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Abstract. We show by counter-example that the soundness security
requirement for witness encryption given by Garg, Gentry, Sahai and
Waters (STOC 2013) does not suffice for the security of their own ap-
plications. We introduce adaptively-sound (AS) witness encryption to
fill the gap. We then introduce asymmetric password-based encryption
(A-PBE). This offers gains over classical, symmetric password-based en-
cryption in the face of attacks that compromise servers to recover hashed
passwords. We distinguish between invasive A-PBE schemes (they in-
troduce new password-based key-derivation functions) and non-invasive
ones (they can use existing, deployed password-based key-derivation func-
tions). We give simple and efficient invasive A-PBE schemes and use
AS-secure witness encryption to give non-invasive A-PBE schemes.

1 Introduction

This paper introduces (1) witness encryption with adaptive soundness security
and (2) asymmetric password-based encryption (A-PBE). We show how to use
(1) to achieve (2) as well as other goals.

The problem. The security of Internet communication remains ubiquitously
based on client passwords. Standards such as the widely implemented PKCS#5
—equivalently, RFC 2898 [33]— specify password-based encryption (PBE). From
the client password pw , one derives a hashed password hpw = PH(sa,pw), where
sa is a random, user-specific public salt, and PH is a deterministic password-
hashing function. (In the standards, PH(sa,pw) = Ht(sa|pw) where t is an
iteration count andHt denotes the t-fold iteration of cryptographic hash function
H.) The server holds hpw while the client holds (sa,pw). Now the server will
encrypt under hpw using any symmetric encryption scheme, for example CBC-
AES. The client can recompute hpw from (sa,pw) and decrypt using this key.

This classical form of PBE is symmetric: encryption and decryption are both
done under the same key hpw . But this means that anyone who knows hpw can
decrypt. This is a serious vulnerability in practice because of server compromise
leading to exposure of hashed passwords. The Heartbleed attack of April 2014,
allowing an attacker to read large chunks of server memory that can contain sen-
sitive client information including hashed passwords, is a recent and prominent
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instance. Other high-profile attacks that compromised servers to expose client
information include Target (December 2013), Adobe (October 2013), LinkedIn
(June 2012), RSA (March 2011), Sony (2011) and TJ Maxx (2007). According
to CNBC, there were over 600 breaches in 2013 alone.

We emphasize that the problem here is not the possibility of password-
recovery via a dictionary attack based on the hashed password. The problem
is that S-PBE (symmetric PBE) is vulnerable even if the password is well cho-
sen to resist dictionary attack. This is because possession of the hashed password
is already and directly enough to decrypt any prior communications. So under
S-PBE, even well-chosen passwords do not provide security in the face of server
compromise.

A-PBE. We propose asymmetric password-based encryption (A-PBE). Here,
encryption is done under the hashed password hpw , decryption is done under
the password pw , and possession of hpw does not allow decryption. This offers
significantly higher security in the face of the most important attack, namely
server compromise exposing the hashed password hpw .

This paper initiates a foundational treatment of A-PBE including definitions
and both “invasive” and “non-invasive” schemes. At first it may appear that
definitionally A-PBE is just like PKE and brings nothing new, but this is not
true. Not just is security based on passwords, but in practice users pick related
passwords, for example varying a base password by appending the name of the
website, resulting in encryption under related keys. Our definition extends the
S-PBE framework of [10]. Our security model explicitly considers encryption
under multiple passwords, assumed to be individually unpredictable —otherwise
security is not possible— but arbitrarily related to each other.

We give two proven-secure A-PBE schemes that we call APBE1 and APBE2.
Their attributes are summarized in Fig. 1. APBE1 is simple, natural and as effi-
cient as possible, but what we call invasive, is that it specifies its own password-
hashing function PH. APBE2 is non-invasive, meaning able to use any, given
password-hashing function. In particular it can work with in-use, standardized
password hashing functions such as PKCS#5 [33] or bcrypt [34]. If one has the
flexibility of changing PH and the associated password hashes then the first so-
lution is preferable. The second solution may be easier to deploy in the face of
the legacy constraint of millions of existing, PKCS#5 hashed passwords.

APBE1. We specify and analyze the following simple and natural scheme for
A-PBE that we call APBE1. PH, given sa,pw , applies to them a deterministic
function EX to derive a string r, uses this as coin tosses for a key-generation
algorithm PKE.Kg of some standard PKE scheme to get (pk, sk), and outputs
hpw = pk as the hashed password. Encryption is under the encryption algorithm
PKE.Enc of the PKE scheme keyed with hpw = pk. Since PH is deterministic,
decryption under (sa,pw) can re-execute PH to get (sk,pk) and then use sk to
decrypt under PKE.

A natural choice for EX is a randomness extractor [32] with seed sa. But recall
that we require A-PBE to be secure even under multiple, related passwords. To
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Scheme Invasive Assumptions

APBE1 Yes PKE, RIP-secure hash

APBE2 No

AS-secure WE
RIP-secure password hash with large stretch

XS-secure WE
ROW-secure password hash with arbitrary stretch

Fig. 1. Our A-PBE schemes. Both achieve our notion of security for related, un-
predictable passwords. APBE1 has a dedicated password hash (invasive) while APBE2
can work with an arbitrary, legacy one (non-invasive). The first analysis of APBE2 as-
sumes the password hash has large stretch, a restriction dropped in the second analysis
under a stronger form of WE.

achieve this, outputs of EX must be independent even if the input passwords are
related, and an extractor does not guarantee this. Indeed it is not possible for this
to be true information theoretically, meaning if the “independence” is required
to be statistical. We instead target computational independence of the outputs
of EX. We define an appropriate security goal for EX that we call related-input
pseudorandomness (RIP) [29] and show that this together with security of the
base PKE scheme suffices for the security of the A-PBE scheme. In practice, EX
can be efficiently instantiated via HMAC [5].

Non-invasive A-PBE. APBE1 prescribes its own password-hashing algorithm
under which the hashed password hpw is a public key of some existing PKE
scheme. In current practice, however, the hashed password is derived via the
iterated hashing password-hash function of PKCS#5 [33] or alternatives such
as bcrypt [34]. Right now millions of passwords are in use with these particular
password-hashing functions. In the face of this legacy constraint, deployment
of A-PBE would be eased by a scheme that could encrypt under an existing,
given hashed password, regardless of its form. We ask whether such non-invasive
A-PBE is achievable.

This turns out to be challenging, even in principle, let alone in practice. In all
known PKE schemes, the secret and public keys have very specific structure and
are related in very particular ways. How can we encrypt asymmetrically with
the public key being just an arbitrary hash of the secret key?

The answer is witness encryption (WE), introduced by Garg, Gentry, Sahai
and Waters (GGSW) [20]. We will use WE to achieve non-invasive A-PBE. For
this purpose, however, we will need WE schemes satisfying an extension of the
soundness security notion of GGSW [20] that we introduce and call adaptive
soundness security. We define and achieve WE with adaptive soundness and
apply it to achieve non-invasive A-PBE as we now discuss.

SS-secure witness encryption. In a WE scheme [20] for a language L ∈ NP,

the encryption function WE.Enc takes a unary representation 1λ of the security
parameter λ ∈ N, a string x ∈ {0, 1}∗ and a message m to return a ciphertext c. If
x ∈ L then decryption is possible given a witness w for the membership of x in L.
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If x 6∈ L then the message remains private given the ciphertext. The soundness
security (SS) requirement of GGSW [20] formalized the latter by asking that for
any PT adversary A, any x 6∈ L and any equal-length messages m0,m1, there is
a negligible function ν such that

Pr[A(WE.Enc(1λ, x,m1)) = 1]− Pr[A(WE.Enc(1λ, x,m0)) = 1] ≤ ν(λ)

for all λ ∈ N.

AS-secure witness encryption. Our (new) adaptive soundness (AS) require-

ment lets the adversary A, on input 1λ, pick and return x,m0,m1 to the game.
The latter picks a random challenge bit b and returns WE.Enc(1λ, x,mb) to A,
who now responds with a guess b′ as to the value of b. The AS-advantage of A
is defined as the probability that (b = b′) and x 6∈ L. We require that any PT A
have negligible advantage. We note that due to the check that x 6∈ L, our game
may not be polynomial time but this does not hinder our applications.

It may at first seem that adaptivity does not add strength, since soundness
security already quantifies over all x,m0,m1. But in fact we show that AS is
strictly stronger than SS. Namely we show in Proposition 2 that AS always
implies SS but SS does not necessarily imply AS. That is, any WE scheme that
is AS secure is SS secure, but there exist WE schemes that are SS secure and
not AS secure. Intuitively, the reason AS is strictly stronger is that SS does not
allow x,m0,m1 to depend on λ. Our separation result modifies a SS-secure WE
scheme to misbehave when |x| ≥ f(λ) for a certain poly-logarithmic function f
of the security parameter. SS is preserved because for each x only finitely many
values of λ trigger the anomaly. The proof that AS is violated uses the fact that
NP ⊆ EXP, the constructed adversary nonetheless being polynomial time.

Having strengthened the goal, we must revisit achievability. GGHRSW [18]
give an elegant and conceptually simple construction of SS-secure WE from
indistinguishability obfuscation (iO). In Theorem 3 we show that the same con-
struction achieves the stronger AS goal. Recent work has provided constructions
of iO improved both along the assumptions and efficiency fronts [16, 3, 24, 2],
leading to corresponding improvements for AS-secure WE. Thus AS-secure WE
can be achieved without loss of efficiency or added assumptions compared to
SS-secure WE.

APBE2. Our APBE2 scheme lets L be the language of pairs (sa,PH(sa,pw))
over the choices of sa,pw , the witness being pw . A-PBE encryption of m using
the hashed password as the public key will be AS-secure witness encryption of
m under x = (sa,hpw). Decryption will use the witness pw .

This solution is non-invasive, as it does not prescribe or require any particular
design for PH. Rather, it takes PH as given, and shows how to encrypt with public
key the hashed password obtained from PH. In this way, PH can in particular
be the iterated hash design of the PKCS#5 standard [33] that already underlies
millions of usages of passwords, or any other practical, legacy design. Of course,
for security, we will need to make an assumption about the security of PH, but
that is very different from prescribing its design. Our assumption is the same
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RIP security as discussed above. We note that this assumption is already, even
if implicitly, made in practice for the security of in-use S-PBE, where the hashed
passwords are the keys, and is shown by [10] to hold for PKCS#5 in the ROM,
so it is a natural and reasonable assumption.

SS revisited. GGSW [20, 21] present constructions of PKE, IBE and ABE
schemes from witness encryption, claiming that these constructions are secure
assuming soundness security of the WE scheme. The need for adaptive security
of our A-PBE scheme leads to the natural question of why we need a stronger
condition than GGSW [20, 21]. The answer is that they need it too. We point
out that the theorems of GGSW [20, 21] claiming security of their applications
under SS are incorrect, and that SS does not in fact suffice for the security of
their schemes. We do this by presenting counter-examples (cf. Section 4). Taking
their PRG-based PKE construction as a representative example, we provide a
WE scheme which satisfies SS yet, if used in their construction, the resulting
PKE scheme will provide no security at all. We then show that the gap can
be filled by using AS. Namely, we show that their PKE scheme is secure if the
underlying WE scheme is AS secure and the PRG is secure. Analogous results
hold for GGSW’s applications to IBE and ABE. Intuitively, the weakness of SS
that compromises the applications of GGSW [20, 21] is that a WE scheme may
satisfy SS yet behave totally insecurely, for example returning the message in
the clear, when |x| = λ. But in applications, x will have length related to λ, so
SS is not enough. AS does not have this weakness because x can depend on λ.

Better security for APBE2. Define the stretch of a password-hashing func-
tion as the difference between its output length and input length, and denote
it by s. Our result of Theorem 5 proving the security of APBE2 requires that
2−s is negligible, meaning the output length is somewhat more than the input
length. This captures situations in which passwords are, say 12-character ASCII
strings (input length is 78-bit) and the password hashing function is iterated
SHA1 (output length is 160-bit). However, when passwords are longer, say 24-
character, then passwords should offer more security. To fill this gap we offer
a second analysis of the security of APBE2 that removes the restriction on the
stretch, allowing it now to be arbitrary. For this purpose we strengthen the as-
sumption on the WE scheme from AS to a notion of adaptive extractability we
call XS. As a side benefit, the prior assumption on the password hashing func-
tion (RIP security, asking that password hashes are pseudorandom) is reduced
to ROW security, asking merely that the password hashing function is one way.

XS is an adaptive variant of the notion of extractability from GKPVZ [26].
XS asks that, given an adversary violating the security of the encryption under
x ∈ {0, 1}∗, one can extract a witness w for the membership of x ∈ L, even
when x depends on the security parameter. We show that XS implies AS and
also that XS-secure WE can be achieved based on extractable (aka. differing-
input) obfuscations [4, 14, 1].

Some works [15, 19] cast doubts on the achievability of extractable witness
encryption or extractable iO with arbitrary auxiliary inputs. Our result however
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requires a very particular auxiliary input and the attacks in these works do not
apply.

A-PBE as PKE. The standard model for public-key encryption (PKE) is that
the user (receiver) publishes a public encryption key and stores the correspond-
ing secret key securely. In practice, however, the secret key is often not stored
in computer memory but instead derived from a password stored in human
memory. Reasons this is advantageous include security and mobility. Computer-
stored keys are vulnerable to exfiltration by malware. Meanwhile, users tend
to have numerous devices including cellphones and tablets on which they want
to decrypt. They may also use web-based services such as gmail on untrusted
client machines. Passwords are more flexible and secure than stored keys in such
settings.

A-PBE captures this more real-world PKE model. Our definitions allow us to
evaluate security in the setting of actual use, namely when secret keys are possi-
bly correlated passwords. Our schemes provide solutions with provable guaran-
tees. We note that A-PBE is the model of the recently proposed gmail end-to-end
encryption system, evidencing practical relevance of the goal.

Password-based signatures. Beyond A-PBE, we view this paper as initiating
a study of asymmetric password-based cryptography. In this light we also intro-
duce and treat password-based signatures with both invasive and non-invasive
solutions to mirror the case of A-PBE.

Password-based authentication is currently done using a MAC keyed by the
hashed password. It is thus subject to the same weakness as S-PBE, namely
that compromise of the server through Heartbleed or other attacks leads to
compromise of hashed passwords, resulting in compromise of the authentication.
In the password-based signatures we suggest, one signs under the password pw
and verifies under the hashed password hpw = PH(sa,pw). Possession of the
hashed password does not compromise security.

We can give a simple solution analogous to the one for A-PBE, namely apply
a RIP function EX to the password and salt to get coins; run a key-generation
of a standard digital signature scheme on these to get a signing key and ver-
ification key; set the password hash to the verification key; to sign given the
password, re-generate the signing and verifying keys and sign under the former.
This, however is invasive, prescribing its own password-hashing function. It is
a good choice if one has the flexibility of implementing a new password hash-
ing function, but as discussed above, deployment in the face of legacy PKCS#5
password hashes motivates asking whether a non-invasive solution, meaning one
that can utilize any given password hashing function, is possible. As with A-PBE,
this is a much more challenging question. We can show how to obtain a non-
invasive password-based signature scheme by using key-versatile signatures [9].
The latter are effectively witness signatures meeting strong simulatability and
extractability conditions [17, 9] and allow us to obtain password-based signatures
analogous to how we obtained A-PBE from WE. The only assumption needed
on the password hashing function PH is that it is one-way.
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Discussion and GGSW updates. A good definition for WE should have two
properties: (1) Usability, meaning it suffices to prove security of applications,
and (2) Achievability, meaning proposed and natural constructions, which in
this case mainly means the iO-based one of GGHRSW [18], can be shown to
meet the definition. Our AS definition has both properties, making it viable. We
have shown that SS lacked the usability property.

Here we have referred to the original GGSW STOC paper [20] and the cor-
responding original full ePrint version [21]. Subsequent to seeing prior versions
of our paper, the GGSW authors updated their paper on ePrint [22, 23]. They
acknowledge the gap we found. They also propose their own, modified definitions
in an attempt to fill this gap.

Beyond (and despite) the fact that these updated definitions are subsequent
to ours, they remain problematic. We showed that their first proposed definition,
which we call SS2 [22], is unachievable. (Because the negligible function is not
allowed to depend on the adversary. See Appendix A.) We communicated this to
the authors. They then updated SS2 to SS3 [23]. But we explain in Appendix A
that SS3 has limitations with regard to achievability. While one might of course
propose still further modifications to their definition it is not clear why this is
a productive route for the community in the face of the fact that, with AS, we
have —and had prior to the GGSW updates— a definition that provides both
usability and achievability.

Recently KNY [31] gave a definition, that we call SS5, in the quantifier style
of SS1, SS2 and SS3. We discuss it also in Appendix A where we show that it is
unachievable. (Because, like SS2, the negligible function doesn’t depend on the
adversary.)

These developments are an indication that neither the gap we find, nor the
AS definition we propose to fill it, are trivial, that quantifier-based definitions
are error-prone, and that our counter-examples for SS remain important to un-
derstand and guide definitional choices. Demonstrating the last, beyond [22,
23], further work subsequent to ours, and definitionally influenced by ours, in-
cludes [25].

We believe the idea of witness encryption is important and useful and we
view our work as advancing its cause. Precision in definitions, proofs and details
is particularly important in our field because we claim proven security. Reaching
such precision can require iteration and definitional adjustments and increments,
and our work, in this vein, helps towards greater impact and clarity for the area
of witness encryption.

2 Preliminaries

By λ ∈ N we denote the security parameter and by 1λ its unary representation.
We denote the number of coordinates of a vector x by |x|, and the length of
a string x ∈ {0, 1}∗ by |x|. Algorithms are randomized unless otherwise indi-
cated. Running time is worst case. “PT” stands for “polynomial-time,” whether
for randomized algorithms or deterministic ones. If A is an algorithm, we let
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y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . . and
assigning the output to y. We let y←$A(x1, . . .) be the resulting of picking r at
random and letting y ← A(x1, . . . ; r). We say that f : N→ R is negligible if for
every positive polynomial p, there exists np ∈ N such that f(n) < 1/p(n) for all
n > np. An adversary is an algorithm or a tuple of algorithms.

We use the code based game playing framework of [11]. For an example of
a game see Fig. 2. By GA(λ) we denote the event that the execution of game
G with adversary A and security parameter λ results in output true, the game
output being what is returned by Game.

Unpredictability. Let A = (A1, . . .) be a tuple of algorithms where A1, on input

the unary representation 1λ of the security parameter λ ∈ N, returns a vector
pw. Let GuessA(λ) denote the maximum, over all i,pw , of Pr[pw[i] = pw ], the
probability over pw←$A1(λ). We say that A is unpredictable if the function
GuessA(·) is negligible.

3 Adaptive Witness Encryption

We begin by recalling the notion of witness encryption of GGSW [20] and their
soundness security requirement. We then give a different security notion called
adaptive soundness. We show that it is strictly stronger than the original, which
means we must address achieving it. We show that it is achievable via indistin-
guishability obfuscation.

NP relations. For R: {0, 1}∗ × {0, 1}∗ → {true, false}, we let R(x) = { w :
R(x,w) } be the witness set of x ∈ {0, 1}∗. We say R is an NP-relation if
it is computable in PT and there is a polynomial R.wl: N → N, called the
witness length of R, such that R(x) ⊆ {0, 1}R.wl(|x|) for all x ∈ {0, 1}∗. We let
L(R) = { x : R(x) 6= ∅ } ∈ NP be the language defined by R.

WE syntax and correctness. A witness encryption (WE) scheme WE for
L = L(R) defines a pair of PT algorithms WE.Enc,WE.Dec. Algorithm WE.Enc
takes as input the unary representation 1λ of a security parameter λ ∈ N, a
string x ∈ {0, 1}∗, and a message m ∈ {0, 1}∗, and outputs a ciphertext c.
Algorithm WE.Dec takes as input a string w and a ciphertext c, and outputs
m ∈ {0, 1}∗ ∪{⊥}. Correctness requires that WE.Dec(w,WE.Enc(1λ, x,m)) = m
for all λ ∈ N, all x ∈ L, all w ∈ R(x) and all m ∈ {0, 1}∗.

Soundness security. The soundness security (SS) condition of GGSW [20] says
that for any PT adversary A, any x ∈ {0, 1}∗ \L and any equal-length m0,m1 ∈
{0, 1}∗, there is a negligible function ν such that for all λ ∈ N we have

Pr[A(WE.Enc(1λ, x,m1)) = 1]− Pr[A(WE.Enc(1λ, x,m0)) = 1] < ν(λ) . (1)

In the following, it is useful to let AdvssWE,L,x,m0,m1,A(λ) denote the probabil-
ity difference in Equation (1). Then the soundness condition can be succinctly
and equivalently stated as follows: WE is SS[L]-secure if for any PT adver-
sary A, any x ∈ {0, 1}∗ \ L and any equal-length m0,m1 ∈ {0, 1}∗, the function
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Game ASAWE,L(λ)

(x,m0,m1, St)←$A(1λ) ; b←$ {0, 1} ; c←$ WE(1λ, x,mb) ; b′←$A(St, c)

Return ((b = b′) ∧ (x 6∈ L))

Fig. 2. Game AS defining adaptive soundness of witness encryption scheme WE.

AdvssWE,L,x,m0,m1,A(·) is negligible. It is convenient, in order to succinctly and
precisely express relations between notions, to let SS[L] denote the set of all
correct witness encryption schemes that are SS[L]-secure.

Adaptive soundness. Our security definition associates to witness encryption

scheme WE, language L ∈ NP, adversary A and λ ∈ N the game ASAWE,L(λ) of

Fig. 2. Here the adversary, on input 1λ, produces instance x, messages m0,m1,
and state information St. It is required that |m0| = |m1|. The game picks a
random challenge bit b and computes a ciphertext c via WE.Enc(1λ, x,mb). The
adversary is now given c, along with its state information St, and outputs a
prediction b′ for b. The game returns true if the prediction is correct, meaning
b = b′, and also if x 6∈ L. We let AdvasWE,L,A(λ) = 2 Pr[ASAWE,L(λ)] − 1. We say
that WE has adaptive soundness security for L, or is AS[L]-secure, if for every
PT A the function AdvasWE,L,A(·) is negligible. We let AS[L] denote the set of all
correct witness encryption schemes that are AS[L]-secure.

Due to the check that x 6∈ L, our game does not necessarily run in PT. This,
however, will not preclude applicability. The difference between AS and SS is
that in the former, x,m0,m1 can depend on the security parameter and on each
other. Given that SS quantifies over all x,m0,m1, this may not at first appear to
make any difference. But we will see that it does and that AS is strictly stronger
than SS.

AS is a game-based definition while SS is phrased in a more “quantifier-
based” style that mimics the soundness condition in interactive proofs [28]. The
game-based AS notion is better suited for applications because the latter are also
underlain by game-based definitions. Indeed we’ll see that SS does not suffice
for applications.

A useful transform. In several proofs, we’ll employ the following transform.
Given a WE scheme WE ∈ SS[L] and a PT function f : N → N, our transform
returns another WE scheme WEf . The constructed scheme, formally specified
in Fig. 3, misbehaves, returning the message in the clear, when |x| ≥ f(λ),
and otherwise behaves like WE. The following says that if f is chosen to satisfy
certain conditions then SS[L]-security is preserved, meaning WEf ∈ SS[L]. In
our uses of the transform we will exploit the fact that WEf will fail to have
other security properties or lead to failure of applications that use it.

Lemma 1. Let L ∈ NP and WE ∈ SS[L]. Let f : N → N be a non-decreasing,
PT-computable function such that limλ→∞ f(λ) =∞. Consider witness encryp-
tion scheme WEf derived from WE and f as shown in Fig. 3. Then WEf ∈ SS[L].



10 Bellare, Hoang

WEf .Enc(1
λ, x,m)

If |x| ≥ f(λ) then return (0,m)

Else return (1,WE.Enc(1λ, x,m))

WEf .Dec(w, c)

(b, t)← c

If b = 0 then return t else return

WE.Dec(w, t)

Fig. 3. Witness encryption scheme WEf for L ∈ NP, derived from WE ∈ SS[L] and a
PT-computable function f : N→ N.

Proof. Let A be a PT adversary. Let x ∈ {0, 1}∗ \ L and let m0,m1 ∈ {0, 1}∗
have equal length. Let PT adversary B, on input ciphertext c, return b′ ←
A((1, c)). Let S(x) = { λ ∈ N : f(λ) ≤ |x| }. Then for all λ ∈ N \ S(x) we
have AdvssWE,L,x,m0,m1,B(λ) = AdvssWEf ,L,x,m0,m1,A(λ). The assumption that WE ∈
SS[L] means that AdvssWE,L,x,m0,m1,B(·) is negligible. But the assumptions on f
mean that the set S(x) is finite. Consequently, the function AdvssWEf ,L,x,m0,m1,A(·)
is negligible as well. ut

Relations. We show that adaptive soundness implies soundness but not vice
versa, meaning adaptive soundness is a strictly stronger requirement.

Proposition 2. Let L ∈ NP. Then: (1) AS[L] ⊆ SS[L], and (2) If {0, 1}∗ \L is
infinite and SS[L] 6= ∅ then SS[L] 6⊆ AS[L].

Claim (1) above says that any witness encryption scheme WE that is AS[L]-
secure is also SS[L]-secure. Claim (2) says that the converse is not true. Namely,
there is a witness encryption scheme WE such that WE is SS[L]-secure but
not AS[L]-secure. This separation assumes some SS[L]-secure witness encryp-
tion scheme exists, for otherwise the claim is moot. It also assumes that the
complement of L is not trivial, meaning is infinite, which is true if L is NP-
complete and P 6= NP, hence is not a strong assumption.

Proof (Proposition 2). For part (1), assume we are given WE that is AS[L]-
secure. We want to show that WE is SS[L]-secure. Referring to the defini-
tion of soundness security, let A be a PT adversary, let x ∈ {0, 1}∗ \ L and
let m0,m1 ∈ {0, 1}∗ have equal length. We want to show that the function
AdvssWE,L,x,m0,m1,A(·) is negligible. We define the adversary Bx,m0,m1 as follows:

Let Bx,m0,m1
(1λ) return (x,m0,m1, ε) and let Bx,m0,m1

(t, c) return b′←$A(c).
Here, Bx,m0,m1 has x,m0,m1 hardwired in its code, and, in its first stage, it
returns them, along with St = ε as state information. In its second stage, it
simply runs A. Note that even though Bx,m0,m1

has hardwired information,
this information is finite and not dependent on the security parameter, so the
hardwiring does not require non-uniformity. Now it is easy to see that for all
λ ∈ N we have AdvasWE,L,Bx,m0,m1

(λ) = AdvssWE,L,x,m0,m1,A(λ). The assumption

that WE is AS[L]-secure means that AdvasWE,L,Bx,m0,m1
(·) is negligible, hence so

is AdvssWE,L,x,m0,m1,A(·), as desired.
For part (2), the assumption SS[L] 6= ∅ means there is some WE ∈ SS[L].

By way of Lemma 1, we can modify it to WEf ∈ SS[L] as specified in Fig. 3,
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where f : N → N is some non-decreasing, PT-computable function such that
limλ→∞ f(λ) = ∞. Now we want to present an attacker A violating AS[L]-
security of WEf . The difficulty is that A needs to find x 6∈ L of length f(λ), but
L ∈ NP and A must be PT. We will exploit the fact that NP ⊆ EXP and pick
f to be a poly-logarithmic function related to the exponential time to decide L,
so that if there exists an x 6∈ L of length f(λ) then A can find it by exhaustive
search in PT. Our assumption that the complement of L is infinite means that
A succeeds on infinitely many values of λ.

Proceeding to the details, since L ∈ NP ⊆ EXP, there is a constant d ≥ 1
and a deterministic algorithm M such that for every x ∈ {0, 1}∗, we haveM(x) =

1 if and only if x ∈ L, and M ’s running time is O(2|x|
d

). Define f by f(λ) =

blg1/d(λ)c for all λ ∈ N. Let WE ∈ SS[L] and let WEf be the witness encryption
scheme derived from WE and f as specified in Fig. 3. By Lemma 1, WEf ∈ SS[L].
Now we show that WEf 6∈ AS[L]. Let m0,m1 ∈ {0, 1}∗ be arbitrary, distinct,
equal-length messages. Consider the following adversary A:

A(1λ)

k ← f(λ) ; x← 0k

For all s ∈ {0, 1}k do
If (M(s) 6= 1) then x← s

Return (x,m0,m1, ε)

A(t, c)

(b,m)← c
If ((b = 0) ∧ (m = m1)) then return 1
Return 0

Each execution of M takes time O(2k
d

) = O(λ). The For loop goes through
all s ∈ {0, 1}k in lexicographic order and thus M is executed at most 2k ≤ λ
times. So A is PT. For any λ ∈ N, if {0, 1}f(λ) \ L 6= ∅ then AdvasWEf ,L,A(λ) = 1.

Since {0, 1}∗ \L is infinite, f is non-decreasing, and limt→∞ f(t) =∞, there are
infinitely many values λ such that AdvasWEf ,L,A(λ) = 1, and thus WEf 6∈ AS[L],
as claimed. ut

Indistinguishability obfuscation. We say that two circuits C0 and C1 are
functionally equivalent, denoted C0 ≡ C1, if they have the same size, the same
number n of inputs, and C0(x) = C1(x) for every input x ∈ {0, 1}n. An
obfuscator P defines PT algorithms P.Ob,P.Ev. Algorithm P.Ob takes as in-
put the unary representation 1λ of a security parameter λ and a circuit C,
and outputs a string c. Algorithm P.Ev takes as input strings c, x and returns
y ∈ {0, 1}∗ ∪ {⊥}. We require that for any circuit C, any input x, and any
λ ∈ N, it holds that P.Ev(x,P.Ob(1λ, C)) = C(x). We say that P is iO-secure
if AdvioP,A(λ) = 2 Pr[IOA

P (λ)] − 1 is negligible for every PT adversary A, where
game IO is defined at Fig. 4. This definition is slightly different from the notion
in [4, 18]—the adversary is non-uniform and must produce functionally equiva-
lent circuits C0 and C1—but the former definition is implied by the latter.

Achieving AS-security. Our AS security notion is strictly stronger than the
SS one of GGSW [20], but we’ll show that the iO-based WE scheme of [18] is
AS-secure. Proceeding to the details, let R be an NP-relation. For each x,m ∈
{0, 1}∗, letRx,m be a circuit that, on input w ∈ {0, 1}R.wl(|x|), returnsm if R(x,w)
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Game IOA
P (λ)

(C0, C1,St)←$A(1λ) ; b←$ {0, 1} ; c←$ P.Ob(1λ, Cb)

b′←$A(St, c) ; Return (b = b′) ∧ (C0 ≡ C1)

Fig. 4. Game IO defining security of an indistinguishability obfuscator P.

and returns 0|m| otherwise. Let P be an indistinguishability obfuscator, defin-
ing a PT obfuscation algorithm P.Ob and a PT evaluation algorithm P.Ev. We
define WE scheme WER[P] as follows: algorithm WER[P].Enc(1λ, x,m) returns
c←$ P.Ob(1λ, Rx,m); and algorithm WER[P].Dec(w, c) returns m←$ P.Ev(w, c).

Theorem 3. Let R be an NP-relation and let L = L(R). Let P be an indis-
tinguishability obfuscator. Construct WER[P] as above. If P is iO-secure then
WER[P] ∈ AS[L].

Proof. Let A be a PT adversary attacking the AS[L]-security of WER[P]. Wlog,
assume that A produces distinct m0 and m1. Note that Rx,m0

≡ Rx,m1
if and

only if x 6∈ L. Consider the following PT adversary B attacking iO-security of P:

B(1λ)

(x,m0,m1,St)←$A(1λ)
Return (Rx,m0

, Rx,m1
,St)

B(St, c)

b′←$A(St, c) ; Return b′

Then Pr[ASAWER[P],L
(·)] = Pr[IOB

P (·)] and thus AdvasWER[P],L,A(·) = AdvioP,B(·). ut

4 Insufficiency of Soundness Security

GGSW [20] present constructions of several primitives from witness encryp-
tion, including PKE, IBE and ABE for all circuits. They claim security of these
constructions assuming soundness security of the underlying witness-encryption
scheme. We observe here that these claims are wrong. Taking their PRG-based
PKE scheme as a representative example, we present a counter-example, namely
a witness-encryption scheme satisfying soundness security such that the PKE
scheme built from it is insecure. Similar counter-examples can be built for the
other applications in GGSW [20]. Briefly, the problem is that a witness encryp-
tion scheme could fail to provide any security when |x| is equal to, or related in
some specific way to, the security parameter, yet satisfy SS security because the
latter requirement holds x fixed and lets λ go to∞. We show that the gap can be
filled, and all the applications of GGSW recovered, by using adaptive soundness
in place of soundness security. We’ll begin by recalling the well-known notions
of PRG and PKE.

Primitives. A pseudorandom generator (PRG) [12, 37] is a PT deterministic
algorithm G that takes any string s ∈ {0, 1}∗ as input and return a string G(s)
of length `(|s|), where the function ` : N→ N is call the expansion factor of G.
We say that G is secure if AdvprgA,G(λ) = 2 Pr[PRGG

A(λ)]−1 is negligible, for every
PT adversary A, where game PRG is defined in Fig. 5.
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Game PRGA
G(λ)

s←$ {0, 1}λ ; x1 ← G(s)

x0←$ {0, 1}`(λ) ; b←$ {0, 1}
b′←$A(1λ, xb) ; Return (b = b′)

Game INDCPAA
PKE(λ)

(pk, sk)←$ PKE.Kg(1λ) ; b←$ {0, 1}
b′←$ALR(1λ, pk) ; Return (b = b′)

LR(m0,m1)

c←$ PKE.Enc(pk,mb) ; Return c

Fig. 5. Left: Game PRG defining security of a pseudorandom generator G. Here ` :
N→ N is the expansion factor of G. Right: Game INDCPA defining INDCPA security
of a PKE scheme PKE. For each oracle query, the messages m0,m1 ∈ {0, 1}∗ must have
the same length.

PKE.Kg(1λ)

sk←$ {0, 1}λ ; x← G(sk)

pk ← (λ, x) ; Return (pk, sk)

PKE.Enc(pk,m)

(λ, x)← pk

Return WE.Enc(1λ, x,m)

PKE.Dec(sk, c)

Return WE.Dec(c, sk)

Fig. 6. GGSW’s PKE scheme PKE[G,WE], where G is a length-doubling PRG and WE
is a witness encryption scheme for LG = {G(s) : s ∈ {0, 1}∗ }

A public-key encryption (PKE) scheme PKE defines PT algorithms PKE.Kg,
PKE.Enc, PKE.Dec, the last deterministic. Algorithm PKE.Kg takes as input
1λ and outputs a public encryption key pk and a secret decryption key sk.
Algorithm PKE.Enc takes as input pk and a message m ∈ {0, 1}∗, and outputs a
ciphertext c. Algorithm PKE.Dec(sk, c)8 outputs m ∈ {0, 1}∗∪{⊥}. Scheme PKE

is INDCPA-secure [27, 6] if Advind-cpaPKE,A (·) = 2 Pr[INDCPAA
PKE(·)] − 1 is negligible

for every PT adversary A, where game INDCPA is defined in Fig. 5.

SS does not suffice for GGSW’s PKE scheme. Let G be a PRG that is
length doubling, meaning |G(s)| = 2|s| for every s ∈ {0, 1}∗. Let LG = {G(s) :
s ∈ {0, 1}∗ }. This language is in NP. Let WE ∈ SS[LG] be a SS[LG]-secure
WE scheme. The PKE scheme PKE[G,WE] of GGSW is shown in Fig. 6. We
claim that SS[LG]-security of WE is insufficient for PKE to be INDCPA-secure.
We show this by counter-example, meaning we give an example of a particular
WE scheme WE ∈ SS[LG] such that PKE[G,WE] is not INDCPA. We assume
there exists some WE ∈ SS[LG], else the question is moot. Let f(λ) = 2λ for
every λ ∈ N. Now let WE = WEf be the WE scheme of Fig. 3 obtained from WE
and f . Lemma 1 tells us that WEf ∈ SS[LG]. Now we claim that PKE[G,WEf ] is
not INDCPA. The reason is that when PKE.Enc(pk,m) runs WEf .Enc(1

λ, x,m),
we have |x| = 2λ = f(λ). By definition of WEf .Enc, the latter returns (0,m) as
the ciphertext, effectively sending the message in the clear.

AS security suffices for GGSW’s PKE. We now show that the gap can be

filled using AS. That is, we prove that if G is a secure PRG and WE is AS[LG]-
secure, then PKE[G,WE] is INDCPA-secure:
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Theorem 4. Let G : {0, 1}∗ → {0, 1}∗ be a length-doubling PRG. Let LG =
{G(s) : s ∈ {0, 1}∗ }. If G is a secure PRG and WE ∈ AS[LG] then PKE[G,WE]
is INDCPA-secure.

The proof is in [7]. It follows the template of the proof of GGSW [20]. First
one uses the PRG security of G to move to a game where x is random. Since G
is length doubling, such an x is not in LG with high probability. At this point
GGSW [20] (incorrectly) claim that the result follows from the SS[LG]-security
of WE. We instead use the AS[LG]-security of WE, providing a reduction with
an explicit construction of an AS adversary.

To obtain similar counter-examples showing the inadequacy of SS for the
other applications of GGSW (namely IBE and ABE for all circuits), one can
follow the template of our PKE attack, by choosing a lower bound f(λ) for
the length of the string x = X(λ) given to the witness encryption. Since X(λ)
is generated from some cryptographic primitive π (for example, in IBE, π is
a unique signature scheme), the security of π requires that X(λ) have super-
logarithmic length. Hence there is a constant C > 0 such that |X(λ)| ≥ C lg(λ)
for all λ ∈ N, and therefore we can let f(λ) = bC lg(λ)c.

5 Asymmetric Password-based Encryption

In this Section we introduce the new primitive of asymmetric password-based
encryption (A-PBE). We then provide a non-invasive, WE-based A-PBE scheme
we call APBE2, with two security analyses. First we prove security of APBE2
under AS-security of the WE scheme. Then under XS-security of the WE scheme
we provide another proof that shows the scheme to admit better “stretch,” lead-
ing to better security for some real password distributions. In [7] we provide a
simple and fast, but invasive, A-PBE scheme, called APBE1. Our model and
definitions are of interest beyond our schemes because they capture PKE in the
real-world setting where secret keys are based on passwords and may thus be
related.

A-PBE syntax and security. An asymmetric password-based encryption (A-
PBE) scheme F specifies PT algorithms F.Ph,F.Enc, F.Dec, the first and the
last deterministic. It also specifies a password-length function F.pl : N → N,
a salt-length function F.sl : N → N, and a hash-length function F.hl : N → N.
Algorithm F.Ph takes as input the unary representation 1λ of security parameter
λ, a salt sa ∈ {0, 1}F.sl(λ), and a password pw ∈ {0, 1}F.pl(λ), and returns a hashed
password hpw = F.Ph(1λ, sa,pw) ∈ {0, 1}F.hl(λ). Algorithm F.Enc takes as input
1λ,hpw , sa and a message m ∈ {0, 1}∗, and outputs a ciphertext c. Finally, given
(pw , c), algorithm F.Dec returns m ∈ {0, 1}∗ ∪ {⊥}. We require that

F.Dec
(
pw ,F.Enc(1λ,F.Ph(1λ, sa,pw), sa,m)

)
= m

for every m ∈ {0, 1}∗, λ ∈ N, sa ∈ {0, 1}F.sl(λ), and pw ∈ {0, 1}F.pl(λ).
An adversary A is a pair of PT algorithms (A1, A2). Adversary A1(1λ) gen-

erates a vector of passwords pw, each entry a F.pl(λ)-bit string. It is required
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Game APBEAF (λ)

pw←$A1(1λ) ; b←$ {0, 1}
For i = 1 to |pw| do

sa[i]←$ {0, 1}F.sl(λ)

hpw[i]← F.Ph(1λ, sa[i],pw[i])

b′←$ALR
2 (1λ, sa,hpw)

Return (b = b′)

LR(m0,m1, i)

c←$ F.Enc(1λ,hpw[i], sa[i],mb)

Return c

Game RIPAH (λ)

pw←$A1(1λ) ; b←$ {0, 1}
For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ)

hpw[i]← H(1λ, sa[i],pw[i])

If b = 0 then hpw[i]←$ {0, 1}H.ol(λ)

b′←$A2(1λ, sa,hpw) ; Return (b = b′)

Fig. 7. Left: Game APBE defining security of an A-PBE scheme F. Right: Game RIP
defining RIP security for a hash family H.

that A is unpredictable as defined in Section 2. Note that passwords —entries
of the vector pw— may be correlated, even though each individually is un-
predictable, to capture the fact that individual users often pick related pass-
words for their different accounts. We say that A-PBE scheme F is secure if
AdvapbeF,A (·) = 2 Pr[APBEAF (·)]− 1 is negligible for every PT unpredictable adver-

sary A, where game APBEAF (λ) is defined in Fig. 7. In this game, A1(1λ) first
generates its vector pw of passwords. The game picks a challenge bit b←$ {0, 1}
and a vector of random salts sa. Adversary A2 is given sa and the vector hpw
of hashed passwords. It can then query its oracle LR with equal-length, distinct
messages m0,m1, and an index i, to get F.Enc(1λ,hpw[i], sa[i],mb). Finally A2

outputs a prediction b′ for b. The game returns true if the prediction is correct,
meaning b = b′, and false otherwise.

Achieving A-PBE. If we have the luxury of prescribing our own password
hashing function PH then we can provide a fast and simple A-PBE scheme, that
we call APBE1, based on any PKE scheme. See [7]. However, this solution is
invasive, asking for the deployment of a new PH, which may not be possible due
to existing legacy passwords and password-hashing functions. We thus ask if it
is possible to design a secure A-PBE scheme that is non-invasive. This means we
take F.Ph as given and aim to achieve security by making reasonable assumptions
about its security without prescribing its design, assumptions that in particular
are met by the F.Ph function of PKCS#5 or other standards. This turns out to
be more challenging. We now provide the APBE2 scheme that accomplishes this
using WE.

Non-invasive A-PBE. We view ourselves as given a function family H with
key, input and output length functions H.kl,H.il,H.ol. Our goal is to design an A-
PBE scheme F such that F.Ph is H. In particular, we could let H be the password
hashing function family from PKCS#5 [33] or bcrypt [34], thereby obtaining A-
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F[H,WE].Ph(1λ, sa, pw)

hpw ← H(1λ, sa, pw)

Return hpw

F[H,WE].Enc(1λ, hpw , sa,m)

x← (1λ, sa, hpw)

c←$ WE(1λ, x,m)

Return c

F[H,WE].Dec(pw , c)

m←WE.Dec(pw , c)

Return m

Fig. 8. A-PBE scheme F = APBE2[H,WE] associated to hash family H and
witness encryption scheme WE for LH.

PBE without change in the existing hashed passwords. We begin by reviewing
the security assumption on H.

Related-input pseudorandomness. Let H be a function family. This means

that H is a deterministic, PT function taking 1λ, a key k ∈ {0, 1}H.kl(λ) and an in-
put x ∈ {0, 1}H.il(λ) to return H(1λ, k, x) ∈ {0, 1}H.ol(λ). Here H.kl,H.il,H.ol: N→
N are the key, input and output lengths associated to H, respectively. We say
that H is related-input pseudorandom (RIP) if AdvripH,A(·) = 2 Pr[RIPAH (·)]− 1 is

negligible for every PT unpredictable adversary A = (A1, A2), where game RIPAH
is shown in Fig. 7. Informally, this means that the hashed passwords should be
indistinguishable from random strings, even in the presence of the salts. We note
that this is exactly the property needed for classical S-PBE (symmetric PBE)
to be secure, for it uses the hashed password as the symmetric key. Thus, the
assumption can be viewed as already made and existing, even if implicitly, in
current usage of passwords for S-PBE. We note that RIP security of H is implied
by UCE security of H relative to statistically unpredictable sources [8].

The APBE2 scheme. Let

LH = { (1λ, sa,H(1λ, sa,pw)) : λ ∈ N, sa ∈ {0, 1}H.kl(λ), pw ∈ {0, 1}H.il(λ) } .

This language is in NP. Let WE be a witness encryption scheme for LH. We
associate to H and WE the A-PBE scheme F = APBE2[H,WE] specified in Fig. 8.
We let F.pl = H.il, F.sl = H.kl and F.hl = H.ol. The construction lets the salt play
the role of the key for H, the password being the input and the hashed password
the output.

Security of APBE2 under AS. Theorem 5 below says that if H is RIP and
WE is AS[LH]-secure then APBE2[H,WE] is a secure A-PBE scheme. The proof
is in [7].

Theorem 5. Let H be a function family such that 2H.il(·)−H.ol(·) is a negligible
function. If H is RIP and WE ∈ AS[LH] then F = APBE2[H,WE] is a secure
A-PBE scheme.

The key feature of this result is that it is non-invasive, meaning it puts condi-
tions on the hash family H that suffice for security rather than mandating any
particular design of H. Practical and standardized key-derivation functions may
be assumed to satisfy concrete versions of these asymptotic conditions.
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Game XSA,EWE,R(λ)

(x,m0,m1, St)←$A(1λ); b←$ {0, 1}
c←$ WE.Enc(1λ, x,mb)

b′←$A(St, c)

w←$ E(1λ, x,m0,m1, St, c)

Return ((b = b′) ∧ ¬R(x,w))

Game ROWA
H (λ)

pw←$A1(1λ)

For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ)

hpw[i]← H(1λ, sa[i],pw[i])

(w, i)←$A2(1λ, sa,hpw)

Return (hpw[i] = H(1λ, sa[i], w))

Fig. 9. Left: Game XS defining extractable security of witness encryption scheme WE.
Right: Game ROW defining ROW security of H.

Arbitrary stretch. Define the stretch H.s(·) = H.ol(·) − H.il(·) of password
hashing function H as the difference between its output length and its input
length. Theorem 5 requires that 2−H.s(·) is negligible, meaning the output length
of the hash must be somewhat longer than the input length. This captures
situations in which passwords are, say 12-character ASCII strings (input length
is 78-bit) and H is iterated SHA1 (output length is 160-bit). However, when
passwords are longer, say 24-character, then Theorem 5 doesn’t apply. This is
unsatisfying, because intuitively, longer passwords should offer better security. In
this section, we formalize a stronger security requirement for witness encryption
called XS that allows us to remove the assumption on the stretch of H.

XS-secure witness encryption. The security requirements for SS and AS are
for x 6∈ L, no security requirement being made if x ∈ L. Extractable witness
encryption [26] is a requirement for all x ∈ {0, 1}∗, asking that if the adversary
violates privacy of encryption under x then one can extract a witness for the
membership of x ∈ L. Intuitively, the only way to violate privacy is to know a
witness. We provide a formalization of extraction security that we call XS. It
strengthens the formalization of GKPVZ [26] in being adaptive, in the vein of
AS, but weakens it by not involving auxiliary inputs. The formalizations also
differ in other details.

Let R be an NP-relation and let L = L(R). Let WE be a witness encryption
scheme for L. We say that WE is XS[L]-secure if for any PT adversary A there is

a corresponding PT algorithm E such that AdvxsWE,R,A,E(λ) = 2 Pr[XSA,EWE,R(λ)]−1

is negligible, where game XSA,EWE,R is defined at the leftpanel of Fig. 9. Let XS[L]
denote the set of correct, XS[L]-secure witness encryption schemes for L.

Intuitively, XS[L] security implies AS[L] security for any L ∈ NP, because in
the former notion, if the adversary produces x 6∈ L then no witness exists, so no
extractor E (even a computationally unbounded one) can find one. Proposition 6
below formally confirms this. The proof is in [7].

Proposition 6. For any NP-relation R, it holds that XS[L(R)] ⊆ AS[L(R)].

Extractable obfuscation (xO), also known as differing-input obfuscation, was
defined in [4, 14, 1]. BCP [14] show that it implies extractable witness encryption
meeting the definition of GKPVZ [26]. In [7], we give an alternative definition
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of xO and show that it implies XS[L(R)]-secure witness encryption, for any
NP relation R. The construction is the same WER[P] in Section 3, where the
obfuscator P is assumed to be xO-secure, instead of just being iO-secure.

Related-input one-wayness. We now formalize another hardness assumption,
related-input one-wayness, on hash function family H. Informally we demand
that if the adversary is given the hashed passwords and the salts, it can’t compute
a preimage of any hashed password. This is exactly the intuitive requirement
for password-hashing functions: if passwords are well-chosen to resist dictionary
attacks, then no adversary should be able to recover some password from the
hashed ones. It’s a variant of the notion of one-wayness under correlated products
of [35]. Formally, we say that H is related-input one-way (ROW) if AdvrowH,A(λ) =

Pr[ROWA
H (λ)] is negligible for all PT unpredictable adversary A = (A1, A2),

where game ROWA
H is shown at the right panel of Fig. 9.

Security of APBE2 under XS. The following establishes the security of F =
APBE2[H,WE] without any restrictions or assumptions on the stretch of H. See
[7] for the proof.

Theorem 7. If H is ROW and WE ∈ XS[LH] then F = APBE2[H,WE] is a secure
A-PBE scheme.
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A Further versions of SS

A good definition for WE security should have two properties: (1) Usability,
meaning it should suffice to prove security of applications, and (2) Achievability,
meaning it should be provably achieved by the natural constructs, which in this
case means the iO-based one of GGHRSW [18]. Our AS definition has both
properties. We have shown that SS [20, 21] lacks (1).

After seeing a prior version of our work, GGSW updated the ePrint version
of their paper [22]. Here they acknowledge the gaps we find. They then propose
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their own modification of SS, that we call SS2, in an attempt to fill the gaps.
This was unnecessary because AS had already been put forth and shown to fill
the gap, but GGSW appeared to want a definition in their quantifier-based style
rather than our game-based style. They viewed the problem in SS as arising
from the “order of quantification” and attempted to address it by changing this
order. SS2 quantified the negligible function first, making it universal. We explain
below that SS2 is unachievable, meaning no WE scheme can be SS2 secure.
(More precisely our result is that SS2-secure WE is unachievable for any NP-
complete language unless the polynomial-time hierarchy collapses. Our proof
uses the fact that statistically-secure WE is not achievable [20].) We pointed
this out to GGSW in a personal communication. They acknowledged this and
further updated their definition to one we call SS3 [22], which used another
order of quantification. Below we show that SS3 remains limited in terms of
achievability. This is because it does not seem possible to show that the iO-based
WE construction of GGHRSW [18] meets it under the definition of iO-security
that is commonly used in other applications of iO [36, 30, 13] and that we have
shown suffices for AS-secure WE.

The updated GGSW papers [22, 23] characterize the gap we find as having
to do with the “order of quantifiers” in the SS definition, and their fixes attempt
to change quantifier order. However, the issue is not quantifier order but, more
subtly, the relation between x and λ. More broadly, game-based definitions are
a better fit in this domain than quantifier-based ones. This is because applica-
tions one wants to achieve with WE, as well as primitives one wants to use to
achieve WE, are both themselves underlain by game-based definitions. Reduc-
tions are thus facilitated, and less error-prone, with a game-based WE definition.
A quantifier-based one leads to mismatches. In particular, under certain quan-
tifier orders, one gets definitions like SS that do not provide usability, and when
one changes the order, one gets definitions like SS3 that are too strong and
challenge achievability. Intuitively, the latter is because the quantification ends
up demanding security even on inputs that no adversary could ever find. This
does not mean a viable quantifier-based definition is impossible. Indeed, below,
we suggest SS4, a quantifier-based definition of WE that recovers achievability
under weak iO in the non-uniform case. But the game-based AS is simpler and
more user friendly, and does not require non-uniformity to be achieved under
weak iO.

Below we also consider a recent definition of soundness security of KNY [31].
We call it SS5. It is similar to SS2 and consequently also unachievable.

The above indicates that the problems we find with SS, and the fix we deliver
with AS, are not trivial. Certainly it is easy, once the problem has been pointed
out, to propose alternatives, but our work remains important in having pointed
out the need for alternatives and in guiding the choice of, and verifying, these
alternatives.

We believe that WE is an important and useful notion and that our work
helps advance its cause via precise definitions that satisfy the usability and
achievability conditions above. We believe it is important for our field that work
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like this is published, and that such work is not damaging for the GGSW authors
but rather advances the primitive they proposed.

SS2. WE scheme WE is SS2[L]-secure according to [22] if there exists a negligible
function ν : N → N such that for any PT adversary A, any x ∈ {0, 1}∗\L, any
equal-length m0,m1 ∈ {0, 1}∗, and any λ ∈ N we have

Advss2WE,L,x,m0,m1,A(λ)

= Pr[A(WE.Enc(1λ, x,m1)) = 1]− Pr[A(WE.Enc(1λ, x,m0)) = 1] < ν(λ) .

We claim this notion is unachievable, meaning, no WE scheme is SS2[L]-secure.
The reason is that ν is universal and in particular not allowed to depend on the
adversary. More formally let L be an NP-complete language. Let WE by any WE
scheme and let ν be any negligible function. We show that if the polynomial-
time hierarchy does not collapse then there is a PT adversary A as well as
x ∈ {0, 1}∗\L, equal-length m0,m1 and λ ∈ N such that Advss2WE,L,x,m0,m1,A(λ) ≥
ν(λ). This shows that WE is not SS2[L]-secure.

For probability distribution functions µ, µ′ : D → [0, 1], let

‖µ− µ′‖ =
1

2

∑
x∈D
|µ(x)− µ′(x)|

be the statistical distance between µ and µ′. For any λ, x,m let µλ,x,m be the
distribution of WE.Enc(1λ, x,m). Results from GGSW [20] imply that, unless the
polynomial hierarchy collapses, there exists a string x′ ∈ {0, 1}∗\L, equal-length
messagesm′0,m

′
1 and a constant λ0 ∈ N such that ‖µλ0,x′,m′

1
−µλ0,x′,m′

0
‖ ≥ ν(λ0).

Consider the following adversary A. On input a ciphertext c, if c is not in the
domain of µλ0,x′,m′

1
then A outputs a random guess. Otherwise, A outputs 1

if µλ0,x′,m′
1
(c) > µλ0,x′,m′

0
(c), and outputs 0 otherwise. Note that the test as

to whether c is in the domain of µλ0,x′,m′
1

only takes polynomial time because
λ0, x

′,m′1 are fixed, and all computations related to them are constant time, and
similarly for computations of µλ0,x′,m′

0
(·). Thus A runs in polynomial time. But

Advss2WE,L,x′,m′
0,m

′
1,A

(λ0) = ‖µλ0,x′,m′
1
− µλ0,x′,m′

0
‖ ≥ ν(λ0).

SS3. A WE scheme WE is SS3[L]-secure [23] if for any PT adversary A, there
exists a negligible function ν : N → N such that for any x ∈ {0, 1}∗\L and any
λ ∈ N,

Advss3WE,L,x,A(λ)

= Pr[A(WE.Enc(1λ, x, 1)) = 1]− Pr[A(WE.Enc(1λ, x, 0)) = 1] < ν(λ) .

A first nit is that this considers only encryption of a 1-bit message but for
applications one has to encrypt many bits, and it is not stated how security is
defined in this case. More importantly, however, SS3 has limitations with regard
to achievability. Specifically, it seems unlikely one can show that iO implies
SS3[L]-secure WE via the natural GGHRSW construction that worked for both
SS and AS and under the definition of iO that is used for other applications [36,
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30, 13] and we have shown suffices for AS-secure WE. We now explain, referring
to our formulation of the definition in Section 3. Let L be an NP language. In
Section 3 we recalled the GGHRSW construction WE = WER[P] of a WE scheme
from an indistinguishability obfuscator P. Now assume we are given an arbitrary
PT adversary A attacking the SS3[L]-security of WE. To prove security, we need
to build an adversary B attacking the iO-security of P. Adversary B, given 1λ,
needs to efficiently find and output circuits of the form Rx,m that we defined
in Section 3, where x intuitively is an input where the WE security “breaks.”
But how is B to find such an x efficiently? There seems to be no way. Even
if we allow B to be non-uniform, its advice string has length polynomial in λ,
and thus it can’t tell what is the “best” x because the set {0, 1}∗\L is infinite.
In the case of AS, this was not a problem because A handed back an x on
which it succeeded. Also for the original SS, it is not a problem because the
entire claim pertains to only one, fixed x that can be assumed known to B. An
approach we might consider for SS3 is the following. Given any string x 6∈ L,
we can build an adversary Bx such that Advss3WE,L,x,A(λ) ≤ AdvioP,Bx(λ) for all
λ ∈ N. Now the assumed iO security gives us a negligible function νx such that
AdvioP,Bx(·) < νx(·). But the SS3 notion wants a single negligible function ν that
is independent of x. It’s unclear how to get ν from the set { νx : x 6∈ L } since
the latter set is infinite. One natural idea is to set ν(λ) = supx 6∈L{νx(λ)}. But
this doesn’t work. For example, consider νx(λ) = 1 if λ < |x|, and νx(λ) = 0
otherwise. For any fixed x, the function νx is negligible, but ν(λ) = 1 for every
λ ∈ N, meaning ν is not negligible. So one appears to need to construct an iO
adversary B independent of x, but it is unclear how to do that.

We note the proof does seem possible under some stronger notions of iO
from [18]. However, iO is a strong assumption no matter what and it is de-
sirable that applications use as weak a form of it as possible. Also in further
work subsequent to ours, GLW [25] claim to achieve SS3 via a direct construc-
tion. However, this requires sub-exponential hardness assumptions. (They call
it complexity leveraging.) Beyond this, trying to achieve SS3 is an unnecessary
route to follow, since AS already provides the properties we want, namely it
suffices for applications and is achieved even under weak iO.

SS4. As we have seen, the game-based AS definition fulfills the usability and
achievability conditions for a good definition. However, GGSW appear to want
a quantifier-based definition in the style of SS. But their SS2, SS3 attempts
have been inadequate. Here we accordingly suggest a quantifier-based definition
that we call SS4 which does satisfy, usability and is less limited than SS3 with
regard to achievability, namely weak iO does suffice for it, as long as this is
assumed for non-uniform adversaries. In particular it is implied by the non-
uniform generalization of AS and thus can be built from weak, non-uniform iO
by our results. We explain why it suffices for the PKE application of GGSW.

We say that a WE scheme WE is SS4[L]-secure if for any PT adversary A
and any polynomial ` : N→ N, there exists a negligible function ν : N→ N such
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that, for any string x ∈ {0, 1}∗\L, and any λ ∈ N, if |x| ≤ `(λ) then

Advss4WE,L,`,x,A(λ)

= Pr[A(1λ, x,WE.Enc(1λ, x, 1)) = 1]− Pr[A(1λ, x,WE.Enc(1λ, x, 0)) = 1]

< ν(λ) .

We now show this notion is implied by non-uniform AS. Given any SS4 adver-
sary A and any polynomial `, one can build another non-uniform AS adversary B
as follows. For each λ ∈ N, let xλ ∈ {0, 1}∗\L be a string such that |xλ| ≤ `(λ)
and Advss4WE,L,`,x,A(λ) ≤ Advss4WE,L,`,xλ,A(λ) for all x ∈ {0, 1}∗\L with |x| ≤ `(λ).

Adversary B(1λ) outputs (xλ, 0, 1, ε), and B(St, c) runs A(1λ, xλ, c). Then for
any string x ∈ {0, 1}∗\L, λ ∈ N, if |x| ≤ `(λ) then

AdvasWE,B(λ) = Advss4WE,L,`,xλ,A(λ) ≥ Advss4WE,L,`,x,A(λ) .

We now briefly explain why SS4 is enough for GGSW’s PKE scheme, but under
message space {0, 1}, because SS4 only allows encrypting a single bit. The IND-
CPA adversary is assumed to make only a single query (0, 1). The proof will fol-
low the template in [7] but with a change in constructing WE adversary D from
an INDCPA adversary A. Let `(λ) = 2λ for every λ ∈ N. Adversary D(1λ, x, c)
runs A(1λ,pk) with pk = (λ, x). When the latter makes its query, the former
returns c. Finally, D outputs the same guess as A.

For both SS3 and SS4, in the PKE application, to encrypt an n-bit message,
one has to make n calls to WE to encrypt n bits individually, exacerbating the
inefficiency of the scheme. If one modifies SS3 and SS4 for encrypting equal-
length m0,m1 of arbitrary length instead of m0 = 0 and m1 = 1, then the PKE
still can only encrypt bit-by-bit. The reason is that, an INDCPA adversary A is
allowed to choose any equal-lengthm0,m1 but in SS3 and SS4, the WE adversary
D has no control of the messages m0,m1, and thus one can’t construct D from A.
This again shows that AS is superior to SS3 and SS4 in terms of usability.

SS5. In a recent paper, KNY [31] define the following variant of SS, which we
call SS5. A scheme is SS5[L]-secure if for any security parameter λ, any equal-
length messages m0,m1 ∈ {0, 1}poly(λ), any PT adversary A, and any x 6∈ L, we
have

Advss5WE,L,x,m0,m1,A(λ)

= Pr[A(WE.Enc(1λ, x,m1) = 1]− Pr[A(WE.Enc(1λ, x,m0)) = 1] < negl(λ) .

This definition doesn’t specify where to place the (existential) quantifier for the
negligible function negl, but the only meaningful position in the context of what
is written is to place it prior to the (universal) quantification of the security
parameter. (We certainly don’t want a different negligible function for every
value of λ.) But if so, the function negl is independent of the adversary A. The
same argument against SS2 can be used to show that SS5 is unachievable.

SS5 again demonstrates that quantifier-based notions for WE are error-prone.
KNY’s definition [31] is problematic, although it is subsequent to our work and
all of GGSW’s revisions.


