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Abstract. We introduce a lattice-based group signature scheme that
provides several noticeable improvements over the contemporary ones:
simpler construction, weaker hardness assumptions, and shorter sizes of
keys and signatures. Moreover, our scheme can be transformed into the
ring setting, resulting in a scheme based on ideal lattices, in which the
public key and signature both have bit-size Õ(n · logN), for security pa-
rameter n, and for group of N users. Towards our goal, we construct a
new lattice-based cryptographic tool: a statistical zero-knowledge argu-
ment of knowledge of a valid message-signature pair for Boyen’s signature
scheme (Boyen, PKC’10), which potentially can be used as the building
block to design various privacy-enhancing cryptographic constructions.

1 Introduction

Group signatures [CvH91] have been an active research topic in public-key
cryptography. Such schemes allow users of a group to anonymously sign
messages on behalf of the whole group (anonymity). On the other hand,
in cases of disputes, there is a tracing mechanism which can link a given
signature to the identity of the misbehaving user (traceability). These two
appealing features allow group signatures to find applications in various
real-life scenarios, such as digital right management, anonymous online
communications, e-commerce systems, and much more. On the theoretical
front, designing secure and efficient group signature schemes is interest-
ing and challenging, since those advanced constructions usually require a
sophisticated combination of carefully chosen cryptographic ingredients:
digital signatures, encryptions, and zero-knowledge protocols. Over the
last two decades, numerous group signature schemes have been proposed
(e.g., [CS97,ACJT00,BMW03,BBS04,BS04,Gro07,LPY12]).

In recent years, lattice-based cryptography, possessing nice features
such as provable security under worst-case hardness assumptions, conjec-
tured resistance against quantum computers and asymptotic efficiency,



has become one of the most trendy research directions, especially after
the emergence of fully-homomorphic encryption schemes from lattices,
pioneered by Gentry [Gen09]. Along with other primitives, lattice-based
group signatures has received noticeable attention. Prior to our work, sev-
eral schemes were proposed, each of which has its own strengths and weak-
nesses. The first group signature from lattices was introduced by Gordon
et al. [GKV10]. While their scheme is of great theoretical interest, its pub-
lic key and signature have sizes N ·Õ(n2), for security parameter n, and for
group of N users. In terms of efficiency, this is a noticeable disadvantage
when the group is large, e.g., group of all employees of a big company. Ca-
menisch et al. [CNR12] later proposed lattice-based anonymous attribute
tokens system - a generalization of group signature. Their scheme sup-
ports CCA-anonymity, a stronger security requirement than the relaxed
notion CPA-anonymity achieved by [GKV10], but the signature size is still
linear in N . The linear-size barrier was finally overcome by Laguillaumie
et al. [LLLS13], who designed a scheme featuring public key and signa-
ture sizes logN · Õ(n2). Yet, their scheme requires large parameters (e.g.,
q = logN · Õ(n8)), and its anonymity and traceability properties have to
rely on the hardness of SIVP

logN ·Õ(n8)
and SIVP

logN ·Õ(n7.5)
, respectively.

Thus, the scheme produces significant overheads in terms of hardness as-
sumptions, considering the fact that it is constructed based on Boyen’s
signature [Boy10] and the Dual-Regev encryption [GPV08] which rely on
much weaker assumptions. Recently, Langlois et al. [LLNW14] introduced
a lattice-based group signature scheme with verifier-local revocation, that
also achieves logarithmic signature size. However, their scheme only sat-
isfies a weak security model suggested by Boneh et al. [BBS04]. As in
the schemes from [GKV10,CNR12,LLLS13], we consider the currently
strongest model for static groups provided by Bellare et al. [BMW03].

The present state of lattice-based group signatures raises several in-
teresting open questions. One of them is whether it is possible to de-
sign a scheme in the BMW model that simultaneously achieves signature
size logN · Õ(n) and weak hardness assumptions. Another open ques-
tion, pointed out in [LLLS13], is to construct group signatures based
on the ring variants of the Small Integer Solutions (SIS) and Learning
with Errors (LWE) problems. This would make a noticeable step to-
wards practice, since in those schemes, the public key size can be as
small as logN · Õ(n). Furthermore, we remark that the design approach
of [GKV10,CNR12,LLLS13] are relatively complex. First, in all of these
schemes, the encryption layer (needed for enabling traceability) has to
be initialized in accordance with the signature layer (used for key gen-



eration), which, to some extent, limits the choice of encryption mech-
anisms. In addition, the encryption layer requires the costly generation
of at least O(logN) matrices in Zn×mq , and the signer has to encrypt at

least logN ·Õ(n) bits, which leads to a growth in public key and signature
sizes. Moreover, these schemes have to employ involved zero-knowledge
protocols to prove the well-formedness of the obtained ciphertexts: in
[GKV10,CNR12], the main protocols are obtained by OR-ing N proofs,
while in [LLLS13], logN + 2 different proofs are needed. This somewhat
unsatisfactory situation highlights the challenge of simplifying the design
of lattice-based group signatures.

Our Contributions and Summary of Our Techniques.

In this work, we reply positively to all the open questions discussed
above. Specifically, we introduce a lattice-based group signature scheme
in the random oracle model (in Section 4), which simultaneously achieves
the following features:

– The public key and signature have sizes logN ·Õ(n2) and logN ·Õ(n),
respectively 1. In comparison with [LLLS13], the key is around 4 times
smaller, and the signature contains a shorter ciphertext.

– The scheme relies on relatively weak hardness assumptions: it is CCA-
anonymous and traceable if SIVP

logN ·Õ(n2)
is hard in the worst-case.

In contrast to [LLLS13], the scheme produces no overhead in terms
of security: its anonymity and traceability properties rely exactly on
the hardness assumptions of the underlying encryption scheme and
signature scheme, respectively.

Furthermore, our scheme can be transformed into the ring setting, result-
ing in a scheme based on ideal lattices (in Section 5), in which the key
and signature both have size Õ(n · logN). In Table 1, we summarize the
features of our two schemes in comparison with the existing ones.

Another contribution of this work is that our schemes are obtained via
a simple design approach. We rely on Boyen’s signature scheme [Boy10],
and consider group of N = 2` users, where each user is identified by a
string d ∈ {0, 1}`, as in [LLLS13]. Yet, in our scheme, the user’s secret key
is simply a Boyen signature z ∈ Z2m on d (in [LLLS13], it is a matrix in
Z2m×2m - which is 2m = Õ(n) times longer). To sign a message on behalf
of the group, the user first encrypts his identity d to obtain a ciphertext c,
and then generates a zero-knowledge argument to prove that he possesses

1 It was noted by Bellare et al. [BMW03], that the dependency of keys and signatures
sizes on logN is unavoidable for group signature schemes in the their model.



Scheme [GKV10] [CNR12] [LLLS13] Section 4 Section 5

Signature size N · Õ(n2) N · Õ(n2) logN · Õ(n) logN · Õ(n) logN · Õ(n)

Public key
size

N · Õ(n2) N · Õ(n2) logN · Õ(n2) logN · Õ(n2) logN · Õ(n)

Anonymity
assumption

SIVPÕ(n2) SIVPÕ(n2) SIVPlogN·Õ(n8) SIVPlogN·Õ(n2)
SVP∞

logN·Õ(n3.5)

Traceability
assumption

SIVPÕ(n1.5) SIVPÕ(n2) SIVPlogN·Õ(n7.5) SIVPlogN·Õ(n2) SVP∞
logN·Õ(n2)

Table 1. Comparison among lattice-based group signature schemes, for security pa-
rameter n, and groups of N users. The [GKV10] scheme and our scheme in Section 5
only satisfy the CPA-anonymity notion, while the schemes from [CNR12] and [LLLS13],
and our scheme in Section 4 support the stronger notion CCA-anonymity.

a valid message-signature pair (d, z) for Boyen’s signature scheme, and
that c is a correct encryption of d. The protocol then is repeated to make
the soundness error negligibly small, and then is made non-interactive
using the Fiat-Shamir heuristic. The group signature is simply the pair
(c, Π), where Π is the obtained non-interactive argument. To verify a
signature, one checksΠ, and to open it, the group manager decrypts c. We
remark that in our design, the signer has to encrypt only ` = logN bits.
Furthermore, the underlying encryption scheme is totally independent of
the underlying standard signature (i.e., Boyen’s signature in this case).
This provides us a flexible choice of encryption schemes.

1. In the scheme in Section 4, to achieve CCA-anonymity, we rely on a
CCA-secure encryption scheme, obtained by the standard technique of
combining a one-time signature scheme and an identity-based encryp-
tion (IBE) scheme [BCHK07]. In particular, we employ the IBE scheme
by Gentry et al. [GPV08] to gain efficiency in the random oracle model.

2. In the ring-based scheme in Section 5, since our main goal is efficiency,
we employ the CPA-secure encryption scheme from [LPR13], for which
the public key and ciphertext consist of only 2 ring elements.

In the process, we introduce a new lattice-based cryptographic tool: a
statistical zero-knowledge argument of knowledge of a valid message-
signature pair for Boyen’s signature scheme. We remark that previous
protocols in lattice-based cryptography (e.g., [MV03][Lyu08][LNSW13])
only allow to prove in zero-knowledge the possession of a signature on
a publicly given message. The challenging part is to hide both the signa-
ture and message from the verifier, which we overcome by a non-trivial



technique described in Section 3. We believe that our new protocol is of
independent interest. Indeed, apart from group signatures, such protocols
are essential for designing various privacy-enhancing constructions, such
as anonymous credentials [CL01], compact e-cash [CHL05], policy-based
signatures [BF14], and much more.

Comparison to related work. In a concurrent and independent work,
Nguyen, Zhang and Zhang [NZZ15], based on a new zero-knowledge pro-
tocol corresponding to a simple identity-encoding function, also obtain a
simpler lattice-based group signature than [GKV10,LLLS13]. In [NZZ15],
the public key and signature sizes are shorter by a O(logN) factor than in
previous works, and are shorter than ours. On the other hand, the user’s
secret key in [NZZ15] is still a matrix in Z2m×2m (as in [LLLS13]), and the
scheme requires larger parameters, e.g., q = m2.5 max(m6ω(log2.5m), 4N),
as well as stronger security assumptions than ours.

2 Preliminaries

Notations. For integer n ≥ 1, we denote by [n] the set {1, . . . , n}. The
set of all permutations of k elements is denoted by Sk. We assume that
all vectors are column vectors. The concatenation of vectors x ∈ Rm and
y ∈ Rk is denoted by (x‖y). We denote the column concatenation of
matrices A ∈ Rn×m and B ∈ Rn×k by

[
A
∣∣B]. The identity matrix of

order k is denoted by Ik. If S is a finite set, y
$←− S means that y is chosen

uniformly at random from S.

2.1 Group Signatures

Definition 1 ([BMW03]). A group signature scheme is a tuple of 4
polynomial-time algorithms:

– KeyGen: This algorithm takes as input 1n, 1N , where n ∈ N is the secu-
rity parameter and N ∈ N is the number of group users, and outputs
a triple (gpk, gmsk, gsk), where gpk is the group public key; gmsk is the
group manager’s secret key; and gsk = {gsk[i]}i∈{0,...,N−1}, where for
i ∈ {0, . . . , N − 1}, gsk[i] is the secret key for user of index i.

– Sign: This algorithm takes as input gsk[i] for some i ∈ {0, . . . , N − 1},
and a message M , and returns a group signature Σ.

– Verify: This algorithm takes as input gpk, a message M , a purported
signature Σ on M , and returns either 1 (Valid) or 0 (Invalid).

– Open: This algorithm takes as input gmsk, a message M , a signature Σ,
and returns an index i ∈ {0, . . . , N − 1}, or ⊥ (to indicate failure).



Correctness. The correctness requirement for a group signature is as
follows. For all n,N ∈ N, all (gpk, gmsk, gsk) produced by KeyGen(1n, 1N ),
all i ∈ {0, . . . , N − 1}, and all M ∈ {0, 1}∗,

Verify
(
gpk,M, Sign(gsk[i],M)

)
= 1 ∧ Open

(
gmsk,M, Sign(gsk[i],M)

)
= i.

Security. A secure group signature must satisfy two security notions:

– Traceability requires that all signatures, even those produced by a coali-
tion of group users and the group manager, can be traced back to a
member of the coalition.

– Anonymity requires that, signatures generated by two distinct group
users are computationally indistinguishable to an adversary knowing all
the user secret keys. In Bellare et al.’s model [BMW03], the anonymity
adversary is granted access to an opening oracle (CCA-anonymity). Boneh
et al. [BBS04] later proposed a relaxed notion, where the adversary can-
not query the opening oracle (CPA-anonymity).

Formal definitions of the above notions are provided in Appendix A.

2.2 Average-case Lattices Problems and Their Ring Variants

We first recall the definitions and hardness results for average-case prob-
lems SIS, LWE.

Definition 2 ([Ajt96,GPV08]). The SISpn,m,q,β problem is as follows:

Given uniformly random matrix A ∈ Zn×mq , find a non-zero vector x ∈ Zm
such that ‖x‖p ≤ β and Ax = 0 mod q.

If m,β = poly(n), and q >
√
nβ, then the SIS∞n,m,q,β problem is at least

as hard as SIVPγ for some γ = β · Õ(
√
nm) (see [GPV08,MP13]).

Definition 3 ([Reg05]). Let n,m ≥ 1, q ≥ 2, and let χ be a probability
distribution on Z. For s ∈ Znq , let As,χ be the distribution obtained by

sampling a
$←− Znq and e←↩ χ, and outputting (a,aT ·s+e) ∈ Znq ×Zq. The

LWEn,q,χ problem asks to distinguish m samples chosen according to As,χ

(for s
$←− Znq ) and m samples chosen according to the uniform distribution

over Znq × Zq.

If q is a prime power, b ≥
√
nω(log n), γ = Õ(nq/b), then there exists

an efficient sampleable b-bounded distribution χ (i.e., χ outputs samples
with norm at most b with overwhelming probability) such that LWEn,q,χ
is as least as hard as SIVPγ (see [Reg05,Pei09,MM11,MP12]).



We now recall the ring variants of the SIS and LWE, as well as their
hardness results. Let f = xn + 1, where n is a power of 2, and let q > 2
be prime. Let R = Z[x]/〈f〉 and Rq = R/qR. (As an additive group, Rq
is isomorphic to Znq .) For an element a = c0 + c1x+ . . .+ cn−1x

n−1 ∈ R,
we define ‖a‖∞ = maxi(|ci|). For a vector a = (a1, . . . , am) ∈ Rm, we
define ‖a‖∞ = maxj(‖aj‖∞). To avoid ambiguity, we will denote the
multiplication operation of two ring elements by the symbol ⊗.

Definition 4 ([LM06,PR06,LMPR08]). The Ring-SISn,m,q,β prob-
lem is as follows: Given a uniformly random a = (a1, . . . , am) ∈ Rmq ,
find a non-zero vector x = (x1, . . . , xm) ∈ Rmq such that ‖a‖∞ ≤ β and
ax = a1 ⊗ x1 + . . . am ⊗ xm = 0 mod q.

For m > log q
log(2β) , γ = 16βmn log2 n, and q ≥ γ

√
n

4 logn , the Ring-SISn,m,q,β
problem is at least as hard as SVP∞γ in any ideal in the ring R (see [LM06]).

Definition 5 ([LPR10]). Let n,m ≥ 1, q ≥ 2, and let χ be a probability
distribution on R. For s ∈ Rq, let As,χ be the distribution obtained by

sampling a
$←− Rq and e ←↩ χ, and outputting the pair (a, a ⊗ s + e) ∈

Rq × Rq. The Ring-LWEn,m,q,χ problem asks to distinguish m samples

chosen according to As,χ (for s
$←− Rq) and m samples chosen according

to the uniform distribution over Rq ×Rq.

Let q = 1 mod 2n, b ≥ ω(
√
n log n) and γ = n2(q/b)(nm/ log(nm))1/4.

Then there exists an efficient sampleable b-bounded distribution χ such
that the Ring-LWEn,m,q,χ problem is at least as hard as SVP∞γ in any ideal
in the ring R (see [LPR10]).

Note that the hardness of LWE is not affected if the secret s is sampled
from χ [ACPS09]. The same holds for Ring-LWE (see [LPR13]). This is
called the “Hermite Normal Form” (HNF) of these problems.

2.3 Boyen’s “Lattice-mixing” Signature Scheme and Its
Ring-based Variant

Boyen’s signature scheme [Boy10] is a lattice analogue of Water’s pairing-
based signature [Wat05]. Here we consider its improved version provided
in [MP12]. The scheme uses the following parameters: n is the security
parameter, ` is the message length, q = poly(n) is sufficiently large, m ≥
2n log q, σ = Ω(

√
`n log q log n) and β = σω(

√
logm). The public key is

a tuple (A,A0, . . . ,A`,u), and the signing key is a trapdoor TA, where:



– Matrix A is statistically close to uniform over Zn×mq and its trapdoor

TA ∈ Zm×m is a short basis for the lattice Λ⊥(A) =
{
x ∈ Zm : A ·

x = 0 mod q
}

. The pair (A,TA) is generated by a PPT algorithm
GenTrap(n,m, q) (see [GPV08,AP11,MP12]).

– Matrices A0, . . . ,A` ∈ Zn×mq and vector u ∈ Znq are uniformly random.

To sign a message d = (d1, . . . , d`) ∈ {0, 1}`, the signer forms matrix
A(d) =

[
A |A0 +

∑`
i=1 diAi

]
∈ Zn×2m

q , then runs the deterministic al-
gorithm ExtBasis(TA,A(d)) from [CHKP10] to obtain a short basis T(d)

for the lattice Λ⊥(A(d)). Finally the signer runs the probabilistic algo-
rithm SamplePre(T(d),A(d),u, σ) from [GPV08] to output a signature
z ∈ Z2m satisfying ‖z‖∞ ≤ β and A(d)z = u mod q. It follows from
the improved security reduction in [MP12] that scheme is unforgeable
under adaptive chosen-message attack if the SIS∞n,m,q,β′ problem is hard

for some β′ = `Õ(n). Therefore, for the given parameters, the security of
the scheme can be based on the worst-case hardness of SIVP

`·Õ(n2)
.

The public key in Boyen’s signature has size `O(nm log q) = `Õ(n2),
but can be reduced to `Õ(n) by transforming the scheme into the ring
setting, because the parameter m then can be set as m = Ω(log q). This
can be done rather straightforwardly, thanks to the constructions of the
algorithms GenTrap, SamplePre, and ExtBasis for ideal lattices given by
Stehlé et al. [SSTX09]. For an element a ∈ Rq, define rot(a) ∈ Zn×nq as
the matrix whose i-th column is xi ⊗ a, for i = 0, . . . , n− 1. For a vector
a = (a1, . . . , am) ∈ Rmq , define rot(a) =

[
rot(a1) | . . . | rot(am)

]
∈ Zn×nmq .

In the ring variant of Boyen’s signature, the public key is a tuple

(a,a0, . . . ,a`, u) ∈
(
Rmq
)`+2×Rq, and the signing key is a trapdoor Ta ∈

Znm×nm for Λ⊥
(
rot(a)

)
. Similarly, a signature on message d ∈ {0, 1}` is

a small-norm vector z ∈ R2m such that
[
a |a0 +

∑`
i=1 diai

]
z = u mod q.

By adapting the security reduction from [MP12] into the ring setting, the
security of the scheme can be based on the average-case hardness of the
Ring-SISn,m,q,β′ problem for some β′ = `Õ(n), which in turn can be based
on the worst-case hardness of the SVP∞

`·Õ(n2)
problem on ideal lattices.

2.4 Zero-knowledge Argument Systems for Lattices

We will work with statistical zero-knowledge argument systems, namely,
interactive protocols where the soundness property only holds for com-
putationally bounded cheating provers, while the zero-knowledge prop-
erty holds against any cheating verifier. More formally, let the set of
statements-witnesses R = {(y, w)} ∈ {0, 1}∗ × {0, 1}∗ be an NP relation.



A two-party game 〈P, V 〉 is called an interactive argument system for the
relation R with soundness error e if the following two conditions hold:

– Completeness. If (y, w) ∈ R then Pr
[
〈P (y, w), V (y)〉 = 1

]
= 1.

– Soundness. If (y, w) 6∈ R, then ∀ PPT P ∗: Pr[〈P ∗(y, w), V (y)〉 = 1] ≤ e.

An interactive argument system is called statistical zero-knowledge if for
any V ∗(y), there exists a PPT simulator S(y) producing a simulated tran-
script that is statistically close to the one of the real interaction between
P (y, w) and V ∗(y). A related notion is argument of knowledge, which re-
quires the witness-extended emulation property. For protocols consisting
of 3 moves (i.e., commitment-challenge-response), witness-extended em-
ulation is implied by special soundness [Gro04], where the latter assumes
that there exists a PPT extractor which takes as input a set of valid tran-
scripts with respect to all possible values of the ‘challenge’ to the same
‘commitment’, and outputs w′ such that (y, w′) ∈ R.

Statistical zero-knowledge arguments of knowledge (sZKAoK) are usu-
ally constructed using a statistically hiding and computationally binding
string commitment scheme. Kawachi et al. [KTX08] designed such com-
mitment scheme from lattices, where the binding property relies on the
hardness of SIVPÕ(n)

. Using this primitive, Ling et al. [LNSW13] proposed

a Stern-type [Ste96] sZKAoK for the Inhomogeneous SIS relation:

RISIS =
{(

(A ∈ Zn×mq ; u ∈ Znq ),x ∈ Zm
)

: ‖x‖∞ ≤ β ∧Ax = u mod q
}
.

The core technique in Ling et al.’s work is called Decomposition-Extension.
This technique is as follows. Letting p = blog βc + 1, Ling et al. observe
that an integer x ∈ [0, β] if and only if there exist x1, . . . , xp ∈ {0, 1}
such that x =

∑p
j=1 βjxj , where the sequence of integers β1, . . . , βp is

determined as follows:

β1 = dβ/2e;β2 = d(β − β1)/2e;β3 = d(β − β1 − β2)/2e; . . . ;βp = 1.2

This observation allows the prover to efficiently decompose x ∈ [−β;β]m

into x̃1, . . . , x̃p ∈ {−1, 0, 1}m such that
∑p

j=1 βjx̃j = x. To argue the pos-
session of the x̃j ’s in zero-knowledge, the prover extends x̃j to xj ∈ B3m,
where B3m is the set of all vectors in {−1, 0, 1}3m having exactly m coor-
dinates equal 0; m coordinates equal to 1; and m coordinates equal to −1.
This set has a helpful property: if π is a permutation of 3m elements, then

2 We note that the same sequence of integers was previously used by Lipmaa et
al. [LAN02] in the context of range proofs, but under a different representation:
βj = b(β + 2j−1)/2jc for each j ∈ [p].



xj ∈ B3m if and only if π(xj) ∈ B3m. Then in the framework of Stern’s
3-move protocol, the prover is able to demonstrate that:

1. For each j, a random permutation of xj belongs to B3m, which implies
that xj ∈ B3m, and thus, x̃j ∈ {−1, 0, 1}m. This will convinces the
verifier that x ∈ [−β, β]m.

2. A∗
∑p

j=1 βj(xj + rj) − u = A∗
∑p

j=1 βjrj mod q, where A∗ ∈ Zn×3m
q is

the extended matrix obtained by appending 2m “dummy” zero-columns
to A, and r1, . . . , rp ∈ Z3m

q are uniformly “masking” vectors for the xj ’s.
This equation implies Ax = A∗

∑p
j=1 βjxj = u mod q.

3 New Zero-knowledge Protocols for Lattice-based
Cryptography

In this section, we first present a sZKAoK of a valid message-signature pair
(d, z) for Boyen’s signature scheme ([Boy10], see also Section 2.3). Then
we provide a lattice-based verifiable encryption protocol to show that a
given ciphertext correctly encrypts d. The combined protocol of these two
ones, which will serve as the building block in both constructions of our
group signatures, is described in detail in Section 3.3.

3.1 ZKAoK of a Valid Message-Signature Pair for Boyen’s
Signature Scheme

Suppose that the verification key for Boyen’s signature scheme is a tuple
(A,A0, . . . ,A`,u). Our goal is to design a statistical ZKAoK of a pair
(d, z) ∈ {0, 1}` × Z2m satisfying ‖z‖∞ ≤ β and A(d)z = u mod q, where

A(d) =
[
A |A0 +

∑`
i=1 diAi

]
∈ Zn×2m

q . We first observe that obtaining a
ZKAoK of a Boyen signature on a given message d is relatively straight-
forward: one can just run a zero-knowledge protocol for an ISIS solution
(e.g., [MV03,Lyu08,LNSW13]) on public input (A(d),u), and prover’s wit-
ness z. However, constructing a ZKAoK of a message-signature pair (d, z)
is challenging, because on one hand, the prover has to convince the veri-
fier that A(d)z = u mod q, while on the other hand, both z and d should
be kept secret from the verifier.

Our first step towards solving the above challenge is making the pub-
lic verification matrix independent of d. Let A =

[
A|A0|A1| . . . |A`

]
∈

Zn×(`+2)m
q , and let z = (x‖y), where x,y ∈ Zm, then we have:

u = A(d)z = Ax + A0y +
∑̀
j=1

Ai(diy) = Az mod q,



where z ∈ Z(`+2)m has the form z = (x‖y‖d1y‖ . . . ‖d`y). Now our goal
is: Given (A,u), arguing in zero-knowledge the possession of z ∈ Z(`+2)m

such that:

1. “‖z‖∞ ≤ β and Az = u mod q.” This part can be done using the
Decomposition-Extension technique from [LNSW13] for an ISIS solu-
tion. Specifically, we transform x and y into p = blog βc + 1 vectors
x1, . . . ,xp ∈ B3m and y1, . . . ,yp ∈ B3m, respectively.

2. “z has the form z = (x‖y‖d1y‖ . . . ‖d`y) for certain secret d ∈ {0, 1}`.”
At a high level, in order to argue that d ∈ {0, 1}`, we first extend d
to d∗ = (d1, . . . , d`, d`+1, . . . , d2`) ∈ B2`, where B2` is the set of all
vectors in {0, 1}2` having Hamming weight `, and then show that a
random permutation of d∗ belongs to the set B2`, which implies that
the original d ∈ {0, 1}`.

Now, for simplicity of description of our technique, we introduce the fol-
lowing notations:

– For permutations π, ψ ∈ S3m; τ ∈ S2`, and for t = (t−1‖t0‖t1‖ . . . ‖t2`) ∈
Z(2`+2)3m
q consisting of (2`+ 2) blocks of size 3m, we define:

Fπ,ψ,τ (t) =
(
π(t−1)‖ψ(t0)‖ψ(tτ(1))‖ψ(tτ(2))‖ . . . ‖ψ(tτ(2`))

)
.

Namely, Fπ,ψ,τ (t) is a composition of 3 permutations. It rearranges the
order of the 2` blocks t1, t2, . . . , t2` according to τ , and then permutes
block t−1 according to π, and the other (2`+ 1) blocks according to ψ.

– Given e = (e1, e2, . . . , e2`) ∈ {0, 1}2`, we say that vector t ∈ VALID(e)
if t ∈ {−1, 0, 1}(2`+2)3m, and there exist certain v,w ∈ B3m such that
t = (v‖w‖e1w‖e2w‖ . . . ‖e2`w).

We now describe our technique. We define the sequence of integers β1, . . . , βp
as in [LNSW13], and let:

A∗=
[
A|0n×2m|A0|0n×2m|A1|0n×2m|. . .|A`|0n×2m|0n×3m`

]
∈Zn×(2`+2)3m

q , (1)

zj=
(
xj‖yj‖d1yj‖ . . . ‖d`yj‖d +̀1yj‖. . .‖d2`yj

)
∈{−1,0,1}(2`+2)3m, ∀j∈ [p]. .(2)

We then have: A∗(
∑p

j=1 βjzj) = u mod q, and zj ∈ VALID(d∗) for
all j ∈ [p]. In Stern’s framework, we proceed as follows:

– To argue that A∗(
∑p

j=1 βjzj) = u mod q, we instead show that

A∗
p∑
j=1

βj(zj + r
(j)
z )− u = A∗(

p∑
j=1

βjr
(j)
z ) mod q,

where r
(1)
z , . . . , r

(p)
z ∈ Zn×(2`+2)3m

q are uniformly random “masking”
vectors for the zj ’s.



– We sample a uniformly random permutation τ ∈ S2`, and for each
j ∈ [p], sample uniformly random πj , ψj ∈ S3m, and send td = τ(d∗)

together with t
(j)
z = Fπj ,ψj ,τ (zj), for all j. Seeing that td ∈ B2`, and

t
(j)
z ∈ VALID(td), the verifier will be convinced that zj ∈ VALID(d∗)

while learning no additional information about zj or d∗.

Based on the above discussion, we can build a ZKAoK of a valid message-
signature pair for Boyen’s signature scheme. For convenience, we will
present the details in the combined protocol in Section 3.3.

3.2 A Lattice-based Verifiable Encryption Protocol

We consider two lattice-based encryption schemes:

1. The GPV-IBE scheme [GPV08] based on LWE, to be employed in the
group signature in Section 4.

2. The LPR encryption scheme [LPR13] based on Ring-LWE, to be em-
ployed in the ring-based group signature in Section 5.

We observe that, in both of these schemes, if one encrypts a plaintext
d ∈ {0, 1}` using the HNF variants of LWE and Ring-LWE, respectively,
then the relation among the related objects can be expressed as:

Pe + (0k1−` ‖bq/2cd ) = c mod q,
where P ∈ Zk1×k2

q is a matrix obtained from the public key, c ∈ Zk1
q is

a ciphertext, e ∈ Zk2 is the encryption randomness satisfying ‖e‖∞ ≤ b.
Here k1, k2, b are certain parameters depending on the underlying scheme.

Our goal is to construct a verifiable encryption protocol for both of the
mentioned above schemes, namely, a protocol such that: given (P, c), the
prover, possessing (e, d), can argue in zero-knowledge that c is a correct
encryption of d. We observe that, this task can be achieved as follows:

– To argue that d ∈ {0, 1}`, we can use the same technique as in the pre-
vious section, i.e., extend d to d∗ ∈ B2`, then use a random permutation.

– To argue that e ∈ Zk2 and ‖e‖∞ ≤ b, we form vectors e1, . . . , ep̄ ∈ B3k2 ,
where p̄ = blog bc+ 1, then use random permutations to show ej ∈ B3k2 .

– Next, we define the matrices P∗ ∈ Zk1×3k2
q ,Q ∈ {0, bq/2c}k1×2`, where:

P∗ =
[
P |0k1×2k2

]
; Q =

0(k1−`)×`
∣∣ 0(k1−`)×`

−−−− −−−−
bq/2cI`

∣∣ 0`×`

 . (3)

We then have that:

P∗
( p̄∑
j=1

bjej
)

+ Qd∗ = Pe + (0k1−` ‖bq/2cd ) = c mod q. (4)



In Stern’s framework, to argue that (4) is true, we instead show that:

P∗
( p̄∑
j=1

bj(ej + re
(j)) + Q(d∗ + rd)− c = P∗(

p̄∑
j=1

bjr
(j)
e ) + Qrd mod q,

where r
(j)
e ∈ Z3k2

q , for every j ∈ [p̄], and rd ∈ Z2`
q are masking vectors.

3.3 The Combined Protocol

We now describe in detail the combined protocol that allows the prover
to argue that it knows a valid message-signature pair (d, z) for Boyen’s
signature scheme, and that a given ciphertext correctly encrypts d. The
associated relation Rgs(n, `, q,m, k1, k2, β, b) is defined as follows.

Definition 6.

Rgs =
{((

A,A0, . . . ,A` ∈Zn×mq ; u∈Znq ; P∈Zk1×k2
q ; c∈Zk1

q

)
; d∈{0, 1}`;

z ∈ Z2m; e ∈ Zk2

)
:
(
‖z‖∞ ≤ β ∧

[
A
∣∣A0 +

∑̀
i=1

diAi

]
z = u mod q

) ∧
∧ (
‖e‖∞ ≤ b ∧Pe + (0k1−` ‖bq/2cd ) = c mod q

)
.
}

Let COM be the statistically hiding and computationally binding string
commitment scheme from [KTX08]. Let p = blog βc+1 and p̄ = blog bc+1
and define two sequences of integers β1, . . . , βp and b1, . . . , bp̄ as in sec-
tions [LNSW13]. The inputs of two parties are as follows:

– The common input is (A,A0, . . . ,A`,u,P, c). Both parties form ma-
trices A∗, P∗, Q as described in (1) and (3).

– The prover’s witness is (d, z, e). Using the techniques above, the prover
extends d to some d∗ ∈ B2` and forms vectors z1, . . . , zp ∈ VALID(d∗),
and e1, . . . , ep̄ ∈ B3k2 . The obtained vectors satisfy:

A∗
( p∑
j=1

βjzj) = u mod q ∧ P∗
( p̄∑
j=1

bjej
)

+ Qd∗ = c mod q.

The interaction between P and V is described in Figure 1.
The following theorem summarizes the properties of our protocol.

Theorem 1. Let COM be a statistically hiding and computationally bind-
ing string commitment scheme. Then the protocol in Figure 1 is a statis-
tical ZKAoK for the relation Rgs(n, `, q,m, k1, k2, β, b). Each round of the
protocol has perfect completeness, soundness error 2/3, and communica-
tion cost (O(`m) log β +O(k2) log b) log q.

The proof of Theorem 1 employs the standard proof technique for Stern-
type protocols. It is given in the full version [LNW15].



1. Commitment: P samplesr
(1)
z , . . . , r

(p)
z

$←− Z(2`+2)3m
q ; r

(1)
e , . . . , r

(p̄)
e

$←− Z3k2
q ; rd

$←− Z2`
q

τ
$←− S2`; π1, . . . , πp, ψ1, . . . , ψp

$←− S3m; φ1, . . . , φp̄
$←− S3k2 .

Then P sends the commitment CMT =
(
c1, c2, c3

)
to V , where

c1 =COM
(
τ ; {πj}pj=1; {ψj}pj=1; {φj}p̄j=1; A∗(

∑p
j=1 βjr

(j)
z ); P∗(

∑p̄
j=1 bjr

(j)
e ) + Qrd

)
,

c2 =COM
(
{Fπj ,ψj ,τ (r

(j)
z )}pj=1; {φj(r(j)

e )}p̄j=1; τ(rd)
)
,

c3 =COM
(
{Fπj ,ψj ,τ (zj + r

(j)
z )}pj=1; {φj(ej + r

(j)
e )}p̄j=1; τ(d∗ + rd)

)
.

2. Challenge: V sends a challenge Ch
$←− {1, 2, 3} to P.

3. Response: Depending on Ch, P computes the response RSP as follows:

– Case Ch = 1: For each j ∈ [p], let t
(j)
z = Fπj ,ψj ,τ (zj) and v

(j)
z = Fπj ,ψj ,τ (r

(j)
z ).

For each j ∈ [p̄], let t
(j)
e = φj(ej) and v

(j)
e = φj(r

(j)
e ). Let td = τ(d∗) and

vd = τ(rd). Then the prover sends:

RSP =
(
{t(j)

z }pj=1; {v(j)
z }pj=1; {t(j)

e }p̄j=1; {v(j)
e }p̄j=1; td; vd

)
. (5)

– Case Ch = 2: For each j ∈ [p], let π̂j = πj ; ψ̂j = ψj ; and w
(j)
z = zj + r

(j)
z . For

each j ∈ [p̄], let φ̂j = φj ; and w
(j)
e = ej + r

(j)
e . Let τ̂ = τ and wd = d∗ + rd.

Then the prover sends:

RSP =
(
τ̂ ; {π̂j}pj=1; {ψ̂j}pj=1; {φ̂j}p̄j=1; {w(j)

z }pj=1; {w(j)
e }p̂j=1; wd

)
. (6)

– Case Ch = 3: For each j ∈ [p], let π̃j = πj ; ψ̃j = ψj ; and y
(j)
z = r

(j)
z . For each

j ∈ [p̄], let φ̃j = φj ; and y
(j)
e = r

(j)
e . Let τ̃ = τ and yd = rd. Then the prover

sends:

RSP =
(
τ̃ ; {π̃j}pj=1; {ψ̃j}pj=1; {φ̃j}p̄j=1; {y(j)

z }pj=1; {y(j)
e }p̄j=1; yd

)
. (7)

Verification: Receiving RSP, the verifier proceeds as follows:

– Case Ch = 1: Parse RSP as in (5). Check that td ∈ B2`; t
(j)
z ∈ VALID(td), ∀j ∈ [p];

t
(j)
e ∈ B3k2 , ∀j ∈ [p̄]; and thatc2 = COM

(
{v(j)

z }pj=1; {v(j)
e }p̄j=1; vd

)
c3 = COM

(
{t(j)

z + v
(j)
z }pj=1; {t(j)

e + v
(j)
e }p̄j=1; td + vd

)
.

– Case Ch = 2: Parse RSP as in (6). Check that:
c1 = COM

(
τ̂ ; {π̂j}pj=1; {ψ̂j}pj=1; {φ̂j}p̄j=1;

A∗(
∑p
j=1 βjw

(j)
z )− u; P∗(

∑p̄
j=1 biw

(j)
e ) + Qwd − c

)
,

c3 = COM
(
{Fπ̂j ,ψ̂j ,τ̂

(w
(j)
z )}pj=1; {φ̂j(w(j)

e )}p̄j=1; τ̂(wd)
)
.

– Case Ch = 3: Parse RSP as in (7). Check that:c1=COM
(
τ̃ ; {π̃j}pj=1; {ψ̃j}pj=1; {φ̃j}p̄j=1; A∗(

∑p
j=1 βjy

(j)
z ); P∗(

∑p̄
j=1 biy

(j)
e )+Qyd

)
,

c2=COM
(
{Fπ̃j ,ψ̃j ,τ̃

(y
(j)
z )}pj=1; {φ̃j(y(j)

e )}p̄j=1; τ̃(yd)
)
.

In each case, V outputs 1 if and only if all the conditions hold. Otherwise, it outputs 0.

Fig. 1: A zero-knowledge argument that the prover possesses a valid
message-signature pair (d, z) for Boyen’s signature scheme, and that a
given ciphertext correctly encrypts d.



4 An Improved Lattice-based Group Signature Scheme

4.1 Description of Our Scheme

We first specify the parameters of the scheme. Let n be the security
parameter, and let N = 2` = poly(n) be the maximum expected num-
ber of group users. Then we choose other scheme parameters such that
Boyen’s signature scheme and the GPV-IBE scheme function properly,
and are secure. Specifically, let modulus q = O(` · n2) be prime, dimen-
sion m ≥ 2n log q, and Gaussian parameter s = ω(logm). The infinity
norm bound for signatures from Boyen’s scheme is integer β = Õ(

√
`n).

The norm bound for LWE noises is integer b such that q/b = `Õ(n).
Choose hash functions H1 : {0, 1}∗ → Zn×`q and H2 : {0, 1}∗ →

{1, 2, 3}t, to be modeled as random oracles, and select a one-time sig-
nature scheme OT S = (OGen,OSign,OVer). Let χ be a b-bounded distri-
bution over Z.

Our group signature scheme is described as follows:

KeyGen(1n, 1N ): This algorithm performs the following steps:
1. Generate verification key (A,A0, . . . ,A`,u) and signing key TA for

Boyen’s signature scheme (see Section 2.3 for more details). Then for
each d = (d1, . . . , d`) ∈ {0, 1}`, use TA to generate gsk[d] as a Boyen
signature on message d.

2. Generate encrypting and decrypting keys for the GPV-IBE scheme:
Run algorithm GenTrap(n,m, q) from [GPV08] to output B ∈ Zn×mq

together with a trapdoor basis TB for Λ⊥(B).
3. Output

gpk =
(
(A,A0, . . . ,A`,u), B

)
; gmsk = TB; gsk = {gsk[d]}d∈{0,1}` .

Sign(gsk[d],M): Given gpk, to sign a message M ∈ {0, 1}∗ using the secret
key gsk[d] = z, the user generates a key pair (ovk, osk) ← OGen(1n)
for OT S, and then performs the following steps:

1. Encrypt the index d with respect to “identity” ovk as follows. Let
G = H1(ovk) ∈ Zn×`q . Sample s ←↩ χn; e1 ←↩ χm; e2 ←↩ χ`, then
compute the ciphertext:(

c1 = BT s + e1, c2 = GT s + e2 + bq/2cd
)
∈ Zmq × Z`q.

2. Generate a NIZKAoK Π to show the possession of a valid message-
signature pair (d, z) for Boyen’s signature, and that (c1, c2) is a cor-
rect GPV-IBE encryption of d with respect to “identity” ovk. This
is done as follows:



– Let k1 := m+ ` and k2 := n+m+ `, and form the following:

P=

BT
∣∣

−−
∣∣∣Im+`

GT
∣∣

∈Zk1×k2
q ; c=

(
c1

c2

)
∈Zk1 ; e=

 s
e1

e2

∈Zk2 , (8)

Then we have ‖e‖∞ ≤ b, and Pe+(0k1−` ‖bq/2cd ) = c mod q. Now
one can observe that:(

(A,A0, . . . ,A`,u,P, c), d, z, e
)
∈ Rgs(n, `, q,m, k1, k2, β, b).

– Run the protocol described in Section 3.3 with public parameter
(A,A0, . . . ,A`,u,P, c) and prover’s witness (d, z, e). The protocol
is repeated t = ω(log n) times to make the soundness error negli-
gibly small, and then made non-interactive using the Fiat-Shamir
heuristic as a triple Π =

(
{CMTj}tj=1,CH, {RSPj}tj=1

)
, where

CH = {Chj}tj=1 = H2

(
M, {CMTj}tj=1, c1, c2

)
.

3. Compute a one-time signature sig = OSign(osk; c1, c2, Π).
4. Output the group signature Σ =

(
ovk, (c1, c2), Π, sig

)
.

Verify(gpk,M,Σ) : This algorithm works as follows:

1. Parse Σ as
(
ovk, (c1, c2), Π, sig

)
. If OVer(ovk; sig; (c1, c2), Π) = 0,

then return 0.
2. Parse Π as

(
{CMTj}tj=1, {Chj}tj=1, {RSPj}tj=1

)
.

If
(
Ch1, . . . , Cht

)
6= H2

(
M, {CMTj}tj=1, c1, c2

)
, then return 0.

3. Compute G = H1(ovk) and form P, c as in (8). Then for j = 1 to
t, run the verification step of the protocol from Section 3.3 with
public input

(
A,A0, . . . ,A`,u,P, c

)
to check the validity of RSPj

with respect to CMTj and Chj . If any of the conditions does not
hold, then return 0.

4. Return 1.

Open(gmsk,M,Σ) On input gmsk = TB and Σ =
(
ovk, (c1, c2), Π, sig

)
,

this algorithm decrypts (c1, c2) as follows:
1. Extract the decryption key for “identity” ovk: Let G = [g1| . . . |g`] =
H1(ovk). Then for i ∈ [`], sample yi ←↩ SamplePre(TB,B,gi, s)
(see [GPV08]), and let Y = [y1| . . . |y`] ∈ Zm×`.

2. Compute d
′

= (d
′
1, . . . , d

′
`) = c2−YT c1 ∈ Z`q. For each i ∈ [`], if d

′
i

is closer to 0 than to bq/2c modulo q, then let di = 0; otherwise,
let di = 1.

3. Return d = (d1, . . . , d`) ∈ {0, 1}`.



4.2 Analysis of the Scheme

Efficiency and Correctness. The given group signature scheme can
be implemented in polynomial time. The bit-size of the NIZKAoK Π is
roughly t = ω(log n) times the communication cost of the interactive
protocol in Section 3.3, which is Õ(`n) for the chosen parameters. This
is also the asymptotical bound on the size of the group signature Σ.

The correctness of algorithm Verify follows from the facts that every
group user with a valid secret key is able to compute a satisfying witness
for Rgs(n, `, q,m, k1, k2, β, b)

)
, and that the underlying argument system

is perfectly complete. Moreover, we set the parameters so that the GPV-
IBE scheme is correct, which implies that algorithm Open is also correct.

Theorem 2 (CCA-anonymity). Suppose that OT S is a strongly un-
forgeable one-time signature. In the random oracle model, the group sig-
nature described in Section 4.1 is CCA-anonymous if LWEn,q,χ is hard.

As a corollary, the CCA-anonymity of the scheme can be based on the
quantum worst-case hardness of SIVPγ , with γ = Õ(nq/b) = `Õ(n2).

The proof of Theorem 2 uses the strong unforgeability of OT S, the
statistical zero-knowledge property of the underlying argument system,
and the LWEn,q,χ assumption. Due to the lack of space, the proof is pro-
vided in the full version [LNW15].

Theorem 3 (Traceability). In the random oracle model, the group sig-
nature described in Section 4.1 is fully traceable if SIVP

`·Õ(n2)
is hard.

Proof. Without loss of generality, we assume that the string commitment
scheme COM used in the underlying NIZKAoK is computationally binding,
because an adversary breaking its computational binding property can be
used to solve SIVP

`·Õ(n2)
.

Let A be an PPT traceability adversary against our group signature
scheme with advantage ε, we construct a PPT forger F for Boyen’s sig-
nature scheme whose advantage is polynomially related to ε. Since the
unforgeability of Boyen’s signature scheme can be based on the hardness
of SIVP

`·Õ(n2)
[Boy10,MP12], this completes the proof.

F is given the verification key (A,A0, . . . ,A`,u) for Boyen’s signature
scheme. It generates a key-pair (B,TB) for the GPV IBE scheme, and
begins interacting with A by sending gpk = (A,A0, . . . ,A`,u,B) and
gsk = TB, the distribution of which is statistically close to that in the
real game. Then F sets CU = ∅ and handles the queries from A as follows:



– Queries to H1 and H2 are handled by consistently returning uniformly
random values in the respective ranges. If A makes QH2 queries to H2,
then ∀κ ≤ QH2 , we let rκ denote the answer to the κ-th query.

– Queries for the secret key gsk[d], for any d ∈ {0, 1}`: F queries its own
signing oracle for Boyen’s signature of d, and receives in return z(d) ∈ Z2m

such that ‖z(d)‖∞ ≤ β and A(d)z(d) = u mod q, where A(d) is computed
in the usual way. Then F sets CU := CU ∪ {d} and sends z(d) to A.

– Queries for group signatures on arbitrary message: F returns with a sim-
ulated signature Σ =

(
ovk, (c1, c2), Π ′, sig

)
, where (ovk, (c1, c2), sig) are

faithfully generated, while the NIZKAoK Π ′ is simulated without using

the valid secret key (as in experiment G
(b)
3 in the proof of anonymity). The

zero-knowledge property of the underlying argument system guarantees
that Σ is indistinguishable from a legitimate signature.

Eventually A outputs a message M∗ and a forged group signature

Σ∗ =
(
ovk, (c1, c2), ({CMTj}tj=1, {Chj}tj=1, {RSPj}tj=1), sig

)
,

which satisfies the requirements of the traceability game. Then F exploits
the forgery as follows. First, one can argue that A must have queried H2

on input
(
M, {CMTj}tj=1, c1, c2

)
, since otherwise, the probability that(

Ch1, . . . , Cht
)

= H2

(
M, {CMTj}tj=1, c1, c2

)
is at most 3−t. Therefore,

with probability at least ε − 3−t, there exists certain κ∗ ≤ QH2 such
that the κ∗-th oracle query involves the tuple

(
M, {CMTj}tj=1, c1, c2

)
.

Next, F picks κ∗ as the target forking point and replays A many times
with the same random tape and input as in the original run. In each
rerun, for the first κ∗−1 queries, A is given the same answers r1, . . . , rκ∗−1

as in the initial run, but from the κ∗-th query onwards, F replies with

fresh random values r
′
κ∗ , . . . , r

′
qH2

$←− {1, 2, 3}t. The Improved Forking

Lemma of Pointcheval and Vaudenay [PV97, Lemma 7] implies that, with
probability larger than 1/2, algorithm F can obtain a 3-fork involving the
tuple

(
M, {CMTj}tj=1, c1, c2

)
after less than 32 ·QH2/(ε−3−t) executions

of A. Now, let the answers of F with respect to the 3-fork branches be

r
(1)
κ∗ =(Ch

(1)
1 ,. . ., Ch

(1)
t ); r

(2)
κ∗ =(Ch

(2)
1 ,. . ., Ch

(2)
t ); r

(3)
κ∗ =(Ch

(3)
1 ,. . ., Ch

(3)
t ).

A simple calculation shows that:

Pr
[
∃j ∈ {1, . . . , t} : {Ch(1)

j , Ch
(2)
j , Ch

(3)
j } = {1, 2, 3}

]
= 1− (7/9)t.

Conditioned on the existence of such j, one parses the 3 forgeries corre-

sponding to the fork branches to obtain
(
RSP

(1)
j ,RSP

(2)
j ,RSP

(3)
j

)
. They



turn out to be 3 valid responses to 3 different challenges for the same com-
mitment CMTj . Since COM is assumed to be computationally-binding, we
can use the knowledge extractor of the underlying argument system to ex-
tract (d∗, z∗, s∗, e∗1, e

∗
2) ∈ {0, 1}`×Z2m×Znq×Zm×Z` such that ‖z∗‖∞ ≤ β

and A(d∗)z
∗ = u mod q; and s∗, e∗1, e

∗
2 has infinity norm bounded by b,

and BT s∗ + e∗1 = c1 mod q, GT s∗ + e∗2 + bq/2cd∗ = c2 mod q, where
G = H1(ovk). Now observe that, (c1, c2) is a correct encryption of d∗,
the opening algorithm Open(TB,M

∗, Σ∗) must return d∗. It then follows
from the requirements of the traceability game that d∗ 6∈ CU . As a result,
(z∗, d∗) is a valid forgery for Boyen’s signature with respect to the ver-
ification key (A,A0, . . . ,A`,u). Furthermore, the above analysis shows
that, if A has non-negligible success probability and runs in polynomial
time, then so does F . This concludes the proof.

5 A Ring-based Group Signature Scheme

5.1 Description of the Scheme

Let f = xn + 1, where n = 2k for k ≥ 2, and let N = 2` = poly(n) be
the number of group users. Then we choose other scheme parameters such
that the ring variant of Boyen’s signature scheme and the LPR encryption
scheme are correct and secure. Let q = O(` · n2) be a prime satisfying
q = 1 mod 2n. Let R = Z[x]/〈f〉 and Rq = R/qR. Let m = O(log q).
The infinity norm bound for signatures from Boyen’s scheme is integer
β = Õ(

√
`n). The norm bound for Ring-LWE noises is integer b such that

q/b = `Õ(n1.5). Choose a hash function H : {0, 1}∗ → {1, 2, 3}t to be
modeled as random oracles. Let χ be a b-bounded distribution over R.

KeyGen(1n, 1N ): This algorithm performs the following steps:

1. Generate verification key (a,a0, . . . ,a`, u) and signing key Ta for the
ring variant of Boyen’s signature (see Section 2.3 for more details).
Then for each d = (d1, . . . , d`) ∈ {0, 1}`, generate gsk[d] as a ring-
based Boyen’s signature on message d.

2. Generate keys for the LPR encryption scheme: Sample f
$←− Rq and

x, e←↩ χ. Then compute g = f ⊗ x+ e ∈ Rq.
3. Output

gpk =
(
(a,a0, . . . ,a`, u), (f, g)

)
; gmsk = x; gsk = {gsk[d]}d∈{0,1}` .

Sign(gsk[d],M): Given gpk, to sign a message M ∈ {0, 1}∗ using the secret
key gsk[d] = z ∈ R2m, the user performs the following steps:



1. Encrypt d: First extend d to d̄ = (0n−`‖d) ∈ {0, 1}n and view d̄ as an
element of R with coefficients 0, 1. Then sample s, e1, e2 ←↩ χ, and
compute the ciphertext:

(c1 = f ⊗ s+ e1, c2 = g ⊗ s+ e2 + bq/2cd̄) ∈ R2
q . (9)

2. Generate a NIZKAoK Π to show the possession of a valid message-
signature pair (d, z) for the ring variant of Boyen’s signature, and
that (c1, c2) is a correct LPR encryption of d̄. This is done as follows:

– Let A = rot(a) ∈ Zn×nmq , and Ai = rot(ai) ∈ Zn×mnq for every
i = 0, . . . , `. Next, consider z as a vector in Z2mn with infinity norm
bounded by β, and consider u as vector u ∈ Znq . Then one has[
A |A0 +

∑`
i=1 diAi

]
z = u mod q.

Furthermore, let P0 = [rot(b) | rot(g)]T ∈ Z2n×n
q and form P =[

P0

∣∣ I2n

]
∈ Z2n×3n

q . Next, consider c = (c1‖c2) as a vector in Z2n
q ,

and e = (s‖e1‖e2) as a vector in Z3n. Then (9) can be equivalently
written as: c = Pe + (02n−` ‖bq/2cd) mod q.
The above transformation leads to the following observation:(

(A,A0, . . . ,A`,u,P, c), d, z, e
)
∈ Rgs(n, `, q,m

′, k1, k2, β, b),

where m′ = nm, k1 = 2n, and k2 = 3n.
– Run the protocol for Rgs(n, `, q,m

′, k1, k2, β, b) in Section 3.3 with
public input (A,A0, . . . ,A`,u,P, c) and prover’s witness (d, z, e).
The protocol is repeated t = ω(log n) times to make the sound-
ness error negligibly small, and then made non-interactive using
Fiat-Shamir heuristic as Π =

(
{CMTj}tj=1,CH, {RSPj}tj=1

)
, where

CH = {Chj}tj=1 = H
(
M, {CMTj}tj=1, (c1, c2)

)
.

3. Output the group signature Σ =
(
(c1, c2), Π

)
.

Verify(gpk,M,Σ) This deterministic algorithm works as follows:

1. Parse Σ as
(
(c1, c2), ({CMTj}tj=1,CH, {RSPj}tj=1)

)
.

If
(
Ch(1), . . . , Ch(t)

)
6= H

(
M, {CMTj}tj=1, (c1, c2)

)
, then return 0.

2. Then for j = 1 to t, run the verification step of the protocol from
Section 3.3 with public input (A,A0, . . . ,A`,u,P, c) to check the va-
lidity of RSPj with respect to CMTj and Chj . If any of the conditions
does not hold, then return 0.

3. Return 1.

Open(gmsk,M,Σ) Let gmsk=x and Σ=
(
(c1, c2), Π

)
, proceed as follows:

1. Compute d̄ = c2 − x ⊗ c1 ∈ Rq. For each i ∈ [n], if d̄i is closer to 0
than to bq/2c modulo q, then let d̄i = 0; otherwise, let d̄i = 1.

2. If d̄ is of the form (0n−`‖d), then return d∈{0,1}`. Otherwise, return ⊥.



5.2 Analysis

Efficiency and Correctness. The ring-based group signature can be
implemented in polynomial time. The public key

(
(a,a0, . . . ,a`, u), (f, g)

)
has bit-size Õ(`n). In comparison with the scheme from Section 4, a factor
of O(n) is saved. The signature size is also bounded by Õ(`n).

The correctness of algorithm Verify follows from the facts that every
user with a valid secret key is able to compute a satisfying witness for
Rgs(n, `, q, nm, 2n, 3n, β, b)

)
, and that the underlying argument system is

perfectly complete. We also set the parameters so that the LPR encryp-
tion scheme is correct, which implies that algorithm Open is also correct.

The anonymity and traceability properties of the scheme are stated
in Theorem 4 and 5, respectively.

Theorem 4. In the random oracle model, the group signature scheme
described in Section 5.1 is CPA-anonymous if SVP∞

`·Õ(n3.5)
on ideal lattices

in the ring R is hard in the worst case.

The proof of Theorem 4 uses the fact that the underlying argument sys-
tem is statistical zero-knowledge, and the assumed hardness of the HNF
variant of Ring-LWEn,q,χ. The proof is given in the full version [LNW15].

Theorem 5. In the random oracle model, the group signature scheme
described in Section 5.1 is traceable if SVP∞

`·Õ(n2)
on ideal lattices in the

ring R is hard in the worst case.

The proof of Theorem 5 is similar to that of Theorem 3, and is given in
the full version [LNW15].
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A Security Requirements for Group Signatures

The presentation in this section follows the model of Bellare et al. [BMW03],
and the relaxed anonymity notion proposed by Boneh et al. [BBS04].
Anonymity. Consider the anonymity experiment Expt-anon

GS,A (n,N) be-
tween a challenger C and an adversary A, where t ∈ (CPA, CCA).

– C generates (gpk, gmsk, gsk)← KeyGen(1n, 1N ), then gives (gpk, gsk) toA.
– If t = CCA, then A can query the opening oracle. On input a message M

and a signature Σ, the oracle returns Open(gmsk,M,Σ) to A.
– A outputs two distinct identities i0, i1 and a message M∗. Then C picks

a coin b
$←− {0, 1}, and sends Σ∗ ← Sign(gsk[ib],M

∗) to A.
– If t = CCA, then A can query the opening oracle. On input (M,Σ), if

(M,Σ) = (M∗, Σ∗), then C outputs 0 and halts; otherwise it returns
Open(gmsk,M,Σ) to A.

– A outputs b
′ ∈ {0, 1}. C outputs 1 if b

′
= b, or 0 otherwise.

Define Advt-anon
GS,A (n,N) =

∣∣∣Pr
[
Expt-anon

GS,A (n,N) = 1
]
− 1/2

∣∣∣. We say that

the scheme is CPA-anonymous (resp., CCA-anonymous) if for all polyno-
mial N , and all PPT adversary A, the function AdvCPA-anon

GS,A (n,N) (resp.,

AdvCCA-anon
GS,A (n,N)) is negligible in the security parameter n.

Traceability. Consider the traceability experiment Exptrace
GS,A(n,N)

between a challenger C and an adversary A.

– C runs KeyGen(1n, 1N ) to obtain (gpk, gmsk, gsk), then it sets CU ← ∅
and gives (gpk, gmsk) to A.

– A can make the following queries adaptively, and in any order:
• Key query: On input an index i, C adds i to CU , and returns gsk[i].
• Signing query: On input i,M , C returns Sign(gsk[i],M).

– A outputs a message M , and a signature Σ. Then C proceeds as follows:
If Verify(gpk,M,Σ) = 0 then return 0. If Open(gmsk,M,Σ) = ⊥ then
return 1. If ∃i such that the following are true then return 1, else return 0:
1. Open(gmsk,M,Σ) = i 6∈ CU ,
2. A has never made a signing query for i,M .

Define Advtrace
GS,A(n,N) = Pr

[
Exptrace

GS,A(n,N) = 1
]
.We say that the scheme

is fully traceable if for all polynomial N and all PPT adversary A, the
function Advtrace

GS,A(n,N) is negligible in the security parameter n.
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