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Abstract. Functional encryption is a new paradigm in public-key en-
cryption that allows users to finely control the amount of information
that is revealed by a ciphertext to a given receiver. Recent papers have
focused their attention on constructing schemes for general functional-
ities at expense of efficiency. Our goal, in this paper, is to construct
functional encryption schemes for less general functionalities which are
still expressive enough for practical scenarios. We propose a functional
encryption scheme for the inner-product functionality, meaning that de-
crypting an encrypted vector x with a key for a vector y will reveal
only 〈x,y〉 and nothing else, whose security is based on the DDH as-
sumption. Despite the simplicity of this functionality, it is still useful in
many contexts like descriptive statistics. In addition, we generalize our
approach and present a generic scheme that can be instantiated, in ad-
dition, under the LWE assumption and offers various trade-offs in terms
of expressiveness and efficiency.

Keywords. Functional Encryption, Inner-Product, Generic Construc-
tions.

1 Introduction

Functional Encryption. Whereas, in traditional public-key encryption, decryp-
tion is an all-or-nothing affair (i.e., a receiver is either able to recover the entire
message using its key, or nothing), in functional encryption (FE), it is possi-
ble to finely control the amount of information that is revealed by a ciphertext
to a given receiver. For example, decrypting an encrypted data set with a key
for computing the mean will reveal only the mean computed over the data set
and nothing else. Somewhat more precisely, in a functional encryption scheme
for functionality F , each secret key (generated by a master authority having
a master secret key) is associated with value k in some key space K; Anyone
can encrypt via the public parameters; When a ciphertext Ctx that encrypts x,
in some message space X, is decrypted using a secret key Skk for value k, the
result is F (k, x). A notable subclass of functional encryption is that of predi-
cate encryption (PE) which are defined for functionalities whose message space
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X consists of two subspaces I and M called respectively index space and pay-
load space. In this case, the functionality F is defined in terms of a predicate
P : K × I → {0, 1} as follows: F (k, (ind;m)) = m if P (k, ind) = 1, and ⊥
otherwise, where k ∈ K, ind ∈ I and m ∈ M . Those schemes are also called
predicate encryption with private-index. Examples of those schemes are Anony-
mous Identity-Based Encryption (AIBE) [BF01,Gen06], Hidden Vector Encryp-
tion [BW07] and Orthogonality [KSW08, LOS+10, OT12], among the others.
On the other hand, when the index ind is easily readable from the ciphertext
those schemes are called predicate encryption with public-index (PIPE). Exam-
ples of PIPE schemes are Identity-Based Encryption (IBE) [Sha84,BF01,Coc01],
Attribute-Based Encryption (ABE) [SW05,GPSW06], Functional Encryption for
Regular Languages [Wat12].

The standard notion of security for functional encryption is that of indis-
tinguishability-based security (IND). Informally, it requires that an adversary
cannot tell apart which of two messages x0, x1 has been encrypted having oracle
access to the key generation algorithm under the constraint that, for each k for
which the adversary has seen a secret key, it holds that F (k, x0) = F (k, x1). This
models the idea that an individual’s messages are still secure even if an arbitrary
number of other users of the system collude against that user. Boneh, Sahai, and
Waters [BSW11] and O’Neill [O’N10] showed that the IND definition is weak
in the sense that a trivially insecure scheme implementing a certain functional-
ity can be proved IND-secure anyway. The authors, then, initiate the study of
simulation-based (SIM) notions of security for FE, which asks that the “view”
of the adversary can be simulated by simulator given neither ciphertexts nor
keys but only the corresponding outputs of the functionality on the underlying
plaintexts, and shows that SIM-security is not always achievable.

In a recent series of outstanding results, [GGH+13,BCP14,Wat14,GGHZ14]
proposed IND-secure FE schemes for general circuits whose security is based ei-
ther on indistinguishable obfuscation and its variants or polynomial hardness of
simple assumptions on multilinear maps. Those schemes are far from being prac-
tical and this led us to investigate the possibility of having functional encryption
schemes for functionalities of practical interest which are still expressive enough
for practical scenarios. In doing so, we seek for schemes that offer simplicity, in
terms of understanding of how the schemes work, and adaptability in terms of
the possibility of choosing the instantiations and the parameters that better fit
the constraints and needs of a specific scenario the user is interested in.

This Work. In this paper, we focus on the inner-product functionality, which has
several practical applications. For example, in descriptive statistics, the discipline
of quantitatively describing the main features of a collection of information, the
weighted mean is a useful tool. Here are a few examples:

Slugging average in baseball. A batter’s slugging average, also called slug-
ging percentage, is computed by: SLG = (1∗SI+2∗DO+3∗TR+4∗HR)/AB,
where SLG is the slugging percentage, SI is the number of singles, DO the
number of doubles, TR the number of triples, HR the number of home runs,
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and AB is total number of at-bats. Here, each single has a weight of 1, each
double has a weight of 2, etc. The average counts home runs four times as
important as singles, and so on. An at-bat without a hit has a weight of zero.

Course grades. A teacher might say that the test average is 60% of the grade,
quiz average is 30% of the grade, and a project is 10% of the grade. Suppose
Alice got 90 and 78 on the tests; 100, 100 and 85 on the quizzes; and an 81
on the project. Then, Alice’s test average is (90 + 78)/2 = 84, quiz average
is (100 + 100 + 85)/3 = 95, and her course grade would then be: .60 · 84 +
.30 · 95 + .10 · 81 = 87.

Our goal then is to design a simple and efficient functional encryption scheme
for inner products that can be used, for instance, to compute a weighted mean
and to protect the privacy of Alice’s grades, in the example involving course
grades. In fact, we can imagine that Alice’s grades, represented as a vector
x = (x1, . . . , x`) in some finite field, says Zp for prime p, are encrypted in a
ciphertext Ctx and the teacher has a secret key Sky for the vector of weights
y = (y1, . . . , y`). Then Alice’s course grade can be computed as the inner-product
of x and y, written as 〈x,y〉 =

∑
i∈[`] xi · yi. We would like to stress here that,

unlike the inner-product predicate schemes in [KSW08,LOS+10,OT12], our goal
is to output the actual value of the inner product.

A very simple scheme can be constructed to compute the above functionality
whose security can be based on the DDH assumption. Informally, it is like this:

mpk =
(
G, (hi = gsi)i∈[`]

)
Ctx =

(
ct0 = gr, (cti = hri · gxi)i∈[`]

)
Sky = 〈s,y〉 =

∑
i∈[`]

si · yi,

where msk = s = (s1, ..., s`) is the master secret key used to generate secret keys

Sky. Then, decryption is done by computing the discrete log of (
∏
i∈[`] ct

yi
i )/ct

Sky
0 .

Please refer to Section 3 for more details.
Despite its simplicity, this DDH-based scheme can be proved secure, in a

selective security model1, against any adversary that issues an unbounded, but
polynomially related to the security parameter, number of secret key queries.
The adversary will not learn anything more than what it is implied by the linear
combination of their keys.

An astute reader could now ask what happens if an adversary possesses secret
keys Skyi , for i ∈ [q], such that the yi’s form a basis for Z`p. Clearly, this adversary
can then recover completely x from the ciphertext and wins the security game.
But notice that this has nothing to do with the specific implementation of the
functionality, it is something inherent to the functionality itself. This happens
also for other functionalities: Consider the case of the circuit functionality, where
secret keys correspond to Boolean circuits over ` Boolean variables and one-bit

1 In the selective model, the adversary is asked to commit to its challenge before seeing
the public parameters.
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output, and ciphertexts to vectors in {0, 1}`. Then, an adversary having secret
keys for circuits Ci, where Ci extract the i-th bit of the input, can recover
completely the input from a ciphertext no matter how the scheme, supporting
this circuit functionality, is implemented. This subtle aspect will appear in the
security proof, if the adversary asks such a set of secret keys then the simulator
will not be able to answer all those queries. Notice that this is reasonable, because
it is like requiring security when the adversary possesses the master secret key.

One drawback of the above scheme is that restrictions must be put in place
in order to guarantee that the final computed value has small magnitude and the
discrete log can be computed efficiently. To overcome this limitation, let us first
describe some interesting characteristics of the above scheme. To start, please
notice that a ciphertext for a vector x consists of ElGamal ciphertexts [ElG84]
(gr, (hri ·gxi)i) under public keys hi = gsi , sharing the same randomness r. Then,
a secret key for a vector y consists of a linear combination of the underlying
ElGamal secrets si. Now notice that, by the ElGamal scheme’s homomorphic
properties, it holds that∏

i∈[`]

ctyii =
∏
i∈[`]

hr·yii · gxi·yi = hr · g〈x,y〉

where h is an ElGamal public key corresponding to secret key 〈s,y〉. The above
observations point out that, by possibly combining public-key encryption
schemes secure under randomness reuse [BBS03], and having specific syntac-
tical, non-security-related, properties, we can generalize the above construction
with the aim of (1) having a scheme whose security can be based on different
assumptions and that can provide different trade-offs in terms of efficiency and
expressiveness, (2) have a generic proof of security that reduces security to that
of the underlying public-key encryption scheme. We present our generalization
in Section 4.

Related Work. One of the first example of investigation on reductions between
various primitives has been given by [Rot11] who shows a simple reduction be-
tween any semantically secure private-key encryption scheme which possesses
a simple homomorphic, namely that the product of two ciphertexts Ct1 and
Ct2, encrypting plaintexts m1 and m2, yields a new ciphertext Ct = Ct1 · Ct2
which decrypts to m1 + m2 mod 2. Goldwasser et al. [GLW12] investigated the
construction of PIPE schemes for specific predicates. In particular, they show
how public-key encryption schemes which possess a linear homomorphic prop-
erty over their keys as well as hash proof system features with certain algebraic
structure can be used to construct an efficient identity-based encryption (IBE)
scheme that is secure against bounded collusions (BC-IBE). This weaker secu-
rity notion restricts the adversary to issue only a bounded number of secret keys
during the security game. In more details, they rely on a public-key encryption
scheme whose secret keys and public keys are elements of respective groups (with
possibly different operations, which we denote by + and ·), and there exists an
homomorphism µ such that µ(sk0+sk1) = µ(sk0)·µ(sk1), where µ(sk0) and µ(sk1)
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are valid public keys for which sk0 and sk1 yield correct decryption, respectively.
Then, to obtain a BC-IBE, the construction by Goldwasser et al. generates
multiple public-key/secret-key pairs (pk1, sk1), . . . , (pk`, sk`), letting the public-
parameters and the master secret key of the scheme be params = (pk1, . . . , pk`)
and msk = (sk1, . . . , sk`), respectively. Then, an efficient map φ associates every
identity ID with a vector [id1, . . . , id `], and a message m is encrypted for an
identity ID as the ciphertext Ct = Encrypt(pkID,m), where pkID =

∏n
i=1 pk

IDi
i .

Then, µ guarantees that Ct can be decrypted using skID =
∑n
i=1 IDi · ski, since

by the homomorphism it holds that pkID = µ(skID). The map φ is subject to a
combinatorial requirement that disallows computing skID given skID′ for t differ-
ent ID′ 6= ID. Later, Tessaro and Wilson [TW14] presented generic constructions
of BC-IBE which rely on encryption schemes that solely satisfy the standard se-
curity notion of semantic security in addition to some syntactical, non-security-
related, properties. We will use Tessaro and Wilson to present a generalization
of our results.

As already mentioned, in a recent series of outstanding results, [GGH+13,
BCP14, Wat14, GGHZ14] proposed IND-secure FE scheme for general circuits
whose security is based either on indistinguishable obfuscation and its variants
or polynomial hardness of simple assumptions on multilinear maps. Clearly, those
schemes can be used to implement the inner-product functionality, but this would
defeat our main goal which is to construct somewhat efficient functional encryp-
tion schemes for less general functionalities which are still expressive enough for
practical scenarios.

In another line of research, Katz, Sahai, and Waters [KSW08] proposed a
functional encryption scheme for a functionality called orthogonality (in the lit-
erature it is also know as inner-product encryption), meaning that decrypting
an encrypted vector x with a key for a vector y will reveal only if 〈x,y〉 is equals
to zero (meaning that the two vectors are orthogonal) or not, and nothing else.
This functionality is of little help in our case because what we need is for the
decryptor to be able to recover the value 〈x,y〉.

Parameter Sizes For Our Constructions. In Table 1, we present the size of the
parameters and ciphertexts for our concrete construction. Each column refers to
an instantiation of our general scheme and is indexed by its underlying assump-
tion. Each row describes the size of an element of the scheme. The master public
key size does not include public parameters that can be re-used such that (g,A).
Message space is the number of different messages that can be decrypted using
this instantiation. The DDH instantiation can give short ciphertexts and keys
using elliptic curves, but requires the computation of a discrete logarithm in the
decryption, which makes it usable for small message space only. LWE enables
short ciphertexts and keys together with a message space that is independent of
the security parameter, which allows shorter ciphertexts for a smaller message
space.
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DDH LWE

mpk ` log p (k + 1)m` log q

msk ` log p (k + 1)n` log q

Ctx (`+ 1) log p (n+ (k + 1)`) log q

Sky log p n log q

message space bounded by computation `r2(k+1)

|{〈x,y〉}| of discrete logarithms computations mod p

Table 1. Parameter Sizes. Here, ` is the length of the vectors encrypted in the cipher-
texts and encoded in the secret keys. In DDH, p is the size of a group element. In LWE,
q is the size of a group element, p is the order of the message space, and k is the size
of a message in base r.

2 Basic Tools

In this section, we recall some of the definitions and basic tools that will be used
in the remaining sections, such as the syntax of code-based games, functional
encryption and the assumptions.

2.1 Notation and Conventions

Let N denote the set of natural numbers. If n ∈ N, then {0, 1}n denotes the set of
n-bit strings, and {0, 1}∗ is the set of all bit strings. The empty string is denoted
ε. More generally, if S is a set, then Sn is the set of n-tuples of elements of S,
S≤n is the set of tuples of length at most n. If x is a string then |x| denotes its

length, and if S is a set then |S| denotes its size. If S is finite, then x
R← S denotes

the assignment to x of an element chosen uniformly at random from S. If A is
an algorithm, then y ← A(x) denotes the assignment to y of the output of A on

input x, and if A is randomized, then y
R← A(x) denotes that the output of an

execution of A(x) with fresh coins is assigned to y. Unless otherwise indicated,
an algorithm may be randomized. “PT” stands for polynomial time and “PTA”
for polynomial-time algorithm or adversary. We denote by λ ∈ N the security
parameter. A function ν : N → [0, 1] is said to be negligible if for every c ∈ N
there exists a λc ∈ N such that ν(λ) ≤ λ−c for all λ > λc, and it is said to be
overwhelming if the function |1− ν(λ)| is negligible.

Let ei be the vector with all 0 but one 1 in the i-th position.

Code-Based Games. We use the code-based game-playing [BR06] to define the
security notions. In such games, there exist procedures for initialization (initial-
ize) and finalization (Finalize) and procedures to respond to adversary oracle
queries. A game G is executed with an adversary A as follows. First, initialize
executes and its outputs are the inputs to A. Then A executes, its oracle queries
being answered by the corresponding procedures of G. When A terminates, its
output becomes the input to the Finalize procedure. The output of the latter,
denoted G(A), is called the output of the game, and “G(A) = y” denotes the
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event that the output takes a value y. Boolean flags are assumed initialized to
false. Games Gi,Gj are identical until bad if their code differs only in statements
that follow the setting of bad to true.

2.2 Public-Key Encryption

Definition 1 (Public-Key Encryption Scheme). A public-key encryption
(PKE) scheme E is a tuple E = (Setup,Encrypt,Decrypt) of 3 algorithms:

1. Setup(1λ) outputs public and secret keys (pk, sk) for security parameter λ;

2. Encrypt(pk,m), on input public key pk and message m in the allowed mes-
sage space, outputs ciphertext Ct;

3. Decrypt(sk,Ct) on input secret key sk and ciphertext Ct, outputs messages
m′.

In addition we make the following correctness requirement: for all (pk, sk)←
Setup(1λ), all messages m and ciphertexts Ct ← Encrypt(pk,m), we have that
Decrypt(sk,Ct) = m except with negligible probability.

We often also allow public-key encryption schemes to additionally depend
on explicit public parameters params (randomly generated in an initial phase
and shared across multiple instances of the PKE scheme) on which all of Setup,
Encrypt, and Decrypt are allowed to depend. Examples include the description
of a group G with its generator g. We will often omit them in the descriptions
of generic constructions from PKE schemes.

Indistinguishability-Based Security. We define security against chosen-plaintext
attacks (IND-CPA security, for short) for a PKE scheme E = (Setup,Encrypt,
Decrypt) via the security game depicted on Figure 1. Then, we say that E is
secure against chosen-plaintext attacks (IND-CPA secure, for short) if∣∣∣Pr[Expind-cpa-0

E,λ (A) = 1]− Pr[Expind-cpa-1
E,λ (A) = 1]

∣∣∣ = negl(λ).

We also define selective security against chosen-plaintext attacks (s-IND-CPA
security, for short) when the challenge messages m∗0 and m∗1 have to be chosen
before hand. Actually, in this case, the procedures initialize and LR can be
merged into an initialize procedure that outputs both the public key pk and
the challenge ciphertext Ct∗.

2.3 Functional Encryption

Following Boneh et al. [BSW11], we start by defining the notion of functionality
and then that of functional encryption scheme FE for functionality F .

Definition 2 (Functionality). A functionality F defined over (K,X) is a
function F : K × X → Σ ∪ {⊥} where K is the key space, X is the mes-
sage space and Σ is the output space and ⊥ is a special string not contained in
Σ. Notice that the functionality is undefined for when either the key is not in
the key space or the message is not in the message space.
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Game Expind-cpa-bE,λ (A)

proc Initialize(λ)

(pk, sk)
R← Setup(1λ)

Return pk

proc Finalize(b′)

Return (b′ = b)

proc LR(m∗0,m
∗
1)

Ct∗
R← Encrypt(mpk ,m∗b)

Return Ct∗

Game Exps-ind-cpa-bE,λ (A)

proc Initialize(λ,m∗0,m
∗
1)

(pk, sk)
R← Setup(1λ)

Return pk

proc LR()

Ct∗
R← Encrypt(pk,m∗b)

Return Ct∗

Fig. 1. Games Expind-cpa-b
E,λ (A) and Exps-ind-cpa-b

E,λ (A) define IND-CPA and s-IND-CPA
security (respectively) of E . The procedure Finalize is common to both games, which
differ in their initialize and LR procedures.

Definition 3 (Functional Encryption Scheme). A functional encryption
(FE) scheme FE for functionality F is a tuple FE = (Setup,KeyDer,Encrypt,
Decrypt) of 4 algorithms:

1. Setup(1λ) outputs public and master secret keys (mpk ,msk) for security
parameter λ;

2. KeyDer(msk , k), on input a master secret key msk and key k ∈ K outputs
secret key skk;

3. Encrypt(mpk , x), on input public key mpk and message x ∈ X outputs
ciphertext Ct;

4. Decrypt(mpk ,Ct, skk) outputs y ∈ Σ ∪ {⊥}.
We make the following correctness requirement: for all (mpk ,msk)← Setup(1λ),
all k ∈ K and m ∈ M , for skk ← KeyDer(msk , k) and Ct ← Encrypt(mpk ,m),
we have that Decrypt(mpk ,Ct, skk) = F (k,m) whenever F (k,m) 6= ⊥2, except
with negligible probability.

Indistinguishability-Based Security. For a functional encryption scheme
FE = (Setup,KeyDer,Encrypt,Decrypt) for functionality F , defined over (K,X),
we define security against chosen-plaintext attacks (IND-CPA security, for short)
via the security game depicted on Figure 2. Then, we say that FE is secure
against chosen-plaintext attacks (IND-CPA secure, for short) if∣∣∣Pr[Expind-cpa-0

FE,λ (A) = 1]− Pr[Expind-cpa-1
FE,λ (A) = 1]

∣∣∣ = negl(λ).

We also define selective security against chosen-plaintext attacks (s-IND-CPA
security, for short) when the challenge messages m∗0 and m∗1 have to be chosen
before hand.

2 See [BO12,ABN10] for a discussion about this condition.
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Game Expind-cpa-bFE,λ (A)

proc Initialize(λ)

(mpk ,msk)
R← Setup(1λ)

V ← ∅
Return mpk

proc KeyDer(k)

V ← V ∪ {k}
skk

R← KeyDer(msk , k)
Return skk

proc LR(m∗0,m
∗
1)

Ct∗
R← Encrypt(mpk ,m∗b)

Return Ct∗

proc Finalize(b′)

if ∃k ∈ V such that
F (k,m∗0) 6= F (k,m∗1)
then return false

Return (b′ = b)

Game Exps-ind-cpa-bFE,λ (A)

proc Initialize(λ,m∗0,m
∗
1)

(mpk ,msk)
R← Setup(1λ)

V ← ∅
Return mpk

proc LR()

Ct∗
R← Encrypt(mpk ,m∗b)

Return Ct∗

Fig. 2. Games Expind-cpa-b
FE,λ (A) and Exps-ind-cpa-b

FE,λ (A) define IND-CPA and s-IND-CPA
security (respectively) of FE . The procedures KeyDer and Finalize are common to
both games, which differ in their initialize and LR procedures.

Inner-Product Functionality. In this paper we are mainly interested in the inner-
product functionality over Zp (IP, for short) defined in the following way. It
is a family of functionalities with key space K` and message space X` both
consisting of vectors in Zp of length `: for any k ∈ K`, x ∈ X` the functionality
IP`(k, x) = 〈k, x〉 mod p. When it is clear from the context we remove the
reference to the length `.

3 Inner-Product from DDH

In this section, we present our first functional encryption scheme for the inner-
product functionality whose security can be based on the plain DDH assumption.

The Decisional Diffie-Hellman assumption. Let GroupGen be a probabilistic
polynomial-time algorithm that takes as input a security parameter 1λ, and out-
puts a triplet (G, p, g) where G is a group of order p that is generated by g ∈ G,
and p is an λ-bit prime number. Then, the Decisional Diffie-Hellman (DDH)
assumption states that the tuples (g, ga, gb, gab) and (g, ga, gb, gc) are computa-
tionally indistinguishable, where (G, p, g) ← GroupGen(1λ), and a, b, c ∈ Zp are
chosen independently and uniformly at random.

Construction 1 (DDH-IP Scheme). We define our functional encryption
scheme for the inner-product functionality IP = (Setup,KeyDer,Encrypt,Decrypt)
as follows:
• Setup(1λ, 1`) samples (G, p, g) ← GroupGen(1λ) and s = (s1, . . . , s`) ← Z`p,

and sets mpk = (hi = gsi)i∈[`] and msk = s. The algorithm returns the pair
(mpk ,msk);

• Encrypt(mpk ,x) on input master public key mpk and message x = (x1, . . . ,
x`) ∈ Z`p, chooses a random r ← Zp and computes ct0 = gr and, for
each i ∈ [`], cti = hri · gxi . Then the algorithm returns the ciphertext
Ct = (ct0, (cti)i∈[`]);
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• KeyDer(msk ,y) on input master secret key msk and vector y = (y1, . . . , y`) ∈
Z`p, computes and outputs secret key sky = 〈y, s〉;

• Decrypt(mpk ,Ct, sky) on input master public key mpk, ciphertext Ct = (ct0,
(cti)i∈[`]) and secret key Sky for vector y, returns the discrete logarithm in
basis g of ∏

i∈[`]

ctyii /ct
sky
0 .

Correctness. For all (mpk ,msk) ← Setup(1λ, 1`), all y ∈ Z`p and x ∈ Z`p, for
sky ← KeyDer(msk ,y) and Ct← Encrypt(mpk ,x), we have that

Decrypt(mpk ,Ct, sk) =

∏
i∈[`] ct

yi
i

ct
sky
0

=

∏
i∈[`](g

sir+xi)yi

gr(
∑
i∈[`] yisi)

= g
∑
i∈[`] yisir+

∑
i∈[`] yixi−r(

∑
i∈[`] yisi)

= g
∑
i∈[`] yixi = g〈x,y〉.

The above scheme limits the expressiveness of the functionality that can
be computed because in order to recover the final inner-product value a discrete
logarithm computation must take place. In the next section, in order to overcome
this limitation and to generalize to other settings we will present a generic scheme
whose security can be based on the semantic security of the underlying public-
key encryption scheme under randomness reuse. Before moving to the generic
scheme and its proof of security, we sketch below the proof of security for the
above IP scheme to offer to the reader useful intuitions that will be reused in
the proof of security of our generic functional encryption scheme for the inner-
product functionality.

Theorem 1. Under the DDH assumption, the above IP scheme is s-IND-CPA.

Proof Sketch. For the sake of contradiction, suppose that there exists an ad-
versary A that breaks s-IND-CPA security of our IP scheme with non-negligible
advantage. Then, we construct a simulator B that given in input an instance of
the DDH assumption, (g, ga, gb, gc) where c is either ab or uniformly random,
breaks it by using A.

If the challenge messages x0 and x1 are different, there exists a vector in the
message space for which the key shouldn’t be known by the adversary (x1 − x0

is one of them).
To generate the master public key, B first generates secret keys for a basis

(zi) of (x1 − x0)⊥. Setting implicitly a as secret key for x1 − x0, B generates
the master public key using ga. Actually, once group elements are generated for
the basis (yi) completed with (x1 − x0), one can find the public key, for the
canonical basis.

To generate the challenge ciphertext, B chooses a random bit µ and using gb

and gc, generates a ciphertext for message xµ.
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Finally, notice that by the constraints of the s-IND-CPA security game, A
is allowed to ask only secret keys for vectors in the vector sub-space generated
by the zi’s, and thus orthogonal to x1 − x0. For those vectors, B will be able to
generate the corresponding secret keys.

Now, if c = ab, then the challenge ciphertext is a well-distributed ciphertext
of the message xµ. On the other hand, if c is random, the challenge ciphertext
encrypts message ux0 + (1 − u)x1 where u is uniformly distributed and in this
case µ is information theoretically hidden: for all sky asked, since y is orthogonal
to x1−x0, and thus 〈x0,y〉 = 〈x1,y〉, while the ciphertexts decrypt to the inner
products

〈ux0 + (1− u)x1,y〉 = u〈x0,y〉+ (1− u)〈x1,y〉
= u〈xµ,y〉+ (1− u)〈xµ,y〉
= 〈xµ,y〉 .

4 A Generic Inner-Product Encryption Scheme

In this section, we present a generic functional encryption scheme for the inner-
product functionality based on any public-key encryption scheme that possesses
some specific properties. The security of this scheme can be then based solely
on the semantic security of the underlying public-key encryption scheme.

We start with a public-key scheme E = (Setup,Encrypt,Decrypt) whose se-
cret keys are elements of a group (G,+, 0G), public keys are elements of group
(H, ·, 1H), and messages are elements of Zq for some q.

In addition, we rely on three other special properties of the cryptosystem.
First, we require that it remains secure when we reuse randomness for encrypting
under different keys [BBS03]. Then, we require some homomorphic operation,
on the keys and on the ciphertexts. More specifically:

Randomness Reuse. We require the ciphertexts to consist of two parts ct0
and ct1. The first part ct0 corresponds to some commitment C(r) of the
randomness r used for the encryption. The second part ct1 is the encryption
E(pk, x; r) in a group (I, ·, 1I) of the message x under public key pk and
randomness r.
Then, we say that a PKE has randomness reuse (RR, for short) if E(pk, x; r)
is efficiently computed given the triple (x, pk, r), or the triple (x, sk,C(r))
where sk is a secret key corresponding to pk. (In [BBS03], this property is
also called reproducibility and guarantees that it is secure to reuse random-
ness when encrypting under several independent public keys. The idea of
randomness reuse was first considered by [Kur02]);

Linear Key Homomorphism. We say that a PKE has linear key homomor-
phism (LKH, for short) if for any two secret keys sk1, sk2 ∈ G and any y1, y2 ∈
Zq, the component-wise G-linear combination formed by y1sk1 + y2sk2 can
be computed efficiently only using public parameters, the secret keys sk1
and sk2 and the coefficients y1 and y2. And this combination y1sk1 + y2sk2
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also functions as a secret key, with a corresponding public key that can be
computed efficiently from y1, y2 and the public keys pk1 and pk2 of sk1 and
sk2 respectively, fixing the same public parameters, for example pky11 · pk

y2
2 .

Linear Ciphertext Homomorphism Under Shared Randomness. We
say that a PKE has linear ciphertext homomorphism under shared random-
ness (LCH, for short) if E(pk1pk2, x1 + x2; r) can be efficiently computed
from E(pk1, x1; r),E(pk2, x2; r) and C(r), for example E(pk1pk2, x1 +x2; r) =
E(pk1, x1; r)·E(pk2, x2; r). (It doesn’t actually have to be pk1pk2 but a public
key corresponding to sk1 + sk2 if sk1 and sk2 are secret keys corresponding
to pk1 and pk2).

4.1 Construction

Construction 2 (PKE-IP Scheme). Let E = (Setup,Encrypt,Decrypt) be a
PKE scheme with the properties defined above, we define our functional encryp-
tion scheme for the inner-product functionality IP = (Setup,KeyDer,Encrypt,
Decrypt) as follows.
• Setup(1λ, 1`) calls E’s key generation algorithm to generate ` independent

(sk1, pk1), . . . , (sk`, pk`) pairs, sharing the same public parameters params.
Then, the algorithm returns mpk = (params, pk1, . . . , pk`) and msk = (sk1,
. . . , sk`).

• KeyDer(msk ,y) on input master secret key msk and a vector y = (y1, . . . , y`)
∈ Z`q, computes sky as an G-linear combination of (sk1, . . . , skn) with coeffi-
cients (y1, . . . , y`), namely sky =

∑
i∈[`] yi · ski.

• Encrypt(mpk ,x) on input master public key mpk and message x = (x1, . . . ,
x`) ∈ Z`q, chooses shared randomness r in the randomness space of E, and
computes ct0 = E .C(r) and cti = E .E(pki, xi; r). Then the algorithm returns
the ciphertext Ct = (ct0, (cti)i∈[`]).

• Decrypt(mpk ,Ct, sky) on input master public key mpk, ciphertext Ct = (ct0,
(cti)i∈[`]), and secret key Sky for vector y = (y1, . . . , y`), returns the output
of E .Decrypt(Sky, (ct0,

∏
i∈[`] ct

yi
i )).

Correctness. For all (mpk ,msk) ← Setup(1λ, 1`), all y ∈ Z`q and x ∈ Z`q, for
sky ← KeyDer(msk ,y) and Ct← Encrypt(mpk ,x), we have that

Decrypt(mpk ,Ct, sky) = E .Decrypt(Sky, (ct0,
∏
i∈[`]

ctyii ))

= E .Decrypt(Sky, (ct0,
∏
i∈[`]

E .E(pki, xi; r)
yi))

= E .Decrypt(Sky, (ct0, E .Encrypt(
∏
i∈[`]

pkyii ,
∑
i∈[`]

yixi; r)))

=
∑
i∈[`]

yixi .
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by the LCH property. Finally, note that the decryption is allowed because
(Sky,

∏
i∈[`] pk

yi
i ) is a valid key pair, due to the LKH property.

4.2 Proof of Security

In this section, we prove the following theorem:

Theorem 2. If the underlying PKE E is s-IND-CPA, even under randomness-
reuse, and satisfies the LKH and LCH properties, then the IP scheme of Sec-
tion 4.1 is s-IND-CPA.

Proof. This proof follows the intuition provided in the proof sketch of Theo-
rem 1. To prove the security of our scheme we will show that the s-IND-CPA
game is indistinguishable from a game where the challenge ciphertext encrypts a
random combination of the challenge messages whose coefficients sum up to one.
Thus, the challenge ciphertext decrypts to the expected values and information
theoretically hides the challenge bit.

More specifically, given an adversary A that breaks the s-IND-CPA security
of our IP scheme with non-negligible probability ε, we construct an adversary
B that breaks the s-IND-CPA security of the underlying PKE scheme E with
comparable probability.
B starts by picking a random element a in the full message space of the

underlying PKE E , and sends challenge messages 0 and a to the challenger C of
PKE security game. C answers by sending an encryption Ct = (ct0, ct1) of either
0 or a and public key pk.
B then invokes A on input the security parameter and gets two different

challenge messages in output, namely (xi = (xi,1, . . . , xi,`))i∈{0,1} both in Z`q.
Recall that, by the constraints of security game, the adversary can only issue

secret key queries for vectors y such that 〈x0,y〉 = 〈x1,y〉. Thus, we have that
〈y,x1 − x0〉 = 0 meaning that y is in the vector space defined by (x1 − x0)⊥.

Then, B generates the view for A in the following way:

Public Key. To generate master public key mpk , B does the following. First, B
finds a basis (z1, z2, . . . , z`−1) of (x1−x0)⊥. Then we can write the canonical
vectors in this basis: for i ∈ [`], j ∈ [`− 1], there exist λi,j ∈ Zq and αi ∈ Zq
such that:

ei = αi(x1 − x0) +
∑

j∈[`−1]

λi,jzj . (1)

Then, for j ∈ [`− 1], B sets (pkzj , skzj ) = E .Setup(1λ), and for i ∈ [`],

γi =
∏

j∈[`−1]

pkλi,jzj and pki = pkαiγi.

Eventually, B invokes A on input mpk = (pki)i∈[`].
Notice that, B is implicitly setting ski = αisk +

∑
j∈[`−1] λi,jskzj because of

the LKH property, where sk is the secret key corresponding to pk, which is
unknown to B.
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Challenge Ciphertext. B computes the challenge ciphertext Ct∗ as follows. B
randomly picks b

R← {0, 1}, computes E .E(γi, 0; r) from ct0 and
∑
j∈[`−1] λi,j

skzj and E .E(1H , xb,i; r) from secret key 0G and ct0, by randomness reuse. B
then sets

ct∗0 = ct0 and (ct∗i = ctαi1 · E .E(γi, 0; r) · E .E(1H , xb,i; r))i∈[`] ,

Then the algorithm returns the challenge ciphertext Ct∗ = (ct∗0, (ct
∗
i )i∈[`]).

Secret Keys. To generate a secret key for vector y, B computes sky as

sky =
∑

j∈[`−1]

∑
i∈[`]

yiλi,j

 skzj

At the end of the simulation, if A correctly guesses b, then B returns 0 (B
guesses that C encrypted 0), else B returns 1 (B guesses that C encrypted a).
This concludes the description of adversary B.

It remains to verify that B correctly simulates A’s environment.

First see that the master public key is well distributed, because we are just
applying a change of basis to a well distributed master public key. Now it holds
that αi =

x1,i−x0,i

‖x1−x0‖2 because

x1,i − x0,i = 〈x1 − x0, ei〉

= αi‖x1 − x0‖2 +
∑

j∈[`−1]

λi,j〈x1 − x0, zj〉

= αi‖x1 − x0‖2 .

Now recall that a vector y satisfying the security game constraints is such
that 〈y,x0〉 = 〈y,x1〉, so∑

i∈[`]

yiαi =
∑
i∈[`]

yi
x1,i − x0,i
‖x1 − x0‖2

= 0

which in turn implies that a secret key sky for the vector y is distributed as

sky =
∑
i∈[`]

yiski =
∑
i∈[`]

yiαisk +
∑
i∈[`]

∑
j∈[`−1]

yiλi,jskzj

=
∑

j∈[`−1]

∑
i∈[`]

yiλi,j

 skzj

On the other hand, if A asks for a secret key for some vector y /∈ (x1 − x0)⊥, B
would need to know sk in order to generate a correct secret key for y.

Now, we have to analyze the following two cases, depending on which message
was encrypted by C in the challenge ciphertext:
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1. C encrypted 0. Then, the challenge ciphertext Ct∗ for message xb is dis-
tributed as

ct∗0 = ct0

and

ct∗i = E .E(pk, 0; r)αi · E .E(γi, 0; r) · E .E(1H , xb,i; r)

= E .E(pki, xb,i; r) ,

thanks to the LCH property, and then as in the real game.
Thus, in this case, B generates a view identical to that A would see in the
real game. Hence, the advantage of B in this game is ε, the same advantage
as A against s-IND-CPA of IP when 0 has been encrypted.

2. C encrypted a. First, in Equation 1, we have αi = (x1,i − x0,i)/‖x1 − x0‖2.
Let us analyze the distribution of the challenge ciphertext in this case. We
have ct∗0 = ct0 and

ct∗i = E .E(pk, a; r)αi · E .E(γi, 0; r) · E .E(1H , xb,i; r)

= E .E(pki, xb,i + αia; r)

= E .E(pki, x̂i; r),

thanks to the LCH property, where x̂i is defined as follows:

x̂i = xb,i + αia =
a

‖x1 − x0‖2
(x1,i − x0,i) + xb,i

=
a

‖x1 − x0‖2
(x1,i − x0,i) + x0,i + b(x1,i − x0,i).

Let us set u = a/‖x1−x0‖2 + b, which is a random value in the full message
space of E , given that a is random in the same space, then x̂i = ux1,i + (1−
u)x0,i. Then, the challenge ciphertext is a valid ciphertext for the message
x̂ = ux1 + (1 − u)x0, which is a random linear combination of the vectors
x0 and x1 whose coefficients sum up to one, as expected. Notice that b is
information theoretically hidden because the distribution of u is independent
from b. Hence, the advantage of B in this game is 0, when a random non-zero
a has been encrypted.

Eventually, this shows that ε is bounded by the best advantage one can get
against s-IND-CPA of E . Hence, taking the maximal values, the best advantage
one can get against s-IND-CPA of IP is bounded by the best advantage one can
get against s-IND-CPA of E .

5 Instantiations

5.1 Instantiation from DDH

The scheme of Section 3 can be obtained by plugging into our generalization
the ElGamal encryption scheme [ElG85] which supports the properties that we
require. Namely:
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RR, LKH and LCH properties. The secret key space of this PKE is the group
(Zp,+, 0), and the public key space is the group (G,×, 1). It is easy to see that
pka1pk2 is the public key corresponding to the secret key ask1 + sk2, and that

ct1 · ct′1 = pkrgm · pk
′rgm

′
= (pk · pk′)r · gm+m′

.

For RR, see that ctsk0 = pkr.

5.2 Instantiation from LWE

The LWE Assumption. The learning with errors (LWE) problem was introduced
by Regev [Reg05]. Let n, q be integer parameters. For any noise distribution χ
on Zq, and vector s ∈ Znq , the oracle LWEq,n,χ(s) samples a fresh random n-
dimensional vector a ← Znq , as well as noise e ← χ, and returns (a, 〈a, s〉 + e).
The LWE assumption with noise χ states that for every PPT distinguisher D,

Pr[s← Znq : DLWEq,n,χ(s) = 1]− Pr[s← Znq : DLWEq,n,U (s) = 1] = negl(n),

where U is the uniform distribution on Zq.

In other words, in addition to a, the oracle LWEq,n,U (s) simply returns uni-
form random samples, independent of s. In general, the error distribution χ is
chosen to be a discrete Gaussian on Zq.

Let n ∈ Z+ be a security parameter. Let q = q(n), m = m(n), and 1 < p < q
be positive integers. Let α = α(n) be positive real Gaussian parameters. Let
r = r(n) ≥ 2 be an integer and define k = k(n) := blogr qc.

Construction 3 (LWE-PKE Scheme). We define our public-key encryption
scheme E = (Setup,Encrypt,Decrypt) as follows.

– Setup(1n) samples A ← Zm×nq . Then, for γ = 0, . . . , k, samples sγ ← Znq
and computes bγ = Asγ + eγ ∈ Zmq , where eγ ← χm. Then, the algorithm
sets pk = (A, (bγ)γ) and sk = (sγ)γ , and returns the pair (pk, sk).

– Encrypt(pk, x) on input public key pk, and message x ∈ Zp, chooses random
r← {0, 1}m and computes

ct0 = A>r ∈ Znq

and, for γ = 0, . . . , k,

ctγ = 〈r,bγ〉+

⌊
q

p

⌋
rγxγ ∈ Zq,

where
∑
γ xγr

γ = x. Then the algorithm returns the ciphertext Ct = (ct0,
(ctγ)γ).

– Decrypt(pk,Ct, sk) on input public key pk, ciphertext Ct = (ct0, (ctγ)) and
secret key sk, returns the evaluation

y =

⌊
p

q
·
(∑

ctγ − 〈ct0, sk〉
)⌉

.
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Semantic security. Notice that the above scheme is the Regev scheme where
the message is r-decomposed to ensure that the error doesn’t grow too much.
Then, the proof of the semantic security of this encryption scheme can be found
in [Reg05]. Essentially, the proof relies on two key properties:

– A>r ∈ Znq is computationally indistinguishable from a random vector;
– Distinguishing a Asγ + eγ from a random vector is breaking the LWE as-

sumption.

RR, LKH and LCH properties. The secret key space of this PKE is the group
((Znq )k+1,+,0), and the public key space is the group ((Zmq )k+1,+,0).
It is easy to see that apk1 + pk2 corresponds to the secret key ask1 + sk2, and
that

ctγ + ct′γ = 〈r,bγ〉+

⌊
q

p

⌋
rγxγ + 〈r,b′γ〉+

⌊
q

p

⌋
rγx′γ

= 〈r,bγ + b′γ〉+

⌊
q

p

⌋
rγ(xγ + x′γ).

For RR, see that 〈A>r, s〉 = 〈r,As〉.
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