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Abstract. Recent work on structure-preserving signatures studies opti-
mality of these schemes in terms of the number of group elements needed
in the verification key and the signature, and the number of pairing-
product equations in the verification algorithm. While the size of keys
and signatures is crucial for many applications, another important as-
pect to consider for performance is the time it takes to verify a given
signature. By far, the most expensive operation during verification is the
computation of pairings. However, the concrete number of pairings that
one needs to compute is not captured by the number of pairing-product
equations considered in earlier work.
To fill this gap, we consider the question of what is the minimal number
of pairings that one needs to compute in the verification of structure-
preserving signatures. First, we prove lower bounds for schemes in the
Type II setting that are secure under chosen message attacks in the
generic group model, and we show that three pairings are necessary and
that at most one of these pairings can be precomputed. We also extend
our lower bound proof to schemes secure under random message attacks
and show that in this case two pairings are still necessary.
Second, we build an automated tool to search for schemes matching our
lower bounds. The tool can generate automatically and exhaustively all
valid structure-preserving signatures within a user-specified search space,
and analyze their (bounded) security in the generic group model. Inter-
estingly, using this tool, we find a new randomizable structure-preserving
signature scheme in the Type II setting that is optimal with respect to
the lower bound on the number of pairings, and also minimal with re-
spect to the number of group operations that have to be computed during
verification.

1 Introduction

Structure-preserving signatures [3] (SPS) are signature schemes defined over
groups with a bilinear map in which messages, public keys and signatures are all



group elements, and the verification algorithm consists of evaluating so-called
“pairing-product equations” (i.e., products of pairings of the aforementioned
group elements). One of the main motivations of considering such specific sig-
nature schemes is that they are remarkably useful in the modular design of
several cryptographic protocols, notably in combination with non-interactive
zero-knowledge (NIZK) proofs of knowledge about group elements, and more
specifically with the celebrated Groth-Sahai proof system [24]. In a nutshell,
Groth-Sahai proofs allow one to prove knowledge of a set of group elements
satisfying a certain pairing-product equation. For instance, by using SPS with
Groth-Sahai proofs one can create a NIZK proof showing knowledge of a valid
signature on some message (perhaps satisfying certain properties) without dis-
closing the message, the signature or both. This is only a basic example, though.
Indeed, the combination of SPS with Groth-Sahai proofs has been shown to
be a powerful tool for the modular design of several cryptographic protocols,
such as blind signatures [3,20], group signatures [3,20,27], homomorphic sig-
natures [10,26], oblivious transfer [22,14], tightly-secure encryption [25,1], and
more.

Realization of SPS has been considered over the three possible bilinear groups
settings introduced in the classification of Galbraith, Paterson and Smart [21];
the type of a pairing e : G1 × G2 → GT depends on whether the two source
groups are the same, i.e., G1 = G2 (Type I), or there is a one-way, efficiently com-
putable homomorphism ψ : G2 → G1 (Type II), or there is no known efficiently
computable homomorphism in either direction between G2 and G1 (Type III).
However, more recent work has focused on proving lower bounds on the com-
plexity of SPS, and exhibiting optimal constructions that match lower bounds.
The common measures of complexity adopted in all these works are the num-
ber of group elements in the public key, the number of group elements in the
signature, and the number of pairing-product equations in the verification algo-
rithm. Considering these measures, it has been shown in [4,8] that in both the
Type I and the Type III settings SPS require at least 3 group elements in the
signatures and 2 verification equations. However, the Type II setting has been
shown to (surprisingly) deviate from these bounds: SPS in the Type II setting
require at least 2 group elements in the signatures and admit a single verifica-
tion equation [7]. Moreover, for SPS in the Type II setting, it has been shown
that the lower bound for the number of group elements in the verification key is
2. Together with showing such lower bounds, these works [4,8,7] have proposed
SPS schemes matching these (optimal) measures.

1.1 Our Contribution

We continue the study of the efficiency of SPS schemes by focusing on another
important measure that, to the best of our knowledge, has not been considered
in any previous work: the number of pairing computations that need to be per-
formed by the verifier. Previous work [4,8,7] considers verifier efficiency only in
terms of the number of pairing-product equations. Such a number, however, does
not tell much about the number of pairings that the verifier needs to compute,



and thus about the concrete verification running time. So, considering that pair-
ings are definitely the most expensive operation in this process, here we refine
this question and ask what is the minimal number of pairings necessary in the
verification of SPS, and in particular of schemes with optimal bandwidth (i.e., 2
elements in the signatures and 2 elements in the verification key). Indeed, even
though having fewer elements in the public key and in the signature intuitively
leads to fewer pairings, in practice it is unclear what is the minimal number of
pairings that is needed.

In this paper we initiate this study focusing on the Type II setting, and
our contribution is mainly twofold. First, we show lower bounds on the number
of pairings necessary in the pairing-product verification equation. Second, we
build a synthesis tool that automates the generation and security analysis of
SPS schemes, and we leverage our tool in order to find new SPS schemes that
match our new lower bounds and improve over previous work. In the following
paragraphs, we discuss our contribution in more detail.

New Optimality Measures and Lower Bounds. First, we show lower
bounds for the number of pairings in the pairing-product verification equation
of SPS in the Type II setting. We prove that, when considering schemes that
are already optimal with respect to previously considered measures (i.e., two
group elements in the verification key, two group elements in the signature, and
a single verification equation), three pairings are necessary for achieving security
against chosen-message attacks, whereas two pairings are necessary for achieving
security against random-message attacks.

More specifically, we refine our analysis and distinguish between, what we
call, offline and online pairings. Informally speaking, offline pairings are pairings
that involve only group elements in the public key or in the public parameters,
whereas online pairings involve the message and/or elements of the signature. In
other words, offline pairings are computed in every signature verification (when
using the same verification key) and thus can be precomputed “offline” and be re-
used in an arbitrary number of verifications. In contrast, online pairings involve
elements, such as the message and the signature, that inherently change every
time, and thus must be computed “online”. So, given this notion of online and
offline pairings, we ask how many of the three necessary pairings can be computed
offline. Such question is indeed quite relevant for practical purposes since online
pairings are those that really matter (e.g., think of the case in which one verifies
several signatures with the same verification key). We answer this question by
proving that, for schemes secure against chosen-message attacks, among the
three pairings, at most one can be precomputed, i.e., two online pairings are
necessary. For schemes that are secure against random-message attacks, instead
two online pairings are always necessary. We call schemes matching these bounds
strongly-optimal.

Once established these bounds, we address the question of constructing strongly-
optimal SPS schemes. First, we consider schemes secure against chosen-message
attacks: we look at the previous work (in the Type II setting) and observe that
there already exists a strongly-unforgeable SPS matching our lower bounds [7].



Yet there is no known SPS scheme that is re-randomizable and allows for only
two online pairings in verification. As discussed in [7], re-randomizable schemes
are useful because one of the group elements in the signature is uniformly ran-
dom. This property is convenient in some applications, e.g., anonymization pro-
tocols, as one of the signature elements can be revealed in the clear without
leaking information on what was the original signature. So, as an additional
contribution, in this paper we show a new re-randomizable SPS scheme that is
strongly-optimal and improves over the re-randomizable scheme proposed in [7]
by requiring one less online pairing. Then we take into consideration schemes
secure against random-message attacks (RMA) for which there is no strongly-
optimal candidate in the previous work. We fill this gap by showing a simple,
strongly-optimal, RMA-secure SPS. We note that although random-message se-
curity is a weak notion, it has been shown useful in applications such as con-
structing adaptive oblivious transfer [22] and in a transformation for obtaining
chosen-message secure SPS [1]. By using our strongly-optimal RMA-secure SPS
scheme, all these applications can benefit of its improved efficiency.

Automated Synthesis of SPS. As emerges from the previous discussion, op-
timality results (at least in the single-dimensional form in which they have been
developed so far) are insufficient in rich settings such as structure-preserving sig-
natures where many meaningful measures of efficiency can be considered (e.g.,
verification time, key or signature size). Therefore, an attractive approach for
achieving a broad range of optimality results is to perform an exhaustive search
of valid SPS within user-defined parameters. In the second part of our work, we
develop a synthesis tool that takes as input a user-defined budget, consisting of
the number of pairings, group elements, etc. that can be used by the construc-
tion, and generates all possible expressions within this budget. Broadly speaking,
our tool then uses an extension of the Generic Group Analyzer reported in [12],
to generate, whenever it exists, a verification equation for the signature algo-
rithm. Finally, our tool proves or disproves security of candidate schemes in the
generic group model for the case when the adversary makes a bounded number
of signing queries. Through this approach, we generate an exhaustive database,
by exploring more than 2000 candidate SPS schemes, that can then be mined for
different efficiency criteria. For instance, our database contains our new scheme
with optimal number of online/offline pairings as well as the SPS schemes in the
Type II setting that were previously proposed in [7]. Beyond its intrinsic interest,
the database can also be used to validate or refute empirically new conjectures
on SPS. For example, it is interesting to mention that our work on proving the
new lower bounds was motivated by observing that among the schemes gener-
ated by our tool none of the ones secure against chosen-message attacks can be
verified with only two pairings. More generally, our tool suggests the feasibility
and interest to develop synthesis methods for structure-preserving cryptography.
We believe that our methods can be extended to the Type I and Type III set-
tings (however exhaustive search will be more difficult to attain because secure
schemes must use two verification equations, which results in an exponential



growth in the search space), and to other forms of structure-preserving cryptog-
raphy, such as structure-preserving commitments [3] and encryption [15].

1.2 Other Related Work

Structure-Preserving Signatures. While the notion of structure-preserving
signature was first given by Abe et al. in [3], the first construction was proposed
earlier by Groth [23], though its efficiency is far from being truly practical (it
consists of hundreds of group elements). Green and Hohenberger [22] proposed
SPS that are proved secure only against random-message attacks. Cathalo, Lib-
ert and Yung [16] constructed a scheme that is structure-preserving in a relaxed
sense since it has a verification key which includes elements of the target group.

The study of lower bounds for SPS was put forward by Abe et al. [4] who
showed that SPS in the Type III setting require at least three group elements
in the signature and two pairing-product equations, and also proposed schemes
matching these bounds that are only proven secure in the generic bilinear group
model. Next, Abe et al. [5] refined the result in [4] considering schemes whose
security can be proved under a non-interactive assumption using a black-box
reduction. For this case they show that any scheme with only 3 elements in the
signature cannot be proved secure under a non-interactive assumption. Optimal
schemes in the symmetric (Type I) setting have been explored more recently
by Abe et al. [8] who show that Type I SPS schemes require 3 elements in the
signature and 2 verification equations (i.e., the same bounds as in Type III).
Furthermore, the same work [8] proposes a general scheme that works in all
three bilinear settings, and thus shows a Type II scheme with 3 elements in the
signature and 2 verification equations. Finally, the recent work of Abe et al. [7]
focused on the Type II setting and showed that in this setting the lower bounds
are (surprisingly) different. Namely, Type II SPS schemes require 2 elements in
the signature, a single verification equation, and 2 elements in the verification
key (the latter being the first lower bound for the size of the verification key).

All the optimal schemes in [4,8,7] are proved secure directly in the generic
bilinear group model. Another line of work investigated efficient SPS that can be
proved secure under standard assumptions. Hofheinz and Jager [25] and Abe et
al. [1,2] proposed schemes based on the decision linear assumption. The efficiency
of these schemes, however, does not meet that of the schemes secure in the generic
group model.

Finally, Chatterjee and Menezes [18] re-considered the result of Abe et al. [7]
for Type II SPS in light of the current state-of-the-art implementations of Type II
vs. Type III pairings. They start from the observation that implementations of
Type III pairings are currently more efficient than the ones of Type II pairings.
Then they note that Type II SPS, albeit optimal in terms of the number of
signature elements and number of verification equations, are not as efficient as
their Type III counterparts (i.e., the SPS schemes that can be obtained through



a semi-generic transformation from Type II to Type III [17]).4 Although this
is a valid point when considering concrete efficiency, we believe that the explo-
ration of Type II SPS is still quite interesting. For example, they have a simpler
structure that leads to a smaller search space when looking for new schemes.
Yet, given a Type II scheme, one can always translate it to the Type III setting
if concrete efficiency is a concern, e.g., using the approach from [17].

Computer-Aided Cryptography. In contrast to computer-aided tools for
verifying cryptographic proofs, which have existed for some time, computer-
aided tools for synthesizing new constructions are very recent. Barthe et al. [11]
develop an automated tool, called ZooCrypt, for synthesizing padding-based
encryption schemes; their tool uses a dedicated logic with an efficient proof
search procedure to prove chosen-plaintext or chosen-ciphertext security, and
an efficient method for finding attacks on insecure schemes. Because the search
space for reasonably-sized constructions is small (about 106 well-typed schemes),
simple trimming techniques are sufficient to cover the full search space efficiently.
Malozemoff, Katz, and Green [28] develop an automated tool for proving security
of modes of operations; the security of candidate schemes is proved using a type
system, but no attack is exhibited for insecure schemes.

Akinyele, Green, and Hohenberger [9] develop two synthesis tools for pairing-
based cryptography. Their tool AutoGroup converts schemes in the Type I set-
ting into schemes in the Type III setting, whereas their tool AutoStrong trans-
forms an existentially unforgeable signature into a strongly unforgeable one,
using SMT solvers to check whether the original signature satisfies a criterion
allowing an efficient transformation. The idea of automatically transforming con-
structions from the symmetric to the asymmetric setting was further considered
by Abe, Groth, Ohkubo and Tango [6], who develop an automated transforma-
tion of Type I protocols into Type III protocols.

Automating proofs in the generic group model has been recently considered
by Barthe et al. [12] who propose a tool that enables to automatically analyze the
validity of cryptographic assumptions in the generic (multilinear) group model.
The tool developed in this work actually builds on the techniques of [12] in order
to perform the security analysis of SPS in the generic bilinear group model.

Finally, in a concurrent and independent work, De Ruiter [19] recently pro-
posed a tool for analyzing the security of structure-preserving signatures. The
proposed tool provides a security analysis of SPS similar to the one we provide,
even though the security arguments in [19] do not have a full formalization in
the generic group model. Additionally, we note that our tool is not limited to
the security analysis of SPS, but also includes the novel synthesis component
which allows to automatically generate SPS schemes.

4 One main issue that leads to such difference of performance here is that testing group
membership in G2 (which is required in the signature verification) is significantly
more expensive in Type II than in Type III groups.



2 Preliminaries

2.1 Bilinear groups

A bilinear group description is a tuple (p,G1,G2,GT , e, ψ,G,H) where p is a
prime number, G1,G2,GT are cylic groups of order p, G,H are generators of G1

and G2 respectively, ψ : G2 → G1 is the homomorphism sending H to G (so that
ψ(Hx) = Gx for all x ∈ Z), and e : G1 × G2 → GT is a nondegenerate bilinear
pairing, meaning that e(G,H) generates GT and e(Gx, Hy) = e(G,H)xy for all
x, y ∈ Z.

A bilinear group generator G is an efficient algorithm which, on input of a se-
curity parameter 1λ, returns a bilinear group description (p,G1,G2,GT , e, ψ,G,H)
with p = 2Ω(λ) and efficient algorithms for computing group operations and the
bilinear map e, and deciding equality of group elements and membership in the
groups.

Furthermore, following Galbraith, Paterson and Smart [21], we say that the
result is a Type I bilinear group if the homomorphism ψ is efficiently computable
and efficiently invertible (in which case we can simplify identify G1 and G2), a
Type II bilinear group if ψ is efficiently computable but not efficiently invertible
(i.e. it is a one-way function) and a Type III bilinear group if ψ is neither
efficiently computable nor invertible. This paper mainly focuses on the Type II
setting.

Generic algorithms. In a bilinear group (p,G1,G2,GT , e, ψ,G,H) generated
by G we refer to deciding group membership, computing group operations in G1,
G2 or GT , comparing group elements and evaluating the homomorphism or the
bilinear map as the generic bilinear group operations. The signature schemes we
construct only use generic bilinear group operations.

As is customary in the literature, we denote group elements in G1 and G2 by
uppercase letters such as M,R, S, V,W, . . . , and their discrete logarithms with
respect to base G or H using the corresponding lowercase letters m, r, s, v, w, . . .
In particular, for an element X ∈ G2, we have ψ(X) = Gx, and for (Y,Z) ∈ G1×
G2, we have e(Y,Z) = e(G,H)yz. Furthermore, we will often express pairings
equations, such as e(X,Y )a1 = e(W,Z)a2 · e(T,H)a3 , as a quadratic polynomial
involving the corresponding exponents, i.e., a1xy = a2wz + a3t.

2.2 Structure-preserving signature schemes

We study structure-preserving signature schemes (SPS) [3] on bilinear groups
generated by group generator G. We refer to the full version of this paper [13]
for basic definitions about signature schemes. In a structure preserving signature
scheme the verification key, the messages and the signatures consist only of
group elements from G1 and G2 and the verification algorithm evaluates the
signature by deciding group membership of elements in the signature, using



the homomorphism ψ and by evaluating pairing product equations, which are
equations of the form: ∏

i

∏
j

e(Xi, Yj)
aij = 1,

where X1, X2, . . . ∈ G1, Y1, Y2, . . . ∈ G2 are group elements appearing in PP,
VK, M and Σ (where in the Type II setting it may hold Yi = Ψ(Xj) for some
i, j) and the elements aij ∈ Zp are constants stored in PP. More precisely:

Definition 1 (Structure-preserving signatures). A signature scheme (Setup,
KeyGen, Sign, Verify) is said to be structure-preserving with respect to some bi-
linear group generator G if

– PP consists of a bilinear group (p,G1,G2,GT , e, ψ,G,H) generated by G and
constants in Zp,

– the verification key consists of group elements in G1 and G2,
– the messages consist of group elements in G1 and G2,
– the signatures consist of group elements in G1 and G2,
– the signing algorithm only uses generic group operations,5 and
– the verification algorithm only needs to decide membership in G1 and G2,

use the homomorphism ψ, and evaluate pairing product equations.

2.3 Known lower bounds on Type II SPS

A number of lower bounds on signature size, verification key size and the number
of verification equations have been established for secure structure-preserving
signature schemes and one-time signature schemes. In particular, Abe et al. [7]
establish many such bounds in the Type II setting. As some of our results rely
heavily on those bounds, we recall them below. Note that membership tests are
not counted as “verification equations”, although some of them may require an
amortizable (aka offline) pairing computation in practical instantiations.

First, just as Type I and Type III SPS, Type II SPS for messages in G1

require two verification equations:

Lemma 1 ([7, Theorem 3]). A structure-preserving signature scheme for
messages in G1 must have at least two verification equations. This holds even
for one-time signatures with security against random message attack.

Since this paper will mostly focus on schemes with a single verification equa-
tion, we will therefore consider signatures on messages in G2, which can have
a single verification equation. In that case, Abe et al. obtain a lower bound on
verification key size, and show that all signature elements must be in G2.

5 Technically, this condition was not required in the original definition of Abe et al. [3],
but all known constructions satisfy this property and it is required for the proofs of
most lower bounds to go through. Since an SPS scheme with a non-generic signing
algorithm would be very unnatural and surprising, it seems appropriate to include
genericity of the signer in the definition (see also the discussion in [7, §2.3]).



Lemma 2 ([7, Theorem 4 and Lemma 1]). A structure-preserving signature
scheme with a single verification equation must have at least two group elements
in the verification key, and can have no non-redundant signature element in G1.
This holds even for one-time signatures secure under random message attack.

Finally, signatures in a secure Type II SPS scheme must consist of at least
two elements (although that property does not hold for one-time signatures),
and three elements for messages in G1 (idem).

Lemma 3 ([7, Theorem 5]). An EUF-RMA-secure structure-preserving signa-
ture scheme must have at least 2 group elements for messages in G2 and at least
3 group elements for messages in G1.

3 Lower Bounds on the Number of Pairings in the
Type II Setting

In this section we show lower bounds for the number of pairings in the pairing-
product verification equations of SPS in the Type II setting. In particular, in our
analysis we consider SPS schemes that already match the lower bounds shown
in [7], i.e., they have 2 group elements in the verification key, 2 group elements
in the signature and the verification consists of a single pairing-product equation
(as well as possible group membership tests).

To have a more refined and practically interesting analysis, we distinguish
between pairings according to whether they can be precomputed from the public
key or not. In the former case we call a pairing offline while in the latter case
online.

3.1 Main result

Having defined the notion of online and offline pairings, we are now ready to
state our main result. It shows that any optimal-size SPS scheme requires at
least three pairings for verification, and two of these pairings must be online
ones.

Theorem 1 (Main result). Any EUF-CMA-secure structure-preserving signa-
ture scheme in the Type II setting with 1 verification pairing-product equation,
2 group elements in the verification key and 2 elements in the signature requires
at least 3 pairings in the pairing-product equation, and at least 2 of them must
be online pairings.

To prove the theorem, we distinguish between three cases according to which
groups the two elements V,W of the verification key belong to, i.e., (i) V,W ∈ G2,
(ii) V,W ∈ G1, and (iii) V ∈ G1,W ∈ G2.

The first case is rather simple and is addressed in the following lemma which
shows that there exists no such structure-preserving signature scheme.



Lemma 4. There is no secure structure-preserving signature scheme in the Type II
setting with a single verification equation and a verification key consisting en-
tirely of elements of G2.

Proof. We know by Lemma 2 and Lemma 3 that the signatures and messages
all have to be in G2. Since all inputs are in G2 the scheme would also be secure
in the Type I setting and must therefore be insecure since Type I SPS require
two pairing product equations for security [8, Theorem 4]. ut

The second case is somewhat more involved, and mainly addressed by the
following lemma, proved in Section 3.3 below.

Lemma 5. An EUF-CMA-secure structure-preserving signature scheme in the
Type II setting with 1 verification pairing-product equation, 2 group elements
V,W ∈ G1 in the verification key and 2 group elements in the signature requires
at least 3 pairings in the pairing-product equation.

That result establishes that 3 pairings are needed, so all that remains to show
is that 2 of them must be online. This follows immediately from the following
observation.

Lemma 6. In a Type II structure-preserving signature scheme where all verifi-
cation key elements are in G1, it is possible to compute all the offline pairings
in a verification pairing-product equation using a single pairing evaluation. More
generally, `+ 1 pairing evaluations are sufficient if the verification key contains
` elements in G2.

Proof. Indeed, if the verification key is (V1, . . . , Vk, U1, . . . , U`) ∈ Gk1 ×G`2, then
any product of offline pairings can be expanded into an expression of the form∏
i,j e(Xi, Yj)

cij where Yj runs through H,U1, . . . , U` (since these are the only
elements of G2 in the verification key and the public parameters) and Xi runs
through G,V1, . . . , Vk, ψ(U1), . . . , ψ(U`). By rewriting the product as:∏

j

e
(∏

i

X
cij
i , Yj

)
we can compute it with at most `+ 1 pairing evaluations as required. ut

Finally, to complete the proof of Theorem 1, we only need to prove it when
the verification key consists of one element of G1 and one element of G2. This
case, which is somewhat less interesting as such a scheme is less space efficient
than when all key elements are in G1, but turns out to be more technically
challenging, is dealt with in details in the full version of this paper [13].

3.2 Gaps in Bounds Between EUF-RMA and EUF-CMA-Security

Following Lemma 5, in the setting when (V,W ) ∈ G2
1 the bound of Theorem 1

holds only for EUF-CMA-secure SPS schemes. This however is not the case in the



setting when the verification key is of the form (V,W ) ∈ G1×G2: as discussed in
the full version of this paper [13], the bound of Theorem 1 holds even for EUF-
RMA-secure SPS schemes. In what follows we establish a slightly weaker general
lower bound on the number of pairings in the single pairing-product equation of
minimal EUF-RMA-secure SPS schemes in the setting when (V,W ) ∈ G2

1.

Theorem 2. Any EUF-RMA-secure structure-preserving signature scheme in
the Type II setting with 1 verification pairing-product equation requires at least
2 pairings in the pairing-product equation, and both of them must be online pair-
ings.

Proof. It suffices to show that a Type II SPS scheme with a single verification
equation (and which we can assume without loss of generality signs one-element
messages) cannot be EUF-RMA-secure if the pairing-product equation consists
of only one online pairing (and any number of offline pairings).

To see this, denote by (S1, . . . , Sk) the signature vector (which is in Gk2 with-
out loss of generality by Lemma 2), and observe that the pairing product equa-
tion must be of the form:∏

i,j

e(Xi, Yj) = e
(
ψ(M)a0 ·

k∏
i=1

ψ(Si)
ai · Z,M b0 ·

k∏
j=1

S
bj
j · T

)
where the pairings on the left-hand side are offline (and hence the Xi’s and Yj ’s
do not depend on the message or the signature), and Z, T are elements which
also do not depend on the message or the signature. But then we can do the
change of variables:

(R′, S′) =
(
ψ(M)a0 ·

k∏
i=1

ψ(Si)
ai ,M b0 ·

k∏
j=1

S
bj
j

)
and then (R′, S′) provides a two-element EUF-RMA-secure signature scheme
whose verification equation is just:∏

i,j

e(Xi, Yj) = e(R′ · Z, S′ · T ),

and in particular does not depend on the message: this is a contradiction. ut

We see that the bounds given by Theorem 1 and Theorem 2 show a gap.
Namely, there could exist an EUF-RMA-secure scheme with precisely two online
pairings and no offline pairing. We confirm that both lower bounds are indeed
tight, by providing an EUF-RMA-secure SPS with precisely two online pairings
in Section 5.2.

3.3 Proof of Lemma 5

Proof. The proof proceeds by contradiction showing that having a scheme with
only 2 pairings in the single pairing-product equation is impossible. Let us first



recall that in this setting we have a message M ∈ G2, verification keys V,W ∈ G1

and signature elements R,S ∈ G2. As usual, we denote their discrete logarithms
by the corresponding lower case letters. We may write the general verification
equation in terms of the discrete logarithms of M,R, S, V,W as follows:

(c1m+ c2r + c3s+ c4v + v5w + c6)(d1m+ d2r + d3s+ d4) =

(e1m+ e2r + e3s+ e4v + e5w + e6)(f1m+ f2r + f3s+ f4),
(1)

where the products represent a pairing, the left factor in each product represent
the element in G1 and the right factor the element in G2 of each pairing.

Now if we define the vectors X1 = (c1, . . . , c6), X2 = (e1, . . . , e6), Y1 =
(d1, . . . , d4), Y2 = (f1, . . . , f4) over Zp and the matrix:

E = Xt
1Y1 −Xt

2Y2,

then the verification equation (1) can be rewritten as

(m, r, s, v, w, 1) · E · (m, r, s, 1)t = 0.

A simple observation shows that if KerE contains a vector (x1, . . . , x4), where
x4 6= 0, then we may scale to x4 = 1 and then

m = x1, r = x2, s = x3

is a valid key-only attack forgery (since the kernel of E can be computed entirely
from the public parameters). It follows that if the scheme is secure, then KerE ⊂
{(x1, . . . , x4) | x4 = 0}. However, this implies that the following system{

d1m+ d2r + d3s = −d4
f1m+ f2r + f3s = −f4

lacks a solution. Up to exchanging the roles of Y1 and Y2 without loss of gener-
ality, this implies that Y1 = cY2 + (0, 0, 0, λ) for some constants c, λ, and hence:

E = Xt
1Y1−Xt

2Y2 = Xt
1

(
cY2+(0, 0, 0, λ)

)
−Xt

2Y2 = (λX1)t·(0, 0, 0, 1)−(X2−cX1)tY2.

Therefore, after relabeling the coefficients, we may assume that Y1 = (0, 0, 0, 1)
and the verification equation (1) can be rewritten as

c1m+ c2r + c3s+ c4v + c5w + c6 =

(e1m+ e2r + e3s+ e4v + e5w + e6)(f1m+ f2r + f3s+ f4),
(2)

Now if (c4, c5) = λ(e4, e5) or (e4, e5) = λ(c4, c5), then we may replace the verifi-
cation key by a single element t = e4v+ e5w or t = c4v+ c5w, which is insecure
by Lemma 2. It follows that

det

(
c4 c5
e4 e5

)
6= 0



and we may do a linear change of variables(
v′

w′

)
=

(
c4 c5
e4 e5

)(
v
w

)
+

(
c6
e6

)
,

so that the verification equation (2) becomes, after renaming coefficients,

c1m+ c2r + c3s+ v = (e1m+ e2r + e3s+ w)(f1m+ f2r + f3s+ f4). (3)

Note that the vectors (c2, c3), (e2, e3), (f2, f3) cannot all be collinear, because
otherwise we may again compress the signature into one group element, which
we already know is impossible.

Next, we look at the matrix

N =

(
e2 e3
f2 f3

)
and distinguish two cases depending on the determinant.

On one hand, if detN 6= 0, then as before, a change of variables let us write
the verification equation (3) in the form

c1m+ c2r + c3s+ v = (r + w)s.

Since m must be used in the verification equation, we know that c1 6= 0. An
easy calculation then shows that if (m, r, s) is a triple satisfying the verification
equation for the keys v, w, then so does (m − (c2 − s)/c1, r + 1, s). This gives
us a forgery unless c2 = s for a non-negligible set of signatures. However, if this
happens, then s would be a redundant signature element. From Lemma 3 we
know that the scheme must be insecure.

On the other hand, if detN = 0, we have the two cases (e2, e3) = λ(f2, f3)
or (f2, f3) = 0. If (f2, f3) = 0, then

det

(
c2 c3
e2 e3

)
6= 0

or otherwise (c2, c3), (e2, e3), (f2, f3) would be collinear. It follows that the veri-
fication equation (3) reduces to

r + v = (s+ w)(f1m+ f4).

and since f1 6= 0, as the message must be used, we may query m1 = −f−11 f4
getting back a signature (r1, s1), where r1 = −v. Now make another query with
m2 = f−11 (1− f4) to get back a signature (r2, s2). Then

r2 + v = s2 + w ⇒ w = r2 + v − s2 = r2 − r1 − s2,

so with two chosen-message queries the attacker can transfer V,W to G2 and
then we know the scheme cannot be secure (concretely, (R1, R1R

−1
2 S2) = (V −1,W−1)

is a valid signature on any message). Therefore, we must have that (e2, e3) =



map G1 ×G2 → GT . iso G2 → G1.

input [V ] in G1. input [W ] in G2.

oracle o(M : G2) = sample R; return [R, (1 +W 2 +M ∗ V ) ∗R−1] in G2.

win (M ′ : G2, R
′ : G2, S

′ : G2) = (S′ ∗R′ = 1 +W 2 + V ∗M ′ ∧ ∀i : M ′ 6= Mi).

Fig. 1. Example of input for analyzing EUF-CMA security of an SPS scheme using our
extended version of the GGA tool.

λ(f2, f3). Again using the fact that (c2, c3), (e2, e3), (f2, f3) are not collinear, we
must have

det

(
c2 c3
f2 f3

)
6= 0.

It follows that we may do a change of variables s′ = f1m + f2r + f3s + f4 and
r′ = c1m+c2r+c3s and by the collinearity of (e2, e3) and (f2, f3) the verification
equation (3) becomes of the form

r + v = (e1m+ e3s+ w + e6)s

and now if (m, r, s) is a valid signature, then so is (m + 1/e1, r + s, s), which
is a valid forgery, since m must be used in the verification equation and hence
e1 6= 0. Also, note that in the latter case, the attack can be performed in the
random-message security game. ut

4 Synthesis of Schemes

Our tool6 for the synthesis of SPS schemes consists of two components. The first
component takes the description of a search space and generates all included
SPS schemes. The second component classifies a given scheme by performing a
proof and attack search.

4.1 Generation of Schemes

For our generation algorithm, we consider SPS schemes with generic KeyGen and
Sign algorithms and assume all random values are sampled uniformly.

Our definition of an SPS scheme consists of
– the employed group type and the supported message space Gk1 ×Gl2,
– the randomly sampled values ui ∈ Zp used in KeyGen,
– the verification keys Vi = Gfi(u) ∈ G1 and Wi = Hgi(u) ∈ G2,
– the randomly sampled values ri ∈ Zp used in Sign,

6 available at https://www.easycrypt.info/GGA

https://www.easycrypt.info/GGA


– the signature elements Si = Gsi(u,r,m) ∈ G1 and Ti = Hti(u,r,m) ∈ G2,
and

– the pairing-product equations used by Verify.
Here, fi and gi are arbitrary rational functions in the random variables u. Sim-
ilarly, si and ti are rational functions in the random variables u, r and the
discrete logarithms m of the messages such that there exists a corresponding
generic signing algorithm, i.e., Si and Ti can be computed without knowing the
discrete logarithms of the messages.

A search space description characterizes a finite set of SPS schemes and
consists of (1) the group type, (2) the number of messages, verification key
elements, and signature elements in G1 and G2, (3) the number of random values
sampled in KeyGen and Sign, and (4) a description of the rational expressions
that can be used for fi, gi, si, and ti.

There are two ways to characterize the allowed rational expressions. First,
the tool can take a set of Laurent polynomials with placeholders and allowed
values for these placeholders, and generate all instances. Second, the tool ac-
cepts a set of constraints that specify bounds on the number of additions, the
size of coefficients, and the degree of monomials. Then, it generates all Laurent
polynomials that satisfy these constraints.

Given a search space description and concrete polynomials for the verification
keys and the signature elements, the tool can compute the (strongest) verification
equation as follows. Using distinct variables Z1, Z2, . . . for all group elements in
the verification keys, signature elements, and messages, enumerate all products
over these variables that can be computed by applying the homomorphisms and
the bilinear map. This yields a sequence of monomials M1,M2, . . . over the the
variables Zi denoting products in GT that can be computed from the input of
the verification algorithm using Ψ and e. To characterize the linear relations
between the elements in GT corresponding to the monomials Mi, we associate
a rational expression Fi over u, r,m to Mi by evaluating the monomial for
Zi := hi(u, r,m) where hi is the exponent of the group element associated
with Zi. Finally, we use linear algebra to compute a basis of the linear relations
between the Fi and map them back to verification equations using Mi.

4.2 Proof and Attack Search

We classify generated schemes using a proof and attack search based on an ex-
tension of the generic group analyzer developed by Barthe et al. [12]. The generic
group analyzer (GGA) is a tool that automatically analyzes cryptographic as-
sumptions in generic group models. To analyze SPS schemes, we use GGA’s sup-
port for the generic bilinear group model. Here, the adversary is given blackbox
access (using handles) to elements in the groups G1, G2, and GT and provided
with oracles for performing the group operations and applying the bilinear map
and the efficiently computable homomorphisms. The GGA tool also supports a
restricted class of interactive assumptions that enable the analysis of signature
schemes that sign messages in Zp, but does not support oracles that take group
elements. To analyze such interactive assumptions, the GGA tool exploits that



the signing oracle queries are essentially non-adaptive. More concretely, since
the signing oracle takes elements in Zp and returns handles to group elements,
the adversary can only use these returned handles to compute the forgery, but
the arguments to signing oracle queries cannot depend on the results of earlier
oracle queries. This allows the GGA tool to treat oracle return values like ini-
tially known values by using parameters to model the oracle arguments in Zp.
Another reason why the GGA cannot be directly applied to most SPS schemes
is that there is no support for Laurent polynomials, which are required to model
signing algorithms that invert elements of Zp.

To overcome these limitations, we have extended the GGA tool with support
for both features and our extension can now analyze assumptions, such as the
one shown in Figure 1, that were out of scope of the original version. To support
signing oracles that take handles to group elements, the adversary knowledge can
contain polynomials with parameters that are used to model oracle arguments
in Zp and in the groups G∗. The parameters introduced to model known group
elements correspond to coefficients of linear combinations, i.e., we exploit that
every known group element is a linear combination of initially known group
elements, group elements returned by earlier oracle queries, or the result of
applying a pairing or an isomorphism to such group elements. To compute a
basis for all known group elements after q oracle queries, we recursively extend
the knowledge after i queries with the results of an additional query, starting
with the initial knowledge.

The definition in Figure 1 specifies the EUF-CMA security experiment for
an SPS scheme in the Type II setting. The verification keys are specified in the
second line, the signing algorithm is given in the third line, and the winning con-
dition (including the verification equation) is given in the last line. Here, group
elements are specified by giving their exponent polynomials and the variables V
and W are assumed to be randomly sampled. For such an input and a bound on
the number q of performed oracle queries, the tool either returns an attack or
a proof that the scheme is q-EUF-CMA secure in the generic group model. We
note that our tool can be invoked with any specified value of q, though in this
specific setting of SPS it runs efficiently only with small values.

5 Synthesized Schemes

In this section we will present and discuss the SPS schemes that we obtained by
searching using our tool described in Section 4.

5.1 A Summary of Our Search

We have performed an exhaustive search for Type II schemes with keys V,W ∈
G1, message M ∈ G2, and signature T, S ∈ G2 such that: V and W are random;
T = Hr ·U where r is random and U does not involve r; the exponent polynomials
of S, i.e., s(r, v, w,m), have coefficients in {0, 1}. The results of our search are
presented in Table 1. We use “Proof” to denote that our tool could prove at



Search Space Schemes Results (for eq. cl.)

Verification equation First sig. elt. total eq. cl. Noverif Attack Proof

s = f(t, v, w,m) T = Hr 212 57 0 55 1
s t = f(t, v, w,m) T = Hr 224 67 0 55 12
s (t− w) = f(t, v, w,m) T = Hr+w 1344 774 651 103 14
sw = f(t, v, w,m) T = Hr 224 126 0 120 3

2004 1024 651 333 30

Table 1. Synthesis results for Type II with keys V,W ∈ G1, message M ∈ G2, and
signature T, S ∈ G2. The value r in the exponent of T is always chosen as a random
element in Zp.

least 2-EUF-CMA security. Among the SPS schemes that are found, we identify
equivalent schemes according to the following notion: we say two schemes Σ and
Σ′ are in the same equivalence class if Σ can be obtained from Σ′ by applying
invertible affine transformations to the verification keys, the messages, and the
signature elements. This implies the existence of reductions from the security of
Σ to the security of Σ′ and vice-versa. As a simple example, consider a scheme
that is obtained from another scheme by first multiplying the message M with
G and then applying the original signing algorithm. Overall, except for 10 of
the 1024 analyzed schemes, our tool either finds an attack, proves at least 2-
EUF-CMA security, or proves that there is no verification equation. For the 10
schemes, the tool either returned unknown or timed out7.

5.2 New SPS Schemes

Among the schemes that we found using our tool, we highlight two of them that
are of particular interest, as well as a counterpart of the first one in the Type III
setting.

A Strongly-Optimal Randomizable SPS. The first scheme is an SPS which
is randomizable and matches the lower bound of Theorem 1, i.e., it can be
verified using one offline and two online pairings. This scheme improves over
the previously known randomizable schemes (in particular over the one recently
proposed in [7]) as the latter requires three online pairings. This new scheme
is presented in Fig. 2, and its security, stated as follows, is proved in the full
version of this paper [13].

Theorem 3. The signature scheme in Fig. 2 is EUF-CMA-secure in the generic
bilinear group model.

7 we used a timeout of 30 seconds



This scheme can be translated to Type III groups using the transformation
in [17], which essentially consists in “duplicating” R, i.e., to give R = Gr ∈ G1

and T = Hr ∈ G2, and adding a pairing-product equation to check that R, T
have the same discrete logarithm, i.e., e(R,H) = e(G,T ). Such transformed
scheme however requires one offline and four online pairings in the pairing-
product equations. In what follows we propose a slightly different way to trans-
form our scheme in the Type III setting which yields a solution requiring only
three online pairings. The basic idea is that in the previous transformation T
is not used in the first pairing-product equation, and its utility is to force the
adversary to show that it knows the discrete log of R (or obtained (R, T ) by
applying a linear operation on a pair received by the challenger). We obtain
the same functionality by letting the signer compute T = H1/r. This allows us
to test “equality of r between R and T” by checking e(R, T ) = e(G,H). The
last pairing, however, involves only the generators and can thus be computed
offline. A precise description of the resulting scheme is provided in Fig. 3, and
the security result, stated below, is proved in the full version of this paper [13].

Theorem 4. The signature scheme in Fig. 3 is EUF-CMA-secure in the generic
bilinear group model.

A Strongly-Optimal RMA-Secure SPS. Our second new SPS scheme, pre-
sented in Fig. 4, is secure against random-message attacks, and achieves the lower
bound of only two pairings in the pairing-product equation (both necessarily on-
line) for EUF-RMA-secure schemes, as stated in Theorem 2. In particular, it beats
the lower bound of Theorem 1 that holds for EUF-CMA-secure schemes.

This scheme is also perfectly randomizable, with the simple randomization
algorithm that sends a signature (R,S) on M to (R · Ht, S · M t) for some
uniformly random t.

As an interesting note, we observe that the verification equation of this
scheme is exactly the only possible one, according to our impossibility proof.
Indeed, while our Lemma 5 holds for SPS schemes that are EUF-CMA-secure,
the actual proof relies on EUF-RMA-security in all cases but one. For that partic-
ular case, in which we show a chosen-message attack, the verification equation is
of the form s+w = (r+ v)(f1m+ f4) for some constants f1, f4, up to invertible
linear transformations on the verification key and signature elements.

The security of this scheme, stated below, is proved in the full version of this
paper [13].

Theorem 5. The signature scheme in Fig. 4 is EUF-RMA-secure in the generic
bilinear group model.

6 Conclusion

In this work, we considered a new measure for the efficiency of SPS, that is, the
number of pairings required in the verification equation. With respect to this



Setup(1k): return PP = (p,G1,G2,GT , e, ψ,G,H)← G(1k).
KeyGen(PP): choose random v, w ← Zp and return VK = (V,W ), SK = (v, w)

where V = Gv and W = Gw.
Sign(PP,SK,M): given M ∈ G2, choose a random r ← Z∗p and return (R,S)

where R = Hr and S = (MvHw)1/r.
Rerand(PP,VK,M, (R,S)): pick a random α ← Z∗p and compute a randomized

signature (R′, S′) as R′ = Rα and S′ = S1/α.
Verify(PP,VK,M, (R,S)): accept if and only if M,R, S ∈ G2 and

e(ψ(R), S) = e(V,M) · e(W,H).

Fig. 2. Our strongly-optimal re-randomizable SPS.

Setup(1k): return PP = (p,G1,G2,GT , e, G,H)← G(1k).
KeyGen(PP): choose random v, w ← Zp and return VK = (V,W ), SK = (v, w)

where V = Gv and W = Gw.
Sign(PP,SK,M): given M ∈ G2, choose a random r ← Z∗p and return (R, T, S) ∈

G1 ×G2
2 where R = Gr, T = H1/r and S = (MvHw)1/r.

Rerand(PP,VK,M, (R, T, S)): pick a random α← Z∗p and compute a randomized

signature (R′, T ′, S′) as R′ = Rα, T ′ = T 1/α and S′ = S1/α.
Verify(PP,VK,M, (R, T, S)): accept if and only if R ∈ G1, M,T, S ∈ G2 and

e(R,S) = e(V,M) · e(W,H) and e(R, T ) = e(G,H).

Fig. 3. A re-randomizable SPS in Type III groups.

Setup(1k): return PP = (p,G1,G2,GT , e, ψ,G,H)← G(1k).
KeyGen(PP): choose random v, w ← Zp and return VK = (V,W ), SK = (v, w)

where V = Gv and W = Gw.
Sign(PP,SK,M): given M ∈ G2, choose a random r ← Zp and return (R,S)

where R = Hr and S = Mr+vH−w.
Verify(PP,VK,M, (R,S)): accept if and only if M,R, S ∈ G2 and

e(ψ(S) ·W,H) = e(R · V,M).

Fig. 4. Our RMA-secure SPS with two pairings.



measure, we proved lower bounds and proposed new schemes matching these
bounds in the Type II setting. In order to find schemes, we built a synthesis
tool that automates the generation and security analysis of SPS. Currently, our
methods only support security proofs with respect to a bounded number of sign-
ing queries. Developing new methods that support security proofs with respect
to an unbounded number of queries for SPS is an interesting open problem that
requires new techniques. Another direction left open by our work is to obtain
similar results for the Type I and Type III setting. In contrast to the Type II
setting, the Type I and Type III settings are more complex since they need
more than one verification equation [4,8]. For synthesis, this causes a significant
blowup of the search space, while for the minimality result, our proofs exploit
that there is exactly one equation.
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