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Abstract. A group signature allows a group member to anonymously sign mes-
sages on behalf of the group. In the past few years, new group signatures based
on lattice problems have appeared: the most efficient lattice-based constructions
are due to Laguillaumie et al. (Asiacrypt ’13) and Langlois et al. (PKC ’14). Both
have at leastO(n2 log2 n logN)-bit group public key andO(n log3 n logN)-bit
signature, where n is the security parameter and N is the maximum number of
group members. In this paper, we present a simpler lattice-based group signature,
which is more efficient by aO(logN) factor in both the group public key and the
signature size. We achieve this by using a new non-interactive zero-knowledge
(NIZK) proof corresponding to a simple identity-encoding function. The security
of our group signature can be reduced to the hardness of SIS and LWE in the
random oracle model.

1 Introduction

In a group signature, each group member has a private key that is certified with its
identity by the group manager. By using its private key, each group member is able to
sign messages on behalf of the group without compromising its identity to the signa-
ture verifier. Group signatures provide users a nice tradeoff between authenticity and
anonymity (i.e., given a signature, the verifier is assured that someone in the group
signed a message, but cannot determine which member of the group signed). However,
such a functionality allows malicious group members to damage the whole group with-
out being detected, e.g. signing some unauthorized/illegal messages. To avoid this, the
group manager usually has a secret key which can be used to break anonymity.

Several real-life applications require properties of group signatures. For example,
in trusted computing, a trusted platform module (TPM) usually has to attest certain
statements w.r.t. the current configurations of the host device to a remote party (i.e. the
verifier) via a signature on corresponding messages. After the attestation, the verifier is
assured that some remote device that contains a TPM authorized the messages. For user
privacy, the signature is often required not to reveal the identity of the TPM. In fact,
a variant of group signatures (namely, direct anonymous attestation (DAA) [26,33])
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has been implemented in TPM 1.2 [40] and TPM 2.0 [41] by the Trusted Computing
Group. Another promising application is vehicle safety communications [42], where
group signatures can protect the privacy of users so that a broadcast message does not
reveal the current location/speed of the vehicle. Besides, other applications of group
signatures are found in anonymous communications, e-commerce systems etc.

Since their introduction by Chaum and van Heyst [32], group signatures have at-
tracted much attention from the research community. Bellare, Micciancio and Warin-
schi (BMW) [11] formalized the security of group signatures for static groups (where
the group members are fixed in the system setup phase) in two main notions, i.e., full
anonymity and full traceability. Informally, full anonymity requires that an adversary
without the group manager secret key should not be able to determine the signer’s iden-
tity from a signature, even if it can access an open oracle that returns the identity of any
other (valid) signature. And full traceability implies that no collusion of group members
can create a valid signature which cannot be traced back to one of them (by the group
manager using the group manager secret key). Bellare et al. [11] also gave a theoretical
construction based on the existence of trapdoor permutations. In a weak variant of the
BMW model where the adversary against anonymity is not given access to the open ora-
cle (i.e., CPA-anonymity), Boneh et al. [16] constructed a short group signature scheme
based on the Strong Diffie-Hellman (SDH) [15] and Decision Linear (DLIN) [16] as-
sumptions in the random oracle model [13]. Besides, many papers focused on designing
various group signatures based on different assumptions [9,28,20,21,38,39,1,46,45].

In recent years, lattice cryptography has attracted significant interest, due to several
potential benefits: asymptotic efficiency, worst-case hardness assumptions, and secu-
rity against quantum computers. A natural goal is to find lattice-based counterparts of
all classical cryptographic schemes. In 2010, Gordon et al. [37] made the first step in
constructing secure group signatures from lattices. They elegantly combined several
powerful lattice-based tools [54,57,36] to build a group signature scheme where the
sizes of both the group public key and signature was linear in the maximum number
N of group members. Later, Camenisch el al. [29] proposed a variant of [37] with im-
provements both in efficiency (i.e., shorter group public key) and security (i.e., stronger
adversary against anonymity), but the signature size of their scheme was still linear
in N . Recently, two papers [43,44] have significantly decreased the signature size. By
first representing the identity of group members as a bit-string [19], and then apply-
ing the “encrypt-and-prove” paradigm of [11,37], Laguillaumie et al. [43] constructed
an efficient lattice-based group signature where both the sizes of the group public key
and the signature are proportional to logN (i.e., with bit-length slightly greater than
O(n2 log2 n logN) and O(n log3 n logN), respectively). Using similar identity rep-
resentations together with the non-interactive zero-knowledge (NIZK) proof in [47],
Langlois et al. [44] proposed a nice scheme without encryption, which achieves almost
the same asymptotical efficiency as that of [43], and provides an additional property
called verifier-local revocation [18]. Another interesting group signature is due to Ben-
hamouda et al. [14], for which privacy holds under a lattice-based assumption but the
security is discrete-logarithm-based, i.e. it is not a pure lattice-based group signature.

A current and independent work of Ling, Nguyen and Wang [48] also try to design
an efficient lattice-based group signature scheme. Specifically, by first constructing a
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nice Stern-type [58] NIZK protocol, they propose a scheme which excels previous ones
in [43,44] by a constant factor in terms of efficiency, i.e., all the sizes are still propor-
tional to logN . Besides, they also show how to transform their basic scheme into the
setting of ideal lattices, which can save a factor of n in the size of group public key.

1.1 Our Results

In this paper, we present a new lattice-based group signature. Compared to the best
previous lattice-based schemes [37,43,44], it is both simpler and more efficient, saving
aO(logN) factor in both sizes of the group public key and the signature. As in [43], we
first present a simple CPA-anonymous scheme, which can be easily extended to support
CCA-anonymity (please refer to the full version). The security of both our schemes is
provably based on the hardness of the Small Integer Solutions (SIS) and Learning with
Errors (LWE) problems in the random oracle model, which are both as hard as several
worst-case lattice problems, such as SIVPγ for some polynomial factor γ = poly(n).

In Table 1, we give a rough comparison with related lattice-based group signatures
in terms of the size of the group public-key, the group user secret key and the signature.
There, n denotes the security parameter, andN is the maximum number of group users.
The other two parametersm and q are both polynomial in n (andN ), and are usually de-
termined by the underlying lattices used by those schemes. The integer t used in [43,44]
and our scheme is a repetition parameter for obtaining NIZKs with negligible sound-
ness error. For a security parameter n, one can set t = ω(log n) and m = O(n log n).
The choice of q might be slightly different in those schemes either for security or for
functionality. For example, q is explicitly required to be larger than N in our scheme.
We note that this requirement might also be satisfied in the previous three schemes for
most applications. Besides, even if N < q does not hold in previous schemes, the sizes
of the group public-key and the signature in our scheme are still asymptotically shorter
(since both N and q are polynomials in n, and logN = O(log q) holds).

Table 1. Rough Comparison of Overheads.

Schemes Group public-key User secret-key Signature Security

GKV10 [37] O(nmN log q) O(nm log q) O(nmN log q) CPA-anonymity

LLLS13 [43] O(nm logN log q) O(nm log q) O(tm logN log q) CCA-anonymity

LLNW14 [44] O(nm logN log q) O(m logN log q) O(tm logN log q log β)? CCA-anonymity

Our scheme O(nm log q) O(nm log q) O(t(m+ logN) log q)?? CCA-anonymity

? β = ω(
√
n log q logn) logm is the integer norm bound in [44].

?? Since N is always a polynomial in n (thus in m), this term is actually bounded by
O(tm log q). Besides, we note that group signatures supporting opening should have
a signature in bit-size at least logarithmic in N [11].

Since the schemes in [37,43] and ours follow a general “encrypt-and-prove” paradigm
in [11], we also give a comparison of computational costs between the schemes in [37,43]
and ours at a very high level, i.e., in terms of the number of the underlying encryptions
and basic NIZK proofs, in Table 2. We note that such a comparison is less interesting
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to the scheme in [44], since it departs from the general paradigm and does not make
use of any encryption. Although all three schemes use (almost) the same encryption
(namely [57]), the NIZKs are very different. Concretely, Gordon et al. [37] used a N -
OR variant of the witness-indistinguishable (WI) proof system for the gap version of
the closest vector problem in [54], while the NIZKs used in [43] and ours are derived
from the more efficient protocol [50] for the ISIS problem. In Table 2, we simply com-
pare the complexity of each algorithm of the schemes in [37,43] and ours, with respect
to the number of basic operations in terms of encryptions and basic NIZKs.

Table 2. Rough Comparison of Computational Costs (The encryption and decryption of Regev’s
LWE-based encryption [57] are denoted by enc. and dec., respectively. The proof and verification
of the corresponding basic NIZKs in [54,50] are denoted by pro. and ver., respectively)

Schemes Sign (enc.,pro.,ver.,dec.) Verify (enc.,pro.,ver.,dec.) Open (enc.,pro.,ver.,dec.)

GKV10 [37] (N,O(N),−,−) (−,−, O(N),−) (−,−,−, N/2)
LLLS13 [43] (1 + logN,O(logN),−,−) (−,−, O(logN),−) (−,−,−, 1 + logN)

Our scheme (1,≤ 5,−,−) (−,−,≤ 5,−) (−,−,−, 1)

However, we note that we do not provide a full comparison with all the schemes
in [37,43,44], which would require at least a concrete analysis of the security reduction
(running time, lattice approximation factor, success probability, etc.), which is usually
not explicitly given in the literature.

1.2 Techniques

At a high level, the two constructions in [37,43] and our scheme use the same gen-
eral paradigm as that of [11]. Roughly speaking, the group manager first generates the
group public key gpk and group manager secret key gmsk. For a user with identity
i ∈ {1, . . . , N} (recall that N is the maximum number of group members, and is fixed
at the system setup), the group manager computes the user’s secret key gski corre-
sponding to an encoded “public key” H(gpk, i), where H is an encoding function that
(uniquely) encodes the group user’s identity i in gski. When signing a message m, the
group user proves to the verifier that he has a secret key gski for some i ∈ {1, . . . , N}
(i.e., to prove that he is a legal member of the group). The hardness of this general
paradigm usually lies in the choices of an appropriate encoding function H(gpk, i) and
a compatible non-interactive zero-knowledge (NIZK) for the membership relations de-
termined by H(gpk, i).

Gordon et al. [37] used a simple projective encoding functionH(gpk, i) and a NIZK
extended from [54] to construct the first lattice-based group signature. Informally, the
group public key gpk consists ofN independent public keys of the GPV signature [36],
i.e., gpk = (pk1, . . . , pkN ) where pkj is an integer matrix over Zq for some positive
q ∈ Z, and all j ∈ {1, . . . , N}. The encoding function simply outputs the i-th element
of gpk, i.e.,H(gpk, i) := pki. Due to the particular choice ofH(gpk, i), both the group
public key and the signature of [37] have a size linear in N .
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At Asiacrypt ’13, by using an efficient encoding function inspired by Boyen’s lattice-
based signature [19] and a NIZK derived from [50], Laguillaumie et al. [43] pro-
posed a more efficient lattice-based group signature. Roughly speaking, the group pub-
lic key gpk consists of ` = blogNc + 1 independent matrices over Zq , i.e., gpk =

(A1, . . . ,A`). The encoding function is defined as H(gpk, i) :=
∑`
j=1 ijAj , where

(i1, . . . , il) ∈ Z`2 is the binary decomposition of i. We also note that Langlois et al. [44]
constructed a lattice-based group signature with verifier-local revocation by using the
same identity encoding function but a different NIZK from [47]. Both schemes [43,44]
decreased the sizes of the group public key and the signature to proportional to logN .

An Efficient Identity Encoding. We use a more efficient and compact way to encode
the group member’s identity, by building upon the encoding technique introduced by
Agrawal et al. [2] for identity-based encryption (IBE). Let the group public key gpk
consist of three matrices over Zn×mq for some positive integers n,m, q, i.e., gpk =

(A1,A2,1,A2,2). We defineH(gpk, i) = Âi := (A1‖A2,1 +G(i)A2,2) whereG(·) is
a function from ZN to Zn×nq . Then, the secret key of user i is a short basis of the classi-
cal q-ary lattice Λi determined by H(gpk, i) = Âi, where Λi := {e ∈ Zm s.t. Âie =
0 mod q}. When signing a message, user i samples a short vector ei from Λi (by
using the short basis of Λi) and encrypts it using Regev’s encryption [57]. Then, he
proves to the verifier that ei is a short vector in a lattice determined by H(gpk, i) for
some i ∈ {1, . . . , N}. But we do not know an efficient lattice-based NIZK suitable for
the membership relation determined by H(gpk, i).

Fortunately, since the maximum number of group members N is always bounded
by a polynomial in the security parameter n, we actually do not need an encoding func-
tion as powerful as for IBE [2], where there are possibly exponentially many users. We
simplify the encoding function by defining H(gpk, i) := (A1‖A2,1 + iA2,2). (A sim-
ilar combination of matrices has been used in a different way in [4,17,35] to construct
functional encryption.) Namely, the identity function G(i) := i is used instead of a
function G : ZN → Zn×nq . For collision resistance, we require that N < q. Since N is
usually fixed at the system setup in group signatures for static groups such as [37,43,44]
and ours, one can simply set q big enough (but still a polynomial in n) to satisfy the
requirement. Hereafter, we assume that N < q always holds.

This encoding function provides two main benefits:

– Only three matrices are needed for the encoding function, which provides a short
group public key. By comparison, there are respectively at leastO(N) andO(logN)
matrices needed in [37] and [43].

– It gives a simple membership relation, which allows to construct an efficient NIZK
proof for the relation (please see next paragraph). In [37,43], the NIZKs for rela-
tively complex membership relations are obtained by involving many encryptions,
which results in schemes with large computational costs and signature sizes.

A New Non-interactive Zero-Knowledge (NIZK). Recall that the secret key of user i is a
short basis Ti of the q-ary lattice Λi determined by Âi = (A1‖A2,1 + iA2,2). To sign
a message, user i first samples a short vector (x1,x2) by using Gentry et al.’s Gaussian
sampling algorithm [36] such that A1x1 + (A2,1 + iA2,2)x2 = 0 mod q. Then, he
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generates an LWE encryption c of x1. The final signature σ consists of c, x2, a proof
π1 that c encrypts x1 correctly, and a proof π2 that there exists a tuple (x1, i) satisfying
A1x1 + iA2,2x2 = −A2,1x2 mod q, namely, σ = (c,x2, π1, π2).

The nice properties of the sampling algorithm in [36,31] guarantee that the public
x2 is statistically indistinguishable for all user i ∈ {1, . . . , N}, namely, the verifier
cannot determine the signer’s identity i solely from x2, however, he can efficiently
determine it from (x1,x2), that’s why we choose to encrypt x1. The proof of π1 can
be generated by using the duality of LWE and Small Integer Solutions (SIS) [51], and
the NIZK proof for SIS [50] in a standard way. Thanks to our new identity encoding
function H(gpk, i) and the public x2, we manage to design a NIZK proof (i.e., π2) for
the statement A1x1 + iA2,2x2 = −A2,1x2 mod q based on the hardness of SIS.

Formally, we introduce a new problem called split-SIS, which is a variant of SIS
(and might be of independent interest). Given a split-SIS instance A1,A2,2 ∈ Zn×mq ,
the algorithm is asked to output a triple (x1,x2, h) such that x1,x2 ∈ Zm have small
norms, and h < q = poly(n) is a positive integer satisfying A1x1 + hA2,2x2 = 0
mod q. We first show that the split-SIS problem (associated with an appropriate solution
space) is polynomially equivalent to the standard SIS problem. Then, we derive a family
of hash functions

H =

{
fA1,A2,2(x1,x2, h) = (A1x1+hA2,2x2 mod q,x2) :

(x1,x2, h) ∈ Zm × Zm × Z

}
A1,A2,2∈Zn×mq

from our split-SIS problem, and prove that the hash function family H with appro-
priate domain is one-way, collision-resistant, and statistically hiding with respect to
the third input (i.e., h). Combining those useful properties with the observation that
A1x1 + hA2,2x2 = (A1‖A2,2x2)(x1;h) mod q, we manage to adapt a Σ-protocol
forH from existing protocols for standard ISIS problems [49,50,43], which can in turn
be transformed into a NIZK using the Fiat-Shamir transformation in the random or-
acle model. This finally helps us obtain a lattice-based group signature scheme with
O(tm log q)-bit signature, where the repetition parameter t = ω(log n) is due to our
NIZK as in [43,44].

In order to open a signature σ = (c,x2, π1, π2), the group manager only has to
decrypt c to obtain x1, and computes an integer h < q satisfying A1x1 + hA2,2x2 =
−A2,1x2 mod q. Note that such an integer is unique if A2,2x2 6= 0 mod q for prime
q. Replacing the CPA-encryption of x1 with a CCA one (i.e., by applying the CHK
transformation [30] to the IBEs [36,2]), we obtain a CCA-anonymous group signature
at a minimal price of doubling the sizes of the group public key and the signature.

1.3 On Membership Revocation

A group signature with opening allows the group manager to break the anonymity of
any valid signature, however, it cannot prevent a malicious group member from using
his certificate. In practice, it may be desirable to support membership revocation, e.g.,
to revoke the certificate of a malicious group member such that he cannot sign any
message in the future. Actually, membership revocation is an important and complex
problem and has been extensively studied in the literature [10,18,25,27,45,46]. In [44],
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Langlois et al. constructed a lattice-based group signature with verifier-local revocation,
which was the first lattice-based group signatures supporting membership revocation
and achieved the same asymptotic efficiency as that of [43]. For now, we do not know
how to construct a simpler and efficient group signature with membership revocation
from lattices.

1.4 Roadmap

After some preliminaries, we recall several useful tools and algorithms on lattices in
Section 3. In Section 4, we introduce the split-SIS problems, and construct a NIZK
proof for the split-SIS problems. We finally present our CPA-anonymous group sig-
nature scheme in Section 5. The description of our CCA-anonymous group signature
scheme is deferred to the full version.

2 Preliminaries

2.1 Notation

The set of real numbers (integers) is denoted by R (Z, resp.). By ←R we denote ran-
domly choosing elements from some distribution (or the uniform distribution over some
finite set). For a variable x following some distribution D, we denote it by x v D. For
any integer N ∈ Z, we denote by [N ] the set of integers {0, 1, . . . , N − 1}. Vectors
are in column form and denoted by bold lower-case letters (e.g., x). We view a matrix
simply as the set of its column vectors and denoted by bold capital letters (e.g., X).
Denote the l2 and l∞ norm by ‖ · ‖ and ‖ · ‖∞, respectively. Define the norm of a ma-
trix X as the norm of its longest column (i.e., ‖X‖ = maxi ‖xi‖). If the columns of
X = (x1, . . . ,xk) are linearly independent, let X̃ = (x̃1, . . . , x̃k) denote the Gram-
Schmidt orthogonalization of vectors x1, . . . ,xk taken in that order. For X ∈ Rn×m
and Y ∈ Rn×m′ , (X‖Y) ∈ Rn×(m+m′) denotes the concatenation of the columns
of X followed by the columns of Y. Similarly, for X ∈ Rn×m and Y ∈ Rn′×m,
(X; Y) ∈ R(n+n′)×m is the concatenation of the rows of X followed by the rows of Y.

Throughout this paper, we let n be the natural security parameter, so that all quanti-
ties are implicitly dependent on n. The function log denotes the natural logarithm. We
will frequently use the standard notation of O,ω for classifying the growth of func-
tions. If f(n) = O(g(n) · logc(n)) for some constant c, we write f(n) = Õ(g(n)).
By poly(n) we denote some arbitrary f(n) = O(nc) for some c. We say that a func-
tion f(n) is negligible if for every positive c, we have f(n) < n−c for sufficiently
large n. We denote an arbitrary such function by negl(n), and say that a probability is
overwhelming if it is 1− negl(n).

2.2 Group Signatures

We recall the definition and security model of group signatures. A (static) group signa-
ture scheme GS consists of a tuple of four Probabilistic Polynomial Time (PPT) algo-
rithms (KeyGen,Sign,Verify,Open):
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– KeyGen(1n, 1N ): Take the security parameter n and the maximum number of group
members N as inputs, output the group public key gpk, the group manager secret
key gmsk and a vector of users’ keys gsk = (gsk1, . . . , gskN ), where gskj is the
j-th user’s secret key for j ∈ {1, . . . , N}.

– Sign(gpk, gskj ,M): Take the group public key gpk, the j-th user’s secret key gskj ,
and a message M ∈ {0, 1}∗ as inputs, output a signature σ of M .

– Verify(gpk,M, σ): Take the group public key gpk, a message M ∈ {0, 1}∗ and a
string σ as inputs, return 1 if σ is a valid signature of M , else return 0.

– Open(gpk, gmsk,M, σ): Take the group public key gpk, the group manager secret
key gmsk, a message M ∈ {0, 1}∗, and a valid signature σ of M as inputs, output
an index j ∈ {1, . . . , N} or a special symbol ⊥ in case of opening failure.

For correctness, we require that for any (gpk, gmsk,gsk) ← KeyGen(1n, 1N ),
any j ∈ {1, . . . , N}, any message M ∈ {0, 1}∗, and any σ ← Sign(gpk, gskj ,M), the
following conditions hold with overwhelming probability:

Verify(gpk,M, σ) = 1 and Open(gpk, gmsk,M, σ) = j

For group signatures, there are two security notions: anonymity and traceability [11].
The first notion, informally, says that anyone without the group manager secret key can-
not determine the owner of a valid signature. The second notion says a set C of group
members cannot collude to create a valid signature such that the Open algorithm fails to
trace back to one of them. In particular, this notion implies that any non-group member
cannot create a valid signature.

Experiment Expanon
GS,A(n,N)

(gpk, gmsk,gsk)← KeyGen(1n, 1N )

(st, i0, i1,M
∗)← AOpen(·,·)(gpk,gsk)

b←R {0, 1}
σ∗ ← Sign(gpk, gskib ,M

∗)

b′ ← AOpen(·,·)(st, σ∗)
If b = b′ return 1, else return 0

Experiment Exptrace
GS,A(n,N)

(gpk, gmsk,gsk)← KeyGen(1n, 1N )

(M∗, σ∗)← ASign(·,·),Corrupt(·)(gpk, gmsk)
If Verify(gpk,M∗, σ∗) = 0 then return 0
If Open(gmsk,M∗, σ∗) = ⊥ then return 1
If ∃j∗ ∈ {1, . . . , N} such that

Open(gpk, gmsk,M∗, σ∗) = j∗ and j∗ /∈ C,
and (j∗,M∗) was not queried to Sign(·, ·) by A,

then return 1, else return 0

Fig. 1. Security games for group signatures

Definition 1 (Full anonymity). For any (static) group signature scheme GS , we asso-
ciate to an adversary A against the full anonymity of GS experiment Expanon

GS,A(n,N)
in the left-side of Fig. 1, where the Open(·, ·) oracle takes a valid message-signature
pair (M,σ) as inputs, outputs the index of the user whose secret key is used to create σ.
In the guess phase, the adversary A is not allowed to make an Open query with inputs
(M∗, σ∗). We define the advantage of A in the experiment as

Advanon
GS,A(n,N) =

∣∣∣∣Pr[Expanon
GS,A(n,N) = 1]− 1

2

∣∣∣∣ .
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A group signature GS is said to be fully anonymous if the advantage Advanon
GS,A(n,N)

is negligible in n,N for any PPT adversary A.

In a weak definition of anonymity (i.e., CPA-anonymity), the adversary is not given
access to an open oracle. In this paper, we first present a CPA-anonymous scheme, then
we extend it to satisfy full/CCA anonymity.

Definition 2 (Full traceability). For any (static) group signature scheme GS , we asso-
ciate to an adversaryA against the full traceability of GS experiment Exptrace

GS,A(n,N)
in the right-side of Fig. 1, where the Sign(·, ·) oracle takes a user index i and a message
M as inputs, returns a signature of M by using gski. The Corrupt(·) oracle takes a
user index i as input, returns gski, and C is a set of user indexes that A submitted to
the Corrupt(·) oracle. The advantage of A in the experiment is defined as

Advtrace
GS,A(n,N) = Pr[Exptrace

GS,A(n,N) = 1].

A group signature GS is said to be fully traceable if the advantage Advtrace
GS,A(n,N) is

negligible in n,N for any PPT adversary A.

3 Lattices and Discrete Gaussians

Anm-rank lattice Λ ⊂ Rn is the set of all integral combinations ofm linearly indepen-

dent vectors B = (b1, . . . ,bm) ∈ Rn×m, i.e., Λ = L(B) =

{∑m
i=1 xibi : xi ∈ Z

}
.

The dual lattice of Λ is defined to be Λ∗ =
{

x ∈ span(Λ) : ∀ v ∈ Λ, 〈x,v〉 ∈ Z
}

.
For x ∈ Λ, define the Gaussian function ρs,c(x) over Λ ⊆ Zn centered at c ∈ Rn

with parameter s > 0 as ρs,c(x) = exp
(
− π‖x− c‖2/s2

)
. Letting ρs,c(Λ) =∑

x∈Λ ρs,c(x), define the discrete Gaussian distribution over Λ asDΛ,s,c(y) =
ρs,c(y)
ρs,c(Λ) ,

where y ∈ Λ. The subscripts s and c are taken to be 1 and 0 (respectively) when omit-
ted. For large enough s, almost all the elements from DΛ,s,c are not far from c.

Lemma 1 ([53,36]). For any n-dimensional lattice Λ with basis B ∈ Rn×n, vector
c ∈ Rn, and reals ε ∈ (0, 1), s ≥ ‖B̃‖ · ω(

√
log n), we have Prx←RDΛ,s,c

[‖x− c‖ >
s
√
n] ≤ 1−ε

1+ε · 2
−n.

For anyα ∈ R+, integer q ∈ Z, let Ψα be the distribution over T = R/Z of a normal
variable with mean 0 and standard deviation α/

√
2π, reduced modulo 1. The discrete

distribution Ψ̄α over Zq is the random variable bq ·Xe mod q, where X ←R Ψα. For
simplicity, we denote χα := Ψ̄α.

Lemma 2 ([3]). Let e be some vector in Zm and let y←R χ
m
α . Then the quantity |eTy|

treated as an integer in [0, q−1] satisfies |eTy| ≤ ‖e‖qαω(
√

logm)+‖e‖
√
m/2 with

all but negligible probability in m. In particular, if x←R χα is treated as an integer in
[0, q − 1] then |x| ≤ qαω(

√
logm) + 1/2 with all but negligible probability in m.

We also need the following three useful facts from the literature:

Lemma 3 ([36]). Let n be a positive integer, q be a prime, and m ≥ 2n log q. Then for
all but a 2q−n fraction of all A ∈ Zn×mq and for any s ≥ ω(

√
logm), the distribution

of u = Ae mod q is statistically close to uniform over Znq , where e←R DZm,s.
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3.1 Learning with Errors (LWE) and Small Integer Solutions (SIS)

Let n ∈ Z+ and q = q(n) be integers, α ∈ R+, χα be some discrete Gaussian distribu-
tion over Zq , and s ∈ Znq be some vector. Define As,χα ⊆ Znq × Zq as the distribution
of the variable (a,aT s + x), where a ←R Znq , x ←R χα, and all the operations
are performed in Zq . For m independent samples (a1, y1), . . . , (am, ym) from As,χα ,
we denote it in matrix form (A,y) ∈ Zn×mq × Zmq , where A = (a1, . . . ,am) and
y = (y1, . . . , ym)T . We say that an algorithm solves LWEq,χα if, for randomly cho-
sen s ∈ Znq , given polynomial samples from As,χα it outputs s with overwhelming
probability. The decisional variant of LWE is that, for a uniformly chosen s ←R Znq ,
an algorithm is asked to distinguish As,χα from the uniform distribution over Znq × Zq
(with only polynomial samples). For certain modulus q, the average-case decisional
LWE problem is polynomially equivalent to its worst-case search version [57,55,8].

Proposition 1 ([57]). Let α = α(n) ∈ (0, 1) and let q = q(n) be a prime such that
αq > 2

√
n. If there exists an efficient (possibly quantum) algorithm that solves LWEq,χα ,

then there exists an efficient quantum algorithm for approximating SIVP in the l2 norm,
in the worst case, to within Õ(n/α) factors.

The Small Integer Solution (SIS) problem was introduced by Ajtai [5], but its name
is due to Micciancio and Regev [53], who improved Ajtai’s connection between SIS
and worst-case lattice problems.

Definition 3 (Small Integer Solution). The Small Integer Solution (SIS) problem in l2
norm is: Given an integer q, a uniformly random matrix A ∈ Zn×mq , and a real β, find
a non-zero integer vector e ∈ Zm such that Ae = 0 (mod q) and ‖e‖ ≤ β.

Definition 4 (Inhomogeneous Small Integer Solution). The Inhomogeneous Small
Integer Solution (ISIS) problem in l2 norm is: Given an integer q, a uniformly random
matrix A ∈ Zn×mq , a random syndrome u ∈ Znq , and real β ∈ R, find an integer vector
e ∈ Zm such that Ae = u (mod q) and ‖e‖ ≤ β.

The ISIS problem is an inhomogenous variant of SIS. Both problems were shown
to be as hard as certain worst-case lattice problems.

Proposition 2 ([36]). For any polynomially bounded m,β = poly(n) and prime q ≥
β · ω(

√
n log n), the average-case problems SISq,m,β and ISISq,m,β are as hard as

approximating SIVP in the worst case to within certain γ = β · Õ(
√
n) factors.

3.2 q-ary Lattices and Trapdoors

Let A ∈ Zn×mq for some positive integers n,m and q. Consider the following two
integer lattices:

Λ⊥q (A) =

{
e ∈ Zm s.t. Ae = 0 mod q

}
Λq(A) =

{
y ∈ Zm s.t. ∃s ∈ Zn, ATs = y mod q

}
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The two q-ary lattices defined above are dual when properly scaled, namely Λ⊥q (A) =

qΛq(A)∗ and Λq(A) = qΛ⊥q (A)∗. Moreover, for any h ∈ Z∗q , we have: Λ⊥q (A) =

Λ⊥q (hA).
In 1999, Ajtai [6] showed how to sample an essentially uniform matrix A together

with a short basis of Λ⊥q (A). This trapdoor generation algorithm has been significantly
improved in [7,52].

Proposition 3 ([7]). For any δ0 > 0, there is a PPT algorithm TrapGen that, on input
a security parameter n, an odd prime q = poly(n), and integer m ≥ (5 + 3δ0)n log q,
outputs a statistically (mq−δ0n/2)-close to uniform matrix A ∈ Zn×mq and a ba-
sis TA ⊂ Λ⊥q (A) such that with overwhelming probability ‖TA‖ ≤ O(n log q)

and ‖T̃A‖ ≤ O(
√
n log q) = O(

√
m). In particular, if let δ0 = 1

3 , we can choose
m ≥ d6n log qe.

The following proposition is implied by [31, Lem. 3.2 and Lem. 3.3] which shows
that there is an efficient algorithm to extract a random basis for (A‖B) by using a short
basis of A such that the new basis statistically hides the information of its input basis.

Proposition 4 ([31]). There is a PPT algorithm ExtRndBasis which takes a matrix
A′ = (A‖B) ∈ Zn×(m+m′)

q , a basis TA ∈ Zm×mq of Λ⊥q (A), an arbitrary matrix
B ∈ Zn×m′q , and a real s ≥ ‖T̃A‖ ·ω(

√
logm) as inputs, outputs a random basis TA′

of Λ⊥q (A′) satisfying ‖TA′‖ ≤ s(m+m′) and ‖T̃A′‖ ≤ s
√
m+m′.

Equipped with the above proposition, and the proof technique of [2, Th. 4], we
obtain the following useful proposition:

Proposition 5. Let q > 2,m > n, there is a PPT algorithm ExtBasisRight which
takes matrix A′ = (C‖A‖AR + B) ∈ Zn×(2m+m′)

q , a uniformly and randomly cho-
sen R ∈ {−1, 1}m×m, a basis TB of Λ⊥q (B), arbitrary C ∈ Zn×m′q and a Gaus-
sian parameter s > ‖T̃B‖ ·

√
mω(logm), outputs a basis TA′ of Λ⊥q (A′) satisfying

‖TA′‖ ≤ s(2m+m′) and ‖T̃A′‖ ≤ s
√

2m+m′.

Proof. As shown in the proof of [2, Th. 4], we can use TB to efficiently sample a basis
TÂ for the matrix Â = (A‖AR + B) satisfying ‖T̃Â‖ ≤ ‖T̃B‖ ·

√
mω(
√

logm),
then we can apply Proposition 4 to obtain a basis TA′ for A′ = (C‖Â) satisfying
‖T̃A′‖ ≤ s

√
2m+m′. Besides, by the property of the ExtRndBasis algorithm, the

claim still holds no matter how the (columns of) matrix C appears in A′. �
The following SuperSamp algorithm allows us to sample a random matrix B to-

gether with a short basis such that the columns of B lie in a prescribed affine subspace
of Znq .

Proposition 6 ([43]). Let q > 2,m > d6n log q + ne, there is a PPT algorithm
SuperSamp which takes matrices A ∈ Zn×mq and C ∈ Zn×nq as inputs, and outputs
an almost uniform matrix B ∈ Zn×mq such that ABT = C, and a basis TB of Λ⊥q (B)

satisfying ‖TB‖ ≤ m1.5 · ω(
√

logm) and ‖T̃B‖ ≤ m · ω(
√

logm).
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Given a basis of Λ⊥q (A), there is an efficient algorithm to solve the (I)SIS problem
as follows.

Proposition 7 ([36]). There is a PPT algorithm SamplePre that, given a basis TA

of Λ⊥q (A), a real s ≥ ‖T̃A‖ · ω(
√

logm) and a vector u ∈ Znq , outputs a vector
e v DZm,s satisfying Ae = u.

3.3 Non-interactive Zero-Knowledge Proofs of Knowledge

In 2013, Laguillaumie et al. [43] adapted the protocol of [49,50] to obtain a zero-
knowledge proof of knowledge for the ISIS problem in the random oracle model. Con-
cretely, there is a non-interactive zero-knowledge proof of knowledge (NIZKPoK) for
the ISIS relations

RISIS = {(A,y, β; x) ∈ Zn×mq × Znq × R× Zm : Ax = y and ‖x‖ ≤ β}.

In particular, there is a knowledge extractor which, given two valid proofs with the
same commitment message but two different challenges, outputs a witness x′ satisfying
‖x′‖ ≤ O(βm2) and Ax′ = y. By using the duality between LWE and ISIS, there
exists an NIZKPoK for the LWE relation:

RLWE = {(A,b, α; s) ∈ Zn×mq × Zmq × R× Znq : ‖b−AT s‖ ≤ αq
√
m}.

Actually, as noted in [51], given a random matrix A ∈ Zn×mq such that the columns
of A generate Znq (this holds with overwhelming probability for a uniformly random

A ∈ Zn×mq ), one can compute a matrix G ∈ Z(m−n)×m
q such that 1) the columns

of G generate Zm−nq ; 2) GAT = 0. Thus, to prove (A,b, α; s) ∈ RLWE, one can
instead prove the existence of e such that ‖e‖ ≤ αq

√
m and Ge = Gb. In particular,

in the construction of our group signature we need to prove that for given (A,b) ∈
Zn×mq × Zmq , there exist short vectors (e,x) such that ‖e‖ ≤ αq

√
m, ‖x‖ ≤ β and

b = AT s+pe+x for some s ∈ Znq , where p ≥ (αq
√
m+β)m2. Similarly, this can also

be achieved by proving the existence of short vectors e and x such that pGe + Gx =
Gb using the NIZKPoK for ISIS relations. Formally, denoting γ = max(αq

√
m,β),

there exists an NIZKPoK for the extended-LWE (eLWE) relations

ReLWE = {(A,b, γ; s, e,x) ∈ Zn×mq × Zmq × R× Znq × Z2m :
b = AT s + pe + x and ‖e‖ ≤ γ and ‖x‖ ≤ γ}.

4 Split-SIS Problems

Given uniformly random matrices (A1,A2) ∈ Zn×mq ×Zn×mq , integer N = N(n) and
β = β(n), an algorithm solving the split-SISq,m,β,N problem is asked to output a tuple
(x = (x1; x2), h) ∈ Z2m × Z such that

– x1 6= 0 or hx2 6= 0
– ‖x‖ ≤ β, h ∈ [N ], and A1x1 + hA2x2 = 0.
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Recall that the standard SISq,m′,β problem asks an algorithm to find a root of the
hash function fA(x) = Ax = 0 mod q for a uniformly chosen matrix A and a
“narrow” domain D̂m′,β := {x ∈ Zm′ : ‖x‖ ≤ β}. While for the split-SISq,m,β,N
problem, the algorithm is allowed to “modify” the function by defining fA′(x

′) =
A′x′ for A′ = (A1‖A2x2) with arbitrarily x2 ∈ D̂m,β , and outputs a root x′ =

(x1, h) ∈ D̂m,β × [N ]. Intuitively, the split-SISq,m,β,N problem is not harder than
SISq,2m,β problem. Since if x = (x1,x2) is a solution of the SISq,2m,β instance A =
(A1‖A2), (x, 1) is a solution of the split-SISq,m,β,N instance (A1,A2) with N ≥ 1.

However, for prime q = q(n), and N = N(n) < q of a polynomial in n, we
show in the following theorem that the split-SISq,m,β,N problem is at least as hard as
SISq,2m,β . Thus, the average-case hardness of the split-SIS problem is based on the
worst-case hardness of SIVP by Proposition 2.

Theorem 1 (Hardness of Split-SIS Problems). For any polynomial m = m(n), β =
β(n), N = N(n), and any prime q ≥ β · ω(

√
n log n) > N , the split-SISq,m,β,N

problem is polynomially equivalent to SISq,2m,β problem. In particular, the average-
case split-SISq,m,β,N is as hard as approximating the SIVP problem in the worst case
to within certain γ = β · Õ(

√
n) factors.

Proof. The direction from split-SISq,m,β,N to SISq,2m,β is obvious. We now prove the
other direction. Assume that there is an algorithm A that solves split-SISq,m,β,N with
probability ε, we now construct an algorithm B that solves SISq,2m,β with probability
at least ε/N (recall that N is a polynomial in n). Formally, given a SISq,2m,β instance
Â = (Â1‖Â2) ∈ Zn×2m

q , B randomly chooses an integer h∗ ←R [N ]. If h∗ = 0, B
sets A = Â. Otherwise, B sets A = (h∗Â1‖Â2). Since q is a prime and N < q (i.e.,
h∗ 6= 0 is invertible in Zq), we have that A is uniformly distributed over Zn×2m

q . Then,
B gives A = (A1‖A2) to A, and obtains a solution (x = (x1; x2), h) ∈ Z2m × [N ]
satisfying A1x1 +hA2x2 = 0. If h∗ 6= h, B aborts. (Since h∗ is randomly chosen from
[N ], the probability Pr[h∗ = h] is at least 1/N .) Otherwise, B returns y = (x1; 0) if
h∗ = 0, else returns y = x. The first claim follows from the fact that y 6= 0, ‖y‖ ≤ β

and Ây = 0. Combining this with Proposition 2, the second claim follows. �

4.1 A Family of Hash functions from Split-SIS Problems

We define a new family of hash functions based on the split-SIS problem, which plays a
key role in reducing the sizes of the group public key and the signature in our construc-
tion. Formally, for integers n,m, prime q, and polynomial β = β(n) ≥ ω(

√
logm),

N = N(n) < q, we define Dm,β = {x ←R DZm,β : ‖x‖ ≤ β
√
m}, and a

hash function family Hn,m,q,β,N = {fA : Dm,β,N → Znq × Dm,β}A∈Zn×2m
q

, where
Dm,β,N := Dm,β × Dm,β × [N ]. For index A = (A1‖A2) ∈ Zn×2m

q , and input
(x1,x2, h) ∈ Dm,β,N , the hash value fA(x1,x2, h) := (A1x1 + hA2x2,x2) ∈
Znq ×Dm,β . In the following, we show three properties ofHn,m,q,β,N , which are useful
to construct zero-knowledge proofs for the function inHn,m,q,β,N .

Theorem 2 (One-Wayness). For parametersm > 2n log q, β = β(n) > 2·ω(
√

logm),
prime q = q(n), and polynomial N = N(n) < q, if the split-SISq,m,√5mβ,N problem
is hard, then the family of hash functionsHn,m,q,β,N is one-way.
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Proof. Assume that there is an algorithmA that breaks the one-wayness ofHn,m,q,β,N ,
we construct an algorithm B that solves the split-SISq,m,√5mβ,N problem. Actually,
given a split-SISq,m,√5mβ,N instance A = (A1‖A2) ∈ Zn×2m

q , B randomly chooses
(x1,x2) ∈ DZm,β × DZm,β and h ←R [N ], and computes y = fA(x1,x2, h) =
(A1x1 + hA2x2,x2). Then, it gives (A,y) to A, and obtains (x′1,x

′
2, h
′) satisfying

(A1x
′
1+h′A2x

′
2,x
′
2) = y. Finally, if h ≥ h′,B outputs (x̂1, x̂2, ĥ) = (x1−x′1,x2, h−

h′). Else, B outputs (x̂1, x̂2, ĥ) = (x′1 − x1,x2, h
′ − h).

It is easy to check that A1x̂1 + ĥA2x̂2 = 0 mod q, ĥ ∈ [N ], and ‖(x̂1; x̂2)‖ ≤√
5mβ with overwhelming probability by the standard tail inequality of the Gaussian

distribution DZm,β . We finish this proof by showing that Pr[x̂1 = 0] is negligible in n.
Note that A can only obtain the information about x1 from A1x1. By [36, Lem. 5.2],
this only leaks the distribution t + DΛ⊥q (A1),β,−t for any t satisfying A1t = A1x1.
Namely, x1 should be uniformly distributed over t + DΛ⊥q (A1),β,−t from the view of
A. Combining this with [56, Lem. 2.16], we have Pr[x1 = x′1] is negligible in n. In
other words, we have Pr[x̂ 6= 0] = 1− negl(n), which completes the proof. �

Since fA(x1,0, h) = fA(x1,0, 0) holds for all h ∈ [N ], the function Hn,m,q,β,N
with domain Dm,β,N := Dm,β × Dm,β × [N ] are not collision-resistant. However, if
we slightly restrict the domain of Hn,m,q,β,N to exclude the above trivial case, we can
prove that the family of Hn,m,q,β,N is collision-resistant. Formally, we slightly restrict
the domain ofHn,m,q,β,N to be D′m,β,N = {(x1,x2, h) ∈ Dm,β,N : x2 6= 0}.

Theorem 3 (Collision-Resistance). For parameter m = m(n), β = β(n), prime q =
q(n), and polynomialN = N(n) < q, if the split-SISq,m,√5mβ,N problem is hard, then
the family of hash functionsHn,m,q,β,N with domain D′m,β,N is collision-resistant.

Proof. Assume there is a PPT algorithm A that can find collisions of Hn,m,q,β,N with
non-negligible probability ε, we construct an algorithm B solving split-SISq,m,√5mβ,N

with the same probability. Concretely, after obtaining a split-SISq,m,√5mβ,N instance
A = (A1‖A2), B directly gives A to A, and obtains a pair of collisions (x1,x2, h) ∈
D′m,β,N and (x′1,x

′
2, h
′) ∈ D′m,β,N satisfying (x1,x2, h) 6= (x′1,x

′
2, h
′) and fA(x1,

x2, h) = fA(x′1,x
′
2, h
′). Note that in this case, we must have x2 = x′2 6= 0. If

h ≥ h′, B returns (x̂1, x̂2, ĥ) = (x1 − x′1,x2, h − h′), else it returns (x̂1, x̂2, ĥ) =
(x′1− x1,x2, h

′− h). By the assumption that (x1,x2, h) 6= (x′1,x
′
2, h
′), the inequality

(x̂1, ĥ) 6= 0 holds in both cases, i.e., we always have x̂1 6= 0 or ĥx̂2 6= 0. The claim
follows from the fact that ‖(x̂1; x̂2)‖ ≤

√
5mβ and ĥ ∈ [N ]. �

Finally, we show that the family of hash functionsHn,m,q,β,N statistically hides its
third input.

Theorem 4. Let parameter m > 2n log q, β = β(n) > ω(
√

logm), prime q = q(n),
and polynomial N = N(n). Then, for a randomly chosen A = (A1‖A2) ∈ Zn×2m

q ,
and arbitrarily x2 with norm ‖x2‖ ≤ β

√
m, the statistical distance between the fol-

lowing two distributions:

{(A, fA(x1,x2, h), h) : x1 ←R Dm,β , h←R [N ]}

and
{(A, (u,x2), h) : u←R Znq , h←R [N ]}
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is negligible in n.

Proof. Since the second output of fA(x1,x2, h) (i.e., x2) is independent from the
choices of h, we only have to show that, for arbitrarily x2 and h, the distribution
{A1x1 + hA2x2 : x1 ←R Dm,β} is statistically close to uniform over Znq . Actu-
ally, using the fact that β ≥ ω(

√
logm) together with Lemma 3, we have that the

distribution of A1x1 is statistically close to uniform over Znq when x1 ←R DZm,β . The
claim of this theorem follows from the fact that the statistical distance between DZm,β
and Dm,β is negligible, and that the distribution {u + hA2x2 : u ←R Znq } is exactly
the uniform distribution over Znq for arbitrary x2 ∈ Dm,β , h ∈ [N ]. �

4.2 Zero-Knowledge Proof of Knowledge for the Hash Functions

In this subsection, we present a proof of knowledge protocol for the family of hash func-
tions Hn,m,q,β,N . Concretely, given a matrix A = (A1‖A2), a vector y = (y1,y2) ∈
Znq × Zm with 0 < ‖y2‖ ≤ β

√
m, the prover can generate a proof of knowledge of

x = (x1,x2, h) ∈ Z2m+1 satisfying ‖x1‖ ≤ β
√
m, h ∈ [N ] and fA(x1,x2, h) =

(Ax1 +hA2x2,x2) = y. Since x2 must be equal to y2, the protocol is actually a proof
of knowledge for the relation

Rsplit-SIS = {(A,y, β,N ; x1, h) ∈ Zn×2m
q × (Znq × Zm)× R× Z× Zm × Z :

A1x1 + hA2y2 = y1, ‖x1‖ ≤ β
√
m and h ∈ [N ]}.

Intuitively, we can adapt a variant of the protocols for ISIS relations in [49,50,43]
for our purpose, since one can rewrite y1 = A1x1 + hA2y2 = (A1‖A2y2)(x1;h).
However, this may not work when N � β. Since the basic idea of [49,50,43] is to
use randomness from a “large width” distribution (compared to the distribution of the
witness) to hide the distribution of the witness, the width of the randomness distribution
should be sufficiently larger than N in our case, which might lead to a proof without
soundness guarantee.

Fortunately, we can borrow the “bit-decomposition” technique from [23,22,24] to
deal with large N . The idea is to decompose h ∈ [N ] into a vector of small elements,
and then prove the existence of such a vector for h. Formally, for any h ∈ [N ], we
compute the representation of h in base β̄ = bβc, namely, a `-dimension vector vh =

(v0, . . . , v`−1) ∈ Z` such that 0 ≤ vi ≤ β − 1 and h =
∑`−1
i=0 viβ̄

i, where ` =
dlogβ̄ Ne. Denote b = A2y2, compute D = (b, β̄b, . . . , β̄`−1b) ∈ Zn×`q . It is easy
to check that for any vector e ∈ Z`, there exists a h′ ∈ Zq such that De = h′b

mod q. (h′ ∈ Zq is unique if b 6= 0.) In particular, we have that y1 = Âx̂, where
Â = (A1‖D) ∈ Zn×(m+`)

q , x̂ = (x1; vh) ∈ Zm+` and ‖x̂‖ ≤ β
√
m+ `. Since β̄ > 2

and N is a polynomial in n, we have `� m and ‖x̂‖ < η = β
√

2m.
We first present a Σ-protocol for the function family Hn,m,q,β,N , which repeats a

basic protocol with single-bit challenge t = ω(log n) times in parallel. As in [50,43],
the basic protocol makes use of the rejection sampling technique to achieve zero-
knowledge. Formally, let γ = η ·m1.5, denote ζ(z,y) = 1−min(

DZm+`,γ
(z)

Ml·DZm+`,y,γ
(z) , 1),

where y, z ∈ Zm+`, and the constant Ml ≤ 1 + O( 1
m ) is set according to Lemma 4.5

in [50], the protocol is depicted in Fig 2.
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Prover Verifier

CRS: Â ∈ Zn×(m+`)
q ,y1 ∈ Znq

Private input: x̂ ∈ Zm+`

For i ∈ {0, . . . , t− 1}
ei ←R DZm+`,γ

ui = Âei
U = (u0, . . . ,ut−1)

c←R {0, 1}t
c = (c0, . . . , ct−1)

zi = ei + cix̂
Set zi = ⊥ with probability ζ(zi, cix̂)

Z = (z0, . . . , zt−1)
Set di = 1 if ‖zi‖ ≤ 2γ

√
m+ `

and Âzi = ui + ciy1

Accept iff
∑
i di ≥ 0.65t

Fig. 2. Σ-protocol for Rsplit-SIS

By [50, Th. 4.6], we have Pr[zi 6= ⊥] ≈ 1
Ml

= 1−O( 1
m ) for each i ∈ {0, . . . , t−1}.

In addition, Pr[‖zi‖ ≤ 2γ
√
m+ ` | zi 6= ⊥] = 1 − negl(m) by [50, Lem. 4.4]. A

simple calculation shows that the completeness error of the protocol is at most 2−Ω(t)

(when m is sufficiently large, e.g., m > 100). Besides, the protocol has the property
of special Honest-Verifier Zero Knowledge (HVZK). Namely, given a challenge ci,
there exists a simulator S that outputs a distribution (ui, ci, zi) statistically close to the
real transcript distribution. Concretely, S first chooses zi ←R DZm+`,γ , and computes
ui = Âzi − ciy1 mod q. Then, it sets zi = ⊥ with probability 1 − 1

Ml
, and out-

puts (ui, ci, zi). By Theorem 4, the term Âzi( mod q) is statistically close to uniform
over Znq , thus the distribution of ui is statistically close to that in the real proof. More-
over, by [50, Th. 4.6], the distribution of zi is also statistically close to that in the real
transcripts.

Finally, since the binary challenges (i.e., c ) are used, the above protocol has the
property of special soundness. Actually, given two transcripts (U, c,Z) and (U, c′,Z′)
with distinct challenges c 6= c′, one can extract a “weak” witness x′ = zi−z′i for some
i satisfying Âx′ = y1 and ‖x′‖ ≤ 4γ

√
2m.

Applying the “Fiat-Shamir Heuristic” [34] in a standard way, one can obtain an
NIZKPoK by computing c = H(ρ,U), where H : {0, 1}∗ → {0, 1}t is modeled as a
random oracle, and ρ represents all the other auxiliary inputs, e.g., a specified message
M to be signed. Finally, due to the nice property ofΣ-protocol, one can easily combine
the protocol to prove EQ-relation, OR-relation, and AND-relation, we omit the details.

5 A Simple and Efficient Group Signature from Lattices

In this section, we present our CPA-anonymous lattice-based group signature, which
can be easily extended to support CCA anonymity by replacing the underlying encryp-
tion with a CCA one. We defer the full-anonymous scheme to the full version.
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5.1 Our Construction

Assume that the security parameter is n, and δ is a real such that n1+δ > d(n+1) log q+
ne, all other parameters m, s, α, β, η, p, q are determined as follows:

m = 6n1+δ

s = m · ω(logm)

β = s
√

2m · ω(
√

log 2m) = m1.5 · ω(log1.5m)

p = m2.5β = m4 · ω(log1.5m)

q = m2 ·max(pm2.5 · ω(logm), 4N) = m2.5 max(m6 · ω(log2.5m), 4N)
α = 2

√
m/q

η = max(β, αq)
√
m = m2 · ω(log1.5m)

(1)

Now, we present our group signature GS = (KeyGen,Sign,Verify, Open):

– KeyGen(1n, 1N ): Take the security parameter n and the maximum number N of
group members as inputs, set an integerm ∈ Z, primes p, q ∈ Z, and s, α, β, η ∈ R
as above, and choose a hash function H : {0, 1}∗ → {0, 1}t (modeled as random
oracle) for the NIZKPoK proof, where t = ω(log n). Then, the algorithm proceeds
as follows:
1. Compute (A1,TA1) ← TrapGen(n,m, q), and randomly choose A2,1,A2,2

←R Zn×mq .
2. Compute (B,TB)← SuperSamp(n,m, q,A1,0).
3. For j = 1, . . . , N , define Āj = (A1‖A2,1 + jA2,2), extract a basis TĀj

←
ExtRndBasis(Āj , TA1

, s) such that ‖T̃Āj
‖ ≤ s

√
2m.

4. Define the group public key gpk = {A1,A2,1,A2,2,B}, the group manager
secret key gmsk = TB, and the group member’s secret keys gsk = {gskj =
TĀj
}j∈{1,...,N}

– Sign(gpk, gskj ,M): Take the group public key gpk = {A1,A2,1,A2,2,B}, the
j-th user’s secret key gskj = TĀj

, and a message M ∈ {0, 1}∗ as inputs, proceed
as follows:
1. Compute (x1,x2)← SamplePre(Āj ,TĀj

, β,0), where x1,x2 ∈ DZm,β .
2. Choose s←R Znq , e←R χα, and compute

c = BT s + pe + x1

3. Generate a NIZKPoK proof π1 of (s, e,x1) such that (B, c, η; s, e,x1) ∈
ReLWE.

4. Let β̄ := bβc and ` = dlogβ̄ Ne, define b = A2,2x2, and D = (b, β̄b, . . . ,

β̄`−1b) ∈ Zn×`q . Generate a NIZKPoK π2 of x1, e, and vj = (v0, . . . , v`−1) ∈
Z`
β̄

of j ∈ [N ] such that,

A1c + A2,1x2 = (pA1)e−Dvj , and
A1c = (pA1)e + A1x1

(2)

where the challenge is computed by H(c,x2, π1,M,Com), and Com is the
commitment message for the NIZKPoK proof of π2. (Note that the proof, i.e.,
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π2, is actually a standard composition of our protocol in Section 4.2 and the
protocol for RISIS [43,50] according to the nice property of the underlying Σ-
protocol. More discussions are given in the full version.)

5. Output the signature σ = (c,x2, π1, π2).
– Verify(gpk,M, σ): Parse σ = (c,x2, π1, π2), return 1 if ‖x2‖ ≤ β

√
m, A2,2x2 6=

0, and the proofs π1, π2 are valid, else return 0.
– Open(gpk, gmsk,M, σ): Parse gpk = {A1,A2,1,A2,2,B} and gmsk = TB,

compute x1 by decrypting c using TB. Then, compute y0 = A2,2x2 and y1 =
−A1x1 −A2,1x2. If y0 6= 0 and there is a j ∈ Z∗q such that y1 = j · y0 mod q,
output j, else output ⊥.

Remark 1. One can decrypt c by first computing TT
B · c = TT

B(pe + x1) mod q. If
‖TT

B(pe + x1)‖∞ < q/2, one can expect that TT
B(pe + x1) = (TT

Bc mod q) holds
over Z. Thus, x̂ = (pe + x1) can be solved by using Gaussian elimination over Z since
TB ∈ Zm×m is full-rank. Finally, x1 = x̂ mod p can be successfully recovered if
‖x1‖∞ < p/2.

For the correctness of our group signature scheme, we have the following theorem.

Theorem 5. Assume n is the security parameter, and all other parameters m, s, α, β,
η, p, q are functions of n defined as in (1), where p, q are primes. Then, the group signa-
ture GS is correct, and the group public key and the signature have bit-length 4nm log q
and O(tm log q), respectively, where t = ω(log n).

Proof. Since we set m = 6n1+δ > d6n log q + ne, the two algorithms TrapGen and
SuperSamp can work correctly with overwhelming probability. In particular, we have
‖T̃A1‖ ≤ O(

√
m), and ‖TB‖ ≤ m1.5 ·O(

√
logm) by Proposition 3 and Proposition 6.

By Proposition 4, we have ‖T̃Āj
‖ ≤ s

√
2m for all i ∈ {1, . . . , N} with overwhelming

probability. Since the group public key only contains four matrices over Zn×mq , it has
bit-size 4nm log q = O(nm log q).

For the Sign algorithm, since β = s
√

2m · ω(
√

log 2m) ≥ ‖T̃Āj
‖ · ω(

√
log 2m),

we have x1,x2 v DZm,β by the correctness of the SamplePre algorithm in [36], and
‖xi‖ ≤ β

√
m with overwhelming probability. In addition, since e is chosen from

χα, we have ‖e‖ ≤ αq
√
m with overwhelming probability. By the choices of η =

max(β, αq)
√
m, the algorithm can successfully generate the proofs π1 and π2. For the

bit-length of the signature σ = (c,x2, π1, π2), we know that both the bit-length of c
and x2 are at most m log q. In addition, if we set the repetition parameter t = ω(log n)
for the proof π1 and π2, the bit-length of π1 and π2 are at most (3m − n)t log q and
(2m + 2n + `)t log q, respectively. Thus, the total bit-length of the signature σ is less
than 2m log q + (5m + n + `)t log q = O(t(m + logN) log q) = O(tm log q) since
` = dlogβ̄ Ne � n and m = O(n log q).

Note that x2 v DZm,β ,1 therefore Pr[A2,2x2 = 0] ≤ O(q−n) by Lemma 3.
Moreover, by the completeness of π1 and π2, the algorithm Verify will work correctly

1 As noted by Cash et al. [31], the output distribution of the SamplePre algorithm in [36] is
statistically close to the distribution (x1,x2) that samples as follows: randomly choose x2 ←R

DZm,s, and then compute x1 using TA1 to satisfy the condition A1x1+(A2,1+jA2,2)x2 =
0. We note that this is also the reason why we do not encrypt x2 as in [43], since it leaks little
information about j without x1.
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with overwhelming probability. As for the Open algorithm, we only have to show that
we can correctly decrypt x1 from c by using TB. Since TT

B · c = TT
B(pe + x1)

mod q holds, one can expect that TT
B(pe + x1) = (TT

Bc mod q) holds over Z if
‖TT

B(pe + x1)‖∞ < q/2. Thus, one can solve x̂ = (pe + x1) by Gaussian elimina-
tion over Z since TB ∈ Zm×m is full-rank. Moreover, by the choices of p and β, we
have ‖x1‖∞ ≤ ‖x1‖ < p, therefore x1 can be recovered by computing x̂ mod p. We
finish this proof by showing that ‖TT

B(pe + x1)‖∞ < q/2. Actually, by Lemma 2 and
Lemma 1, we have ‖pe + x1‖ ≤ 3m6 ·ω(log3m). By Proposition 6, we have ‖TB‖ ≤
m1.5 ·ω(

√
logm). It is easy to check that ‖TT

B(pe+x1)‖∞ ≤ 3m8 ·ω(log3.5m)� q,
which satisfies the requirement. �

5.2 The Security.

For security, namely CPA-anonymity and full traceability, we have the following two
theorems.

Theorem 6 (CPA-Anonymity). Under the LWE assumption, our group signature GS
is CPA-anonymous in the random oracle model.

Proof. We prove Theorem 6 via a sequence of games.
In game G0, the challenger honestly generates the group public key gpk = {A1,

A2,1,A2,2,B}, the group manager secret key gmsk = TB, and the group member’s
secret key gsk = {gskj = TĀj

}j∈{1,...,N} by running the KeyGen algorithm. Then,
it gives (gpk,gsk) to the adversary A, and obtains a message M , and two user in-
dexes i0, i1 ∈ {1, . . . , N}. Finally, the challenger randomly chooses a bit b←R {0, 1},
computes σ∗ = (c∗,x∗2, π

∗
1 , π
∗
2)← Sign(gpk, gskib ,M), and returns σ∗ to A.

In Game G1, the challenger behaves almost the same as in G0, except that it uses
the NIZKPoK simulators (by appropriately programming the random oracle) to gener-
ate π∗1 , π

∗
2 . By the property of the NIZKPoKs, G1 is computationally indistinguishable

from G0.
In Game G2, the challenger behaves almost the same as in G1, except that it first

chooses x∗2 from DZm,β , and then uses TA1
to extract x∗1 such that Āib(x

∗
1; x∗2) = 0.

By the property of the SamplePre algorithm from [36,31], Game G2 is statistically
close to Game G1

In Game G3, the challenger behaves almost the same as in G2, except that it com-
putes c∗ = u + x∗1 with a randomly chosen u←R Zmq .

Lemma 4. Under the LWE assumption, GameG3 is computationally indistinguishable
from Game G2.

Proof. Assume there is an algorithm A which distinguishes G2 from G3 with non-
negligible probability. Then, there is an algorithm B that breaks the LWE assumption.
Formally, given a LWE tuple (B̂, û) ∈ Zn×mq × Zmq , B sets B = pB̂, and computes
(A1,TA1

) ← SuperSamp(n,m, q,B,0). Then, it chooses A2,1,A2,2 ←R Zn×mq .
For j = 1, . . . , N , define Āj = (A1‖A2,1 + jA2,2), extract a random basis TĀj

←
ExtRndBasis(Āj ,TA1 , s). Finally, B gives the group public key gpk = {A1,A2,1,
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A2,2,B}, and the group members’ secret keys gsk = {gskj = TĀj
}j∈{1,...,N} to A.

Note that the distributions of gpk,gsk are statistically close to that in Game G2 and G3

by Proposition 4.
When generating the challenge signature, B behaves the same as the challenger in

G2, except that it computes c = pû + x∗1. We note that if (B̂, û) is a LWE tuple with
respect to the error distribution χα, c is the same as in G2. Otherwise, we have that pû
is uniformly distributed over Zmq (since p, q are primes, and p < q), which shows that c
has the same distribution as in G3. If A can distinguish G2 from G3 with advantage ε,
then B can break the LWE assumption with advantage ε− negl(k). �

In Game G4, the challenger behaves almost the same as in G3, except that it ran-
domly chooses c∗ ←R Zmq .

Lemma 5. In Game G4, the probability that b′ = b is exactly 1/2.

Proof. The claim follows from the fact that the signature σ∗ in G4 is independent from
the choice of ib. �

Theorem 7 (Traceability). Under the SIS assumption, our group signature GS is fully
traceable in the random oracle model.

Proof. Assume that there is an adversary A that breaks the full traceability of GS , we
construct an algorithm B breaking the SIS assumption. Formally, B is given a matrix
Â ∈ Zmq and tries to find a solution x̂ ∈ Zmq such that ‖x̂‖ ≤ poly(m) and Âx̂ = 0.

Setup. B randomly chooses R ←R {−1, 1}m×m and j∗ ←R {−4m2.5N + 1, . . . ,
4m2.5N − 1}, and computes (A2,2,TA2,2) ← TrapGen(n,m, q). Then, it sets
A1 = Â and A2,1 = A1R−j∗A2,2. Finally, compute (B,TB)← SuperSamp(n,
m, q,A1,0), and give the group public key gpk = {A1,A2,1,A2,2,B}, and the
group manager secret key gmsk = TB to the adversary A.

Secret Key Queries. Upon receiving the secret key query for user j from A, B aborts
if j = j∗ or j /∈ {1, . . . , N}. Otherwise, it defines Āj = (A1‖A2,1 + j∗A2,2) =
(A1‖A1R+(j−j∗)A2,2), extracts a random basis TĀj

← ExtBasisRight(Āj ,R,

TA2,2
, s),2 and returns it to A.

Sign Queries. Upon receiving a signing query for message M under user j from A, B
returns ⊥ if j /∈ {1, . . . , N}. Else if j = j∗, B generates a signature on M using
the NIZKPoK simulators for π1 and π2 (i.e., by simply choosing c ←R Zmq and
x2 ←R DZm,s). Otherwise, it generates the signature by first extracting the j-th
user’s secret key as in answering the secret key queries.

Forge. Upon receiving a forged valid signature σ = (c,x2, π1, π2) with probability ε,
B extracts the knowledge e,x1 and vj with norm at most 4ηm2 by programming
the random oracle twice to generate two different “challenges”. By the forking
lemma of [12], B can succeed with probability at least ε(ε/qh − 2−t), where qh
is the maximum number of hash queries of A. Then, B decrypts c using TB, and
obtains (e′,x′1), and distinguishes the following cases:

2 Recall that TA2,2 is also a short basis of Λ⊥q (j ·A2,2) for all j 6= 0 mod q.
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– If (x′1, e
′) 6= (x1, e), we have A1c = pA1e + A1x1 = pA1e

′+ A1x
′
1. Thus,

x̂ = p(e−e′)+(x1−x′1) is a solution of the SIS problem,B returns x̂ as its own
solution. Note that in this case, we have ‖x̂‖ ≤ 8(p+1)ηm2 = m8 ·ω(log3m).

– Otherwise, if (x′1, e
′) = (x1, e), we have A1x1 + A2,1x2 + jA2,2x2 = 0 ac-

cording to equation (2) of π2, where j =
∑`−1
i=0 viβ̄

i and vh = (v0, . . . , v`−1).
A simple calculation indicates that |j| < 4m2.5N < q (we note that ‖vh‖ ≤
4ηm2 = 4βm2.5). Since A2,2x2 6= 0 and q is a prime, the open algorithm
will always output j, namely, it will never output ⊥. In addition, if j 6= j∗, B
aborts. Otherwise, B returns x̂ = x1 + Rx2 as its own solution.
Since j∗ is randomly chosen from {−4m2.5N + 1, . . . , 4m2.5N − 1}, the
probability that j∗ = j is at least 1

8m2.5N . Conditioned on j∗ = j, we have
A1x1 + A2,1x2 + jA2,2x2 = A1x1 + A1Rx2 = 0, which shows that
x̂ = x1 + Rx2 is a solution of the SIS problem, in particular, we have ‖x̂‖ ≤
ηm2.5 · ω(

√
logm) = m4.5ω(log2m) by [2, Lem. 5].

In all, the probability that B solves the SIS problem is at least ε(ε/qh−2−t)
8m2.5N , which

is non-negligible if ε is non-negligible. Moreover, since the norm of x̂ is at most m8 ·
ω(log3m) and q ≥ m8.5 · ω(log2.5m), we have that the security of our scheme is
based on the hardness of the SIVP problem in the worst case to within a polynomial
approximation factor, by Proposition 2. �
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