Hash(hkC , L
′
πC
, cS) HC ← Hash(hkS , L

`
πS,C

, cC)

KC ← H ′C ×HS KS ← H ′S ×HC

Fig. 3. Generic GL–PAKE Construction

It requires an IND-CPA encryption scheme ES’ with a KVSPHF, and an
IND-PCA encryption scheme ES with a GLSPHF. In the full version [1], we prove
the following result, with perfectly-smooth SPHFs, which applies for the basic
freshness in the BPR setting, or for the forward-secure freshness in the AFP
setting with static corruptions only:

Adv(A) ≤ qs × 2−m + (qe + qs)× (Advind-cpaES′ (t) + Advind-pcaES (t)) +
qeqs
22n

,

where qe and qs are the number of Execute and Send-queries, n is the entropy
of both the projected keys and the ciphertexts, and m is the entropy of the
passwords.

16 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

GL–SPOKE: GL – Simple Password-Only Key Exchange (Fig. 4). Com-
bining our new Short Cramer-Shoup encryption scheme, with the basic ElGamal
encryption scheme, we obtain the most efficient PAKE with implicit authentica-
tion.

It is based on the plain DDH assumption, and consists of 4 group elements
to be sent by the client and 3 group elements by the server. They both have to
compute 10 exponentiations.

Using the above security bounds for the encryption schemes, one gets, for
the basic freshness in the BPR setting, or for the forward-secure freshness in the
AFP setting with static corruptions:

Adv(t) ≤ qs × 2−m + 2Q× (Advddh
G (t) + Succcoll

H (t)) +
2Q2

p
,

where qs is the number of Send-queries, Q is the global number of oracle queries,
and m is the min-entropy of the passwords.

Client C (πC) Server S (πS,C)
CRS: (param = (G, p, q), pk = (h, c, d) ∈ G3, pk′ = y ∈ G)

(α′, β′)
$← Z2

p ; t
′ ← gα

′
yβ
′
∈ G

r
$← Zp

(u← gr, e← hrgπC , v ← (cdξ)r) ∈ G3,

with ξ ← HSCS(C, S, t
′, u, e)

t′, (u, e, v)−−−−−−−−−→ (α, β, γ)
$← Z3

p

t← gαhβ(cdξ)γ ∈ G
with ξ ← HSCS(C, S, t

′, u, e)
r′

$← Zp
t, (u′, e′)←−−−−−−−−− (u′ ← gr

′
, e′ ← yr

′
gπS,C) ∈ G2

H ′C ← tr ; HS ← u′
α′
(e′/gπC)β

′
H ′S ← t′r

′
; HC ← uα(e/gπS,C)βvγ

KC ← H ′C ×HS KS ← H ′S ×HC

Fig. 4. GL–SPOKE

We remark that one encrypted gπ where π is the password, instead of π. This
makes it hard to recover π from the decryption of a ciphertext, but that is not
a problem in the proofs, where one only needs to check whether a ciphertext
contains a given password or not.

5.3 GK–PAKE Construction and GK–SPOKE

GK–PAKE. Our second two-flow construction is depicted in Fig. 5. It addition-
ally provides explicit server authentication to the client. It requires an IND-CPA
encryption scheme ES’ with a GLSPHF, and an IND-PCA encryption scheme ES
(no need of SPHF for it). It also makes use of a Pseudo-Random Generator PRG,
which on a random input returns a longer output that looks indistinguishable
to random.

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 17

Client C (πC) CRS: (parameters, pk, pk′) Server S (πS,C)
rC

$← ; cC ← Enc′(pk′, πC ; rC)
cC−−−−−−−−−→ hk

$← HashKG(L′πS,C
)

hp← ProjKG(hk, L′πS,C
, cC)

H ← Hash(hk, L′πS,C
, cC)

(KS , rS)← PRG(H)
` = (C, S, cC , hp)

H ′ ← ProjHash(hp, L′πC
, cC , rC)

hp, cS←−−−−−−−−− cS ← Enc`(pk, πS,C ; rS)
(KC , r

′
S)← PRG(H ′)

` = (C, S, cC , hp)
c′S ← Enc`(pk, πC ; r

′
S)

If c′S 6= cS , abort

Fig. 5. Generic GK–PAKE Construction

In the full version [1], we prove the following result, with perfectly-smooth
SPHFs, which applies for the basic freshness in the BPR setting, or for the
forward-secure freshness in the AFP setting with static corruptions only:

Adv(A) ≤ qs×2−m+(qe+qs)×(Advind-cpaES′ (t)+Advind-pcaES (t)+AdvprgPRG(t))+
qeqs
22n

,

where qe and qs are the number of Execute and Send-queries, n is the entropy
of both the projected keys and the ciphertexts, and m is the entropy of the
passwords.

GK–SPOKE: GK – Simple Password-Only Key Exchange (Fig. 6). Com-
bining our new Short Cramer-Shoup encryption scheme, with the basic ElGamal
encryption scheme, we obtain the most efficient PAKE known so far: It is based
on the plain DDH assumption, and consists of 2 group elements to be sent by
the client and 4 group elements by the server. They both have to compute less
than 9 exponentiations.

It also uses a PRG from G to {0, 1}k × Zp, where k is the bit-length of the
eventual common session key. In practice, one would just need a randomness
extractor to extract a seed, and then one extends the seed to get the session key
K and the random coins r for the encryption scheme.

Using the above security bounds for the encryption schemes, one gets, for
the basic freshness in the BPR setting, or for the forward-secure freshness in the
AFP setting with static corruptions:

Adv(t) ≤ qs × 2−m + 2Q× (Advddh
G (t) + Succcoll

H (t) + SuccprgPRG(t)) +
2Q2

p
,

where qs is the number of Send-queries, Q is the global number of oracle queries,
and m is the min-entropy of the passwords.

5.4 KV–PAKE Construction and KV–SPOKE

KV–PAKE. Our third construction is a one-round PAKE, depicted in Fig. 7,
from the client point of view, but the server does exactly the same thing, since

18 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

Client C (πC) Server S (πS,C)
CRS: (param = (G, p, q), pk = (h, c, d) ∈ G3, pk′ = y ∈ G)

r′
$← Zp

(u′ ← gr
′
, e′ ← yr

′
gπC) ∈ G2 (u′, e′)−−−−−−−−−→ (α′, β′)

$← Z2
p ; t

′ ← gα
′
yβ
′
∈ G

HC ← u′
α′
(e′/gπS,C)β

′

(KS , r)← PRG(HC)
(u← gr, e← hrgπS,C , v ← (cdξ)r) ∈ G3,

H ′C ← t′
r′ t′, (u, e, v)←−−−−−−−−− with ξ ← HSCS(C, S, u

′, e′, t′, u, e)
(KC , r

′′)← PRG(H ′C)
(u′′ ← gr

′′
, e′′ ← hr

′′
gπC , v′′ ← (cdξ

′′
)r
′′
) ∈ G3,

with ξ′′ ← HSCS(C, S, u
′, e′, t′, u′′, e′′)

If (u′′, e′′, v′′) 6= (u, e, v), abort

Fig. 6. GK–SPOKE

this is a one-round protocol, where the two flows can be sent independently to
each other.

Client C (πC) CRS: (parameters, pk, pk′) Server S (πS,C)
hkC

$← HashKG(L′) ; hpC ← ProjKG(hkC , L
′,⊥)

`C = (C, S, hpC) ; rC
$← ; cC ← Enc`C (pk, πC ; rC)

hpC , cC−−−−−−−−−→
`S = (S,C, hpS)

hpS , cS←−−−−−−−−−
H ′C ← ProjHash(hpS , L

`C
πC , cC , rC)

HS ← Hash(hkC , L
`S
πC , cS)

KC ← H ′C ×HS

Fig. 7. Generic KV–PAKE Construction

It requires an IND-PCA encryption scheme ES with a KVSPHF. In the full
version [1], we prove the following result, which applies for the basic freshness
in the BPR setting, or for the forward-secure freshness in the AFP setting with
static corruptions only:

Adv(A) ≤ qs × 2−m + (2qe + qs)× Advind-pcaES (t) +
qeqs
22n

,

where qe and qs are the number of Execute and Send-queries, n is the entropy
of both the projected keys and the ciphertexts, and m is the entropy of the
passwords.

KV–SPOKE: KV – Simple Password-Only Key Exchange (Fig. 8). Using
our new Short Cramer-Shoup encryption scheme and its associated KVSPHF, we
obtain the most efficient one-round PAKE known so far: It is based on the plain
DDH assumption, and consists of 5 group elements to be sent by the each user.
They both have to compute 14 exponentiations.

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 19

Using the above security bounds for the encryption schemes, one gets, for
the basic freshness in the BPR setting, or for the forward-secure freshness in the
AFP setting with static corruptions:

Adv(t) ≤ qs × 2−m + 4Q× (Advddh
G (t) + Succcoll

H (t)) +
2Q2

p
,

where qs is the number of Send-queries, Q is the global number of oracle queries,
and m is the min-entropy of the passwords.

Client C (πC) Server S (πS,C)
CRS: (param = (G, p, q), pk = (h, c, d) ∈ G3)

(α′1, α
′
2, β
′, γ′)

$← Z4
p

(t′1 ← gα
′
1hβ

′
cγ
′
, t′2 ← gα

′
2dγ
′
) ∈ G2

r
$← Zp ; (u← gr, e← hrgπC , v ← (cdξ)r) ∈ G3,

with ξ ← HSCS(C, S, t
′
1, t
′
2, u, e)

t′1, t
′
2, (u, e, v)−−−−−−−−−→

H ′C ← (t1t
ξ
2)
r t1, t2, (u

′, e′, v′)←−−−−−−−−−
HS ← u′α

′
1+ξ
′α′2(e′/gπC)β

′
v′γ
′

with ξ′ ← HSCS(S,C, t1, t2, u
′, e′)

KC ← H ′C ×HS

Fig. 8. KV–SPOKE

Acknowledgments

This work was supported in part by the French ANR-12-INSE-0014 SIMPATIC
Project, the CFM Foundation, and the European Research Council under the
European Community’s Seventh Framework Programme (FP7/2007-2013 Grant
Agreement no. 339563 – CryptoCloud).

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption scheme in-
distinguishable under plaintext-checkable attacks. Cryptology ePrint Archive, Re-
port 2014/609 (2014), http://eprint.iacr.org/2014/609

2. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for condi-
tionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 671–689. Springer (Aug 2009)

3. Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 65–84. Springer (Jan 2005)

4. Abdalla, M., Pointcheval, D.: A scalable password-based group key exchange pro-
tocol in the standard model. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 332–347. Springer (Dec 2006)

http://eprint.iacr.org/2014/609

20 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

5. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO’98.
LNCS, vol. 1462, pp. 26–45. Springer (Aug 1998)

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer (May 2000)

7. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Report 2004/331 (2004), http://eprint.
iacr.org/2004/331

8. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer
(Aug 2013)

9. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol.
1462, pp. 1–12. Springer (Aug 1998)

10. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer (May 2005)

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol.
1462, pp. 13–25. Springer (Aug 1998)

12. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer (Apr / May 2002)

13. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC. pp. 542–552. ACM Press (May 1991)

14. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on
Computing 30(2), 391–437 (2000)

15. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp.
10–18. Springer (Aug 1984)

16. Gennaro, R.: Faster and shorter password-authenticated key exchange. In: Canetti,
R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 589–606. Springer (Mar 2008)

17. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer (May 2003), http://eprint.iacr.org/2003/032.ps.gz

18. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

19. Groce, A., Katz, J.: A new framework for efficient password-based authenticated
key exchange. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS
10. pp. 516–525. ACM Press (Oct 2010)

20. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer
(Apr 2008)

21. Jiang, S., Gong, G.: Password based key exchange with mutual authentication. In:
Handschuh, H., Hasan, A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279. Springer
(Aug 2004)

22. Katz, J., MacKenzie, P.D., Taban, G., Gligor, V.D.: Two-server password-only
authenticated key exchange. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS
05. LNCS, vol. 3531, pp. 1–16. Springer (Jun 2005)

http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2003/032.ps.gz

Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks 21

23. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer (May 2001)

24. Katz, J., Ostrovsky, R., Yung, M.: Forward secrecy in password-only key exchange
protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 02. LNCS, vol. 2576,
pp. 29–44. Springer (Sep 2002)

25. Katz, J., Ostrovsky, R., Yung, M.: Efficient and secure authenticated key exchange
using weak passwords. Journal of the ACM 57(1), 78–116 (2009)

26. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer
(Mar 2011)

27. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS. pp. 458–467. IEEE Computer Society Press (Oct 1997)

28. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd ACM STOC. pp. 427–437. ACM Press (May 1990)

29. Okamoto, T., Pointcheval, D.: REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 159–175. Springer (Apr 2001)

30. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576,
pp. 433–444. Springer (Aug 1991)

31. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004), http://eprint.iacr.org/
2004/332

http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332

	Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks
	Introduction
	Public-Key Encryption
	Definition
	Relations with the IND-CPA and IND-CCA Security Notions
	Classical Schemes
	Smooth Projective Hash Functions

	The Short Cramer-Shoup Encryption Scheme
	Smooth Projective Hash Functions
	IND-PCA Security Proof

	PAKE Security Models
	The Bellare-Pointcheval-Rogaway Security Model
	The Abdalla-Fouque-Pointcheval Security Model

	PAKE Constructions
	Public-Key Encryption Schemes
	GL–PAKE Construction and GL–SPOKE
	GK–PAKE Construction and GK–SPOKE
	KV–PAKE Construction and KV–SPOKE

