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Abstract. Related-Key Attacks (RKAs) allow an adversary to observe
the outcomes of a cryptographic primitive under not only its original
secret key e.g., s, but also a sequence of modified keys φ(s), where φ is
specified by the adversary from a class Φ of so-called Related-Key Deriva-
tion (RKD) functions. This paper extends the notion of non-malleable
Key Derivation Functions (nm-KDFs), introduced by Faust et al. (EU-
ROCRYPT’14), to continuous nm-KDFs. Continuous nm-KDFs have the
ability to protect against any a-priori unbounded number of RKA queries,
instead of just a single time tampering attack as in the definition of nm-
KDFs. Informally, our continuous non-malleability captures the scenario
where the adversary can tamper with the original secret key repeatedly
and adaptively. We present a novel construction of continuous nm-KDF
for any polynomials of bounded degree over a finite field. Essentially, our
result can be extended to richer RKD function classes possessing prop-
erties of high output entropy and input-output collision resistance. The
technical tool employed in the construction is the one-time lossy filter
(Qin et al. ASIACRYPT’13) which can be efficiently obtained under s-
tandard assumptions, e.g., DDH and DCR. We propose a framework for
constructing Φ-RKA-secure IBE, PKE and signature schemes, using a
continuous nm-KDF for the same Φ-class of RKD functions. Applying
our construction of continuous nm-KDF to this framework, we obtain the
first RKA-secure IBE, PKE and signature schemes for a class of poly-
nomial RKD functions of bounded degree under standard assumptions.
While previous constructions for the same class of RKD functions all
rely on non-standard assumptions, e.g., d-extended DBDH assumption.

Keywords: Related-key attacks, non-malleable key derivation, one-time
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1 Introduction

Traditionally, cryptographic security notions assume that an adversary can only
observe the input/output behavior of the system and thus has only “black-box”
access to the system. In a real life, however, it may be far from this case. Recent
research [8] has shown that an adversary may learn some information about the
secret key/internal state through physical side channels (e.g., timing [21] and
power consumption [22]) and/or influence the way that the secret key/internal
state is used via physical access to a hardware device (e.g., heating it or cutting
wires to inject faults [7,8]). These two types of attacks are usually distinguished
as “leakage” and “tampering” attacks respectively. In this paper, we consider
how to design algorithms enabling devices resilient to tampering attacks when
the devices are “leakage-proof” but not “tamper-proof”. Specifically, we focus
on tampering attacks on the key stored in a cryptographic hardware device.
The key might be a signing key of a certificate authority or a decryption key
of an encryption cryptosystem. Such tampering attacks are firstly formalized
by Bellare and Kohno [5], as Related-Key Attacks (RKAs) in the context of
pseudorandom functions/permutations.

Model of RKA Security. Following [4], we view a system as a composition
of algorithms (code), public parameters, public keys (if any) and secret keys.
Among these components, public parameters are system-wide, meaning that they
are generated beforehand and independent of users and hence their public/secret
keys. In an implementation, these parameters are part of the algorithm code and
stored in a tamper-proof hardware device. Hence, only the public and secret keys
are subject to RKAs.

Suppose that CSpp(s, x) is a cryptographic system parameterized by a public
parameter pp. It admits a secret key s and a message x as input. For exam-
ple, if CS has a decryption functionality, then s is a decryption key and x is a
ciphertext. The RKA security model for CS is formalized by a class Φ of admis-
sible key transformations (also named Related-Key Deriving (RKD) functions).
An RKA adversary has the ability to repeatedly and adaptively choose x and
a (tampering) function φ ∈ Φ, and then observe the outcome of CSpp(φ(s), x)
under this modified key φ(s). If the system is still secure, we say CS is Φ-RKA
secure. Unless stated otherwise, in this paper, the RKA-security model allows
an adversary to ask for a-priori unbounded number of RKD queries.

1.1 Motivation

It is not an easy task to design a provably secure scheme under RKAs for an
especially large non-trivial class of RKD functions. To date, there are few con-
structions of RKA-secure primitives. The state-of-the-art RKA-security protects
against a-priori unbounded number of queries for polynomials of bounded degree.
However, all of them rely on non-standard assumptions, e.g., the d-extended DB-
DH (decisional bilinear Diffie-Hellman) assumption in the RKA-secure IBE [6]
(and the degree of RKD polynomials is limited to d). There are generic ap-
proaches that use non-malleable codes [15,17] and non-malleable key derivation
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functions [17] to protect against tampering attacks even for function class rich-
er than the polynomial one. However, both of them only consider single time
tampering attack, not capturing the scenario of related-key attacks in which the
adversary can continuously tamper with the original secret key. Indeed, as far
as we know, no formal result shows how to achieve RKA security using these
two primitives. Recently, Faust et al. [16] proposed an extension of the stan-
dard non-malleable codes, namely continuous non-malleable codes which cover
the case that allows multiple tampering queries. However, this model relies on
self-destruct mechanism, in which tampering queries must be terminated if an
invalid code is detected (i.e., the decoding returns ⊥). Moreover, their continuous
non-malleable codes are realized in the split-state model [14] where an encoding
is divided into two parts and the tampering must be applied to the two parts
independently.

A natural question is whether we can define a stronger security model (than
that of [16]) for continuous non-malleable codes or KDFs that can be used
to achieve RKA security? Furthermore, can we achieve such continuous non-
malleability for larger class of RKD functions under standard assumptions? In
this paper, we provide affirmative answers to the two questions in the setting of
key derivation functions.

1.2 Continuous Non-Malleable KDFs

Usually, a key derivation function KDF is equipped with another two probabilistic
polynomial-time (PPT) algorithms: KDF.Sys and KDF.Sample. The former takes
as input a security parameter 1κ and outputs a system parameter pp; the later
takes as input pp, and outputs a derivation key s and a public key π. The key
derivation function KDF is implicitly indexed by the system parameter pp and
takes as input (s, π) to derive a key r = KDFπ(s) in polynomial-time. At a
high level, we can always view (s, π) together as a derivation key. Since π is
publicly accessible, any efficient adversary can tamper with π at its will. For
this reason, we only explicitly specify the class Φ of tampering functions over
the secret key space in this paper. We omit π if the derivation function does not
take the public key as input, for example in [17]. The standard security notion
for KDFs requires that the derived key r is indistinguishable from a random key
if the adversary only knows the system parameter and the public key. Recently,
Faust et al. [17] introduced the notion of non-malleable KDFs which, roughly
speaking, guarantees that r is still random even if the adversary obtains another
value KDF(s′) as long as s′ 6= s.

As shown previously, the standard non-malleability cannot protect against
tampering attacks in some stateless settings where the adversary can continue to
tamper with the original keys. To overcome this drawback, we introduce a new
notion, namely continuous non-malleable KDFs, as a natural extension of the
standard non-malleability. The continuous non-malleability for function class Φ
is defined by the following two experiments: RealKDF(Φ, κ) and SimKDF(Φ, κ), in
which the derivation key function involves the public key π as an auxiliary input.
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1. The challenger generates pp and samples (s, π). In experiment RealKDF, the
challenger computes r∗ = KDFπ(s), while in experiment SimKDF, the chal-
lenger samples r∗ uniformly at random from its range.

2. The adversary A is given (pp, π) and the challenge key r∗.
3. A can repeatedly and adaptively query the following oracle with (φ, π′) for

any polynomially many times:

If (φ(s), π′) = (s, π), return same?; else, return KDFπ′(φ(s)),

where φ ∈ Φ, and π′ is chosen by A at its will.

The continuous non-malleability requires that any PPT adversary has negligible
advantage in distinguishing the above two experiments.

Though the adversary may tamper with s and π in a different (not necessar-
ily independent) way, we stress that this is not a tampering attack as defined in
the split-state model [14,17]. The reason is that π is a public key, any tampered
result of π is provided by the adversary at its will, instead of being computed by
the challenger. As shown in [18], it is impossible to prevent against continuous
tampering attacks without any further assumption. Indeed, the continuous non-
malleability achieved in the work of Faust et al. [16] limits to self-destruct and
split-state model. Our new model above removes these two restrictions, hence
is stronger. We will show in Section 4.1 that key derivation functions are stil-
l achievable in our new stronger security model, as long as we give a proper
restriction (see Definition 1) on the tampering function classes.

Note that in our security model, we consider not only a continuously tam-
pering adversary, but also an adaptive adversary which is allowed to access the
tampering oracle after seeing the challenge derived key r∗. It might be of inde-
pendent interest to consider a non-adaptive tampering adversary, which is only
allowed to access the tampering oracle before receiving r∗.

1.3 Our Contributions

We summarize our contributions in the following and then detail the techniques
that are used in our construction of continuous non-malleable KDF.

– Introduce the notion of continuous non-malleable Key Derivation Function
(cnm-KDF) for an a-priori class of RKD functions Φ. Informally, we say a
key derivation function KDF is continuously non-malleable with respect to
Φ, namely Φ-cnm-KDF, if the output of KDF is still pseudo-random even if
a PPT adversary tampers with its original key repeatedly and adaptively
with function φ ∈ Φ.

– Provide a simple construction of continuous non-malleable KDF for the

Φ
poly(d)
F -class of polynomial functions of bounded degree d over finite field

F. The construction exploits the functionality of one-time lossy filter (intro-
duced by Qin et al. [24]) and some basic properties of polynomial functions
over finite field.
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• We also generalize the polynomial function class Φ
poly(d)
F to a larger

function class, namely High Output Entropy and Input-Output Colli-
sion Resistance (HOE&IOCR), which we denote by Φhoe

iocr. Function class
Φhoe
iocr possesses similar properties as polynomial functions. We show that

our result works well even in such a richer RKD function class Φhoe
iocr

(Φhoe
iocr ⊇ Φ

poly(d)
F ).

• The state-of-the-art One-Time Lossy Filters (OT-LFs) [24,25] suggest
that OT-LFs can be instantiated from standard assumptions includ-
ing the Decisional Diffie-Hellman (DDH) assumption and the Decisional
Composite Residuosity (DCR) assumption. This leads to instantiations

of Φ
poly(d)
F -cnm-KDF (w.r.t. Φhoe

iocr-cnm-KDF ) based on standard assump-
tions.

– Propose a simple framework which transforms a traditional (non-RKA se-
cure) IBE to a Φ-RKA-secure IBE with the help of Φ-cnm-KDF.

• The available standard-assumption-based IBEs and Φ
poly(d)
F -cnm-KDF

suggests the first instantiations of Φ
poly(d)
F -RKA-secure IBE from stan-

dard assumption.
• Applying the transformation from Φ-RKA-secure IBE to PKE and sig-

nature schemes [4,6], we immediately obtain Φ
poly(d)
F -RKA-secure CCA-

PKE and signature schemes under standard assumptions.

A Closer Look at Our Techniques. Our construction of continuous non-
malleable KDF employs three cryptographic primitives: one-time lossy filter [24],
pairwise independent hash function and one-time signature. A one-time lossy fil-
ter LFt(·) is a family of (one-way) functions parameterized by a tag t. The tag
t can be either injective corresponding to an injective function, or lossy corre-
sponding to a lossy function. One-time lossy filter has the following properties:
(1) Injective and lossy tags are computationally indistinguishable; (2) There is
a trapdoor to efficiently sample a lossy tag. However, without this trapdoor,
it is hard to find a non-injective 1 tag even given one lossy tag. Recall that a
family of pairwise independent hash functions H is an average-case strong ex-
tractor as long as its input has sufficiently large average min-entropy [13]. In our
construction, we simply use h to derive the key r = h(s), where h ←R H and
s is a random derivation key. Associated with the derivation key s is a public
key computed by π = t||LFt(s), where t is a random LF (injective) 2 tag. At
a high level, π provides a knowledge proof of s so that an adversary who can
compute a correct proof π′ that corresponds to φ(s) must already know φ(s).
To guarantee such property, in the proof, the tag t is moving from injective to
lossy making π reveal only constant amount of information of s. Suppose that s
is modified to φ(s) and π to any value π′ = t′||y′. If t′ 6= t, t′ will be an injective
tag with overwhelming probability and hence LFt′(·) is injective. So, if φ(s) has
high residual min-entropy, the adversary should have negligible probability to

1 In some case, a tag may be neither injective nor lossy.
2 With overwhelming probability, a random tag is injective.



6 B. Qin et al.

correctly guess the value LFt′(φ(s)). A challenging problem is that the adversary
may reuse the lossy tag t, i.e., t′ = t. To solve this problem, we apply a one-
time signature scheme to π, guaranteeing that if t is reused, then π′ = π with
overwhelming probability. Recall that a lossy tag is indistinguishable from an
injective tag, and hence with overwhelming probability if π′ = π, then φ(s) = s.
So, such case occurs unless (φ(s), π′) = (s, π). Now, it only leaves us to discuss
the entropy of φ(s) and the probability of φ(s) = s. A simple property (for de-
tail, see Lemma 3) is that for any non-constant polynomial, φ(s) has nearly the
same entropy as s and if φ is not the identity function, then φ(s) equals s with
negligible probability, as long as s has sufficiently large entropy. This concludes
that except trivial queries (including the case (φ, π′) = (id, π) and the case φ is
constant), it is hard to generate a valid proof π′ for φ(s).

1.4 Related Work and Remarks

So far, there are not many RKA-secure primitives available and the main con-
structions are limited to PRFs [3,1], symmetric encryption [2,19,6], IBE [6],
signature [6], and public-key encryption [28,6,23]. In particular, Bellare et al. [4]
presented an almost complete understanding of the relations among these RKA-
primitives. For example, RKA-secure PRFs can make any non-RKA secure prim-
itive constructed from PRFs to be secure against RKAs. However, almost all of
the realizations are secure only against simple and claw-free3 RKD functions e.g.,
linear functions [2,28,23]. It may become more challenging to immunize a cryp-
tographic primitive against non-linear and non-claw-free functions, e.g., affine
and polynomial functions. One inherent reason is that a simulator, without the
secret key s, is hard to detect dangerous queries such that φ(s) = s if φ is non-
claw-free. To overcome this issue, all these methods [19,6,1] rely on non-standard
assumptions, e.g., the d-extended DBDH (decisional bilinear Diffie-Hellman) as-
sumption used in [6], from which the simulator is able to compute φ(s) (in the
exponent) for any polynomial φ of bounded degree d.

Another approach that may be used to achieve RKA-security in a general
way is the tamper-resilient codes, including algebraic manipulation detection
codes [11] and (continuous) non-malleable codes [15,17,16]. The secret key s-
tored on the device is now the encoded version of the original key using such
a code. These codes considered very practical tampering functions. However, as
we mentioned before, their security models have some limitations, e.g., one-time
tampering query or split-state model, which are inherent obstacles for capturing
the scenario of RKAs security. Recently, Damg̊ard et al.[12] showed that tamper-
resilience (even combined with leakage-resilience) can be achieved for arbitrary
key relations by restricting the number of adversary’s tampering queries.

Concurrent Work. Jafargholi and Wichs [20] considered the same security
level of continuous non-malleability and showed that continuous non-malleable
codes are achievable if the tampering functions are polynomials or have few

3 A class of RKD functions is called claw-free, if for any distinct RKD functions φ 6= φ′

and all s ∈ S, φ(s) 6= φ′(s)
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fixed points and high entropy (like the properties of HOE&IOCR functions).
In contrast to ours, their results are constructed in the information-theoretic
setting. However, the parameter in their construction [16, Corollary 5.6] de-
pends on the number of tampering queries and the size of tampering function
class. For efficient codes, the degree of polynomials must be set to some poly-
nomial d = d(κ). Additionally, they initiated a general study of continuous
non-malleable codes and defined four variants of continuous non-malleability
depending on (1) whether a tampering is persistent or non-persistent, mean-
ing that any successive tampering function is applied to the former modified
codeword or always applied to the original codeword, (2) whether we can self-
destruct or not, meaning that we can stop the experiment if a codeword is invalid
or the adversary can continue to tamper. Clearly, non-persistent tampering and
no self-destruct require stronger model and is just the model considered in this
paper.

Organization. We present our RKD function class in Section 3. We present the
notion of continuous non-malleable KDF and its construction in Section 4. An
application of continuous non-malleable KDF to the RKA-secure IBE is given
in Section 5.

2 Preliminary

Notations. Throughout the paper, N is the set of natural numbers and κ ∈ N
is the security parameter. If S is a finite set, then s←R S denotes the operation
of picking an element s from S uniformly at random. If X is a random variable
over S, then we write x ← X to denote the process of sampling a value x ∈ S
according to the distributionX. We call a function negl negligible in κ, if for every
positive polynomial poly(·) there exists an N such that for all κ > N , negl(κ) <
1/poly(κ). We say that an event E happens with overwhelming probability, if it
happens with probability 1−negl(κ). “PPT” stands for probabilistic polynomial-
time. An algorithm A is PPT if it, on input x, computes A(x) using randomness
and its running time is bounded by poly(κ).

Average Min-entropy. The statistical distance between two random variables
X and Y over a finite set Ω is ∆(X,Y ) = 1

2

∑
ω∈Ω |Pr[X = ω] − Pr[Y = ω]|.

We say that two variables are ε-close if their statistical distance is at most ε.
The min-entropy of a random variable X is H∞(X) = − log(maxx Pr[X = x]).
Dodis et al. [13] formalized the notion of average min-entropy that captures the
unpredictability of X conditioned on a random variable Y . Formally, it is defined
as H̃∞(X|Y ) = − log(Ey←Y [2−H∞(X|Y=y]).

We recall the following useful properties of average min-entropy from [13].

Lemma 1 ([13]). Let X, Y and Z be random variables. Then

1. If Y has at most 2r possible values and Z is any random variable, then
H̃∞(X|(Y,Z)) ≥ H̃∞(X|Z)− r.
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2. For any δ > 0, the conditional entropy H∞(X|Y = y) is at least H̃∞(X|Y )−
log(1/δ) with probability at least 1− δ over the choice of y.

Average-Case Extractors [13]. A function Ext : {0, 1}n × H → {0, 1}m
is an efficient average-case (n, ν,m, ε)-strong extractor, if for all pairs of ran-

dom variables (X,Z) such that X ∈ {0, 1}n and H̃∞(X|Z) ≥ ν, we have
∆((Z, h,Ext(X,h)), (Z, h, Um)) ≤ ε, where h is uniform over H and Um is u-
niform over {0, 1}m.

Lemma 2 ([13]). Let H be a family of pairwise independent hash functions

from {0, 1}n to {0, 1}m. If X ∈ {0, 1}n, H̃∞(X|Z) ≥ ν and m ≤ ν − 2 log 1/ε,
then ∆((Z, h, h(X)), (Z, h, Um)) ≤ ε, where h ←R H and Um is uniform over
{0, 1}m. In other words, the above family of pairwise independent hash functions
can be used as an efficient average-case (n, ν,m, ε)-strong extractor.

One-Time Lossy Filter. We adopt the notion of one-time lossy filter from [24].
An (X , `LF)-OT-LF LF consists of three PPT algorithms: (1) LF.Gen(1κ), on
input 1κ, outputs an evaluation key ekLF and a trapdoor tdLF. The evaluation
key defines a tag space T = {0, 1}∗ × Tc that contains two disjoint subsets, the
subset of lossy tags Tloss ⊆ T and that of injective tags Tinj ⊆ T . A tag t ∈ T
consists of an auxiliary tag ta ∈ {0, 1}∗ and a core tag tc ∈ Tc. The trapdoor
tdLF allows to efficiently sample a lossy tag. (2) LF.Eval(ekLF, t,X), on input a
tag t and a preimage X ∈ X , computes LFekLF,t(X) ∈ Y. (3) LF.LTag(tdLF, ta),
on input an auxiliary tag ta, computes a core tag tc such that t = (ta, tc) is lossy.

Besides the above functionalities, LF should satisfy the following properties:

Lossiness. If t is injective, so is the function LFekLF,t(·). If t is lossy, then
LFekLF,t(X) has at most 2`LF possible values.

Indistinguishability. For any PPT adversary A, it is hard to distinguish a
lossy tag from a random tag, i.e., the following advantage is negligible in κ,

AdvindLF,A(κ) := |Pr [A(ekLF, (ta, tc)) = 1]− Pr [A(ekLF, (ta, t
′
c)) = 1]| ,

where (ekLF, tdLF) ← LF.Gen(1κ), ta ← A(ekLF), tc ← LF.LTag(tdLF, ta) and
t′c ←R Tc.

Evasiveness. For any PPT adversary A, it is hard to generate a non-injective
tag even given a lossy tag, i.e., the following advantage is negligible in κ,

AdvevaLF,A(κ) := Pr

 (t′a, t
′
c) 6= (ta, tc)∧

(t′a, t
′
c) ∈ T \ Tinj

:

(ekLF, tdLF)← LF.Gen(1κ)
ta ← A(ekLF)
tc ← LF.LTag(tdLF, ta)
(t′a, t

′
c)← A(ekLF, (ta, tc))

 .
One-Time Signature. A one-time signature scheme OTS consists of four (prob-
abilistic) polynomial-time algorithms: (1) OTS.Sys(1κ), on input 1κ, output-
s a public parameter pp; (2) OTS.Gen(pp), on input pp, outputs a verifica-
tion/signing key pair (vk, sigk); (3) OTS.Sig(sigk,m), on input a message m,
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outputs a signature σ; (4) OTS.Vrf(vk,m, σ), on input a message/signature pair
(m,σ), outputs 1 if σ is indeed a signature of m or 0 otherwise. We say that
OTS is strongly secure against chosen-message attacks, if for any stateful PPT
adversary A, the following advantage is negligible in κ,

Advcma
OTS,A(κ) := Pr

 (m′, σ′) 6= (m,σ)∧
OTS.Vrf(vk,m′, σ′) = 1

:

pp← OTS.Sys(1κ)
(vk, sigk)← OTS.Gen(pp)
m← A(pp, vk)
σ ← OTS.Sig(sigk,m)
(m′, σ′)← A(σ)

 .

3 Properties of RKD Functions over Finite Fields

A class Φ of Related-Key Derivation (RKD) functions over S is a set of functions,
all with the same domain and range S. Suppose that F is a finite field such that
|F| ≥ 2n for some positive integer n. Let d ≥ 0 be any fixed integer. Define

Φ
poly(d)
F to be the set of all polynomial functions over F with degree bounded

by d. Clearly, Φ
poly(d)
F includes the identity function f = id (i.e., f(x) = x) and

all the constant functions (denoted by cf = {fc : F → c}c∈F). We introduce the
following simple lemma.

Lemma 3. Let F and Φ
poly(d)
F be defined as above. Let X be any random variable

over F such that H∞(X) ≥ n. For any f ∈ Φ
poly(d)
F \ cf, then H∞(f(X)) ≥

n− log d and for any f ∈ Φpoly(d)
F \ {id} then Pr[f(X) = X] ≤ d

2n .

Proof. For any polynomial f ∈ Φ
poly(d)
F , let Bf denote the set of all solutions

x over F such that f(x) = 0. Clearly, if f is not identically zero, then |Bf | is
bounded by d. For any fixed value a ∈ F, if f is not a constant function, then
f ′(x) = f(x)− a is not identically zero. This shows that f ′(x) = 0 has at most
d solutions x, i.e., |Bf ′ | ≤ d. Then,

Pr
x←X

[f(x) = a] = Pr
x←X

[x ∈ Bf ′ ] ≤ d

2H∞(X)
≤ d

2n
.

Hence, H∞(f(X)) = − log(max
a∈F

Pr[f(X) = a]) ≥ n− log d.

Similar to the above analysis, if f is not identity function, then f ′′(x) =
f(x)−x is not identically zero. Hence f ′′(x) = 0 has at most d solutions over F,
i.e., |Bf ′′ | ≤ d. Then

Pr[f(X) = X] =
∑
a∈F

Pr[f(X) = a ∧X = a]

=
∑

a∈Bf′′
Pr[f(X) = a ∧X = a] +

∑
a∈F\Bf′′

Pr[f(X) = a ∧X = a]

= Pr
x←X

[x ∈ Bf ′′ ] + 0

≤ d
2H∞(X) ≤ d

2n .

This completes the proof of Lemma 3. ut
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Remark 1. In our main result (see Theorem 1), we restrict the RKD function
class to polynomials as the proof needs the properties stated in Lemma 3. In
fact, we can extend it to any RKD function class that has similar properties as
polynomials. We call such function class High Output Entropy and Input-Output
Collision Resistant (HOE&IOCR) function class, which is formally defined in
Definition 1.

Definition 1 (HOE&IOCR RKD function class). Let S be a set with
super-polynomial size in the security parameter κ. The RKD function class
Φhoe
iocr : S → S is called the class of High Output Entropy and Input-Output

Collision Resistance (HOE&IOCR) as long as it satisfies the following proper-
ties.

– (High Output Entropy) When S is chosen uniformly at random from S, for
each φ ∈ Φhoe

iocr\cf, the entropy H∞(φ(S)) is sufficiently large, i.e., 2−H∞(φ(S))

is negligible in κ;
– (Input-Output Collision Resistance) For each φ ∈ Φhoe

iocr \ {id}, the probability
Pr[φ(S) = S] is negligible in κ.

Clearly, Φ
poly(d)
F ⊆ Φhoe

iocr, and Φ
poly(d)
F satisfies S = F,H∞(S) ≥ n,H∞(φ(S)) ≥

n− d and Pr[φ(S) = S] ≤ d
2n .

4 Continuous Non-Malleable Key Derivation

A key derivation function consists of three (PPT) algorithms: (1) The public
parameter generation algorithm KDF.Sys(1κ), on input 1κ, outputs a system
parameter pp, which defines the derivation key space S and the derived key
space {0, 1}m. (2) KDF.Sample(pp), on input pp, samples a random derivation
key s ∈ S and computes a public key, denoted by π. (3) The deterministic algo-
rithm KDFπ(s), on input (s, π), outputs a derived key r or the special symbol
⊥, indicating that π is an invalid proof of s. The standard security notion of
KDF guarantees that r is (computationally or information theoretically) indis-
tinguishable from a uniform over {0, 1}m even given the public parameter pp
and the proof π.

The notion of non-malleable key derivation [17] was firstly introduced by
Faust et al. at Eurocrypt 2014. Intuitively, a function KDF is a non-malleable
key derivation function if KDF(s) 4 is statistically close to uniform even given
the output of KDF applied to a related input s′ as long as s′ 6= s. The non-
malleability for a key derivation function aims to capture the scenario of one-time
tampering attack for tampering function family with all circuits of bounded size.
In this section, we extend it to the notion of continuous non-malleability (see
Fig. 1) for an a-priori class Φ of RKD functions, making it possible to protect
against multiple-time tampering attacks on a fixed secret key (i.e., RKAs).

4 In [17], the key derivation is defined in the information theoretic setting, not taking
π as an auxiliary input, i.e., π is empty.
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Experiment RealKDF(Φ, κ) : Experiment SimKDF(Φ, κ) :
pp← KDF.Sys(1κ) pp← KDF.Sys(1κ)
s||π ← KDF.Sample(pp) // s ∈ S s||π ← KDF.Sample(pp) //s ∈ S
r = KDFπ(s) r ←R {0, 1}m
For i = 1 to Q(κ) For i = 1 to Q(κ)

(φ, π′)← A(pp, r, π) // φ ∈ Φ (φ, π′)← A(pp, r, π) // φ ∈ Φ
If φ(s)||π′ = s||π If φ(s)||π′ = s||π

return same?. return same?.
Else Else

return KDFπ′(φ(s)). return KDFπ′(φ(s)).

Fig. 1. Experiments for continuous non-malleable KDFs

Definition 2 (Continuous non-malleable KDFs). Let Φ be a class of RKD
functions over the same domain and range S. We say that (KDF.Sys, KDF.Sample,
KDF) is a (Φ, ε)-continuous non-malleable key derivation function if for any s-
tateful PPT adversary A,

|Pr[A(RealKDF(Φ, κ)) = 1]− Pr[A(SimKDF(Φ, κ)) = 1]| ≤ ε.

The experiments RealKDF(Φ, κ) and SimKDF(Φ, κ) are defined in Fig. 1 (Sup-
pose that A makes at most Q(κ) queries).

4.1 The Construction

In this subsection, we construct a continuous non-malleable key derivation func-

tion with respect to Φ
poly(d)
F from one-time lossy filter.

Let (LF.Gen, LF.Eval, LF.LTag) be a collection of one-time lossy filters with
domain S (such that S ⊆ F), range Y, residual leakage `LF and tag space
T = {0, 1}∗ × Tc. Let H be a family of pairwise independent hash function-
s from domain S to range {0, 1}m. Let (OTS.Sys,OTS.Gen,OTS.Sig,OTS.Vrf)
be a strongly secure one-time signature with verification key space KOTS and
signature space Σ. Define Π := T × Y ×Σ. The construction is given in Fig. 2.

Theorem 1. The KDF given in Fig. 2 is (Φ
poly(d)
F , ε)-continuously non-malleable.

Concretely, for any δ > 0 and any PPT adversary A that makes at most Q(κ)
queries and breaks the continuous non-malleability with advantage ε, there exist
adversaries B, B′ and B′′ of roughly the same time complexity as A, such that

ε ≤ 2
(
Advcma

OTS,B(κ) + AdvindLF,B′(κ) +Q(κ) · AdvevaLF,B′′(κ)+

Q(κ) ·
(
δ + d·2m+`LF+log 1/δ

|S|−Q(κ)+1

)
+ εH

)
,

where S and `LF respectively are the domain and residual leakage of the one-time
lossy filter, m is the output length of the pairwise independent hash, d is the
maximum degree of RKD functions and log |S| ≥ max{`LF+m+2 log 1/εH, `LF+
m + log 1/δ}. Taking into account that ε should be negligible in the security
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– KDF.Sys(1κ): It runs (ekLF, tdLF) ← LF.Gen(1κ) and ppOTS ← OTS.Sys(1κ),
chooses h←R H, and returns ppKDF := (ekLF, ppOTS, h).

– KDF.Sample(ppKDF): It runs (vk, sigk) ← OTS.Gen(ppOTS), chooses s ←R S
and tc ←R Tc, and computes

y = LFekLF,(vk,tc)(s) and σ = OTS.Sig(sigk, tc||y).

Let π := t||y||σ and t := (vk, tc). Finally, it returns s||π.
– KDFπ(s): It parses π as t||y||σ and t as (vk, tc). If the following two equations

LFekLF,(vk,tc)(s) = y (1)

OTS.Vrf(vk, tc||y, σ) = 1 (2)

hold simultaneously, it returns r = h(s); else it returns ⊥.

Fig. 2. Continuous non-malleable KDF w.r.t. RKD functions Φ
poly(d)
F

parameter κ, we may choose negligible δ and εH, and choose a OT-LF with
sufficiently large domain S such that log |S| = `LF + m + ω(log κ). Moreover,
the degree of RKD functions can be made to 2κ as long as log |S| = `LF + m +
ω(log κ) + κ.

Proof. We prove it through a sequence of games played between a simulator Sim
and a fixed PPT adversary A. The initial game (i.e., Game0) is the experiment

RealKDF(Φ
poly(d)
F , κ) and the final game is the experiment SimKDF(Φ

poly(d)
F , κ) as

defined in Fig. 1. Denote by Si the output of A in Gamei.

Game0 (The real experiment): This is the real experiment RealKDF(Φ
poly(d)
F , κ)

as defined in Fig. 1. For simplicity, we denote by ppKDF = (ekLF,ppOTS, h)
the challenge public parameters and denote by s||π the challenge sample,
where π = t||y||σ, t = (vk, tc) and vk is the corresponding OTS verification
key (with respect to the signing key sigk). We write (φ, π′) as A’s queries,
where π′ = t′||y′||σ′ and t′ = (vk′, t′c). Then,

Pr[A(RealKDF(Φ
poly(d)
F , κ)) = 1] = Pr[S0 = 1].

Game1 (Handling trivial queries without the KDF key): This game is the
same as Game0, except that the simulator uses the new rule R1 to answer
some trivial queries as given in Fig. 3. Specifically, for these trivial queries,
the simulator never uses the real derivation key s to compute the value of
KDFπ′(φ(s)). Note that, in both Game0 and Game1, LF works in injective
mode with overwhelming probability. Recall that y = LFekLF,(vk,tc)(s). So,
for a query (φc, π

′), it satisfies φc(s)||π′ = s||π if and only if π′ = π and
LFekLF,(vk,tc)(c) = y. Hence, with overwhelming probability, these modifica-
tions are just conceptual and

Pr[S1 = 1] = Pr[S0 = 1].
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Games: Key derivation rules : r: tc:

Game0 R0: If φ(s)||π′ = s||π, return same?,
else if Eq. (1) and Eq. (2) hold, return
KDFπ′(φ(s)), else return ⊥.

r = h(s) tc ←R Tc

Game1 R1: If (φ, π′) = (id, π), return same?. If
φ = φc, π

′ = π and LFekLF,(vk,tc)(c) =
y, return same?. If φ = φc but π′ 6= π or
LFekLF,(vk,tc)(c) 6= y, return KDFπ′(c).

r = h(s) tc ←R Tc

R0: As in Game0.

Game2 R1: As in Game1. r = h(s) tc ←R Tc
R2: If vk′ = vk, but (t′c||y′, σ′) 6=
(tc||y, σ), return ⊥.
R0: As in Game1.

Game3 R1: As in Game2. r = h(s) tc ←R Tc
R2: As in Game2.
R3: If π′ = π, but φ(s) 6= s, return ⊥.
R0: As in Game2.

Game4 The same as in Game3. r = h(s) tc ← LF.LTag(tdLF, vk)

Game5 R1: As in Game4. r = h(s) tc ← LF.LTag(tdLF, vk)
R2: As in Game4.
R3 : Replaced by R0’.
R0 : Replaced by R0’.
R0’: Return ⊥.

Game6 As in Game5. r ←R {0, 1}m tc ← LF.LTag(tdLF, vk)

Game7 As in Game0. r ←R {0, 1}m tc ←R Tc

Fig. 3. Changes in each game

Game2 (Eliminating OTS key reuse): This game is the same as Game1, ex-
cept for a modification to the verification oracle as stated in Fig. 3. Let
EOTS denote the event that A submits a query (φ, π′ = (vk′, t′c)||y′||σ′) such
that vk′ = vk, (t′c||y′, σ′) 6= (tc||y, σ) but OTS.Vrf(vk, t′c||y′, σ′) = 1. Clearly,
Game2 is identical to Game1 unless the event EOTS occurs. We briefly show
that if the adversary makes the event EOTS occur, then an efficient algorith-
m B can be constructed to break the strong security of OTS using A as a
subroutine.
Given an OTS challenge instance (ppOTS, vk), B runs (ekLF, tdLF)← LF.Gen(1κ),
chooses h ←R H, and sets ppKDF := (ekLF,ppOTS, h). Then B samples s, tc
and computes y = LFekLF,(vk,tc)(s) by itself. Also, B generates σ by querying
OTS signing oracle once with tc||y. Since B knows s, it can answer all the
decryption queries (φ, π′) from A (recall that decryption does not need the
knowledge of the challenge OTS signing key sigk). So, B perfectly simulates
the real experiment defined in Game1 for A. If A submits a query (φ, π′)
making the event EOTS occur, B returns (t′c||y′, σ′) (Note that, B can check
whether the event EOTS occurs or not). From the above observation, we have

|Pr[S2 = 1]− Pr[S1 = 1]| ≤ Advcma
OTS,B(κ).
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Game3 (Answering a trivial query with the KDF key): If the adversary
submits a query (φ, π′) such that π′ = π (i.e., vk′ = vk and (t′c||y′, σ′) =
(tc||y, σ)), the simulator first checks whether φ(s) = s. If not, it returns ⊥
and halts immediately. Otherwise, the simulator handles it as in Game2. Re-
call that, with overwhelming probability, a randomly chosen LF tag (vk, tc)
is injective. So, if φ(s) 6= s, then LFekLF,(vk,tc)(φ(s)) 6= y. This implies that
such queries will also be rejected under the rules of Game2. Hence, with
overwhelming probability

Pr[S3 = 1] = Pr[S2 = 1].

Game4 (From injective to lossy LF tag): Instead of picking tc ∈ Tc uni-
formly at random, the simulator computes tc := LF.LTag(tdLF, vk).
We show that the difference between Game3 and Game4 can be reduced
to the indistinguishability of the underlying OT-LF. Given a challenge LF
evaluation key ekLF, a PPT algorithm B′ chooses h and ppOTS, samples s
and (vk, sigk) by itself. Then, it queries its injective-lossy tag oracle with
query ta = vk. B′ will receive a challenge core tag part tc. It computes
y = LFekLF,(vk,tc)(s) and σ = OTS.Sig(sigk, tc||y), and sets π = (vk, tc)||y||σ.
It sends ppKDF = (ekLF,ppOTS, h) together with π to A. Since B′ knows the
KDF key s, it can answer all the queries issued by A. Finally, B′ outputs
whatever A outputs. Clearly, if tc is sampled from Tc uniformly at random,
then B′ simulates Game3 perfectly. If tc is computed by LF.LTag(ekLF, ta),
then B′ perfectly simulates Game4. Hence,

|Pr[S4 = 1]− Pr[S3 = 1]| ≤ AdvindLF,B′(κ)

for some adversary B′ attacking on the indistinguishability of OT-LF.
Game5 (Answering all queries without the KDF key): In this game, the

simulator replaces the rules in step R3 and R0 (relying on the KDF key) with
R0’ (without relying on the KDF key) as stated in Fig. 3. Note that, the
new rule directly rejects all queries except those trivial queries which have
already be answered by rule R1. Denote by F the event that A submits a
query (φ, π′) such that the simulator returns the special symbol ⊥ in Game5,
but not in Game4. Also, let Eninj denote the event that among all the queries
(φ, π′), there exists some non-injective LF tag such that (vk′, t′c) 6= (vk, tc).
Recall that, for the same query (φ, π′), if the simulator responds to A a result
not being the special symbol ⊥ in Game5, then the simulator must return
the same result as in Game4. So, unless event F occurs, the two games are
identical from the adversary’s point of view. By the difference lemma [26,
Lemma 1], it follows that |Pr[S5 = 1]− Pr[S4 = 1]| ≤ Pr[F ].
We show the upper bound of the probability Pr[F ] by the following obser-
vation

Pr[F ] = Pr[F ∧ Eninj] + Pr[F ∧ Eninj] ≤ Pr[Eninj] + Pr[F |Eninj]

where all probabilities are taken over the randomness used in the experi-
ment in Game4. The following two lemmas show that both the probabilities
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Pr[Eninj] and Pr[F |Eninj] are negligible in κ. We postpone to prove them after
the main proof.

Lemma 4. Suppose that A makes at most Q(κ) queries. Then

Pr[Eninj] ≤ Q(κ) · AdvevaLF,B′′(κ)

for some suitable adversary B′′ attacking on the evasiveness of OT-LF.

Lemma 5. Suppose that A makes at most Q(κ) queries. For any δ > 0, we
have

Pr[F |Eninj] ≤ Q(κ) ·
(
δ +

d · 2m+`LF+log 1/δ

|S| −Q(κ) + 1

)
.

Game6 (Replacing h(s) by a random string): This game is the same as Game5,
except that the simulator samples a random string r ←R {0, 1}m instead of
computing r = h(s). Recall that in both Game5 and Game6, except r, the
simulator never uses the KDF derivation key s to answer A’s queries. So,
the adversary does not learn any more information on s through the key
derivation oracle KDFπ′(φ(s)). Observe that from the adversary’s point of
view, only the value y may reveal information on s and all other values are
independent of s (e.g., ppKDF and (vk, tc)) or are just functions of y (e.g.,
σ). It holds by the lossiness property of the OT-LF and by Lemma 1 that

H̃∞(s|(ppKDF, π)) ≥ H̃∞(s|ppKDF)− `LF = log |S| − `LF.

Since log |S| − `LF − 2 log(1/εH) ≥ m, by Lemma 2, we have that h(s) is
εH-close to uniform over {0, 1}m from A’s point of view. Hence,

|Pr[S6 = 1]− Pr[S5 = 1]| ≤ εH.

Game7 (Reversing to answer all queries with the KDF key): This game
is the same as in Game 6, except that the simulator samples ppKDF and s||π,
and answers queries (φ, π′) as in Game0. Note that, in this game, r is still
sampled as in Game6. Through defining a sequence of reverse games from
Game6 to Game0, we can prove that

|Pr[S7 = 1]− Pr[S6 = 1]| ≤ |Pr[S6 = 1]− Pr[S0 = 1]|.

Observe that, Game7 is just the simulated experiment SimKDF(Φ
poly(d)
F , κ) and

hence

Pr[A(SimKDF(Φ
poly(d)
F , κ)) = 1] = Pr[S7 = 1].

Taking all together, Theorem 1 follows. ut

Now, we prove Lemma 4 and Lemma 5.
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Proof (Proof of Lemma 4). Given a challenge LF evaluation key ekLF, B′′ simu-
lates A’s environment in Game4 as follows. It first picks ppOTS ← OTS.Sys(1κ),
h←R H and s←R S. It then samples a OTS key pair (vk, sigk)← OTS.Gen(ppOTS).
After that, B′′ queries LF.LTag(ekLF, ·) with vk to obtain the challenge core tag
part i.e., tc = LF.LTag(tdLF, vk). Next, B′′ computes y = LFekLF,(vk,tc)(s) and σ =
OTS.Sig(sigk, tc||y). B′′ sends ppKDF = (ekLF,ppOTS, h) and π = (vk, tc)||y||σ to
the adversary A. Since B′′ knows the KDF key s, he can answer all the queries as
in Game4. Let T = {(vk′, t′c)} be the set of tags extracted from A’s queries (φ, π′)
such that (vk′, t′c) 6= (vk, tc). Finally, B′′ chooses a tag (vk′, t′c) from T uniformly
at random as his output. If Eninj occurs, with probability at least 1/Q(κ), B′′
outputs a fresh non-injective tag. Hence, Pr[Eninj] ≤ Q(κ) · AdvevaLF,B′′(κ). ut

Proof (Proof of Lemma 5). Let (φ, π′) be the first query that does not satisfy
the key derivation rules of R1 and R2 in Game4 and event Eninj does not happen.
We call such query invalid query. Recall that an invalid query is always rejected
(output ⊥) in Game5. We show that it is not rejected in Game4 with a negligible
probability. Clearly, if (t′c||y′, σ′) is an invalid signature, then (φ, π′) will be
rejected in both Game4 and Game5. We consider three cases:

– Case 0: π′ = π and φ(s) 6= s.
– Case 1: π′ = π, φ 6= id, but φ(s) = s.
– Case 2: vk′ 6= vk and φ /∈ cf.

Note that, for any query (φ, π′), it always satisfies the key derivation rules defined
in either R1 or R2, except for the above three cases. Recall that, in the first case,
both Game4 and Game5 outputs ⊥. Hence, only the Case 1 and Case 2 may cause
the difference between Game4 and Game5. Next, we show that the last two cases
will be rejected in Game4 with overwhelming probability.

Observe that in Game4, only values r and y may contain information on the
KDF derivation key s. The other values are independent of s (e.g., ppKDF and
vk) or just functions of y (e.g., σ). Denote by V the adversary’s view in Game4.
From Lemma 1 and the fact that r and y have at most 2m and 2`LF possible
values respectively, we have

H̃∞(s|V ) = H̃∞(s|(ppKDF, r||π)) ≥ H̃∞(s|ppKDF)−m− `LF.

Recall that s is independent of ppKDF. So, the average min-entropy of s
conditioned on the adversary’s point of view is at least log |S|−m−`LF. According
to Lemma 1, for any δ > 0, with probability at least 1− δ,

H∞(s|V = v) ≥ H̃∞(s|V )− log 1/δ ≥ log |S| −m− `LF − log 1/δ

over the choice of V = v.
According to Lemma 3, for any φ 6= id, we have

Pr[φ(s) = s] ≤ d

2H∞(s|V=v)
.
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So, in Case 1, with probability at least 1− δ,

Pr[φ(s) = s] ≤ d · 2m+`LF+log 1/δ

|S|
.

Again, according to Lemma 3, for any φ /∈ cf

H∞(φ(s)|V = v) ≥ H∞(s|V = v)− log d ≥ log |S| −m− `LF − log 1/δ − log d

with probability at least 1− δ.
Recall that event Eninj does not happen, so (vk′, t′c) is an injective tag,

which means that LFekLF,(vk′,t′c)(·) is injective. As a result, the adversary can
correctly guess the value LFekLF,(vk′,t′c)(φ(s)) with probability at most δ + d ·
2m+`LF+log 1/δ/|S|. Therefore, the first invalid query passes the key derivation
rules in Game4 with probability at most δ + d · 2m+`LF+log 1/δ/|S|.

An almost identical argument holds for all subsequent invalid queries. The
only difference is that the adversary can rule out one more value s from each
rejection of invalid query. So, R3 or R0 accepts the i-th invalid query with
probability at most δ + d · 2m+`LF+log 1/δ/(|S| − i + 1). Since A makes at most
Q(κ) queries, the event F |Eninj occurs with probability at most

Q(κ) ·
(
δ +

d · 2m+`LF+log 1/δ

|S| −Q(κ) + 1

)
.

This finishes the proof of Lemma 5. ut

4.2 Instantiations

According to [24,25], OT-LFs can be constructed from standard assumptions in-
cluding the DDH assumption and the DCR assumption. This results in instan-

tiations of Φ
poly(d)
F -cnm-KDF (w.r.t. Φhoe

iocr-cnm-KDF) based on these standard
assumptions.

5 Application to RKA-secure IBE

An identity-based encryption scheme IBE consists of five (PPT) algorithms: (1)
IBE.Sys(1κ), on input 1κ, outputs a system parameter pp, which defines an i-
dentity space ID. (2) IBE.Gen(pp), on input pp, outputs a master public key
mpk and a master secret key msk. (3) IBE.Ext(msk, id), on input msk and
an identity id ∈ ID, outputs a decryption key dkid. (4) IBE.Enc(mpk, id,M),
on input a message M , outputs a ciphertext C encrypted under mpk and i-
dentity id. (5) The deterministic algorithm IBE.Dec(dkid, C), on input decryp-
tion key dkid and ciphertext C, outputs a message M . Correctness requires
that for all public parameter pp ← IBE.Sys(1κ), all master public/secret key
pair (mpk,msk) ← IBE.Gen(pp), all identity id and message M , it always has
IBE.Dec(dkid, IBE.Enc(mpk, id,M)) = M .
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RKA-secure IBE. We recall the Φ-RKA security of IBE schemes from [4]. In
the context of IBE, an RKA adversary is allowed to access a decryption key gen-
eration oracle:OΦmsk(·, ·), on input (φ, id) ∈ Φ×ID, it returns IBE.Ext(φ(msk), id).
Besides this, the oracle initializes an empty set I := ∅ and id∗ = ⊥. For an RKA
query (φ, id), if φ(msk) = msk 5, it adds id to the set I := I ∪ {id}, and if id
equals the challenge identity id∗, it returns ⊥ directly. An IBE scheme is Φ-RKA
secure, if for any PPT adversary A, the following advantage

AdvrkaIBE,A(κ) :=

∣∣∣∣∣∣∣∣∣∣
Pr

b′ = b :

pp← IBE.Sys(1κ)
(mpk,msk)← IBE.Gen(pp)

(M0,M1, id
∗, St)← AOΦmsk(·,·)(pp,mpk)

b←R {0, 1}, C ← IBE.Enc(mpk, id∗,Mb)

b′ ← AOΦmsk(·,·)(St, C)

− 1

2

∣∣∣∣∣∣∣∣∣∣
is negligible in κ, where M0 and M1 are two equal length messages. Clearly, if
Φ only contains the identity function id, then the above definition is just the
traditional CPA-security of IBE schemes [9].

Suppose that IBE.Gen(pp) utilizes an m-bit random string as the internal
coin for generating mpk and msk. We write r explicitly in the key generation
algorithm, i.e., IBE.Gen(pp; r) = (mpk,msk) (a deterministic algorithm w.r.t.
input (pp, r)).

The IBE Construction. Starting from a (Φ, εKDF)-continuous non-malleable
KDF (KDF.Sys, KDF.Sample, KDF) and a CPA-secure IBE scheme (IBE.Sys,
IBE.Gen, IBE.Ext, IBE.Enc, IBE.Dec), we construct a new IBE scheme (IBE.Sys,
IBE.Gen, IBE.Ext, IBE.Enc, IBE.Dec) as follows:

– IBE.Sys(1κ): It runs ppKDF ← KDF.Sys(1κ) and ppIBE ← IBE.Sys(1κ), and
returns ppIBE = (ppKDF,ppIBE).

– IBE.Gen(ppIBE): It samples s||π ← KDF.Sample(ppKDF) and computes r =
KDFπ(s). Then, it computes (mpk,msk) = IBE.Gen(ppIBE; r) and returns
master public key mpk = (mpk, π) and secret key msk = (s, π).

– IBE.Ext(msk, id): For msk = (s, π), it computes r = KDFπ(s). If r is the spe-
cial symbol ⊥, it returns ⊥ and halts. Otherwise, it computes (mpk,msk) =
IBE.Gen(ppIBE; r) and returns dkid = IBE.Ext(msk, id).

– IBE.Enc(mpk, id,M): It first parses mpk as (mpk, π) and then returns C =
IBE.Enc(mpk, id,M).

– IBE.Dec(dkid, C): It returns IBE.Dec(dkid, C).

Theorem 2. If KDF is (Φ, εKDF)-continuously non-malleable and IBE is CPA-
secure, then the above construction is a Φ-RKA secure IBE scheme. Concretely,
for any PPT adversary A, there exist KDF distinguisher D and adversary B of
roughly the same complexity as A such that

Advrka
IBE,A(κ) ≤ εKDF + AdvcpaIBE,B(κ).

5 If msk contains some public information, for example in our construction msk =
(s, π) where π is completely given to an adversary, we define φ(msk) = (φ(s), π′)
and π′ is implicitly defined in the adversary’s query (φ, id).
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In Game0: In Game1:

Master s||π ← KDF.Sample(ppKDF) s||π ← KDF.Sample(ppKDF)

public r = KDFπ(s) r ←R {0, 1}m

key (mpk,msk) = IBE.Gen(ppIBE; r) (mpk,msk) = IBE.Gen(ppIBE; r)

Return mpk = (mpk, π). Return mpk = (mpk, π).

Dec. If φ(s)||π′ = s||π, set I := I ∪ {id}. If φ(s)||π′ = s||π, set I := I ∪ {id} and

key return IBE.Ext(msk, id) .

oracle Else compute
r′ = KDFπ′(φ(s)) r′ = KDFπ′(φ(s))

Input: If r′ =⊥, return ⊥. Else, compute If r′ =⊥, return ⊥. Else, compute
(φ, id) (mpk′,msk′) = IBE.Gen(ppIBE; r′) (mpk′,msk′) = IBE.Gen(ppIBE; r′)

Return dkid ← IBE.Ext(msk′, id). Return dkid ← IBE.Ext(msk′, id).

Fig. 4. Differences between Game0 and Game1

Proof. We prove it through two games: Game0 and Game1. The former is just the
original experiment of RKA-security and the later is slightly different from the
former in which the internal coin r is replaced by a uniform random string. We
depict the difference between these two games in Fig. 4. In addition, we define an
auxiliary game Game′0, which is the same as Game0 except that the key extraction
oracle works as in Game1. Observe that, in the case of φ(s)||π′ = s||π, the random
coin r′ computed via KDFπ′(φ(s)) is always equal to r, the random coin involved
in the challenge master key generation algorithm. Hence, this modification is just
conceptional and we can view Game0 as Game′0 in the following proof.

Denote by S0 and S1 the event that A successfully guesses the random coin
b in Game0 and Game1 respectively. We show shortly that

|Pr[S0]− Pr[S1]| ≤ εKDF (3)

|Pr[S1]− 1/2| ≤ AdvcpaIBE,B(κ). (4)

Clearly,
Advrka

IBE,A(κ) = |Pr[S0]− 1/2|.

This completes the proof of Theorem 2. ut

Proof (Proof of Eq. (3)). Given (ppKDF, r, π) where r either equals KDFπ(s) or a
uniform random string, the simulator chooses ppIBE and computes (mpk,msk) =
IBE.Gen(ppIBE; r). It sends mpk = (mpk, π) to the adversary and keeps the secret
key msk. The simulator answers A’s decryption key queries (φ, id) as follows:
It sends (φ, π′) to the KDF oracle and obtains the value r′. If r′ = same?, the
simulator returns IBE.Ext(msk, id) to A and updates I := I ∪ {id}. If r′ =⊥,
the simulator returns ⊥. Otherwise, the simulator computes (mpk′,msk′) =
IBE.Gen(ppIBE; r′) and returns IBE.Ext(msk′, id) to A. After the phase of decryp-
tion key queries, A submits two equal-length messages (M0,M1) and a challenge
identity id∗. The simulator picks b←R {0, 1} and returns C = IBE.Enc(mpk, id∗,Mb)
to A. Finally, the simulator outputs what A outputs. Recall that, the symbol
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same? implies φ(s)||π′ = s||π. So, if r = KDFπ(s), the simulator perfectly simu-
lates Game0. While if r is a uniform string, the simulator simulates Game1. This
completes the proof of Eq. (3). ut

Proof (Proof of Eq. (4)). Given an IBE challenge instance (ppIBE,mpk), the
simulator samples ppKDF ← KDF.Sys(1κ) and sets ppIBE = (ppKDF,ppIBE). It

also samples s||π ← KDF.Sample(ppKDF) and sets mpk = (mpk, π). Then it sends
(ppIBE,mpk) to A. To answer A’s decryption key queries (φ, id), the simulator
first checks whether φ(s)||π′ = s||π. If so, it submits id to its own decryption key
generation oracle and forwards the result to A. Since the simulator knows s and
it can handle the case φ(s)||π′ 6= s||π as in Game1. When A queries the challenge
ciphertext, the simulator forwards (M0,M1, id

∗) to its own encryption oracle to
obtain a challenge ciphertext C. The simulator forwards C to the adversary.
Finally, the simulator outputs what A outputs. Clearly, the simulator perfectly
simulates A’s environment in Game1. If A succeeds, so does the simulator. This
completes the proof of Eq. (4). ut

From [27], we have a CPA-secure IBE scheme under the standard DBD-

H assumption. Subsection 4.2 suggests that Φ
poly(d)
F -continuously non-malleable

KDFs can be constructed from the DDH and DCR assumptions. Consequently,
our IBE construction above immediately results in the first IBE that is RKA-

secure for class Φ
poly(d)
F , i.e., the sets of all polynomial functions of bounded

degree, under the standard DBDH assumption, and the security follows from
Theorem 1 and Theorem 2. We stress that the degree of our RKD polynomi-
al functions is not limited to polynomial size in κ and we can always enlarge

the polynomial function class Φ
poly(d)
F to class Φhoe

iocr whose functions has high
output entropy and input-output collision resistance, as defined in Definition

1. As a result, the Φ
poly(d)
F -RKA security of IBE can be extended to Φhoe

iocr, with

Φhoe
iocr ⊇ Φ

poly(d)
F .

Extensions to PKE and Signature. Bellare et al. [6] showed that the
CHK [10] IBE-to-CCA-PKE transform and the Naor IBE-to-Sig transform both

preserve Φ-RKA security. Thus, we readily obtain Φ
poly(d)
F (also extended to Φhoe

iocr)-
RKA-secure CCA-PKE and signature schemes under standard assumptions.

On the other hand, the continuous non-malleable KDFs can also be directly
used to transform a cryptographic primitive to a RKA secure version in a mod-
ular way, as long as the key generation algorithm of the primitive takes uniform
random coins r to generate (secret/public) keys. The transformation with the
help of cnm-KDF is as follows. First, sample a random derivation key s together
with the public key π such that KDFπ(s) = r; Then, store s in the cryptographic
hardware device. In addition, we append the proof π of s to the public key of the
system. When using r, we retrieve it via computing KDFπ(s). By the property
of continuous non-malleability, if s is modified to φ(s) 6= s and π to π′, then
r′ = KDFπ′(φ(s)) is either the rejection symbol ⊥ or a value independent of r.
Finally, the Φ-RKA security is reduced to the original security of the primitive.
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