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Abstract. We construct the first fully homomorphic encryption (FHE)
scheme that encrypts matrices and supports homomorphic matrix addi-
tion and multiplication. This is a natural extension of packed FHE and
thus supports more complicated homomorphic operations. We optimize
the bootstrapping procedure of Alperin-Sheriff and Peikert (CRYPTO
2014) by applying our scheme. Our optimization decreases the lattice ap-
proximation factor from Õ(n3) to Õ(n2.5). By taking a lattice dimension
as a larger polynomial in a security parameter, we can also obtain the
same approximation factor as the best known one of standard lattice-
based public-key encryption without successive dimension-modulus re-
duction, which was essential for achieving the best factor in prior works
on bootstrapping of standard lattice-based FHE.

1 Introduction

Fully homomorphic encryption (FHE) allows us to evaluate any function over en-
crypted data by only using public information. This can be used, for example, to
outsource computations to remote servers without compromising privacy. Since
the breakthrough work by Gentry [12,13], many different varieties of FHE have
been proposed [5–8,11,17,18]. To date, the fastest (and simplest) FHE based on
the standard lattice assumption is the one by Gentry, Sahai, and Waters [17].
(hereafter, referred to as GSW-FHE). However, it is required to take heavy cost
for evaluating a large number of ciphertexts. The way to deal with this issue is
to pack multiple messages into one ciphertext.

Packing messages allows us to apply single-instruction-multiple data (SIMD)
homomorphic operations to all encrypted messages. In the case where a remote
server stores encrypted data and we want to retrieve certain data from this server,
we first apply the equality function to every encrypted data. If the stored data
have been packed into one ciphertext, we can do that by only one homomorphic
evaluation of the equality function. Smart and Vercautren [25], for the first time,
showed that applying the Chinese reminder theorem (CRT) to number fields
partitions the message space of the Gentry’s FHE [12, 13] scheme into a vector
of plaintext slots. On the standard lattice-based FHE schemes, Brakerski, Gentry,
and Halevi [4] used the method of [22], which described a way to construct packed



Regev’s encryption [23], to pack messages in the FHE variants [5–7] of [23]. In
this paper, we construct a matrix variant of [17] (whose security is also based on
the standard lattice assumption) to implement SIMD homomorphic operations,
and describe how to bring out the potential of our scheme: specifically optimizing
bootstrapping.

The bootstrapping technique [12, 13] is currently the only way to go from
limited amount of homomorphism to unlimited amount of homomorphism. The
limited nature is caused by noise terms included in ciphertexts of all known FHE,
which are needed to ensure security. Since homomorphic operations increases the
noise level and the noise prevents us from correctly decrypting ciphertexts if the
level increases too high, it is required to consider methods that reduce the noise.
The bootstrapping technique is the one of such a methods, and achieved by
homomorphically evaluating the decryption circuit of FHE.

There have recently been the significant progresses [1, 9] in improving the
bootstrapping procedure on standard lattice-based FHE. Their progresses stem
from the observation that noise terms in ciphertexts of GSW-FHE grow asym-
metrically: for a parameter n (the dimension in the underlying lattice assump-
tion), the noise of multiplication between two ciphertexts with noise size e1 and
e2 grows to e1 + poly(n) · e2. For example, if we want to multiply ℓ ciphertexts
with the same noise size in sequence, the noise in the result increases by a factor
of ℓ ·poly(n), which is in contrast to the noise blowup factor for all known FHE,
poly(n)log ℓ. To suppress the growth in noise from the bootstrapping procedure,
the two recent developments [1, 9] tried to sequentialize the decryption circuit.

Brakerski and Vaikuntanathan [9] transformed the decryption circuit of [17]
to a branching program by using the Barrington’s theorem [2], and homomor-
phically evaluated the program. Since the Barrington’s theorem can convert the
decryption circuit to a polynomial length branching program, evaluating the
program increases the noise by a factor of poly(n). This procedure, however, has
a significant drawback: the Barrington’s theorem generates a branching program
of large polynomial length. The scheme [9] also used a kind of dimension lever-
aging technique and successive dimension-modulus reduction to obtain the best
approximation factor that is the same as standard lattice-based (plain) PKE.

Unlike most previous works, Alperin-Sheriff and Peikert [1] viewed the de-
cryption as an arithmetic circuit. The decryption of all known standard lattice-
based FHE consists of the inner product and rounding: for a ciphertext vector
c and secret key vector s, the decryption algorithm computes ⌊⟨c, s⟩⌉2 ∈ {0, 1}
(where ⌊·⌉2 is the rounding function introduced later). The authors observed
that the inner product in the decryption can be expressed as a subset sum of the
secret key elements. The subset sum can be computed only in the additive group,
and the additive group is isomorphic to a group of cyclic permutations. The au-
thors rewrote the inner product to the sequence of compositions of the cyclic
permutations. Since this does not use the Barrington’s theorem, the bootstrap-
ping procedure of [1] can refresh ciphertexts faster and keep the noise growth in a
smaller polynomial than that of [9], but the underlying security assumption was



slightly stronger than that of [9] 3. In addition, the procedure of [1] was not fully
sequentialized, that is, there is a little room for sequentializing the decryption:
the rounding.

1.1 Our Results

In this paper, we construct the first FHE scheme that encrypts matrices and sup-
ports homomorphic matrix operations. This is a natural extension of packed FHE
and supports more complicated homomorphic operations. Using this scheme, we
fully sequentialize and thus optimize the bootstrapping procedure of [1]. The
result of the optimization is described in the following:

Theorem 1. Our optimized bootstrapping scheme can be secure assuming the
hardness of approximating the standard lattice problem to within the factor Õ(n1.5λ)
on any n dimensional lattices.

For 2λ hardness, we need to take n = Ω(λ). Asymptotically minimal selec-
tion of n = Õ(λ) leads to the approximation factor Õ(n2.5) for the underlying
worst-case lattice assumption, which is smaller than Õ(n3), the factor of [1].
Using a kind of dimension leveraging technique: selecting a larger dimension
n = λ1/ϵ for ϵ ∈ (0, 1), we can also obtain the best known approximation factor,
Õ(n1.5+ϵ), without successive dimension-modulus reduction, which was essential
for achieving the best factor in the prior works on bootstrapping of standard
lattice-based FHE.

1.2 Our Techniques

Matrix GSW-FHE. The starting point of our scheme is the GSW-FHE scheme.

In that scheme, a ciphertext of a plaintext m ∈ {0, 1} is a matrix C ∈ Z(n+1)×N
q

such that sC = m · sG+ e for a secret key vector s ∈ Zn+1
q , small noise vector

e ∈ ZN , and fixed matrix G ∈ Z(n+1)×N
q . A simple extension of the plaintext

space from bits to binary vectors cannot yield plaintext-slot-wise addition and
multiplication. Instead, we use matrices to store binary vectors in their diagonal
entries. Actually, our construction even supports homomorphic matrix addition
and multiplication that are richer than homomorphic plaintext-slot-wise opera-
tions.

Let S ∈ Zr×(n+r)
q be a secret key matrix, B ∈ Zn×m

q be a Learning with

Errors (LWE) matrix such that SB ≈ 0, and G ∈ Z(n+r)×N be a fixed matrix.
To encrypt a square integer matrix M ∈ {0, 1}r×r, the ciphertext C ∈ Z(n+r)×N

must be of the form BR + XG for a matrix X ∈ Z(n+r)×(n+r) such that
SX = MS, and small random matrix R ∈ Zm×N . The ciphertext C satisfies
SC = E + MSG for a small noise matrix E ∈ Zr×N . Homomorphic matrix

3 By using successive dimension-modulus reduction, [1] can also obtain the same ap-
proximation factor as that of [9].



addition is just matrix addition. For example, given two ciphertexts C1 and C2,
it holds that

S(C1 +C2) = (E1 +E2) + (M1 +M2)SG.

Homomorphic matrix multiplication corresponds to a simple preimage sampling

and matrix multiplication. For a matrix C ∈ Z(n+r)×N
q , let G−1(C) be the

function that outputs a matrix X ′ ∈ ZN×N
q such that GX ′ ≡ C (mod q). If we

let X ′
2

R←−G−1(C2), then it holds that

SC1X
′
2 = (E1 +M1SG)X ′

2

= E1X
′
2 +M1E2 +M1M2SG.

Now, the problem is how to construct a matrix X such that SX = MS. By
construction, S includes an identity matrix: S = [I ∥ S′] for a matrix S′ ∈ Zr×n

q .
The idea is to make X have MS in its top rows and 0 below. This X clearly
satisfies the condition, but cannot publicly be computed without knowing the
secret key. We translate the resulting symmetric scheme to the asymmetric one
by using the method similar to [3, 24]. In particular, let M (i,j) ∈ {0, 1}r×r

(i, j = 1, . . . , r) be the matrix with 1 in the (i, j)-th entry and 0 in the others.
We first publish symmetric encryptions of M (i,j) for all i, j ∈ [r]. A ciphertext
for a plaintext matrix M is publicly computed by summing up all encryptions
of M (i,j) such that the (i, j)-th entry of M is equal to 1, and using B to
randomize the sum. Since the public key includes the ciphertexts that encrypt
partial information of the secret key, security of our scheme cannot directly be
proven from the LWE assumption. The way to deal with this problem is to
introduce a circular security assumption.

Optimizing Bootstrapping of [1]. For a dimension d and modulus q, let
c ∈ {0, 1}d be the ℓ − 1-th column of a binary GSW-FHE ciphertext under
the secret key s ∈ Zd

q . Since the decryption algorithm of GSW-FHE computes
⌊⟨c, s⟩⌉2 (⌊·⌉2 is the rounding function that outputs 1 if the input is close to q/4

and 0 otherwise), and ⟨c, s⟩ =
∑d

i=1 cisi =
∑

i∈[d]:ci=1 si, the decryption can

be viewed as a subset sum of {si}i∈[d]. To bootstrap ciphertexts, we only have
to be able to compute additions in Zq homomorphically. The additive group
Z+
q is isomorphic to a group of cyclic permutations, where x ∈ Z+

q corresponds
to a cyclic permutation that can be represented by an indicator vector with 1
in the x-th position. The permutation matrix can be obtained from the cyclic
rotation of the indicator vector. The addition in Z+

q leads to the composition
of the permutations (i.e., the multiplication of the corresponding permutation
matrices), and the rounding function ⌊·⌉2 : Zq → {0, 1} can be computed by
summing the entries of the indicator vector corresponding to those values in Zq.

The bootstrapping procedure of [1] consists of two parts that compute an
inner product and a rounding operation. The rounding checks equalities and
computes summation. The matrix GSW-FHE scheme allows us to rewrite the
bootstrapping procedure except for the summation as a sequence of homomor-
phic matrix multiplications, while the procedure of [1] computes only the inner



product part as a sequence. Intuitively, our optimization use the matrix GSW-
FHE scheme to sequentialize the bootstrapping procedure of [1]. The asymmetric
noise growth property is more effective in estimating how much noise the proce-
dure yields.

The inner product can be computed by compositions of cyclic permutations.
The bootstrapping procedure of [1] represents elements in Zq as cyclic permu-
tations, and evaluates their compositions by the naive matrix multiplication
algorithm on the ciphertexts that encrypt every elements in the permutation
matrices. Instead of that, our bootstrapping procedure uses homomorphic ma-
trix multiplication to directly evaluate the compositions. The rounding part tests
for every value close to q/4 whether the output of the inner product part en-
crypts the permutation corresponding to the value, and sums their results (that
are 0 or 1). Our procedure also use homomorphic matrix multiplication to realize
the equality test. The result of the inner product is represented as an indicator
vector, and encrypted component-wise in a SIMD encryption. The inner prod-
uct equals to x if and only if its indicator vector has 1 in the x-th position. The
homomorphic equality test between the inner product and x is computed by ho-
momorphically permuting x-th slot to the first slot in the SIMD ciphertext. The
result of the test is encrypted in the first slot. From the above, the bootstrapping
procedure except for the summation can be represented as a sequence of Õ(λ)
homomorphic multiplications for a security parameter λ.

1.3 Related Work

Multilinear maps [10,14,15] are extensions of bilinear maps, and built from vari-
ants of FHE. The new multilinear maps construction of Gentry, Gorbunov, and
Halevi [15] also starts from GSW-FHE. Recall that in GSW-FHE, a ciphertext

of m ∈ {0, 1} is a matrix C ∈ Z(n+1)×N
q such that sC = m · sG+ e for a secret

key vector s ∈ Z(n+1)
q and small noise vector e ∈ ZN . That is, valid ciphertexts

of GSW-FHE have the secret key as the approximate eigenvector and the mes-
sage as the eigenvalue. The multilinear maps construction of [15] replaced the
approximate eigenvector with the approximate eigenspace by increasing the di-
mension. In the construction, an encoding of M ∈ Zr×r is a matrix C ∈ ZN×N

q

such that SC = E + MS for a random matrix S ∈ Zr×N
q and small noise

matrix E ∈ Zr×N . The approximate eigenspace is the matrix S. To obtain the
encoding C, the construction samples a preimage of MS +E for the function
fS(x) = Sx mod q. In our scheme, a ciphertext C ∈ ZN×N

q of M ∈ Zr×r is a
preimage of

BR+

(
MS
0

)
G

for the function fG. Since the ciphertext C satisfies (SG)C = M(SG)+E for
a small noise matrix E ∈ Zr×N , the matrix SG can be seen as the approximate
eigenspace.



1.4 Organization

In Section 2, we describe some preliminaries on the LWE assumption and sub-
gaussian random variables. In Section 3, we present how to construct a matrix
variant of [17]. In Section 4, we show that our scheme improves the bootstrapping
procedure of [1].

Acknowledgement. We thank anonymous PKC reviewers for their helpful
comments.

2 Preliminaries

We denote the set of natural numbers by N, the set of integers by Z , the set of
rational numbers by Q, and the set of real numbers by R. Let G be some group
and P be some probability distribution, then we use a

U←−G to denote that a is
chosen from G uniformly at random, and use b

R←−P to denote that b is chosen
along P. We take all logarithms to base 2, unless otherwise noted.

We assume that vectors are in column form and are written by using bold
lower-case letters, e.g., x, and the i-th element of a vector is denoted by xi. We
denote the ℓ∞ norm (the maximum norm) of the vector x by ∥x∥∞, and the ℓ2
norm (the Euclidean norm) of x by ∥x∥2. The inner product between two vectors
is denoted by ⟨x,y⟩. Matrices are written by using bold capital letters, e.g., X,
and the i-th column vector of a matrix is denoted by xi. For a matrix X ∈
Rm×n, we define the ℓ∞ and ℓ2 norms of X as ∥X∥∞ := maxi∈[n]{∥xi∥∞} and
∥X∥2 := maxi∈[n]{∥xi∥2}, respectively. For a matrix X ∈ Rm×n, the notation

XT ∈ Rn×m denotes the transpose of X. For matrices A ∈ Rm×n1 and B ∈
Rm×n2 , [A ∥ B] ∈ Rm×(n1+n2) denotes the concatenation of A with B. When
we refer to the n× n identity matrix, we denote it by In.

2.1 Learning with Errors

The learning with errors (LWE) assumption was first introduced by Regev [23].

Definition 1 (DLWE). For a security parameter λ, let n := n(λ) be an integer
dimension, let q := q(λ) ≥ 2 be an integer modulus, and let χ := χ(λ) be an error
distribution over Z. DLWEn,q,χ is the problem to distinguish the following two
distributions: In the first distribution, a tuple (ai, bi) is sampled from uniform
over Zn

q × Zq; In the second distribution, s
U←−Zn

q and then a tuple (ai, bi) is

sampled by sampling ai
U←−Zn

q , ei
R←−χ, and setting bi := ⟨ai, s⟩ + ei mod q. The

DLWEn,q,χ assumption is that DLWEn,q,χ is infeasible.

Recall that GapSVPγ is the promise problem to distinguish between the case
in which the lattice has a vector shorter than r ∈ Q, and the case in which all
the lattice vectors are greater that γ · r. SIVPγ is the problem to find the set
of short linearly independent vectors in a lattice. DLWEn,q,χ has reductions to



the standard lattice assumptions as follows. These reductions take χ to be a dis-
crete Gaussian distribution DZ,αq (that is centered around 0 and has parameter
αq for some α < 1), which is statistically indistinguishable from a B-bounded
distribution (i.e., E[X] = 0 and |X| ≤ B) for an appropriate B.

Corollary 1 ( [19–21, 23]). Let q := q(n) ∈ N be a power of primes q := pr

or a product of distinct prime numbers q :=
∏

i qi (qi := poly(n) for all i), and
let α ≥

√
n/q. If there exists an efficient algorithm that solves (average-case)

DLWEn,q,DZ,αq
,

– there exists an efficient quantum algorithm that can solve GapSVPÕ(n/α) and
SIVPÕ(n/α) in the worst-case for any n-dimensional lattices.

– if in addition we have q ≥ Õ(2n/2), there exists an efficient classical algo-
rithm that can solve GapSVPÕ(n/α) in the worst-case for any n-dimensional
lattices.

2.2 Subgaussian

A real random variable X is subgaussian with parameter s if for all t ∈ R, its
(scaled) moment generating function holds E[exp(2πtX)] ≤ exp(πs2t2). Any B-
bounded (centered) random variable X is subgaussian with parameter B ·

√
2π.

Subgaussian random variables have the following two properties that can be
easily obtained from the definition of subgaussian random variables:

– Homogeneity: If the subgaussian random variable X has parameter s, then
cX is subgaussian with parameter cs.

– Pythagorean additivity: For two subgaussian random variables X1 and X2

(that is independent from X1) with parameter s1 and s2, respectively, X1 +
X2 is subgaussian with parameter

√
s21 + s22.

The above can be extended to vectors. A real random vector x is subgaussian
with parameter s if for all real unit vectors u, their marginal ⟨u,x⟩ is subgaus-
sian with parameter s. It is clear from the definition that the concatenation of
subgaussian variables or vectors, each of which has a parameter s and is inde-
pendent of the prior one, is also subgaussian with parameter s. The homogeneity
and Pythagorean additivity also hold from linearity of vectors. It is known that
the euclidean norm of the subgaussian random vector has the following upper
bound.

Lemma 1 ( [26]). Let x ∈ Rn be a random vector that has independent sub-
gaussian coordinates with parameter s. Then there exists a universal constant C
such that Pr[∥x∥2 > C · s

√
n] ≤ 2−Ω(n).

To suppress the growth in noise, Gentry et al. [17] made use of a procedure
that decomposes a vector in binary representation. Alperin-Sheriff and Peikert [1]
observed that instead of the decomposition procedure, using the following algo-
rithm G−1 that samples a subgaussian random vector allows us to re-randomize
errors in ciphertexts and tightly analyze the noise growth in [17]. Lemma 2 can
be extended to matrices in the obvious way. Let gT := (1, 2, 22, . . . , 2⌈log q⌉−1)
and G := gT ⊗ In.



Lemma 2 ( [1], which is adapted from [20]). There is a randomized, ef-
ficiently computable function G−1 : Zn

q → Zn·⌈log q⌉ such that for any a ∈ Zn
q ,

x
R←−G−1(a) is subgaussian with parameter O(1) and a = [Gx]q

2.3 Homomorphic Encryption, Circular Security, and Bootstrapping

Here we describe the syntax of homomorphic encryption scheme to introduce a
definition of circular security and the Gentry’s bootstrapping theorem. Let M
and C be the message and ciphertext space. A homomorphic encryption scheme
consists of four algorithms, {KeyGen,Enc,Dec,Eval}.

– KeyGen(1λ): output a public encryption key pk, a secret decryption key sk,
and a public evaluation key evk.

– Encpk(m): using a public key pk, encrypt a plaintextm ∈M into a ciphertext
c ∈ C.

– Decsk(c): using a secret key sk, recover the message encrypted in the cipher-
text c.

– Evalevk(f, c1, . . . , cℓ): using the evaluation key evk, output a ciphertext cf ∈ C
that is obtained by applying the function f :Mℓ →M to c1, . . . , cℓ.

To prove the security of our construction, we introduce a special kind of
circular security for a homomorphic encryption scheme.

Definition 2 (Circular security). Let K be the key space defined by a secu-
rity parameter λ. Let f be a function from K to C. A homomorphic encryption
scheme HE = {KeyGen,Enc,Dec,Eval} is circular secure with respect to f if for
all probabilistic polynomial-time adversary A, the advantage of A in the following
game is negligible in λ:

1. A challenger computes (pk, sk, evk)
R←−KeyGen(1λ), and chooses a bit b

U←−{0, 1}.
2. Let f+ :M×M→M be a function that computes f+(x, y) := x+ y ∈M.

The challenger computes a challenge ciphertext c∗ as follows and sends it to
A.

c∗ :=

{
Evalevk(f+,Encpk(0), f(sk)) if b = 0,
Encpk(0) ∈ C otherwise.

3. A outputs a guess b′ ∈ {0, 1}.

The advantage of A is Pr[b = b′]− 1/2.

In LWE-based FHE schemes, Evalevk(f+,Encpk(0), f(sk)) can be seen as a kind
of ciphertexts that encrypt f(sk). This is why we call the above security notion
circular security.

Gentry’s bootstrapping theorem states the way to go from limited homo-
morphism to unlimited homomorphism. This relates to augmented decryption
circuits.



Definition 3 (Augmented decryption circuit). Let (sk, pk, evk) be a tuple
of keys generated appropriately, and C be the set of decryptable ciphertexts. Then
the set of augmented decryption functions {fc1,c2}c1,c2∈C is defined by

fc1,c2(x) = Decx(c1) ∧ Decx(c1).

That is, the function uses its input as the secret key, decrypts c1 and c2, and
returns the NAND of the results.

Theorem 2 (Bootstrapping theorem [12, 13]). A scheme that can evalu-
ate the family of the augmented decryption circuits can be transformed into a
“leveled” FHE scheme (in which KeyGen takes as additional input 1L and we
can only evaluate depth L circuits) with the same decryption circuit, ciphertext
space, and public key.

In addition, if the above scheme is weak circular secure (remains secure
against an adversary that can obtain encryptions of the bits of the secret key), it
can be “pure” FHE scheme (in which the number of homomorphic evaluations
is unlimited).

3 Matrix GSW-FHE

We translate [17] to be able to encrypt a matrix and homomorphically compute
matrix addition and multiplication. This is a natural extension of packed FHE
schemes. In Section 3.1, we present our matrix FHE scheme. In Section 3.2, we
discuss the relationship between our scheme and packed FHE schemes.

3.1 Construction

Let λ be the security parameter. Our scheme is parameterized by an integer
lattice dimension n, an integer modulus q, and a distribution χ over Z that is
assumed to be subgaussian , all of which depends on λ. We let ℓ := ⌈log q⌉,
m := O((n + r) log q) , and N := (n + r) · ℓ. Let r be the number of bits to be
encrypted, which defines the message space {0, 1}r×r. The ciphertext space is

Z(n+r)×N
q . Our scheme uses the rounding function ⌊·⌉2 that for any x ∈ Zq, ⌊x⌉2

outputs 1 if x is close to q/4, and 0 otherwise. Recall that gT = (1, 2, . . . , 2ℓ−1)
and G = gT ⊗ In+r.

– KeyGen(1λ, r): Set the parameters n, q, m, ℓ, N , and χ as described above.
Sample a uniformly random matrix A

U←−Zn×m
q , secret key matrix S′ R←−χr×n,

and noise matrix E
R←−χr×m. Let S := [Ir ∥ −S′] ∈ Zr×(n+r)

q . We denote by
sTi the i-th row of S. Set

B :=

(
S′A+E

A

)
∈ Z(n+r)×m

q .



Let M (i,j) ∈ {0, 1}r×r (i, j = 1, . . . , r) be the matrix with 1 in the (i, j)-th

position and 0 in the others. For all i, j = 1, . . . , r, first sampleR(i,j)
U←−{0, 1}m×N ,

and set

P (i,j) := BR(i,j) +

(
M (i,j)S

0

)
G ∈ Z(n+r)×N

q .

Output pk := ({P (i,j)}i,j∈[r],B) and sk := S.

– SecEncsk(M ∈ {0, 1}r×r): Sample a randommatricesA′ U←−Zn×N
q andE

R←−χr×N ,

parse S = [Ir ∥ −S′], and output the ciphertext

C :=

[(
S′A′ +E

A′

)
+

(
MS
0

)
G

]
q

∈ Z(n+r)×N
q .

– PubEncpk(M ∈ {0, 1}r×r): Sample a random matrix R
U←−{0, 1}m×N , and

output the ciphertext

C := BR+
∑

i,j∈[r]:M [i,j]=1

P (i,j) ∈ Z(n+r)×N
q ,

where M [i, j] is the (i, j)-th element of M .

– Decsk(C): Output the matrix M = (⌊⟨si, cjℓ−1⟩⌉2)i,j∈[r] ∈ {0, 1}r×r.

– C1⊕C2: Output Cadd := C1+C2 ∈ Z(n+r)×N
q as the result of homomorphic

addition between the input ciphertexts.

– C1 ⊙C2: Output Cmult := C1G
−1(C2) ∈ Z(n+r)×N

q as the result of homo-
morphic multiplication between the input ciphertexts.

Definition 4. We say that a ciphertext C encrypts a plaintext matrix M with
noise matrix E if C is an encryption of M and E = SC −MSG (mod q).

The following lemma states the correctness of our asymmetric encryption.
Similar to this, the correctness of our symmetric encryption can be proven im-
mediately.

Lemma 3. If a ciphertext C encrypts a plaintext matrix M ∈ {0, 1}r×r with
noise matrix E such that ∥E∥∞ < q/8, then Decsk(C) = M .

Proof. We have

SC = S

(
BR+

∑
i,j∈[r]:M [i,j]=1 BR(i,j) +

(
MS
0

)
G

)
= ER+

∑
i,j∈[r]:M [i,j]=1 ER(i,j) +MSG

= ER+
∑

i,j∈[r]:M [i,j]=1 ER(i,j) + [M(gT ⊗ Ir) ∥ −MS′(gT ⊗ In)]

Because of ∥E(R +
∑

i,j∈[r]:M [i,j]=1 R(i,j))∥∞ < q/8 and 2ℓ−2 ∈ [q/4, q/2), for

all i, j = 1, . . . , r, ⟨si, cjℓ−1⟩ ≈ q/4 if mi,j = 1, and ⟨si, cjℓ−1⟩ ≈ 0 otherwise.



Security of SecEnc directly holds from DLWEn,q,χ. For a matrixM ∈ {0, 1}r×r,

let fM be a function from Zr×(n+r)
q to Z(n+r)×N

q such that for a matrix S ∈
Zr×(n+r)
q ,

fM (S) =

(
MS
0

)
G ∈ Z(n+r)×N

q .

The security of PubEnc directly holds by DLWEn,q,χ and assuming our scheme
circular secure with respect to fM (i,j)

.

Lemma 4. Let B,M (i,j),R(i,j),P (i,j) (i, j = 1, . . . , r) be the matrices gener-
ated in KeyGen, and R be the matrix generated in PubEnc. For every i, j =
1, . . . , r, if our scheme is circular secure with respect to fM (i,j)

and DLWEn,q,χ

holds, then the joint distribution (B,BR(i,j),P (i,j),BR) is computationally in-

distinguishable from uniform over Z(n+r)×m
q ×Z(n+r)×N

q ×Z(n+r)×N
q ×Z(n+r)×N

q .

We need to estimate the noise growth by the evaluation of homomorphic
matrix addition and multiplication. Similar to [1], we employ the properties of
subgaussian random variables for tight analysis. We collect the results of the
estimation in the following lemma.

Lemma 5. Let S ∈ Zr×(n+r) be a secret key matrix. Let C1 ∈ Z(n+r)×N
q

and C2 ∈ Z(n+r)×N
q be ciphertexts that encrypt M1 ∈ {0, 1}r×r and M2 ∈

{0, 1}r×r with noise matrices E1 ∈ Zr×N and E2 ∈ Zr×N , respectively. Let
eT1,i ∈ Z1×N (i = 1, . . . , r) be the i-th row vector of E1. Let Cadd := C1 ⊕ C2

and Cmult
R←−C1 ⊙C2. Then, we have

SCadd = Eadd + (M1 +M2)SG ∈ Zr×N
q ,

SCmult = Emult + (M1M2)SG ∈ Zr×N
q ,

where Eadd := E1 +E2 and Emult := E +M1E2. In particular, E has in the
i-th row the independent subgaussian entries with parameter O(∥e1,i∥2).

Proof. We can immediately prove the statements for Cadd. For Cmult, we have

SCmult = SC1G
−1(C2)

= (E1 +M1SG)G−1(C2)

= E1G
−1(C2) +M1E2 +M1M2SG.

From the subgaussian properties and Lemma 2, we can see that the i-th row en-
tries ofE := E1G

−1(C2) are independent subgaussian with parameterO(∥e1,i∥2).

Similar to the original GSW scheme, our scheme also has the asymmetric
noise growth property, and thereby computing a polynomial length chain of
homomorphic multiplications incurs the noise growth by a multiplicative poly-
nomial factor. For ease of analyzing our optimized bootstrapping procedure de-
scribed in the next section, we set the following corollary immediately proven



from Lemma 5 and the properties of subgaussian random variables. This corol-
lary includes the fixed ciphertext G ∈ Z(n+r)×N of the message Ir with noise
0. This makes the noise in the output ciphertext subgaussian and independent
from the noise in the input ciphertexts.

Corollary 2. For i = 1, . . . , k, let Ci ∈ Z(n+r)×N be a ciphertext that en-
crypts a message matrix M i ∈ {0, 1}r×r such that for a matrix E ∈ Zr×N ,
∥(M iE)T ∥2 ≤ ∥ET ∥2 with noise matrix Ei ∈ Zr×N . Let

C
R←−

k⊙
i=1

Ci ⊙G = C1 ⊙ (C2 ⊙ (· · · (Ck−1 ⊙ (Ck ⊙G))) · · · ).

For i = 1, . . . , k, let eTi be a row vector of Ei whose norm is equal to ∥ET
i ∥2,

and eT := [eT1 ∥ eT2 ∥ · · · ∥ eTk ] ∈ Z1×kN . Then the noise matrix of C has in
every row the independent subgaussian entries with parameter O(∥e∥2).

Proof. The ciphertext C encrypts the message
∏k

i=1 M i with noise E1X1 +∑k
i=2(

∏i−1
j=1 M j)EiXi, where Xi is the matrix used in the evaluation of each

⊙. By Lemma 5, the elements of E1X1 in every row are independent and
subgaussian with parameter O(∥e1∥2). Since we have ∥(M iE)T ∥2 ≤ ∥ET ∥2,
(
∏i−1

j=1 M j)EiXi has in its every row the independent subgaussian entries with
parameter O(∥ei∥2). By the Pythagorean additivity of subgaussian random vari-

ables, E1X1+
∑k

i=2(
∏i−1

j=1 M j)EiXi has in every row the independent subgaus-
sian entries with parameter O(∥e∥2).

3.2 Relation to Packed FHE

The matrix GSW-FHE above is a natural extension of packed FHE. Plaintext
slots in packed FHE correspond to diagonal entries of plaintext matrices in
the matrix GSW-FHE scheme. It is easy to see that we can correctly compute
homomorphic slot-wise addition and multiplication. In applications of packed
FHE such as in [16], we may want to permute plaintext slots. This can be
achieved by multiplying the encryptions of a permutation and its inverse from
left and right. Security and correctness of the following algorithms clearly holds
from Lemmas 4 and 5.

– SwitchKeyGen(S, σ): Given a secret key matrix S ∈ Zr×(n+r)
q and a permu-

tation σ, let Σ ∈ {0, 1}r×r be a matrix corresponding to σ, and generate

W σ
R←−SecEncS(Σ),

W σ−1
R←−SecEncS(ΣT ).

Output the switch key sskσ := (W σ,W σ−1).
– SlotSwitchsskσ (C): Take as input a switch key sskσ and a ciphertextC, output

Cσ
R←−W σ ⊙ (C ⊙ (W σ−1 ⊙G)),

where G ∈ Z(n+r)×N is the fixed encryption of Ir with noise zero.



One nice feature of our plaintext-slot switching is that it does not suffer
from the inconvenience of the security as in [4]: we do not have to use a larger
modulus than the matrix GSW-FHE scheme. Brakerski et al. [4] made use of
a larger modulus Q = 2ℓq to suppress noise growth when switching decryption
keys, so the security of the plaintext-slot switching in [4] must have related to
Q. The larger modulus leads the larger modulus-to-noise ratio. To obtain the
same security level as the SIMD scheme of [4], it was required to select a larger
dimension. As opposed to this, our plaintext-slot switching can use the same
modulus as the matrix GSW-FHE scheme.

4 Optimizing Bootstrapping

We describe how to optimize the bootstrapping procedure of [1] by using our
scheme. In Section4.1, we present the optimized bootstrapping procedure out-
lined in Section 1.2, whose correctness and security are discussed in Section 4.2.

4.1 Optimized Procedure

Let Q be the modulus of the ciphertext to be refreshed. Using the dimension-
modulus reduction technique [7,9], we can publicly switch the modulus and the
dimension to the arbitrary and possibly smaller ones q, d = Õ(λ). Here, q has
the form q :=

∏t
i=1 ri, where ri are small and powers of distinct primes (and

hence pairwise coprime). The following lemma allows us to choose a sufficiently
large q that the correctness of the dimension-modulus reduction holds by letting
it be the product of all maximal prime powers ri bounded by O(log λ), and then
there exists t = O(log λ/ log log λ).

Lemma 6 ( [1]). For all x ≥ 7, the product of all maximal prime powers ri ≤ x
is at least exp(3x/4).

By CRT, Z+
q is isomorphic to the direct product Z+

r1 × · · · × Z+
rt . For all

i ∈ [t], x ∈ Z+
ri corresponds to a cyclic permutation that can be represented

by a indicator vector with 1 in the x-th position. Let ϕi : Zq → {0, 1}r be the
isomorphism of an element in Zq into the cyclic permutation that corresponds
to an element in Zri , where r := maxi{ri}.

Our optimized bootstrapping procedure consists of two algorithms, BootKeyGen
and Bootstrap. The procedure can be used to refresh ciphertexts of all known
standard LWE-based FHE. We achieve the input ciphertext c ∈ {0, 1}d for
Bootstrap from the dimension-modulus reduction and bit-decomposition of the
ciphertext to be bootstrapped, and let s ∈ Zd

q be a secret key that corresponds
to c. This pre-processing is the same as that in [1], so see for further details.

– BootKeyGen(sk, s): given a secret key sk for our scheme and the secret key
s ∈ Zd

q for ciphertexts to be refreshed, output a bootstrapping key. For every



i ∈ [t] and j ∈ [d], let πϕi(sj) be the permutation corresponding to ϕi(sj),
and compute

τi,j
R←−SecEncsk(diag(ϕi(sj))),

sski,j
R←−SwitchKeyGen(sk, πϕi(sj)),

where for a vector x ∈ Zr, diag(x) ∈ Zr×r is the square integer matrix that
has x in its diagonal entries and 0 in the others. In addition, we generate
hints to check the equality on packed indicator vectors. For every i ∈ [t], and
x ∈ Zq such that ⌊x⌉2 = 1 4, generate

sskϕi(x)
R←−SwitchKeyGen(sk, πϕi(x)),

where πϕi(x) is the cyclic permutation that maps the (x mod ri)-th row to
the first row in the matrix. To mask the first plaintext slot, generate an
encryption of (1, 0, . . . , 0):

P (1,0,...,0)
R←−SecEncsk(diag((1, 0, . . . , 0))).

Output the bootstrapping key

bk := {(τi,j , sski,j ,P (1,0,...,0), sskϕi(x))}i∈[t],j∈[d],x∈Zq :⌊x⌉2=1.

– Bootstrapbk(c): Given a bootstrapping key bk and a ciphertext c ∈ Zd
q , out-

put the refreshed ciphertext C∗. The decryption of all FHE based on the
standard LWE computes ⌊⟨c, s⟩⌉2. The algorithm Bootstrap consists of two
phases that evaluate the inner product and rounding.

Inner Product: For every i ∈ [t], homomorphically compute an encryp-
tion of ϕi(⟨c, s⟩). Let h := min{j ∈ [d] : cj = 1}. For i = 1, . . . , t, set
C∗

i := τi,h, and iteratively compute

C∗
i

R←−SlotSwitchsski,j
(C∗

i )

for j = h+ 1, . . . , d such that cj = 1.
Rounding: For each x ∈ Zq such that ⌊x⌉2 = 1, homomorphically check
the equality between x and ⟨c, s⟩, and sum their results. The refreshed
ciphertext is comuted as:

C∗ R←−
⊕

x∈Zq : ⌊x⌉2=1

⊙
i∈[t]

(
SlotSwitchsskϕi(x)

(C∗
i )
)
⊙ P (1,0,...,0)

 . (1)

The post-processing is almost the same as that in [1] except for the way to
extract a matrix ciphertext. When finishing the bootstrapping procedure, we
have a ciphertext C∗ that encrypts in the first slot the same plaintext as the
ciphertext c. A vector ciphertext like [5, 6, 8] can be obtained to just take the

4 Obviously, our procedure can work on not only the rounding function ⌊·⌉2 but also
some arbitrary functions f : Zq → {0, 1}.



ℓ− 1-th column vector of C∗, and a matrix ciphertext like [17] can be obtained
by removing from the second row to the r-th row and from the l+1-th column to
rl-th column, and aggregating the remainders. We can utilize the key-switching
procedure [5, 8] for switching from s1 back to the original secret key s. This
requires us to assume circular security.

Our bootstrapping procedure is more time- and space- efficient than that
of [1]. The procedure [1] encrypts every elements of the permutation matrices
corresponding to the secret key elements, and homomorphically evaluates naive
matrix multiplications to obtain encryptions of compositions of permutations. In
our procedure, a permutation is encrypted in one ciphertext, and a composition
is computed by two homomorphic multiplications. This makes our procedure
time-efficient by roughly a O(log2 λ) factor, and space-efficient by a O(log λ)
factor.

4.2 Correctness and Security

From the security of our scheme, it is easy to see that our bootstrapping pro-
cedure can be secure by assuming the circular security and DLWE. Correctness
holds as the following lemma.

Lemma 7. Let sk be the secret key for our scheme. Let c and s be a ciphertext
and secret key described in our bootstrapping procedure. Then, for bk

R←−BootKeyGen(sk, s),
the refreshed ciphertext C∗ R←−Bootstrapbk(c) encrypts ⌊⟨s, c⟩⌉2 ∈ {0, 1} in the
first slot.

Proof. From Lemma 5 and group homomorphism of ϕi,C
∗
i encrypts ϕi([⟨s, c⟩]q).

Since Zq is isomorphic to Zr1×· · ·×Zrt by CRT,
⊙

i∈[t](SlotSwitchsskϕi(x)
(C∗

i ))⊙
P (1,0,...,0) encrypts 1 in the first slot if and only if x = ⟨s, c⟩ mod q. Finally, C∗

encrypts 1 if and only if ⌊⟨s, c⟩⌉2 = 1.

Here, we let s be the Gaussian parameter. Recall that n is the LWE di-
mension, r is the number of encrypted bits, ℓ = ⌈logQ⌉, N = (n + r) · ℓ,
t = O(log λ/ log log λ), d = Õ(λ) and q = Õ(λ). We estimate the noise growth
by our optimized bootstrapping procedure.

Lemma 8. For any ciphertext c ∈ {0, 1}d described in our bootstrapping pro-
cedure, the noise in the refreshed ciphertext C∗ R←−Bootstrapbk(c) has indepen-
dent subgaussian entries with parameter O(s

√
nℓdtq), except with probability

2−Ω((n+r)ldt) over the random choice of bk and Bootstrap.

Proof. Since the parenthesized part before the additions in Eq. (1) can be bro-
ken down into a sequence of O(dt) homomorphic multiplications, Corollary 2 and
Lemma 1 tell us that the term has subgaussian noise with parameter O(s

√
Ndt),

except with probability 2−Ω(Ndt). From the Pythagorean additivity of subgaus-
sian random variables and N = (n+ r) · ℓ, the noise in C∗ are subgaussian with
parameter O(s

√
(n+ r)ℓdtq), and so O(s

√
nℓdtq) by the fact n > r.



From the above lemma, we can see that our procedure refreshes ciphertexts
with error growth by the O(

√
nldtq) factor. Our scheme can evaluate its aug-

mented decryption circuit by choosing a larger modulus than the final noise, and
thus be pure FHE by the Gentry’s bootstrapping theorem (Theorem 2) and the
circular security assumption.

Theorem 3. Our optimized bootstrapping scheme can be correct and secure as-
suming

– the quantum worst-case hardness of approximating GapSVPÕ(n1.5λ) and SIVPÕ(n1.5λ),
– or the classical worst-case hardness of approximating GapSVPÕ(n2λ)

on any n dimensional lattice.

Proof. By Lemma 1, to rely on the quantum worst-case hardness, we choose s =
Θ(
√
n). From Lemma 8, for correctness we only have to select Q = Ω̃(nλ logQ),

which satisfies Q = Õ(nλ). Since the LWE inverse error rate is 1/α = Q/s =
Õ(
√
nλ), the security of our bootstrapping scheme is reduced to GapSVPÕ(n1.5λ)

and SIVPÕ(n1.5λ).
In the case of reducing to the classical hardness of the lattice problem, since

1/α = Ω̃(λ
√
n logQ) and we must take Q ≈ 2n/2, the LWE inverse error rate

satisfies 1/α = Ω̃(λ · n). Therefore, the security of our optimized bootstrapping
scheme is reduced to the classical hardness of GapSVPÕ(n2λ).

Since all known algorithms that approximate GapSVP and SIVP on any n
dimensional lattices to within a poly(n)-factor run in time 2Ω(n), the 2λ hardness
requires us to choose n = Θ(λ). This makes the problems to which the security
is reduced in the quantum case have the approximation factor Õ(n2.5), which is
smaller than Õ(n3), the one of [1]’s bootstrapping scheme. In the classical case,
the LWE inverse error rate is 1/α = Ω̃(n2) and hence our approximation factor
is Õ(n3). Furthermore, by selecting a larger dimension n = λ1/ϵ for ϵ > 0 (so
at the cost of efficiency), the approximation factor can be Õ(n1.5+ϵ), which is
comparable to the one of [9] and so the best known factor of standard lattice-
based PKE. Consequently, our optimized bootstrapping scheme can be as secure
as any other standard lattice-based PKE without successive dimension-modulus
reduction, which is essential in all the known bootstrapping procedures [1, 9]
provided recently.
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