
On the Selective Opening Security of
Practical Public-Key Encryption Schemes

Felix Heuer, Tibor Jager, Eike Kiltz, and Sven Schäge

Horst Görtz Institute for IT-Security, Ruhr University Bochum, Germany
{felix.heuer,tibor.jager,eike.kiltz,sven.schaege}@rub.de

Abstract. We show that two well-known and widely employed public-key en-
cryption schemes – RSA Optimal Asymmetric Encryption Padding (RSA-OAEP)
and Diffie-Hellman Integrated Encryption Standard (DHIES), the latter one in-
stantiated with a one-time pad, – are secure under (the strong, simulation-based
security notion of) selective opening security against chosen-ciphertext attacks in
the random oracle model. Both schemes are obtained via known generic transfor-
mations that transform relatively weak primitives (with security in the sense of
one-wayness) to IND-CCA secure encryption schemes. We prove that selective
opening security comes for free in these two transformations. Both DHIES and
RSA-OAEP are important building blocks in several standards for public key en-
cryption and key exchange protocols. They are the first practical cryptosystems
that meet the strong notion of simulation-based selective opening (SIM-SO-CCA)
security.

Keywords. public key encryption, selective opening security, OAEP, DHIES,
SIM-SO-CCA

1 Introduction

Consider a set of clientsA1, . . . , An connecting to a server S. To encrypt a messagemi,
each clientAi draws fresh randomness ri and transmits ciphertext ci = EncpkS

(mi; ri)
to S. Assume an adversary observes these ciphertexts, and is then able to “corrupt”
a subset of clients {Ai}i∈I , I ⊆ {1, . . . , n}, for instance by installing a malware on
their computers. Then, for all i ∈ I, the adversary learns not only the message mi,
but also the randomness ri that Ai has used to encrypt mi. Attacks of this type are
called selective-opening (SO) attacks (under sender corruptions) and a central question
in cryptography is whether the unopened ciphertexts remain secure.

At a first glance, one may be tempted to believe that security of the non-corrupted
ciphertexts follows immediately, if the encryption scheme meets some standard se-
curity notion, like indistinguishability under chosen-plaintext (IND-CPA) or chosen-
ciphertext (IND-CCA) attacks, due to the fact that each userAi samples the randomness
ri independently from the other users. However, it has been observed [4, 15, 14, 3, 16]
that this is not true in general, see e.g. [26] for an overview.

RESULTS ON SO SECURITY. Defining the right notion of security against selective
opening attacks has proven highly non-trivial. There are three notions of security that
are not polynomial-time equivalent to each other, two indistinguishability-based notions

2 Felix Heuer, Tibor Jager, Eike Kiltz, Sven Schäge

usually denoted as weak IND-SO and (full) IND-SO security, and a simulation-based
notion of selective opening security referred to as SIM-SO security. Previous results
showed that SIM-SO-CCA and full IND-SO-CCA security are the strongest notions of
security [11, 5, 26]. However, only SIM-SO-CCA has been realized so far [20, 24, 25].
Unfortunately, the existing constructions are very inefficient and rather constitute the-
oretical contributions. Intuitively, SIM-SO security says that for every adversary in the
above scenario there exists a simulator which can produce the same output as the adver-
sary without ever seeing any ciphertext, randomness, or the public key. It is noteworthy
that unlike weak IND-SO security, which requires message distributions that support
“efficient conditional re-sampling” (cf. [6]), SIM-SO is independent of the concrete
distribution of the messages.

1.1 Our Contributions

In this paper we show that two important public key encryption systems are secure
under the strong notion of SIM-SO-CCA security. Previous results only established
IND-CCA security of the resulting schemes. Most notably, our results cover the well-
known DHIES scheme, instantiated with a one-time pad, and RSA-OAEP. Our results
show that SIM-SO security essentially comes for free in the random oracle model. This
yields the first practical public key encryption schemes that meet the strong notion of
SIM-SO-CCA security.

FIRST CONSTRUCTION: DHIES. The first construction we consider is a generaliza-
tion of the well-known “Diffie-Hellman integrated encryption scheme” (DHIES) [1].
(DHIES or “Hashed ElGamal Encryption” uses a MAC to make plain ElGamal encryp-
tion IND-CCA secure.) This generic idea behind DHIES was formalized by Steinfeld,
Baek, and Zheng [44] who showed how to build an IND-CCA secure public key en-
cryption system from a key encapsulation mechanism (KEM) that is one-way under
plaintext checking attacks (OW-PCA). OW-PCA is a comparatively weak notion of
security in which the adversary’s main task is to decapsulate a given encapsulation of
some symmetric key. In addition to the public key, the adversary has only access to an
oracle which checks, given a KEM key and a ciphertext, whether the ciphertext indeed
constitutes an encapsulation of the KEM key under the public key. This construction
is IND-CCA secure in the random oracle model [44]. We show that it is furthermore
SIM-SO-CCA secure in the random oracle model. We stress that our result generically
holds for the entire construction and therefore for any concrete instantiation that em-
ploys the one-time pad as symmetric encryption. Most importantly, it covers the well-
known DHIES scheme (when instantiated with a one-time pad) that is contained in
several public-key encryption standards like IEEE P1363a, SECG, and ISO 18033-2.
DHIES is the de-facto standard for elliptic-curve encryption.

SECOND CONSTRUCTION: OAEP. The second construction of public key encryption
schemes that we consider is the well-known Optimal Asymmetric Encryption Padding
(OAEP) transformation [8]. OAEP is a generic transformation for constructing public-
key encryption schemes from trapdoor permutations that was proposed by Bellare and
Rogaway. Since then, it has become an important ingredient in many security protocols

On the Selective Opening Security of Practical Public-Key Encryption Schemes 3

and security standards like TLS [19, 40], SSH [23], S/MIME [39, 27], EAP [17], and
Kerberos [34, 38].

We show that OAEP is SIM-SO-CCA secure when instantiated with a partial-
domain trapdoor permutation (cf. Section 4.1). Since it is known [22] that the RSA
permutation is partial-domain one-way under the RSA assumption, this implies that
RSA-OAEP is SIM-SO-CCA secure under the RSA assumption. In fact, our result holds
not only for trapdoor permutations, but for injective trapdoor functions as well.

Since SIM-SO-CCA security implies IND-CCA security, our proof also provides
an alternative to the IND-CCA security proof of [22]. Interestingly, despite that we are
analyzing security in a stronger security model, our proof seems to be somewhat simpler
than the proof of [22], giving a more direct insight into which properties of the OAEP
construction and the underlying trapdoor permutation make OAEP secure. This might
be due to the fact that our proof is organized as a sequence of games [9].

Complementing the work of [22, 12, 2], our result gives new evidence towards the
belief that the OAEP construction is sound, and that OAEP-type encryption schemes
can be used securely in various practical scenarios.

1.2 Related Work

The problem of selective-opening attacks is well-known, and has already been observed
twenty years ago [4, 15, 14, 3, 16]. The problem of constructing encryption schemes that
are provably secure against this class of adversaries without random oracles has only
been solved recently by Bellare, Hofheinz, and Yilek [6]. In [6], the authors show that
lossy encryption [36] implies security against selective openings under chosen-plaintext
attacks (SO-CPA). This line of research is continued in [24] by Hemenway et al.,
who show that re-randomizable encryption and statistically hiding two-round oblivi-
ous transfer imply lossy encryption. From a cryptographic point of view, the above
works solve the problem of finding SO-CPA secure encryption schemes, as there are
several constructions of efficient lossy or re-randomizable encryption schemes, e.g. [36,
6, 24]. When it comes to selective openings under chosen-ciphertext attacks, the situa-
tion is somewhat different. Hemenway et al. [24], Fehr et al. [20], Hofheinz [25], and
Fujisaki [21] describe SIM-SO-CCA secure encryption schemes which are all too in-
efficient for practical applications. More recently, an identity-based encryption scheme
with selective-opening security was proposed [10]. It is noteworthy, that the most ef-
ficient public key encryption systems proven to be weak IND-SO secure do not meet
the stronger notion of SIM-SO security. Lately, SIM-SO-CCA security for IBE has been
achieved [32].

STATE-OF-THE-ART OF THE PROVABLE SECURITY OF OAEP. The OAEP construc-
tion was proved IND-CCA secure if the underlying trapdoor permutation is partial-
domain one-way [8, 41, 22]. Since the RSA trapdoor permutation is a partial-domain
one-way function, this yields the IND-CCA security of RSA-OAEP as well. Fischlin and
Boldyreva [12] studied the security of OAEP when only one of the two hash functions
is modelled as a random oracle, and furthermore showed that OAEP is non-malleable
under chosen plaintext attacks for random messages without random oracles. The latter
result was strengthened by Kiltz et al. [30], who proved the IND-CPA security of OAEP

4 Felix Heuer, Tibor Jager, Eike Kiltz, Sven Schäge

without random oracles, when the underlying trapdoor permutation is lossy [36]. Since
lossy encryption implies IND-SO-CPA security [6], this immediately shows that OAEP
is IND-SO-CPA secure in the standard model. However, we stress that prior to our work
it was not clear if OAEP meets the stronger notion of SIM-SO security, neither in the
standard model nor in the random oracle. Backes et al. [2] showed that OAEP is secure
under so-called key-dependent message attacks in the random oracle model.

There also exist a number of negative results [13, 31] showing the impossibility of
instantiating OAEP without random oracles.

STATE-OF-THE-ART OF THE PROVABLE SECURITY OF DHIES. The IND-CCA se-
curity of DHIES in the random oracle model has been shown equivalent to the Strong
Diffie-Hellman (sDH) assumption [1, 44].

2 Preliminaries

For n ∈ N let [n] := {1, . . . , n}. For two strings µ, ν, we denote with µ||ν the string
obtained by concatenating µ with ν. If L is a set, then |L| denotes the cardinality of
L. We assume implicitly that any algorithm described in the sequel receives the unary
representation 1κ of the security parameter as input as its first argument. We say that an
algorithm is a PPT algorithm, if it runs in probabilistic polynomial time (in κ). For a set
A we denote the sampling of a uniform random element a by a $← A, while we denote
the sampling according to some distribution D by a← D.

2.1 Games

We present definitions of security and encryption schemes in terms of games and make
use of sequences of games to proof our results. A game G is a collection of proce-
dures/oracles {Initialize,P1,P2, . . . ,Pt,Finalize} for t ≥ 0, where P1 to Pt and
Finalize might require some input parameters, while Initialize is run on the se-
curity parameter 1κ. We implicitly assume that boolean flags are initialized to false,
numerical types are initialized to 0, sets are initialized to ∅, while strings are initial-
ized to the empty string ε. An adversary A is run in game G (by challenger C), if
A calls Initialize. During the game A may run the procedures Pi as often as al-
lowed by the game. If a procedure P was called by A, the output of P is returned
to A, except for the Finalize procedure. On A’s call of Finalize the game ends
and outputs whatever Finalize returns. The output out of a game G that runs A is
denoted as GA ⇒ out. If a game’s output is either 0 or 1, A wins G if GA ⇒ 1. Fur-
ther, the advantage Adv(GA,HA) of A in distinguishing games G and H is defined as∣∣Pr[GA ⇒ 1]− Pr[HA ⇒ 1]

∣∣. For A run in G and S run in game H the advantage of
A is defined as |Pr[GA ⇒ 1] − Pr[HS ⇒ 1]|. Setting a boolean flag “Abort . . .” to
true implicitly aborts the adversary.

2.2 Public Key Encryption Schemes

Let M, R, C be sets. We say that M is the message space, R is the randomness space,
and C is the cipertext space. A public key encryption scheme PKE =(PKEGen,Enc,Dec)
consists of three polynomial-time algorithms.

On the Selective Opening Security of Practical Public-Key Encryption Schemes 5

– Gen generates, given the unary representation of the security parameter 1κ, a key
pair (sk, pk)← Gen(1κ), where pk defines M, R, and C.

– Given pk, and a message m ∈ M Enc outputs an encryption c ← Encpk (m) ∈ C
of m under the public key pk.

– The decryption algorithm Dec takes a secret key sk and a ciphertext c ∈ C as input,
and outputs a message m = Decsk (c) ∈M, or a special symbol ⊥ 6∈M indicating
that c is not a valid ciphertext.

Notice, that Enc is a probabilistic algorithm; we make the used randomness only explicit
when needed. In that case we write c = Enc(m; r) for r $← R. We require the PKE to
be correct, that is for all security parameters 1κ, for all (pk , sk) ← PKEGen(1κ), and
for all m ∈M we have Pr[Decsk (Encpk (m)) = m] = 1

2.3 SIM-SO-CCA Security Definition

Definition 1 Let PKE := (PKEGen,Enc,Dec) be a public-key encryption scheme, let
n = n(κ) > 0 be a polynomially bounded function, D a distribution over a mes-
sage space, R a randomness space and R a relation. We consider the following games,
whereby an adversary A is run in the REAL-SIM-SO-CCAPKE game (Figure 1), while
a simulator S := S(A) is run in the IDEAL-SIM-SO-CCAPKE game (Figure 2) . We

Procedure Initialize

(pk , sk)
$← PKEGen(1κ)

Return pk

Procedure Finalize(out)

ReturnR((mi)i∈[n],D, I, out)

Procedure Enc(D)

(mi)i∈[n] ← D

(ri)i∈[n]
$← R

(ci)i∈[n] := Encpk(mi; ri)
Return (ci)i∈[n]

Procedure Dec(c)

Return Decsk (c)

Procedure Open(i)

I := I ∪ {i}
Return (mi, ri)

Fig. 1: REAL-SIM-SO-CCAPKE game.

Procedure Initialize

Return ε

Procedure Finalize(out)

ReturnR((mi)i∈[n],D, I, out)

Procedure Enc(D)

(mi)i∈[n] ← D
Return ε

Procedure Open(i)

I := I ∪ {i}
Return mi

Fig. 2: IDEAL-SIM-SO-CCAPKE game.

demand that A and S call Enc exactly one time before calling Open or Finalize.

6 Felix Heuer, Tibor Jager, Eike Kiltz, Sven Schäge

Further, A is not allowed to call Dec on any ci. To an adversary A, a simulator S, a
relationR and n we associate the advantage function

AdvSIM-SO-CCA
PKE (A,S,R, n, κ) :=

|Pr[REAL-SIM-SO-CCAAPKE ⇒ 1]− Pr[IDEAL-SIM-SO-CCASPKE ⇒ 1]|.

PKE is SIM-SO-CCA secure if for every PPT adversary A and every PPT relation R
there exists a PPT simulator S such that AdvSIM-SO-CCA

PKE (A,S,R, n, κ) ≤ negl(κ).

3 Transformation from any OW-PCA secure KEM

3.1 Key Encapsulation Mechanisms and Message Authentication Codes

Definition 2 Let K a key space. R a randomness space, and C a ciphertext space.
A Key Encapsulation Mechanism (KEM) consists of three PPT algorithms KEM =

(KEMGen,Encap,Decap) defined to have the following syntax.

– KEMGen generates a key pair (pk ,sk) on input 1κ: (pk , sk) ← KEMGen(1κ),
where pk specifies K, R and C.

– Encap is given pk and outputs a key k ∈ K and an encapsulation c ∈ C of k:
(c, k)← Encappk .

– Given sk , Decap decapsulates c ∈ C: k ← Decapsk (c), where k ∈ K.

We require correctness: for all κ ∈ N, for all (pk , sk) generated by KEMGen(1κ),
and for all (c, k) output by Encappk we have Pr[Decapsk (c) = k] = 1. We make the
randomness used in Encap only explicit when needed. Without loss of generality we
assume Encap to sample k $← K, and K, C to be exponentially large in the security
parameter: |K| ≥ 2κ, |C| ≥ 2κ.

A KEM has unique encapsulations if for every κ ∈ N and every (pk , sk) output by
KEMGen(1κ) it holds that Decapsk (c) = Decapsk (c

′)⇒ c = c′ for all c, c′ ∈ C.

We introduce a security notion for KEMs that appeared in [35], namely one-way secu-
rity in the presence of a plaintext-checking oracle (OW-PCA) amounting an adversary
to test if some c is a valid encapsulation of a key k. That is, on input (c, k) and given the
sk the oracle returns Checksk (c, k) := (Decapsk (c)

?
= k) ∈ {0, 1}. Since an indistin-

guishability based security notion is out of reach, once A is granted access to Check,
we make use of a weaker security notion, given in the following definition.

Definition 3 Let KEM = (KEMGen,Encap,Decap) be a Key Encapsulation Mecha-
nism and A an adversary run in the OW-PCAKEM game stated in Figure 3. We restrict
the adversary to call Challenge exactly one time and define A’s advantage in win-
ning the OW-PCAKEM game as

AdvOW-PCA
KEM (A, κ) := Pr[OW-PCAAKEM ⇒ 1].

A KEM is OW-PCA secure, if AdvOW-PCA
KEM (A, κ) is negligible for all PPT A.

On the Selective Opening Security of Practical Public-Key Encryption Schemes 7

Procedure Initialize(1κ)

(pk , sk)
$← KEMGen(1κ)

Return pk

Procedure Challenge

(k∗, c∗)
$← Encappk

Return c∗

Procedure Check(k, c)

Return (Decap(c)
?
= k)

Procedure Finalize(k)

Return (k
?
= k∗)

Fig. 3: OW-PCAKEM game

Definition 4 Let M be a message space and let T be a set (tag space). A Message
Authentication Code MAC consists of the following three PPT algorithms MAC =
(MACGen,Tag,Vrfy), whereby

– MACGen generates a key k on input 1κ: k ← MACGen(1κ).
– Tagk computes a tag t ∈ T for a given message m ∈M: t← Tagk(m).
– Given a message m ∈ M and a tag t ∈ T , Vrfyk, outputs a bit: {0, 1} ←
Vrfyk(m, t).

We require MAC to be correct: For all κ ∈ N, all keys k generated by MACGen(1κ), all
m ∈M and all tags computed by Tagk(m) we have Pr[Vrfyk(m,Tagk(m)) = 1] = 1.
For a fixed MAC and k, given message m we call a tag t / the tuple (m, t) valid, if
Vrfyk(m, t) = 1.

Definition 5 For an adversary A and a MAC MAC := (MACGen,Tag,Vrfy) we con-
sider the sUF-OT-CMAMAC (strongly unforgeable under one-time chosen message at-
tacks) game, where A is allowed to call Tag at most once.

Procedure Initialize(1κ)

k
$← MACGen(1κ)

Return ε

Procedure Finalize(m∗, t∗)

Return (Vrfyk(m
∗, t∗) ∧ (m∗, t∗) 6= (m, t))

Procedure Tag(m)

t← Tagk(m)
Return t

Procedure Vrfy(m̃, t̃)

Return Vrfyk(m̃, t̃)

We define the advantage of A run in the sUF-OT-CMAMAC game as

AdvsUF-OT-CMA
MAC (A, κ) := Pr[sUF-OT-CMAAMAC ⇒ 1].

MAC is sUF-OT-CMA secure, if AdvsUF-OT-CMA
MAC (A, κ) ≤ negl(κ) holds for all PPT

adversaries A.

Note that we only require one-time security, so a sUF-OT-CMA secure MAC can be
constructed information-theoretically.

3.2 The Transformation

Before we prove our results on the selective-opening security of schemes built from
KEMs, we recall a well known transformation ([44]) to turn a given KEM into a PKE
scheme. Notice, that we instantiated the symmetric encryption with a one-time-pad.

8 Felix Heuer, Tibor Jager, Eike Kiltz, Sven Schäge

Let KEM = (KEMGen,Encap,Decap) be a KEM, H a family of hash functions,
and let MAC = (MACGen,Tag,Vrfy) be a MAC. The public-key encryption scheme
PKEKEM,MAC obtained by the transformation is given in Figure 4.

Procedure PKEGen(1κ)

(pkKEM, skKEM)
$←KEMGen(1κ)

H
$← H

pk := (pkKEM, H)
sk := skKEM

Return pk

Procedure Enc(m)

(k, c(1))
$←EncappkKEM

(ksym, kmac) := H(k)
c(2) := ksym ⊕m
c(3) := Tagkmac(c(2))
Return (c(1), c(2), c(3))

Procedure Dec(c(1), c(2), c(3))

k ← DecapskKEM
(c(1))

(ksym, kmac) := H(k)
if Vrfykmac(c(2), c(3)) = 1

Return c(2) ⊕ ksym
else

Return ⊥

Fig. 4: Transformation PKEKEM,MAC from KEM and MAC to PKE.

It is well known, that the given construction turns a OW-PCA KEM into a IND-CCA
secure PKE scheme in the random oracle model [44]. Our next theorem strengthens this
results by showing that PKEKEM,MAC is even SIM-SO-CCA secure.

Theorem 6 Let KEM be a OW-PCA secure KEM with unique encapsulations and let
MAC be a sUF-OT-CMA secure MAC. Then PKEKEM,MAC is SIM-SO-CCA secure in
the random oracle model. In particular, for any adversaryA run in the REAL-SIM-SO-
CCAPKEKEM,MAC

game, that issues at most qh ≤ 2κ−1 hash and qd ≤ 2κ−1 decryption
queries and obtains n ciphertexts, and every PPT relation R, there exists a simula-
tor S, a forger F run in the sUF-OT-CMAMAC game, and an adversary B run in the
OW-PCAKEM game with roughly the same running time as A such that

AdvSIM-SO-CCA
PKEKEM,MAC

(A,S,R, n, κ) ≤

n ·
(
qh + qd
2κ−1

+AdvsUF-OT-CMA
MAC (F , κ) +AdvOW-PCA

KEM (B, κ)
)
. (1)

Let us have a high-level look at our proof. Up to some small syntactical changes G0

constitutes of the REAL-SIM-SO-CCAAPKEKEM,MAC
game.

The later simulator S will provideAwith message-independent dummy encryptions
ci. This allows S to claim that ci = Encki(mi, ri) for some arbitrary mi after sending
ci to A, if A should decide to open ci. Game G2 introduces the dummy encryptions,
while G1 serves as a preparational step.

After calling Enc(D), A is allowed to make Open, Hash and Dec queries in an
arbitrary order. Assume, that A did not1 query Open(i) before calling Hash(ki) or
issuing a valid decryption query (c

(1)
i , ·, ·). Since the indexset of opened messages I is

part of A’s output S wants to simulate, S may not query Open(i) if A did not make
the same call. Neither can S answer such a query, since it would fix ksymi and thereby

1 Neither Hash(ki) nor Dec(c
(1)
i , ·, ·) queries are a tripping hazard, once A called Open(i).

On the Selective Opening Security of Practical Public-Key Encryption Schemes 9

mi before A made a potential Open(i) query. Therefore, we need to block Hash(ki)

and valid Dec(c
(1)
i , ·, ·) queries, if A did not call Open(i) before. Considering valid

decryption queries, these two cases can occur: 1) H(ki) is already defined, or 2) H(ki)
not defined. Game G3 takes care of case 2), while we blockA’s hash queries Hash(ki)
for unopened ci in game G4 - that is, ruling out case 1) as well.

Proof. Let qh be the number of hash queries and let qd be the number of decryption
queries issued by A, let n = n(κ) be a polynomial in κ. For i ∈ [n] let: mi denote
the ith message sampled by the challenger, ri the ith randomness used by Encap:
(ki, c

(1)
i) ← Encap(ri), (k

sym
i , kmaci) ← H(ki) the ith key-pair generated by hashing

ki and ci := (c
(1)
i , c

(2)
i , c

(3)
i) the ith ciphertext. Without loss of generality, the games

samples (ri)i∈[n] as part of Initialize. We proceed with a sequence of games which
is given in pseudocode in Figure 5.

Procedure Initialize G0−1

(pk , sk)
$← KEMGen(1κ)

(ri)i∈[n]
$← R

(ki, c
(1)
i)i∈[n]

$← Encappk (ri)

(ksymi , kmaci)i∈[n]
$← Ksym ×Kmac

H(ki)i∈[n] := (ksymi , kmaci)

Return pk

Procedure Hash(s) G1−4 G2−4

�� ��G4

if (s, ·) /∈ LH
if s = ki for some i ∈ [n]

if ¬calledEnc
AbortEarly := true

else�� ��AbortH := true

H(ki) :=(σsymi ⊕mi, σ
mac
i)

else
hs

$← Ksym ×Kmac
H(s) := hs

Return hs

Procedure Open(i) G2−4

I := I ∪ {i}
H(ki) := (σsymi ⊕mi, σ

mac
i)

Return (mi, ri)

Procedure Enc(D) G0−1 G2−4

calledEnc := true
(mi)i∈[n] ← D

(ci)i∈[n] :=(c
(1)
i ,mi⊕ksymi ,Tagkmac

i
(mi⊕ksymi))

(σsymi , σmaci)i∈[n]
$← Ksym ×Kmac

(ci)i∈[n] := (c
(1)
i , σsymi ,Tagσmac

i
(σsymi))

Return (ci)i∈[n]

Procedure Dec(c(1), c(2), c(3)) G1−4 G3−4

if (c(1) ∈ {c(1)i }
n
i=1 ∧ ¬calledEnc)

AbortEarly := true
else
k := Decapsk (c

(1))

if

(
c(1) ∈ {c(1)i }

n
i=1 ∧ (k, ·) /∈ LH

∧Vrfyσmac
i

(c(2), c(3)) = 1

)
AbortDec := true

else
(ksym, kmac) := H(k)
if Vrfykmac(c(2), c(3)) = 1

Return c(2)i ⊕k
sym

else
Return ⊥

Procedure Finalize(out)

ReturnR((mi)i∈[n],D, I, out)

Fig. 5: Sequence of games G0 to G4. Boxed code is only executed in the games indicated by the
game names given in the same box style at the top right of every procedure.

10 Felix Heuer, Tibor Jager, Eike Kiltz, Sven Schäge

Game 0. We model H as a random oracle. Challenger C0 keeps track of issued calls
(either by the game orA) of Hash(s) by maintaining a list LH . For a query s, Hash(s)
returns hs if there is an entry (s, hs) ∈ LH , otherwise Hash samples hs at random,
adds (s, hs) to LH , and returns hs; we write H(s) := hs only and implicitly assume an
update operation LH := LH ∪ {(s, hs)} to happen in the background.
We introduce small syntactical changes: Challenger C0 samples (ksymi , kmaci)i∈[n] uni-
formly random and sets (H(ki))i∈[n] := (ksymi , kmaci) while Initialize is run. Addi-
tionally, G0 runs Encappk to generate (ki, c

(1)
i)i∈[n] during Initialize.

Claim 0. Adv(REAL-SIM-SO-CCAAPKEKEM,MAC
,GA0) = 0.

Proof. Apparently, it makes no difference if the challenger samples (ri)i∈[n] and runs
Encap(ri) on demand as part of Enc or in advance while Initialize is run.
Since H is modeled as a random oracle, H(s) is sampled uniformly random for ev-
ery fresh query Hash(s). Therefore C0 does not change the distribution by sampling
(ksymi , kmaci) in the first place and setting H(ki) := (ksymi , kmaci) afterwards.

Game 1. We add an abort condition. Challenger C1 raises the event AbortEarly and
aborts2 A, if A did not call Enc before calling either Hash(ki) or Dec(c

(1)
i , ·, ·) for

some i ∈ [n].
Claim 1. Adv(GA0 ,G

A
1) ≤ n · (qh + qd) · 2−(κ−1).

Proof. Since games G0 and G1 are identical until AbortEarly is raised, it follows
that Adv(GA0 ,G

A
1) ≤ Pr[AbortEarly]. Let viaHash and viaDec be the events

that AbortEarly was caused by either a hash or a decryption query of A. Let si
denote the ith hash and di = (d

(1)
i , d

(2)
i , d

(3)
i) the ith decryption query of A. It holds

that

Pr[AbortEarly] = Pr[viaHash] + Pr[viaDec]

≤ Pr[s1 ∈ {ki}ni=1] +

qh∑
i=2

Pr[si ∈ {ki}ni=1|
i−1∧
j=1

sj /∈ {ki}ni=1]

+ Pr[d
(1)
i ∈ {c

(1)
i }

n
i=1] +

qd∑
i=2

Pr[d
(1)
i ∈ {c

(1)
i }

n
i=1|

i−1∧
j=1

d
(1)
j /∈ {c(1)i }

n
i=1]

=

qh∑
i=1

n

2κ − (i−1)
+

qd∑
i=1

n

2κ − (i−1)
≤

qh∑
i=1

n

2κ − qh
+

qd∑
i=1

n

2κ − qd
≤ n(qh + qd)

2κ−1
.

Above holds since Encap samples k $← K and KEM has unique encapsulations.

Game 2. We change the encryption procedure and answer hash queries in a different
way. C2 does not program H(ki) for i ∈ [n] anymore. Enc still samples mi, and sam-
ples σsymi

$← Ksym, σmaci
$← Kmac, to compute ci = Encki(mi) := (c

(1)
i , σsymi ,

2 Notice, that C1 aborts even if such a decryption query is invalid.

On the Selective Opening Security of Practical Public-Key Encryption Schemes 11

Tagσmac
i

(σsymi)). If A should call Hash(ki) for i ∈ [n] or Open(i), the challenger
programs H(ki) := (σsymi ⊕mi, σ

mac
i). Keep in mind that as from now (ki, ·) /∈ LH

implies that Open(i) was not called.
Claim 2. Adv(GA1 ,G

A
2) = 0.

Proof. Assuming that AbortEarly does not happen in game G2, the keys ksymi and
kmaci are still uniformly random whenA calls Enc. Therefore (c(2)i)i∈[n] = mi⊕ ksymi

is uniform and (c
(3)
i)i∈[n] is a valid tag of a uniformly random message under a key from

the uniform distribution. Consequently, challenger C2 can sample (c
(2)
i)i∈[n] := σsymi

uniformly and can compute the tags using a uniform key σmaci without changing the
distribution of the encryptions (ci)i∈[n].
C2 does not program H(ki) for i ∈ [n] anymore, but has to keep H consistent. If A
calls Hash(ki) or Open(i), C2 sets H(ki) := (σsymi ⊕mi, σ

mac
i).

Game 3. We add another abort condition. If A already called Enc, issues a decryption
query (c

(1)
i , c(2), c(3)) /∈ {ci}ni=1, where H(ki) is not defined, and Vrfyσmac

i
(c

(1)
i , c(2),

c(3)) verifies, challenger C3 raises AbortDec and aborts A.
Claim 3. Adv(GA2 ,G

A
3) ≤ n ·AdvsUF-OT-CMA

MAC (F , κ).

Proof. Games G2 and G3 are identical until AbortDec happens, it suffices to bound
Pr[AbortDec].

Let MAC := (MACGen,Tag,Vrfy) be the MAC used by the sUF-OT-CMA chal-
lenger. We construct an adversary F against the sUF-OT-CMA security of MAC having
success probability Pr[AbortDec]/n. The reduction is straight forward: F runs ad-
versary A as in game G3, but picks i∗ $← [n] during Initialize. Computing the i∗th

ciphertext, F queries its sUF-OT-CMA challenger for t∗ := Tag(σsymi∗) instead of
using its own Tag procedure and sends (ci)i∈[n] to A. If A should call Open(i∗),
challenger C3 apparently was unlucky in hiding its own challenge and aborts the ad-
versary. Querying its Vrfyk(·, ·) oracle, F can detect when A issues a valid query
Dec(c

(1)
i , c(2), c(3)) for some i ∈ [n], returns (c(2), c(3)) to its sUF-OT-CMA chal-

lenger and aborts A.
Assume that AbortDec happens, i.e.Amakes a valid decryption query (c

(1)
i , c(2),

c(3)) /∈ {ci}i∈[n], while H(ki) is still undetermined. Notice, that we must not allow
H(ki∗) to be fixed since kmaci∗ is only known to the sUF-OT-CMA challenger. Let
(c

(1)
i , c̃(2), c̃(3)) ∈ {ci}i∈[n] be the ciphertext ci, whose first component matches the

first entry of A’s valid decryption query. Hence, c(3) is either a new valid tag for c̃(2)

or c(3) is a valid tag for a “new” message c(2), since (c(2), c(3)) 6= (c̃(2), c̃(3)). In both
cases F wins its sUF-OT-CMA challenge by returning (c(2), c(3)), if F picks the right
challenge ciphertext to embed t∗. The claim follows by rearranging

AdvsUF-OT-CMA
MAC (F , κ) ≥ Pr[AbortDec]/n.

Game 4. We add one more abort condition. Challenger C4 raises the event AbortH
if A already called Enc, issues a hash query Hash(ki) for i ∈ [n] and did not call
Open(i) before.
Claim 4. Adv(GA3 ,G

A
4) ≤ n ·AdvOW-PCA

KEM (B, κ).

12 Felix Heuer, Tibor Jager, Eike Kiltz, Sven Schäge

Procedure Initialize:

pk
$← InitializeOW-PCA

i∗
$← [n]

(ri)i∈[n]\{i∗}
$← R

(ki, c
(1)
i)i∈[n]\{i∗} ← Encappk (ri)

c
(1)
i∗

$← Challenge
Return pk

Procedure Hash(s)

if (s, ·) /∈ LH
if s = ki for some i ∈ [n] \ {i∗}

if ¬calledEnc
AbortEarly := true

else
AbortH := true

else
if Check(s, c

(1)
i∗) = 1

FinalizeOW-PCA(s)
AbortH := true

else

if
(
∃(c(1),ksym,kmac)∈Hpatch
s.t. Check(s, c(1)) = 1)

)
H(s) := (ksym, kmac)

else
hs

$← Ksym ×Kmac
H(s) := hs

Return H(s)

Procedure Open(i)

if i = i∗

Abort := true
else
I := I ∪ {i}
H(ki) := (σsymi ⊕mi, σ

mac
i)

Return (mi, ri)

Procedure Enc(D):
calledEnc := true
(mi)i∈[n] ← D

(σsymi , σmaci)i∈[n]
$← Ksym ×Kmac

(ci)i∈[n] := (c
(1)
i , σsymi ,Tagσmac

i
(σsymi))

Return (ci)i∈[n]

Procedure Dec(c(1), c(2), c(3))

if (c(1) ∈ {c(1)i }
n
i=1 ∧ ¬calledEnc)

AbortEarly := true
else

if c(1) ∈ {c(1)i }
n
i=1

if Vrfyσmac
i

(c(2), c(3)) = 1
AbortDec := true

else
Return ⊥

else

if
(
∃ (s, ·, ·) ∈ LH s.t.
Check(s, c(1)) = 1

)
(ksym, kmac) := H(s)

else
(ksym,kmac)

$←Ksym ×Kmac
Add(c(1),ksym,kmac) to Hpatch

if Vrfykmac(c(2), c(3)) = 1

Return c(2)i ⊕k
sym

else
Return ⊥

Procedure Finalize(out)

ReturnR((mi)i∈[n],D, I, out)

Fig. 6: Reduction to KEM’s OW-PCA security given by the game interface for A.

Proof. Games G3 and G4 are identical until AbortH happens. Given adversary A run
in the REAL-SIM-SO-CCA game, we construct an adversary B against the OW-PCA se-
curity of KEM having success probability Pr[AbortH]/n as depicted in Figure 6. Ad-
versary B receives a pk and a challenge encapsulation c∗ ← Challenge of some key
k∗ and aims to output k, given access to an Check(·, ·) returning Checksk (k, c) :=

(Decapsk (c)
?
= k).

B runs A as A is run in game G3 except for the following differences: After calling
Initialize, B guesses an index i∗ $← [n]. B creates ci as before, but hides its own

On the Selective Opening Security of Practical Public-Key Encryption Schemes 13

challenge in the first component of the i∗th ciphertext. Let’s assume that AbortH

happens. Since B knows {c(1)i } for i ∈ [n] \ {i∗}, it can detect if A queries Hash(s)
for s ∈ {ki} where i ∈ [n] \ {i∗}, while B can invoke its Check oracle to detect the
query Hash(ki∗) since Check(ki∗ , c

(1)
i∗) = 1. Therefore B does not have to guess

when AbortH happens. If A should call Open(i∗), B apparently guessed i∗ wrong3

and abortsA. Running the reduction, B has to maintain the conditions for AbortDec.
Therefore it suffices to check if c(1) ∈ {c(1)i }ni=1 and Vrfyσmac

i
(c(2), c(3)) hold, because

H(k) cannot be defined, since neither AbortH, nor Abort via Open happened.
It remains to explain how B (unable to compute k = Decapsk (c

(1))) answers de-
cryption queries without knowing sk . To answer these queries we make use of the nifty
“oracle patching technique” from [18]. If A calls Dec(c(1), c(2), c(3)), B checks if
H(k) is already defined by querying Check(s, c(1)) for every (s, ·) ∈ LH . If there
is such a s, B uses (ksym, kmac) := H(s). If not, B picks (ksym, kmac) at random and
has to keep an eye on upcoming hash queries, since B just committed to H(k).

Therefore B maintains a dedicated listHpatch where B adds (c(1), (sym, kmac)). On
every hash query Hash(s), B checks if there is an entry (c(1), ksym, kmac) ∈ Hpatch

s.t. Check(s, c(1)) = 1 in order to fix the oracle by setting H(s) := (ksym, kmac). If
A should call Dec(c

(1)
i∗ , ·, ·), challenger C3 treats it like every other decryption query.

Considering that AbortH happens, B only has to pick the right ciphertext to hide its
own OW-PCA challenge to win its game. Therefore B succeeds if AbortH happens
and B guessed i∗ ∈ [n] correctly:

AdvOW-PCA
KEM (B, κ) ≥ Pr[AbortH]/n.

Claim 5. There exists a simulator S run in the IDEAL-SIM-SO-CCA game such that
Adv(GA4 , IDEAL-SIM-SO-CCASPKEKEM,MAC

) = 0.

Proof. The simulator runs the adversary as it is run in game G4, i.e. S runs PKEGen on
its own and feeds pk to A. On A’s call of Enc(D) the simulator calls Enc(D) as well
and creates dummy encryptions without knowing the sampled messages (mi)i∈[n]. IfA
calls Open(i), S forwards the query to its own game, learns mi, and returns (mi, ri)
to A.
Because AbortEarly does not happen, S does not have to commit to Dec(ci) be-
fore Enc is called. Since neither AbortH nor AbortDec happen, A calls Open(i)
before issuing “critical” hash or decryption queries and S is able to learn mi and can
program H accordingly. Due to these changes and the dummy encryption introduced
in game G2, A cannot get information on some mi without calling Open(i), that is,
“avowing” S to call Open(i) as well, allowing S to answer possibly upcoming hash or
decryption queries consistently.

Collecting the advantages of A we get the claim as stated in Equation (1).

3 A cannot ask to open every single challenge ciphertext, since AbortH occurs.

14 Felix Heuer, Tibor Jager, Eike Kiltz, Sven Schäge

3.3 Implications for practical encryption schemes

We now give specific instantiations of SIM-SO-CCA secure scheme via our generic
transformation. We focus on two well known KEMs, namely the DH and RSA key
encapsulation mechanism.

DHIES. Let G be a group of prime-order p, and let g be a generator. The Diffie-Hellman
KEM DH-KEM = (Gen,Enc,Dec) is defined as follows. The key-generation algorithm
Gen picks x $← Zp and defines pk = X := gx and sk = x; the encapsulation algorithm
Encappk picks r $← Zp and returns (c = gr, k = Xr); the decapsulation algorithm
Decapsk (c) returns k = cx. OW-PCA security of the DH-KEM is equivalent to the
strong Diffie-Hellman (sDH) assumption [1]. The sDH assumption states that there is
no PPT adversary A that, given two random group elements U := gu, V := gv and a
restricted DDH oracle Ov(·, ·) where Ov(a, b) := (av

?
= b) computes guv with non-

negligible probability.

Procedure PKEGen(1κ)

H
$← H

x
$← Zp

X := gx

pk := (G, g, p,X)
sk := x
Return (pk , sk)

Procedure Enc(m)

r
$← Zp

(ksym, kmac)← H(Xr)
c1 := gr

c2 := ksym ⊕m
c3 := Tagkmac(c2)
Return (c1, c2, c3)

Procedure Dec(c1, c2, c3)

(ksym, kmac)← H(c1
x)

if Vrfykmac(c2, c3) = 1
Return c2 ⊕ ksym

else
Return ⊥

Fig. 7: The Diffie-Hellman Integrated Encryption Scheme DHIES instantiated with a one-time
pad.

Let MAC be a MAC with message-space and key-space {0, 1}` and let H : G 7→
{0, 1}2` be a family of hash functions. The security of DHIES = PKEDH-KEM,MAC (de-
picted in Figure 7)(instantiated with a one-time pad) is stated in the following corollary,
whose proof is a direct consequence of Theorem 6.

Corollary 7 DHIES instantiated with a one-time pad is SIM-SO-CCA secure in the
random oracle model, if MAC is sUF-OT-CMA and the sDH assumption holds.

RSA-KEM. We obtain another selective-opening secure encryption scheme, if we plug
in the RSA-KEM in the generic transformation given in Figure 4. Thereby, OW-PCA
security of the RSA-KEM holds under the RSA assumption [42]. Under the RSA as-
sumption, PKERSA-KEM,MAC (as described in ISO18033-2 [42]) is SIM-SO-CCA secure
in the random oracle model.

Both reductions for the OW-PCA security of the DH-KEM, RSA-KEM, respec-
tively, are tight, while both KEMs have unique encapsulations.

On the Selective Opening Security of Practical Public-Key Encryption Schemes 15

4 The OAEP Transformation

In this section we show that OAEP is SIM-SO-CCA secure when instantiated with a
partial-domain one-way trapdoor permutation (see Section 4.1). Since it is known [22]
that the RSA permutation is partial-domain one way under the RSA assumption, this
implies that RSA-OAEP is SIM-SO-CCA secure under the RSA assumption. In fact, our
result works not only for trapdoor permutations, but for injective trapdoor functions as
well. Since SIM-SO-CCA security implies IND-CCA security, our proof also provides
an alternative to the IND-CCA security proof of [22].

4.1 Trapdoor Permutations and Partial-Domain Onewayness

Recall that a trapdoor permutation is a triple of algorithms T = (GK,F, F−1), where
GK generates a key pair (ek, td) $← GK(1κ), F (ek, ·) implements a permutation

fek : {0, 1}k → {0, 1}k (2)

specified by ek, and F−1(td, ·) inverts fek using the trapdoor td. Let us write the func-
tion fek from (2) as a function

fek : {0, 1}`+k1 × {0, 1}k0 → {0, 1}k

with k = `+ k1 + k0.

Definition 8 Let T be a trapdoor permutation as given above and B an adversary run
in the PD-OWT game given in Figure 8. We restrict B to call Challenge exactly one
time and define B’s advantage in winning the PD-OWT game as

AdvPD-OW
T (B, κ) := Pr[PD-OWBT ⇒ 1].

Moreover, if AdvPD-OW
T (B, κ) ≤ negl(κ) for all probabilistic polynomial-time (in κ)

adversaries B, we say that T is a partial-domain secure trapdoor permutation.

Procedure Initialize(1κ)

(ek, td)
$← GK(1κ)

Return ek

Procedure Challenge

(s, t)
$← {0, 1}`+k1 × {0, 1}k0

y := F (ek, (s, t))
Return y

Procedure Finalize(s′)

Return (s
?
= s′)

Fig. 8: PD-OWT game

16 Felix Heuer, Tibor Jager, Eike Kiltz, Sven Schäge

4.2 Optimal Asymmetric Encryption Padding (OAEP)

Let T = (GK,F, F−1) be a trapdoor permutation. The OAEP encryption scheme is
defined as follows.

– The key generation Gen(1κ) computes a key pair (ek, td)← GK(1κ) for the trap-
door permutation. It defines two hash functions

G : {0, 1}k0 → {0, 1}`+k1 and H : {0, 1}`+k1 → {0, 1}k0

and outputs sk = td and pk = (ek,G,H).
– To encrypt a message m ∈ {0, 1}`, the sender draws a random value r $← {0, 1}k0 .

Then it computes

s = m||0k1 ⊕G(r) t = r ⊕H(s).

The ciphertext is C = F (ek, (s, t)) = fek(s, t).
– To decrypt a ciphertextC, the decryption algorithm Decsk (c) uses sk = td to apply

the inverse permutation to c, and obtains (s, t) = F−1(td, c). Then it computes
r = t ⊕ H(s) and µ = s ⊕ G(r), and parses µ ∈ {0, 1}`+k1 as µ = m||ρ with
m ∈ {0, 1}` and ρ ∈ {0, 1}k1 . If ρ = 0k1 , then the decryption algorithm outputs
m. Otherwise ⊥ is returned.

The OAEP padding process is illustrated in Figure 9.

m||0k1 r

H

G

s t

⊕

⊕

Fig. 9: The OAEP padding process.

4.3 Security of OAEP against SO-CCA Attacks

In this section we will analyze the security of the OAEP scheme. We will prove that
OAEP is SIM-SO-CCA-secure in the random oracle model [7], assuming the partial-
domain onewayness of the trapdoor permutation T . Note that a proof in the random
oracle model is the strongest result we can hope for, since SIM-SO-CCA-security im-
plies IND-CCA security, and it is known [31] that OAEP can not be proven IND-CCA
secure without random oracles.

On the Selective Opening Security of Practical Public-Key Encryption Schemes 17

Theorem 9 Let OAEP be the scheme described in Section 4.2 and T = (GK,F, F−1)
be a trapdoor permutation. Then OAEP is SIM-SO-CCA secure in the random oracle
model (where both hash functions G and H are modeled as random oracles). In partic-
ular, for every PPT relationR, every adversaryA run in the REAL-SIM-SO-CCAOAEP

game that issues at most qh queries to H , qg queries to G, qd decryption queries, and
obtains n ciphertexts, there exists a simulator S and an adversary B in the PD-OWT
experiment such that

AdvSIM-SO-CCA
OAEP (A,S,R, n, κ) ≤ δ

where

δ = qd ·
(
2−k1 + qg · 2−k0

)
+ n(qg + n) · 2−k0 + nqh · AdvTpd(B, κ) + nqg · 2−`−k1 .

Intuition for the proof of Theorem 9. We prove the theorem in a sequence of games,
starting with the REAL-SIM-SO-CCAOAEP experiment. From game to game we grad-
ually modify the challenger, until we end up in a game where the challenger can act
as a simulator in the IDEAL-SIM-SO-CCAOAEP experiment. Our goal is to modify the
challenger such that in the final game it does not need to know message mi before the
adversary asks Open(i). To this end, we have to describe how the challenger is able to
create “non-committing” ciphertexts c1, . . . , cn in the Enc-procedure, which can then
be opened to any message mi when A issues an Open(i)-query.

In a first step, we replace the original decryption procedure that uses the real trap-
door td with an equivalent (up to a negligible error probability) decryption procedure,
which is able to decrypt ciphertexts by examining the sequence of random oracle queries
made by adversary A. Here we use that A is not able (except for some non-negligible
probability) to create a new valid ciphertext c = F (ek, (s, t)), unless it asks the random
oracle H on input s and G on input H(s) ⊕ t. However, in this case the challenger is
able to decrypt c by exhaustive search through all queries to H and G made by A.

For i ∈ [n] let ci = F (ek, (si, ti) now denote the ith challenge ciphertext that
A receives in the security experiment. We show how to construct an attacker against
the partial-domain one-wayness of T , which is successful if the adversary A ever asks
H(si) before Open(i) for any i ∈ [n]. Thus, assuming that T is secure in the sense of
partial-domain one-wayness, it will never happen that A asks H(si) before Open(i),
except for some negligible probability.

Finally, we conclude with the observation that from A’s point of view all values of
H(si) remain equally likely until Open(i) is asked, which implies also that it is very
unlikely that A ever asks G(ti ⊕ H(si)) before Open(i). This in turn means that the
challenger does not have to commit to a particular value of G(ti⊕H(si)), and thus not
to a particular message mi||0k1 = si ⊕G(ti ⊕H(si)), before Open(i) is asked.

Proof of Theorem 9. The proof proceeds in a sequence of games, following [9, 43],
where Game 0 corresponds to the REAL-SIM-SO-CCAAOAEP-experiment with adver-
sary A and a challenger, called C0. From game to game, we gradually modify the
challenger, until we obtain a challenger which is able to act as a simulator in the
IDEAL-SIM-SO-CCASOAEP experiment.

18 Felix Heuer, Tibor Jager, Eike Kiltz, Sven Schäge

Let us first fix some notation. We denote with qg the number of queries issued by
A to random oracle G, with qh the number of queries to H , and with qd the number
of decryption queries. For i ∈ [n] we will denote with ci the ith component of the
challenge ciphertext vector (ci)i∈[n], and we write ci as ci = fek(si, ti).

Procedure Initialize

(ek, td)
$← GK(1κ)

Return ek

Procedure Enc(D)

(mi)i∈[n] ← D
for i ∈ [n]:

ri
$← {0, 1}k0

si := m||0k1 ⊕Gint(ri)
ti := ri ⊕Hint(si)
ci := F (ek, (si, ti))

Return (ci)i∈[n]

Procedure Open(i)

I := I ∪ {i}
Return (mi, ri)

Internal procedure Hint(s)

If (s, hs) /∈ LH
hs

$← {0, 1}k0
LH := LH ∪ (s, hs)

Return hs

Procedure H(s)

LAH := LAH ∪ {s}
Return Hint(s)

Procedure Dec(c)

(s, t) := F−1(td, c)
r := t⊕Hint(s)
m||ρ := s⊕Gint(r)
if ρ = 0k1

Return m
else

Return ⊥

Internal procedure Gint(r)

if (r, hr) /∈ LG
hr

$← {0, 1}`+k1
LG := LG ∪ (r, hr)

Return hr

Procedure G(r)

LAG := LAG ∪ {r}
Return Gint(r)

Procedure Finalize(out)

Return
R((mi)i∈[n],D, I, out)

Fig. 10: Procedures of Game 0.

Game 0. Challenger C0 executes the REAL-SIM-SO-CCA experiment with attacker A
by implementing the procedures described in Figure 10. Note that C0 also implements
procedures to simulate the random oracles G and H . To this end, it maintains four lists

LG ⊆ {0, 1}k0 × {0, 1}`+k1 LH ⊆ {0, 1}`+k1 × {0, 1}k0

LAG ⊆ {0, 1}k0 LAH ⊆ {0, 1}`+k1

which are initialized to the empty set in the Initialize procedure.
To simulate the random oracle G, the challenger uses the internal procedure Gint,

which uses list LG to ensure consistency of random oracle responses. The adversary
does not have direct access to procedure Gint, but only via procedure G, which stores
all values r queried by A in an additional list LAG. This allows us to keep track of all
values queried by A. Random oracle H is implemented similarly, with procedures Hint

and H , using list s LH and LAH .
By definition we have

Adv(REAL-SIM-SO-CCAAOAEP,G
A
0) = 0.

In the following games we will replace C0 with challenger Ci in Game i. In the last
game, we replace the challenger with a simulator.

On the Selective Opening Security of Practical Public-Key Encryption Schemes 19

Procedure Dec1(c)

for (r, hr, s, hs) ∈ LG × LH :

if
(
c = F (ek, (s, r ⊕ hs)
∧ s⊕ hr = m||0k1

)
Return m

Return ⊥

Procedure Enc2(D)

(mi)i∈[n] ← D
for i ∈ [n]:

si
$← {0, 1}`+k1 , ti

$← {0, 1}k0
ci := F (ek, (si, ti))
ri := H(si)⊕ ti
if ri ∈ LG

AbortG := true
hri := si ⊕mi||0k1
LG := LG ∪ {(ri, hri)}

Return (ci)i∈[n]

Fig. 11: Replacement procedures Dec1 and Enc2.

Game 1. In this game, C1 proceeds exactly as C0, except that instead of implement-
ing procedure Dec, it uses procedure Dec1 from Figure 11 to respond to decryption-
queries. Note that procedure Dec1 does not require the trapdoor td to perform decryp-
tion.

Claim 1. It holds that Adv(GA0 ,G
A
1) ≤ qd ·

(
2−k1 + qg · 2−k0

)
.

Proof. Game 1 is perfectly indistinguishable from Game 0, unless A makes a decryp-
tion query with ciphertext c, such that Dec(c) 6= Dec1(c). Note that this can only hold
if A queries a ciphertext c with (s, t) = F−1(td, c), such that

(s, ·) 6∈ LH or (t⊕H(s), ·) 6∈ LG

where · is any value, but it holds that G(t⊕H(s))⊕ s = m||ρ with ρ = 0k1 .
Consider a single chosen-ciphertext c = F (ek, (s, t)). Suppose that (s, ·) 6∈ LH . In

this case H(s) is uniform and independent from A’s view. The probability that there
exists (r, ·) ∈ LG such that r = H(s) ⊕ t is therefore at most qg · 2−k0 , since we
assumed that the adversary issues at most qg queries to G.

If (r, ·) 6∈ LG then G(r) is uniform and independent from A’s view, thus the prob-
ability that G(r)⊕ s = m||0k1 has the correct syntax is at most 2−k1 .

Since the adversary issues at most qd chosen-ciphertext queries, we have
Adv(GA0 ,G

A
1) ≤ qd ·

(
2−k1 + qg · 2−k0

)
.

Game 2. Challenger C2 proceeds exactly like C1, except that it implements procedure
Enc2 from Figure 11 instead of Enc. Note that this procedure first samples (si, ti) uni-
formly random, then computes ci = F (ek, (si, ti)), and finally programs the random
oracle G such that ci decrypts to mi.

Claim 2. It holds that Adv(GA1 ,G
A
2) ≤ n(qg + n) · 2−k0 .

Proof. Note that procedure Enc2 first defines ri := H(si) ⊕ ti for uniformly random
ti

$← {0, 1}k0 . Thus, ri is distributed uniformly over {0, 1}k0 , exactly as in Game 1.

20 Felix Heuer, Tibor Jager, Eike Kiltz, Sven Schäge

Now suppose that ri 6∈ LG, thus Enc2 does not terminate. In this case the hash func-
tion G is programmed such that G(ri) = hri = si ⊕ mi||0k1 . Since si is uniformly
distributed, so is G(ri), exactly as in Game 1. Thus, Enc2 simulates procedure Enc
from Game 1 perfectly, provided that it does not terminate.

Note that the procedure terminates only if ri ∈ LG. Since all values r1, . . . , rn are
distributed uniformly, because the si-values are uniformly random, this happens with
probability at most n(qg + n) · 2−k0 .

Procedure Open(i)

I := I ∪ {i}
if si ∈ LAH

AbortS := true
Return (mi, ri)

Procedure Open(i)

I := I ∪ {i}
if si ∈ LAH

AbortS := true
if ri ∈ LAG

AbortR := true
Return (mi, ri)

Fig. 12: Modified Open-procedures of Games 3 (left) and 4 (right).

Game 3. We add an abort condition to the Open-procedure (see the left-hand side of
Figure 12). Challenger C3 proceeds exactly like C2, except that it raises event AbortS
and terminates, if A ever queried si to H for some i ∈ [n] before querying Open(i).

Note that in Game 3, the attacker never evaluates H on input si for any i 6∈ I, or
the game is aborted.

Claim 3. It holds that Adv(GA2 ,G
A
3) ≤ n · qh · Adv

T
pd(B, κ).

Proof. Game 3 proceeds identically to Game 2, until event AbortS is raised. Thus we
have

Adv(GA2 ,G
A
3) ≤ Pr[AbortS]

We construct an adversary B against the partial-domain onewayness of T . B receives
as input ek and y = fek(s, t) for uniformly random (s, t)

$← {0, 1}`+k1 × {0, 1}k0 . It
proceeds exactly like C3, except for the following. At the beginning of the game it sets
pk := ek and guesses two indices j $← [n] and q $← [qh] uniformly random, and sets
cj := y. Note that cj is correctly distributed (cf. the changes introduced in Game 2).
When A makes its qth query s∗ to H , then B returns s∗ and terminates.

Assume that AbortS happens. Then, at some point in the game, A makes the
first query s′ to H such that s′ = si is a partial-domain preimage of some ci. With
probability 1/qh it holds that s∗ = si. Moreover, with probability 1/n we have i = j.
In this case B obtains the partial preimage s = sj of y = cj . Thus, B succeeds, if
AbortS happens and if it has guessed j ∈ [n] and q ∈ [qh] correctly. This happens
with probability Pr[AbortS]/(n · qh), which implies that

Pr[AbortS] ≤ n · qh · AdvTpd(B, κ).

On the Selective Opening Security of Practical Public-Key Encryption Schemes 21

Game 4. We add another abort condition to the Finalize-procedure (see the right-hand
side of Figure 12). Challenger C4 raises event AbortR and terminates, if A ever
queries ri to GA for some i ∈ [n], before querying Open(i). Otherwise it proceeds
like C3.

Claim 4. It holds that Adv(GA3 ,G
A
4) ≤ n · qg · 2−`−k1 .

Proof. Note thatA never queries si before querying Open(i) (or the game is aborted),
due to the changes introduced in Game 3. Thus, for all i 6∈ I, H(si) is uniformly
random and independent of A’s view. Therefore, all ri = ti ⊕ H(si) are uniformly
random and independent of A’s view. Since A issues at most qg queries to G, and we
have 1 ≤ i ≤ n, this implies Adv(GA3 ,G

A
4) ≤ n · qg · 2−`−k1 .

Game 5. Note that the attacker in Game 4 never issues a query G(ri) before asking
Open(i), as otherwise the game is aborted. Thus, the challenger does not have to define
the hash value G(ri) before Open(i) is asked. Therefore we can move the definition
of G(ri) from the Enc2-procedure to the Open-procedure.

Therefore we replace the procedures Enc2 and Open from Game 4 with proce-
dures Enc and Open described in Figure 13. Note that the only difference is that for
each i ∈ [n] the hash valueG(ri) is not defined in the Enc-procedure, but in the Open
procedure. Moreover, this modification is completely oblivious to A, which implies

Adv(GA4 ,G
A
5) = 0.

Procedure Enc(D)

(mi)i∈[n] ← D
For i ∈ [n]:

si
$← {0, 1}`+k1 , ti

$← {0, 1}k0
ci := F (ek, (si, ti))
ri := H(si)⊕ ti
if ri ∈ LG

AbortG := true
Return (ci)i∈[n]

Procedure Open(i)

I := I ∪ {i}
if si ∈ LAH

AbortS := true
if ri ∈ LAG

AbortR := true
hri := si ⊕mi||0k1
LG := LG∪{(ri, hri)}
Return (mi, ri)

Fig. 13: New procedures for Game 5.

Game 6. Note that in Game 5 the encryption procedure samples a message vector
(mi)i∈[n], but the messages are only used in the Open-procedure. This allows us to
construct a simulator, whose procedures are described in Figure 14. Note that the view
of A when interacting with the simulator is identical to its view when interacting with
challenger C5, which implies

Adv(GA5 ,G
A
6) = 0

22 Felix Heuer, Tibor Jager, Eike Kiltz, Sven Schäge

Procedure Initialize

Initialize()

(ek, td)
$← GK(1κ)

LG :=LH :=LAG :=LAH :=∅
Return ek

Procedure Enc(D)

Enc(D)

for i ∈ [n]:
si

$← {0, 1}`+k1

ti
$← {0, 1}k0

ci := F (ek, (si, ti))
ri := H(si)⊕ ti
if ri ∈ LG then

AbortG := true
Return (ci)i∈[n]

Internal procedure Hint(s)

if (s, hs) /∈ LH
hs

$← {0, 1}k0
LH := LH ∪ (s, hs)

Return hs

Procedure H(s)

LAH := LAH ∪ {s}
Return Hint(s)

Procedure Open(i)

mi := Open(i)

I := I ∪ {i}
if si ∈ LAH

AbortS := true
if ri ∈ LAG

AbortR := true
hri := si ⊕mi||0k1
LG := LG ∪ {(ri, hri)}
Return (mi, ri)

Internal procedure Gint(r)

if (r, hr) /∈ LG
hr

$← {0, 1}`+k1
LG := LG ∪ (r, hr)

Return hr

Procedure G(r)

LAG := LAG ∪ {r}
Return Gint(r)

Procedure Dec1(c)

for (r, hr, s, hs) ∈ LG × LH :

if
(
c=F (ek, (s, r ⊕ hs)
∧ s⊕ hr = m||0k1

)
Return m

Return ⊥

Procedure Finalize(out)

Finalize(out)

Fig. 14: Procedures used by the simulator to implement the REAL-SIM-SO-CCAAOAEP exper-
iment. Instructions in boxes correspond to calls to the IDEAL-SIM-SO-CCASOAEP-experiment
made by the simulator.

Acknowledgements

We thank Zhengan Huang and Shengli Liu for their valuable comments. Felix Heuer
and Eike Kiltz were (partially) funded by a Sofja Kovalevskaja Award of the Alexander
von Humboldt Foundation and the German Federal Ministry for Education and Re-
search. Felix Heuer was also partially funded by the German Israeli Foundation. Sven
Schäge is supported by Ubicrypt, the research training group 1817/1 funded by the Ger-
man Research Foundation (DFG). Part of this work was done while he was employed
at University College London and supported by EPSRC grant EP/J009520/1.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions and an
analysis of DHIES. In Naccache [33], pages 143–158.

2. M. Backes, M. Dürmuth, and D. Unruh. OAEP is secure under key-dependent messages. In
J. Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 506–523, Melbourne,
Australia, Dec. 7–11, 2008. Springer, Berlin, Germany.

3. D. Beaver. Plug and play encryption. In Kaliski Jr. [29], pages 75–89.
4. D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic adver-

saries. In R. A. Rueppel, editor, EUROCRYPT’92, volume 658 of LNCS, pages 307–323,
Balatonfüred, Hungary, May 24–28, 1992. Springer, Berlin, Germany.

On the Selective Opening Security of Practical Public-Key Encryption Schemes 23

5. M. Bellare, R. Dowsley, B. Waters, and S. Yilek. Standard security does not imply security
against selective-opening. In Pointcheval and Johansson [37], pages 645–662.

6. M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption
and commitment secure under selective opening. In Joux [28], pages 1–35.

7. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73, Fairfax, Virginia, USA, Nov. 3–5,
1993. ACM Press.

8. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. D. Santis, editor, EURO-
CRYPT’94, volume 950 of LNCS, pages 92–111, Perugia, Italy, May 9–12, 1994. Springer,
Berlin, Germany.

9. M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 409–426, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Berlin, Germany.

10. M. Bellare, B. Waters, and S. Yilek. Identity-based encryption secure against selective open-
ing attack. In Y. Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 235–252, Providence,
RI, USA, Mar. 28–30, 2011. Springer, Berlin, Germany.

11. F. Böhl, D. Hofheinz, and D. Kraschewski. On definitions of selective opening security. In
M. Fischlin, J. Buchmann, and M. Manulis, editors, PKC 2012, volume 7293 of LNCS, pages
522–539, Darmstadt, Germany, May 21–23, 2012. Springer, Berlin, Germany.

12. A. Boldyreva and M. Fischlin. On the security of OAEP. In X. Lai and K. Chen, editors,
ASIACRYPT 2006, volume 4284 of LNCS, pages 210–225, Shanghai, China, Dec. 3–7, 2006.
Springer, Berlin, Germany.

13. D. R. L. Brown. What hashes make RSA-OAEP secure? Cryptology ePrint Archive, Report
2006/223, 2006. http://eprint.iacr.org/.

14. R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In Kaliski Jr. [29],
pages 90–104.

15. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation.
In 28th ACM STOC, pages 639–648, Philadephia, Pennsylvania, USA, May 22–24, 1996.
ACM Press.

16. R. Canetti, S. Halevi, and J. Katz. Adaptively-secure, non-interactive public-key encryption.
In J. Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 150–168, Cambridge, MA,
USA, Feb. 10–12, 2005. Springer, Berlin, Germany.

17. T. Clancy and W. Arbaugh. Extensible Authentication Protocol (EAP) Password Authenti-
cated Exchange. RFC 4746 (Informational), Nov. 2006.

18. R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. SIAM J. Comput., 33(1):167–226, 2003.

19. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246 (Proposed Standard), Aug. 2008. Updated by RFCs 5746, 5878, 6176.

20. S. Fehr, D. Hofheinz, E. Kiltz, and H. Wee. Encryption schemes secure against chosen-
ciphertext selective opening attacks. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110
of LNCS, pages 381–402, French Riviera, May 30 – June 3, 2010. Springer, Berlin, Germany.

21. E. Fujisaki. All-but-many encryptions: A new framework for fully-equipped UC commit-
ments. Cryptology ePrint Archive, Report 2012/379, 2012. http://eprint.iacr.
org/.

22. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under the RSA
assumption. In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 260–274,
Santa Barbara, CA, USA, Aug. 19–23, 2001. Springer, Berlin, Germany.

23. B. Harris. RSA Key Exchange for the Secure Shell (SSH) Transport Layer Protocol. RFC
4432 (Proposed Standard), Mar. 2006.

24 Felix Heuer, Tibor Jager, Eike Kiltz, Sven Schäge

24. B. Hemenway, B. Libert, R. Ostrovsky, and D. Vergnaud. Lossy encryption: Constructions
from general assumptions and efficient selective opening chosen ciphertext security. In D. H.
Lee and X. Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 70–88, Seoul,
South Korea, Dec. 4–8, 2011. Springer, Berlin, Germany.

25. D. Hofheinz. All-but-many lossy trapdoor functions. In Pointcheval and Johansson [37],
pages 209–227.

26. D. Hofheinz and A. Rupp. Standard versus selective opening security: Separation and equiv-
alence results. In Y. Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 591–615, San
Diego, CA, USA, Feb. 24–26, 2014. Springer, Berlin, Germany.

27. R. Housley. Use of the RSAES-OAEP Key Transport Algorithm in Cryptographic Message
Syntax (CMS). RFC 3560 (Proposed Standard), July 2003.

28. A. Joux, editor. EUROCRYPT 2009, volume 5479 of LNCS, Cologne, Germany, Apr. 26–30,
2009. Springer, Berlin, Germany.

29. B. S. Kaliski Jr., editor. CRYPTO’97, volume 1294 of LNCS, Santa Barbara, CA, USA,
Aug. 17–21, 1997. Springer, Berlin, Germany.

30. E. Kiltz, A. O’Neill, and A. Smith. Instantiability of RSA-OAEP under chosen-plaintext
attack. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 295–313, Santa
Barbara, CA, USA, Aug. 15–19, 2010. Springer, Berlin, Germany.

31. E. Kiltz and K. Pietrzak. On the security of padding-based encryption schemes - or - why
we cannot prove OAEP secure in the standard model. In Joux [28], pages 389–406.

32. J. Lai, R. H. Deng, S. Liu, J. Weng, and Y. Zhao. Identity-based encryption secure against
selective opening chosen-ciphertext attack. In P. Q. Nguyen and E. Oswald, editors, EU-
ROCRYPT 2014, volume 8441 of LNCS, pages 77–92, Copenhagen, Denmark, May 11–15,
2014. Springer, Berlin, Germany.

33. D. Naccache, editor. CT-RSA 2001, volume 2020 of LNCS, San Francisco, CA, USA, Apr. 8–
12, 2001. Springer, Berlin, Germany.

34. T. Nadeau, C. Srinivasan, and A. Farrel. Multiprotocol Label Switching (MPLS) Manage-
ment Overview. RFC 4221 (Informational), Nov. 2005.

35. T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric Cryptosys-
tem Transform. In Naccache [33], pages 159–175.

36. C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In R. E. Lad-
ner and C. Dwork, editors, 40th ACM STOC, pages 187–196, Victoria, British Columbia,
Canada, May 17–20, 2008. ACM Press.

37. D. Pointcheval and T. Johansson, editors. EUROCRYPT 2012, volume 7237 of LNCS, Cam-
bridge, UK, Apr. 15–19, 2012. Springer, Berlin, Germany.

38. K. Raeburn. Encryption and Checksum Specifications for Kerberos 5. RFC 3961 (Proposed
Standard), Feb. 2005.

39. B. Ramsdell and S. Turner. Secure/Multipurpose Internet Mail Extensions (S/MIME) Ver-
sion 3.2 Message Specification. RFC 5751 (Proposed Standard), Jan. 2010.

40. E. Rescorla. Preventing the Million Message Attack on Cryptographic Message Syntax.
RFC 3218 (Informational), Jan. 2002.

41. V. Shoup. OAEP reconsidered. Journal of Cryptology, 15(4):223–249, 2002.
42. V. Shoup. ISO 18033-2: An emerging standard for public-key encryption. http://

shoup.net/iso/std6.pdf, Dec. 2004. Final Committee Draft.
43. V. Shoup. Sequences of games: a tool for taming complexity in security proofs, 2004.

shoup@cs.nyu.edu 13166 received 30 Nov 2004, last revised 18 Jan 2006.
44. R. Steinfeld, J. Baek, and Y. Zheng. On the necessity of strong assumptions for the security

of a class of asymmetric encryption schemes. In L. M. Batten and J. Seberry, editors, ACISP
02, volume 2384 of LNCS, pages 241–256, Melbourne, Victoria, Australia, July 3–5, 2002.
Springer, Berlin, Germany.

