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Abstract. We study simulation-based, selective opening security against
chosen-ciphertext attacks (SIM-SO-CCA security) for public key encryp-
tion (PKE). In a selective opening, chosen-ciphertext attack (SO-CCA),
an adversary has access to a decryption oracle, sees a vector of cipher-
texts, adaptively chooses to open some of them, and obtains the cor-
responding plaintexts and random coins used in the creation of the ci-
phertexts. The SIM-SO-CCA notion captures the security of unopened
ciphertexts with respect to probabilistic polynomial-time (ppt) SO-CCA
adversaries in a semantic way: what a ppt SO-CCA adversary can com-
pute can also be simulated by a ppt simulator with access only to the
opened messages. Building on techniques used to achieve weak deni-
able encryption and non-committing encryption, Fehr et al. (Eurocrypt
2010) presented an approach to constructing SIM-SO-CCA secure PKE
from extended hash proof systems (EHPSs), collision-resistant hash func-
tions and an information-theoretic primitive called Cross Authentication
Codes (XACs). We generalize their approach by introducing a special
type of Key Encapsulation Mechanism (KEM) and using it to build SIM-
SO-CCA secure PKE. We investigate what properties are needed from
the KEM to achieve SIM-SO-CCA security. We also give three instanti-
ations of our construction. The first uses hash proof systems, the second
relies on the n-Linear assumption, and the third uses indistinguishability
obfuscation (iO) in combination with extracting, puncturable Pseudo-
Random Functions in a similar way to Sahai and Waters (STOC 2014).
Our results establish the existence of SIM-SO-CCA secure PKE assum-
ing only the existence of one-way functions and iO. This result further
highlights the simplicity and power of iO in constructing different cryp-
tographic primitives.

1 Introduction

Selective Opening Attacks (SOAs) concern a multi-user scenario, where an ad-
versary adaptively corrupts a set of users to get their secret state information.
In the case of public key encryption (PKE), we assume that several senders send
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ciphertexts encrypting possibly correlated messages to a receiver. The SOA ad-
versary is able to (adaptively) corrupt some senders, exposing their messages
and also the random coins used to generate their ciphertexts. Security against
selective opening attacks (SOA security) considers whether the uncorrupted ci-
phertexts remain secure.

There are two ways of formalizing SOA security: indistinguishability-based
(IND-SO) and simulation-based (SIM-SO). According to whether the adver-
sary is able to access to a decryption oracle during its attack, SOA security is
further classified into IND-SO-CPA, IND-SO-CCA, SIM-SO-CPA and SIM-SO-
CCA. In the formalization of SOAs, we allow a probabilistic polynomial-time
(ppt) adversary to get the public key, a vector of challenge ciphertexts, and
to adaptively corrupt (open) some ciphertexts to obtain opened plaintexts and
random coins (and also access to a decryption oracle in the case of SO-CCA).
The IND-SO security notions require that the real messages (used to generate
the challenge ciphertexts) and re-sampled messages conditioned on the opened
messages are computationally indistinguishable to an SOA adversary. Here we
have to assume that the joint message distributions are efficiently conditionally
re-samplable after the opened messages are exposed. On the other hand, the
SIM-SO security notions have no such limitations. They require that what a
probabilistic polynomial-time (ppt) SOA adversary can compute from the in-
formation it has learned can be simulated by a ppt simulator only knowing the
opened plaintexts. SIM-SO security seems to be stronger than IND-SO security
and significantly harder to achieve. We note the existence of a stronger IND-SO
security notion, namely full IND-SO security, which imposes no limitation on
the joint message distributions. However, there is no PKE achieving full IND-
SO-CPA security yet. The relations among SIM-SO security, IND-SO security,
and traditional IND-CPA/CCA security were explored in [5, 17].

Lossy encryption [3] has shown itself to be a very useful tool in achieving
IND-SO-CPA security. Different approaches to achieving IND-SO-CCA security
include the use of lossy trapdoor functions [23], All-But-N [14], and All-But-
Many lossy trapdoor functions [15]. The basic idea is to make sure that only
challenge ciphertexts are lossy encryptions, while ciphertexts queried by the
adversary are normal encryptions. If there exists an efficient opener which can
open a lossy encryption to an encryption of an arbitrary message, then an IND-
SO-CCA secure PKE can also been shown to be SIM-SO-CCA secure. However,
it seems that, to date, only a single, DCR-based PKE scheme [15] is known to
have this property.

In [12], Fehr et al. proposed a black-box PKE construction to achieve SIM-
SO-CCA security based on an Extended Hash Proof System (EHPS) associated
with a subset membership problem, a collision-resistant hash function and a
new information-theoretic primitive called Cross-Authentication Code (XAC).
As pointed in [18, 19], a stronger property of XACs is needed to make the security
proof rigorous.
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1.1 Our Contributions

We generalize the black-box PKE construction of Fehr et al. [12] by using a spe-
cial kind of key encapsulation mechanism (KEM) in combination with a strength-
ened XAC. Essentially, the KEM replaces the EHPS component in [12], opening
up a new set of construction possibilities. In more detail:

– We characterise the properties needed of a KEM for our PKE construction to
be SIM-SO-CCA secure. At a high level, these properties are that the KEM
should have efficiently samplable and explainable (ESE) ciphertext and key
spaces; tailored decapsulation; and tailored, constrained chosen-ciphertext
(tCCCA) security. Here tailored decapsulation roughly means that the valid
ciphertexts output by the KEM are sparse in the ciphertext space, while
tCCCA security is an extension of the CCCA security notion of [16]. If a
KEM has all three properties, then we say that it is a tailored KEM.

– We show three constructions for tailored KEMs, including one based on hash
proof systems (HPS) [8], a specific KEM from the n-Linear assumption [16]
(but different from the HPS-based one) and one constructed from indistin-
guishability Obfuscation (iO) in combination with an extracting puncturable
Pseudo-Random Function (PRF) [24]. Consequently, we obtain PKEs of
three different types, all enjoying SIM-SO-CCA security. Thus, by adopt-
ing the KEM viewpoint, we significantly enlarge the scope of Fehr et al.’s
construction.

– Since our PKE construction does not rely on collision-resistant hash func-
tions, we immediately obtain the following results:
• PKE with SIM-SO-CCA security from HPS and strengthened XACs (as

compared to the PKE construction of [12] using EPHS, a strong XAC,
and a collision-resistant hash function).

• PKE with SIM-SO-CCA security from the n-Linear assumption in a way
that differs from our HPS-based construction.

• PKE with SIM-SO-CCA security assuming only the existence of iO and
one-way functions.

1.2 Ingredients of Our Main Construction

We follow the outline provided by the black-box PKE construction of Fehr et al.
[12]. Observing that the EHPS used in [12] can actually be viewed as a KEM, our
construction can be considered as a generalization of their result. We first outline
the properties of KEMs and XACs needed for our result, before describing the
construction and its security analysis at a high level.

The KEM component in our construction needs to be “tailored” with the
following properties:

(1) Efficiently samplable and explainable (ESE) domains. The key space
K and ciphertext space C of the KEM should both be ESE domains. (Mean-
ing that, given a randomised sampling algorithm SampleD for D, there ex-
ists an efficient algorithm, SampleD−1(D, ·), with the property that, given



4 S. Liu and K. G. Paterson

element d from a domain D as input, SampleD−1(D, ·) outputs value R
such that d can be “explained” as having been sampled using R, i.e., d =
SampleD(D;R).)

(2) Tailored decapsulation. The valid ciphertexts output by the encapsula-
tion algorithm constitute only a (small) subset of ciphertext space C. When
the input is a ciphertext randomly chosen from C, the decapsulation will ei-
ther output ⊥ with overwhelming probability or output a key that is almost
uniformly distributed over K.

(3) Tailored, constrained CCA (tCCCA) security. The output of the en-
capsulation algorithm is computationally indistinguishable from (KR, ψR),
a pair of key and ciphertext randomly chosen from K×C, for any ppt adver-
sary, even if the adversary has access to a constrained decryption oracle. The
adversary is allowed to make queries of the form (ψ, P (·)) to the constrained
decryption oracle, where ψ is an element of C and P (·) is a ppt predicate,
such that P (·) : K → {0, 1} evaluates to 1 only for a negligible fraction of
keys. The constrained decryption oracle will provide the decapsulated K to
the adversary if only if P (K) = 1.

We will also need a strengthened XAC definition. A strengthened `-XAC
is a collection of algorithms XAC = (XGen,XAuth,XVer) having the following
properties:

Authentication and Verification. Algorithm XAuth computes a tag T ←
XAuth(K1, . . . ,K`) from ` inputs (which will be random keys in our con-
struction). Any Ki used in generating the tag T almost always satisfies
XVer(Ki, T ) = 1.

Security against impersonation/substitution attacks. Security against im-
personation attacks means that, given a tag T , a randomly chosen key K
will almost always fail verification with this specific tag, i.e., XVer(K,T ) = 0.
A substitution attack considers an (all-powerful) adversary who obtains a
tag T = XAuth(K1, . . . ,K`) and tries to forge a tag T ′ 6= T such that
XVer(Ki, T

′) = 1, where Ki is one of the keys used in computing T . Security
against substitution attacks requires that, if Ki is randomly chosen, then
any adversary succeeds in outputting T ′ with T ′ 6= T and XVer(Ki, T

′) = 1
with negligible probability, even if it is given T and all keys except Ki as
input.

Strongness and semi-uniqueness. Strongness says that whenKi is randomly
chosen, then Ki, given (Kj)j∈[`],j 6=i and the tag T = XAuth(K1, . . . ,K`), is
re-samplable with the correct probability distribution. That is to say, there
exists a ppt algorithm ReSample((Kj)j∈[`],j 6=i, T ) such that ReSample out-

puts a key K̂i that is statistically indistinguishable from Ki, even given
(Kj)j∈[`],j 6=i and T = XAuth(K1, . . . ,K`). Semi-uniqueness says that it is
possible to parse a key K as (Kx,Ky) ∈ Kx ×Ky for some sets Kx,Ky, and
for every Kx ∈ Kx and a tag T , there is at most one Ky ∈ Ky such that
(Kx,Ky) satisfies XVer((Kx,Ky), T ) = 1.
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1.3 Overview of Our Main Construction

Given a tailored KEM KEM and a strengthened (`+s)-XAC XAC, our construc-
tion of a PKE scheme PKE is as follows. (See Figure 4 for full details.)

– The public key of PKE is the public key pkkem of KEM, an injective function
F with domain C` and range (Ky)s, and a vector of values (Kx1

, . . . ,Kxs) ∈
(Kx)s. The secret key of PKE is skkem, the secret key of KEM.

– The encryption operates in a bitwise mode. Let the `-bit message bem1|| . . . ||m`.
• When mi = 1, we set (Ki, ψi)← KEM.Encap(pkkem).
• When mi = 0, we choose (Ki, ψi) randomly from K × C.
• After encrypting ` bits, we compute F (ψ1, . . . , ψ`) to get (Ky1 , . . . ,Kys),

and construct s extra keys K`+j = (Kxj ,Kyj ) for j = 1, . . . , s. All `+ s
keys are then used to compute a tag T = XAuth(K1, . . . ,K`+s).

• Finally, the PKE ciphertext is C = (ψ1, . . . , ψ`, T ).
– The decryption also operates in a bitwise fashion. Omitting some crucial

details, we first recompute (Ky1 , . . . ,Kys) using F and (ψ1, . . . , ψ`), re-
construct K`+j for j = 1, . . . , s, and then verify the correctness of T us-
ing each K`+j in turn. Assuming this step passes, for each i, we compute
Ki ← KEM.Decap(skkem, ψi), and set the recovered message bit as the out-
put of XVer(Ki, T ). (When Ki = ⊥, we set XVer(Ki, T ) = 0).

Now, in the above decryption procedure, a KEM decapsulation error occurs
whenever mi = 0. However, ψi is random in this case, and the tailored decap-
sulation makes sure that the output of KEM.Decap(skkem, ψi) is either ⊥ or a
random key K; in either case, XVer(Ki, T ) is 0 except with negligible probability
because of the security of XAC against impersonation attacks.

1.4 SIM-SO-CCA Security of Our Main Construction

We follow the techniques of non-committing and deniable encryption [7, 6, 10, 20]
and try to create equivocable ciphertexts that not only can be opened arbitrarily
but that are also computationally indistinguishable from real ciphertexts. In our
construction, the equivocable ciphertexts are in fact encryptions of ones. Note
that tCCCA security of KEM ensures that (K,ψ) ≈c (KR, ψR), where (K,ψ) is
the output of KEM.Encap(pkkem) and (KR, ψR) is randomly chosen from K×C.
On the other hand, both K and C are ESE. Therefore, (K,ψ) encrypting 1 can
always be explained as a random pair (KR, ψR) encrypting 0 by exposing the
randomness output from SampleK−1(K,K) and SampleC−1(C, ψ).

However, this is not sufficient in the SO-CCA setting since the adversary is
able to query its decryption oracle and perform corruptions, and it might then
be easy for the adversary to distinguish an encryption of ones and an encryption
of a real message. For example, consider an adversary that is given a ciphertext
C = (ψ1, ψ2, . . . , ψ`, T ), where C is either an encryption of ones but opened
as zeros with re-explained randomness, or an encryption of zeros being opened
honestly. In fact, opened randomness exposes all Ki’s to the adversary. Then the
adversary can generate a different ciphertext C ′ = (ψ1, ψ2, . . . , ψ`, T

′) as follows.
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A new tag T ′ (T ′ 6= T ) is computed as T ′ := XAuth(K ′1,K2, . . . ,K`+s), where K ′1
is randomly chosen and all other Ki’s (2 ≤ i ≤ `+ s) are the same as in T . The
decryption of C ′ will be (0, 1, . . . , 1) if C is an encryption of ones but (0, 0, . . . , 0)
if C is an encryption of zeros! The problem is that the opened randomness
discloses Ki and that gives too much information to the adversary, especially
when (Ki, ψi) encodes 0. To solve this problem, we have to use a different method
to open Ki so that the adversary obtains no extra information about Ki when
(Ki, ψi) encodes 0: first, we use algorithm ReSample of XAC to resample Ki to
obtain a statistically indistinguishable K̂i; then we call SampleK−1(K, K̂i) and
SampleC−1(C, ψi) to open (K̂i, ψi) to an encryption of 0. Now an encryption
of ones, say C = (ψ1, ψ2, . . . , ψ`, T ), is able to play the role of an equivocable
ciphertext, due to the tCCCA security of KEM and the security of XAC.

Consequently, we can build a simulator S with respect to an adversary A to
prove SIM-SO-CCA security: S simulates the real environment for A by gener-
ating public and private keys, and uses the private key to answer A’s decryption
queries; S creates n challenge ciphertexts all of which are encryptions of ones;
when A makes a corruption query concerning a challenge ciphertext C, S can
open C bit-by-bit according to the real message. If the bit mi is 1, it opens
(Ki, ψi) honestly, otherwise it opens (Ki, ψi) to 0 by using ReSample, SampleC−1

and SampleK−1.

1.5 Related Work

The SOA security notion was first formally proposed by Dwork et al. [11]. SIM-
SO-CPA and IND-SO-CPA notions were given by Bellare et al. [3]. The relations
among SOA security notions and traditional IND-CPA security were investigated
in [5, 17]. Bellare et al. [4] proposed the first SIM-SO-CPA secure Identity-Based
Encryption (IBE), while also adopting the non-committing technique and weak
deniable encryption. Lai et al. [21] proposed the first construction for SIM-SO-
CCA secure IBE from a so-called extractable IBE, a collision-resistant hash
function, and a strengthened XAC. Recently, Sahai and Waters [24] introduced
the puncturable programming technique and employed puncturable PRFs and
Indistinguishability Obfuscation (iO) to obtain a variety of cryptographic primi-
tives including deniable encryption with IND-CPA security, PKE with IND-CPA
and IND-CCA security, KEM with IND-CCA security, injective trapdoor func-
tions, etc. It should be noted that any IND-CPA secure deniable encryption with
ESE ciphertext space implies a PKE with SIM-SO-CPA security. Therefore, the
deniable encryption scheme in [24] that is based on a puncturable PRF and iO
implicitly already gives us a SIM-SO-CPA secure PKE. Our result establishes
that SIM-SO-CCA security is achievable from puncturable PRFs and iO as well,
albeit via the combination of an IND-CCA secure KEM and a strengthened XAC.

2 Preliminaries

We use s1, . . . , st ← S to denote picking elements s1, . . . , st uniformly from set S.
Let |S| denote the size of set S. Let [n] denote the set {1, . . . , n}. Let s1‖s2‖ . . .
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denotes the concatenation of strings. For a probabilistic polynomial-time (ppt)
algorithm A, we denote y ← A(x;R) the process of running A on input x with
randomness R, and assigning y as the result. Let RA denote the randomness
space of A, and y ← A(x) denote y ← A(x;R) with R chosen from RA uniformly
at random. Let Un denote the uniform distribution over {0, 1}n. A function f(κ)
is negligible, denoted by neg(κ), if for every c > 0 there exists a κc such that
f(κ) < 1/κc for all κ > κc. Let ≈c (resp. ≈s) denote computational (resp.
statistical) indistinguishability between two ensembles of random variables.

We use boldface letters for vectors. For a vector m of finite dimension, let
|m| denote the length of the vector. For a set I = {i1, i2, . . . , i|I|} ⊆ [|m|], we
define m[I] := (m[i1],m[i2], . . . ,m[i|I|]).

We refer to the full version of this paper [22] for the definition and an example
of Strengthened Cross Authentication Codes.

2.1 Public Key Encryption

A public key encryption (PKE) scheme is made up of three ppt algorithms:

KeyGen(1κ) takes as input the security parameter κ, and outputs a public key
and a secret key (pk, sk).

Enc(pk,M) takes as input the public key pk and a message M and outputs a
ciphertext C.

Dec(sk, C) takes as input the secret key sk and a ciphertext C and outputs
either a message M or a failure symbol ⊥.

The correctness of a PKE scheme is relaxed to allow a negligible decryption error
ε(κ). That is, Dec(sk,Enc(pk,M)) = M holds with probability at least 1− ε(κ)
for all (pk, sk)← KeyGen(1κ), where the probability is taken over the coins used
in encryption.

Let m and r be two vectors of dimension n := n(κ). Define Enc(pk,m; r) :=
(Enc(pk,m[1]; r[1]), . . . , Enc(pk,m[n]; r[n])). Here r[i] is the fresh randomness
used for the encryption of m[i] for i ∈ [n].

2.2 Simulation-based, Selective Opening CCA Security of PKE

We review the simulation-based definition of security for PKE against selective
opening, chosen-ciphertext adversaries from [12].Let M denote an n-message
sampler, which on input string α ∈ {0, 1}∗ outputs an n-vector m = (m[1], . . . ,m[n])
of messages. Let R be any ppt algorithm outputting a single bit.

Definition 1 (SIM-SO-CCA Security) A PKE scheme PKE=(KeyGen, Enc,
Dec) is simulation-based, selective opening, chosen-ciphertext secure (SIM-SO-
CCA secure) if for every ppt n-message sampler M, every ppt relation R, every
restricted, stateful ppt adversary A = (A1,A2,A3), there is a stateful ppt simu-
lator S = (S1,S2,S3) such that Advso-ccaPKE,A,S,n,M,R(κ) is negligible, where

Advso-ccaPKE,A,S,n,M,R(κ) =
∣∣∣Pr [Expso-cca-realPKE,A,n,M,R(κ) = 1

]
− Pr

[
Expso-cca-idealPKE,S,n,M,R(κ) = 1

]∣∣∣
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and experiments Expso-cca-realPKE,A,n,M,R(κ) and Expso-cca-idealPKE,S,n,M,R(κ) are defined in Figure
1. Here the restriction on A is that A2,A3 are not allowed to query the decryption
oracle Dec(·) with any challenge ciphertext c[i] ∈ c.

Expso-cca-realPKE,A,n,M,R(κ):

(pk, sk)← KeyGen(1κ)

(α, a1)← ADec(·)
1 (pk)

m←M(α), r← coins
c← Enc(pk,m; r)

(I, a2)← ADec/∈c(·)
2 (a1, c)

outA ← A
Dec/∈c(·)
3 (a2,m[I], r[I])

return R(m, I, outA)

Expso-cca-idealPKE,S,n,M,R(κ):

(α, s1)← S1(1κ)
m←M(α)
(I, s2)← S2(s1, (1

|m[i]|)i∈[n])
outS ← S3(s2,m[I])
return R(m, I, outS)

Fig. 1. Experiments used in the definition of SIM-SO-CCA security of PKE.

2.3 Key Encapsulation Mechanisms

A Key Encapsulation Mechanism (KEM) KEM consists of three ppt algorithms
(KEM.Kg,KEM.Enc,KEM.Dec). Let K be the key space associated with KEM.

KEM.Kg(1κ) takes as input a security parameter κ and outputs public/secret
key pair (pk, sk).

KEM.Encap(pk) takes as input the public key pk and outputs a key K and a
ciphertext (or encapsulation) ψ.

KEM.Decap(sk, ψ) takes as input the secret key sk and a ciphertext ψ, and
outputs either a key K or a failure symbol ⊥.

The correctness condition on a KEM KEM is that KEM.Decap(sk, ψ) = K
holds for all κ ∈ N, all (pk, sk)← KEM.Kg(1κ), and all (K,ψ)← KEM.Encap(pk).

2.4 Efficiently Samplable and Explainable (ESE) Domain

A domain D is said to be efficiently samplable and explainable (ESE) [12] if
associated with D are the following two ppt algorithms:

Sample(D;R) : On input (a description of) domain D and random coins R ←
RSample, this algorithm outputs an element that is uniformly distributed over
D.

Sample−1(D, x) : On input (a description of) domain D and any x ∈ D,
this algorithm outputs R that is uniformly distributed over the set {R ∈
RSample | Sample(D;R) = x}.
Clearly D = {0, 1}κ is ESE with R = Sample(D;R) = Sample−1(D, R). It

was shown by Damg̊ard and Nielsen in [10] that any dense subset of an effi-
ciently samplable domain is ESE as long as the dense subset admits an efficient
membership test. Hence, for example, Z∗Ns for a RSA modulus N is ESE.
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ExpVCI-b
KEM,A(κ) :

(pk, sk)← KEM.Kg(1κ)
ψ∗0 ← C, (K∗, ψ∗1)← KEM.Encap(pk)

b′ ← AD̃ecap 6=ψ∗
b
(·)

(pk, ψ∗b )
Return(b′)

D̃ecap 6=ψ∗(P,ψ)
If ψ = ψ∗ return (⊥)
K ← KEM.Decap(sk, ψ)
If P (K) = 0 return (⊥);
Else return (K)

Fig. 2. Experiment for defining Valid Ciphertext Indistinguishability of KEMs. Here

D̃ecap6=ψ∗(P,ψ) denotes a constrained decryption oracle, taking as input predicate P (·)
and encapsulation ψ.

3 KEM Tailored for Construction of PKE with
SIM-SO-CCA Security

We describe the properties that are required of a KEM to build SIM-SO-CCA
secure PKE; the construction itself is given in the next section.

3.1 Valid Ciphertext Indistinguishability (VCI) of KEMs

Suppose KEM = (KEM.Kg,KEM.Encap,KEM.Decap) is associated with an ef-
ficiently recognizable ciphertext space C. For fixed κ, let Ψ ⊂ C denote the
set of possible key encapsulations output by KEM.Encap, so Ψ = {ψ : ψ ←
KEM.Encap(pk; r), (pk, sk) ← KEM.Kg(1κ), r ← Coins}. The set Ψ is called the
valid ciphertext set (for κ).

Definition 2 (Valid Ciphertext Indistinguishability) Let KEM be a KEM
with valid ciphertext set Ψ and ciphertext space C. Define the advantage of an
adversary A in the experiment depicted in Figure 2 to be

AdvVCI
KEM,A(κ) :=

∣∣∣Pr
[
ExpVCI-0

KEM,A(κ) = 1
]
− Pr

[
ExpVCI-1

KEM,A(κ) = 1
]∣∣∣ .

Then KEM is said to be Valid Ciphertext Indistinguishable (VCI) if for all ppt
adversaries A, AdvVCI

KEM,A(κ) is negligible.

3.2 Tailored KEMs

To be of service in our construction of SIM-SO-CCA secure PKE, we need a
KEM that is tailored to have the following three properties, as explained in the
introduction: (1) the key space K and ciphertext space C of the KEM should both
be ESE domains; (2) the valid ciphertexts output by the encapsulation algorithm
constitute only a small subset of ciphertext space C, and the decryption of a
random ciphertext results in failure or a random key; (3) the KEM has tailored,
constrained CCA security. We define the last of these three properties next.
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Exptccca−bKEM,A (κ) :

(pk, sk)← KEM.Kg(1κ)
K∗0 ← K, ψ∗0 ← C
(K∗1 , ψ

∗
1)← KEM.Encap(pk)

b′ ← AD̃ecap 6=ψ∗ (·)(pk,K∗b , ψ
∗
b )

Return(b′)

D̃ecap 6=ψ∗(P,ψ)
If ψ = ψ∗ return (⊥)
K ← KEM.Decap(sk, ψ)
If P (K) = 0 return (⊥);
Else return (K)

Fig. 3. Experiment for defining IND-tCCCA security of KEMs. Here D̃ecap 6=ψ∗(P,ψ)
denotes a constrained decryption oracle, taking as input predicate P (·) and encapsu-
lation ψ. Predicate P (·) may vary in different queries.

Definition 3 (IND-tCCCA Security for KEMs) Let KEM be a KEM with
ciphertext space C and valid ciphertext set Ψ , let A be a ppt adversary, and
consider the experiment Exptccca−bKEM,A (κ) defined in Figure 3. Define the advantage

AdvtcccaKEM,A(κ) of A by:

AdvtcccaKEM,A(κ) :=
∣∣∣Pr
[
Exptccca−0KEM,A (κ) = 1

]
− Pr

[
Exptccca−1KEM,A (κ) = 1

]∣∣∣ .
Then KEM is said to be secure against tailored, constrained chosen ciphertext
attacks (IND-tCCCA secure) if for all ppt adversaries A with negligible uncer-
tainty uncertA(κ) (in κ), the advantage AdvtcccaKEM,A(κ) is also negligible in κ.

Here, the uncertainty of A is defined as uncertA(κ) := 1
qd

∑qd
i=1 Pr [Pi(K) = 1] ,

which measures the average fraction of keys for which the evaluation of predicate
Pi(·) is equal to 1 in the tCCCA experiment, where Pi denotes the predicate used
in the i-th query by A, and qd the number of decapsulation queries made by A.

Constrained CCA (CCCA) security for PKE was introduced in [16] as a
strictly weaker notion than IND-CCA security. The main difference between
IND-CCCA security and our newly defined IND-tCCCA security is that, in the
IND-CCCA definition, the adversary is given a pair (K∗b , ψ

∗) where ψ∗ is always
a correct encapsulation of K∗1 , while in the IND-tCCCA definition, the adversary
is given a pair (K∗b , ψ

∗
b ) where, when b = 0, ψ∗b is just a random element of C and,

when b = 1, ψ∗b is a correct encapsulation of K∗b . However, IND-CCCA security
and VCI together imply IND-tCCCA security for KEMs:

Lemma 1. Suppose that KEM is a KEM having an efficiently recognizable ci-
phertext space C. If KEM is both IND-CCCA secure and VCI then it is also
IND-tCCCA secure.

Proof. Recall that the VCI and CCCA experiments are almost the same except
for the construction of the adversary’s challenge. Let (K(R), ψ(R)) be chosen from
C×K uniformly at random. Let (K,ψ) be the output of KEM.Encap in the CCCA
experiment. IND-CCCA security implies (K,ψ) ≈c (K(R), ψ). The VCI property
implies that ψ ≈c ψ(R), hence (K(R), ψ) ≈c (K(R), ψ(R)) when K(R) is chosen
uniformly and independently of everything else. Finally, (K,ψ) ≈c (K(R), ψ(R))
follows from transitivity. ut
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Tailored Decapsulation. We also tailor the functionality of our KEMs’ de-
capsulation algorithms to suit our PKE construction.

Definition 4 (Tailored Decapsulation) Suppose KEM = (KEM.Kg, KEM.Encap,
KEM.Decap) is a KEM. Then KEM is said to have tailored decapsulation if there
exists a negligible function η(κ) such that for all (pk, sk) output by KEM.Kg(1κ),
one or the other of the following two cases pertains:

– KEM.Decap rejects a random ψ′ ∈ C, except with negligible probability, i.e.,

Pr [KEM.Decap(skkem, ψ
′) 6=⊥ | ψ′ ← C] ≤ η(κ).

– KEM.Decap outputs η(κ)-uniform keys on input a random element from C.
That is, the statistical distance between the output and a uniform distribution
on K is bounded by η(κ):

1

2

∑
k∈K

∣∣∣∣Pr [KEM.Decap(skkem, ψ
′) = k | ψ′ ← C]− 1

|K|

∣∣∣∣ ≤ η(κ).

Remark. The former case implies that valid ciphertexts are sparse in the whole
ciphertext space, i.e., |V|/|C| is negligible. In the latter case, VCI (when VCI
holds for all (pk, sk)← KEM.Kg(1κ)) alone might imply IND-tCCCA security of
KEM, since the decapsulated key is uniquely determined by the secret key and
the ciphertext (be it valid or invalid).

4 Construction of PKE with SIM-SO-CCA Security from
Tailored KEMs

Let KEM = (KEM.Kg,KEM.Encap,KEM.Decap) be a KEM with valid ciphertext
set Ψ , efficiently recognizable ciphertext space C, and key space K = Kx × Ky.
We further assume that:

(1) KEM.Decap has tailored functionality as per Definition 4 (this will be used
for the correctness of our PKE construction);

(2) KEM is IND-tCCCA secure (this will be used in the SIM-SO-CCA security
proof of the PKE construction).

(3) Both the key space K and the ciphertext space C of KEM are efficiently
samplable and explainable domains, with algorithms (SampleK,SampleK−1)
and (SampleC,SampleC−1) (these algorithms are also used in the security
analysis).

We refer to a KEM possessing all three properties above as being a tailored
KEM.

Let F : C` → (Ky)
s

be an injective function (such functions are easily con-
structed using, for example, encodings from C to bit-strings and from bit-strings
to Ky, provided s is sufficiently large). Let XAC = (XGen,XAuth,XVer) be a
δ(κ)-strong and semi-unique (`+s)-XAC with tag space XT and key space XK;
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KeyGen(1κ) :
(pkkem, skkem)←KEM.Kg(1κ)
Kx1 , . . . ,Kxs ← Kx
pk = (pkkem, (Kxj )j∈[s], F )
sk = (skkem, pk).
Return(pk, sk)

Enc(pk,m1|| . . . ||m`) :
Parse pk as (pkkem, (Kxj )j∈[s], F )
For i = 1 to `

If mi = 1
(Ki, ψi)← KEM.Encap(pkkem)

Else ψi ← C;Ki ← K
(Ky1 , . . . ,Kys)← F (ψ1, . . . , ψ`)
For j = 1 to s
K`+j ← (Kxj ,Kyj )

T ← XAuth(K1, . . . ,K`+s)
Return (ψ1, . . . , ψ`, T )

Dec(sk, C) :

Parse C as (ψ1, . . . , ψ`, T )

For i = 1 to `

m′i ← 0

(K′y1 , . . . ,K
′
ys)← F (ψ1, . . . , ψ`)

For j = 1 to s

K′`+j ← (Kxj ,K
′
yj )

If
∧s
j=1 XVer(K

′
`+j , T ) = 1

For i = 1 to `

K′i ← KEM.Decap(skkem, ψi)

If K′i =⊥, then m′i ← 0

Else m′i ← XVer(K′i, T )

Return(m′1||m′2|| . . . ,m′`)

Fig. 4. Construction of PKE scheme PKE from tailored KEM and (`+ s)-XAC.

suppose also that XK = K = Kx × Ky. Our main construction of PKE scheme
PKE = (KeyGen,Enc,Dec) with message space {0, 1}` is shown in Figure 4.

Note that in the decryption, if XVer(K ′`+j , T ) = 1 for all j ∈ [s], then the
recovered bit m′i equals 0 if and only if the decapsulated key K ′i equals ⊥ or
XVer(K ′i, T ) = 0.

Correctness. Encryption and decryption are performed in bitwise fashion. Sup-
pose mi = 1. Then (Ki, ψi) are the encapsulated key and corresponding valid
encapsulation; by the correctness of KEM and XAC, the decryption algorithm
outputs m′i = 1, except with negligible probability failXAC. Suppose mi = 0. Then
Ki and ψi are chosen independently and uniformly at random from K and C, re-
spectively. It follows that the tag T is independent of ψi. Now, during the decryp-
tion of the i-th bit, according to the tailored property of KEM.Decap, K ′i is either
⊥ (and thusm′i = 0) with probability at least 1−η(κ), orK ′i is η(κ)-close to being
uniformly distributed on K. In the latter case, it holds that m′i = 0 except with

probability η(κ) + Advimp
XAC(κ) due to the η(κ)-uniformity of the key and the se-

curity of XAC against impersonation attack. Consequently, decryption correctly
undoes encryption except with probability at most `·max{failXAC(κ),Advimp

XAC(κ)+
η(κ)}, which is negligible.

Lemma 2. PKE scheme PKE in Figure 4 has the property that, if two distinct
ciphertexts C, Ĉ both pass the verification step

∧s
j=1 XVer(K`+j , T ) = 1 during

decryption, then they must have different tags T 6= T̂ .

Proof. The proof is by contradiction and relies on the injectivity of F . Let
C = (ψ1, . . . , ψ`, T ) and Ĉ = (ψ̂1, . . . , ψ̂`, T̂ ) be two different ciphertexts. Let
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KeyGen’(1κ) :
(pkkem, skkem)←KEM.Kg(1κ)
Kx ← Kx, H ← HGen(1κ).
pk = (pkkem,Kx, H)
sk = (skkem, pk)
Return(pk, sk)

Enc’(pk,m1|| . . . ||m`) :
For i = 1 to `

If mi = 1
(Ki, ψi)← KEM.Encap(pkkem)

Else ψi ← C;Ki ← K
Ky ← H(ψ1, . . . , ψ`)
K`+1 ← (Kx,Ky)
T = XAuth(K1, . . . ,K`+1)
Return (ψ1, . . . , ψ`, T )

Dec’(sk, C) :
C = (ψ1, . . . , ψ`, T )
For i = 1 to ` m′i ← 0
K′y ← H(ψ1, . . . , ψ`)
K′`+1 ← (Kx,K

′
y)

If XVer(K′`+1, T ) = 1
For i = 1 to `
K′i ← KEM.Decap(skkem, ψi)
If K′i =⊥, then m′i ← 0
Else m′i ← XVer(K′i, T )}

Return(m′1||m′2|| . . . ,m′`)

Fig. 5. Construction of PKE scheme PKE’ from tailored KEM, (` + 1)-XAC and CR
hash function.

(Ky1 , . . . ,Kys) = F (ψ1, . . . , ψ`) and (K̂y1 , . . . , K̂ys) = F (ψ̂1, . . . , ψ̂`). Suppose∧s
j=1 XVer((Kxj ,Kyj ), T ) =

∧s
j=1 XVer((K̂xj , K̂yj ), T̂ ) = 1. If T = T̂ , then

C 6= Ĉ implies (ψ1, . . . , ψ`) 6= (ψ̂1, . . . , ψ̂`), which further implies Kyj 6= K̂yj

for some j ∈ [s], by the injectivity of F . On the other hand, we know that
XVer((Kxj ,Kyj ), T ) = 1 and XVer((Kxj , K̂yj ), T̂ = T ) = 1; the semi-unique

property of XAC now implies that Kyj = K̂yj , a contradiction. ut

The SIM-SO-CCA security of PKE will rely on Lemma 2, which in turn relies
on the injectivity of F . The size of F ’s domain is closely related to parameter
s: generally the parameter s will be linear in `. Since we need a (` + s)-XAC
in the construction, the size of public key will be linear in `. The size of tag
T in the ciphertext will also grow linearly in s and therefore in `. To further
decrease the size of public key and tags in our PKE construction, we can employ
a collision-resistant (CR) hash function H = (HGen,HEval) mapping C` to Ky
instead of the injective function F (see the full paper [22] for definitions). Then
an (`+1)-XAC is sufficient for the construction, and this results in more compact
public keys and tags, but requires an additional cryptographic assumption. The
construction using CR hash functions is given in Figure 5.

Theorem 1 Suppose KEM is a tailored KEM, and the (`+s)-cross-authentication
code XAC is δ(κ)-strong, semi-unique, and secure against impersonation and sub-
stitution attacks. Then the PKE scheme PKE constructed in Figure 4 is SIM-SO-
CCA secure. More precisely, for every ppt adversary A = (A1,A2,A3) against
PKE in the SIM-SO-CCA real experiment that makes at most qd decryption
queries, for every ppt n-message sampler M, and every ppt relation R, we can
construct a stateful ppt simulator S = (S1,S2,S3) for the ideal experiment, and
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a ppt adversary B against the IND-tCCCA security of KEM, such that:

Advso-ccaPKE,A,S,n,M,R(κ) ≤ n` · AdvtcccaKEM,B(κ) + n`2qd ·
(
AdvsubXAC(κ) + Advimp

XAC(κ) + η(κ)
)

+ n` · δ(κ).

The proof of this theorem, our main result, can be found in the full paper [22].
Here we only give a high level overview. We construct a ppt simulator S as
follows.

– S generates a public/private key pair and provides the public key to A.
– S answers A’s decryption queries using the private key.
– S prepares for A a vector of n challenge ciphertexts, each ciphertext en-

crypting ` ones.
– When A decides to corrupt a subset of the challenge ciphertexts, S obtains

the messages corresponding to the corrupted ciphertexts and opens the cor-
rupted ciphertexts bit-by-bit according to the messages. If bit mi should be
opened to 1, S reveals to A the original randomness used by KEM.Encap
to generate (Ki, ψi). If bit mi should be opened to 0, S first explains ψi
with randomness output by SampleC−1(C, ψi) (as if ψi were randomly cho-
sen). Then S uses algorithm ReSample of XAC to resample Ki to get K̂i,
and explains K̂i with randomness output by SampleC−1(K, K̂i) (as if K̂i was
randomly chosen).

– S finally outputs whatever A outputs.

The essence of the SIM-SO-CCA security proof is then to show that en-
cryptions of 1’s are computationally indistinguishable from encryptions of real
messages, even if the adversary can see the opened (real) messages and the ran-
domness of a corrupted subset of the challenge ciphertexts of his/her choice,
and have access to the decryption oracle. This is done with a hybrid argument
running from Game 0 to Game n`. In Game k the first k bits of messages are 1’s
and are opened as S does while the last n`− k bits come from the real messages
and are opened honestly. The proof shows that Games k and k − 1 are indis-
tinguishable using the tCCCA security of the tailored KEM and the security
properties of the strengthened XAC.

If the k-th bit of the messages is 1, Games k and k−1 are identical. Otherwise,
a tailored KEM adversary B can be constructed to simulate Game k or k + 1
for adversary A. B is provided with a public key pkkem, a challenge (K∗, ψ∗)
and a constrained decryption oracle, and is going to tell whether (K∗, ψ∗) is an
output of KEM.Encap(pkkem) or a random pair. B can generate a public key for
A. When preparing the vector of challenge ciphertexts, B will encrypt the first
k − 1 bits from the real messages, use (K∗, ψ∗) as the encryption of the k-th
bit, and encrypt n` − k ones for the remaining bits. If (K∗, ψ∗) is an output
of KEM.Encap(pkkem), the challenge vector of ciphertexts is just that in Game
k, otherwise it is just that in Game k − 1. Finally, to answer A’s decryption
query C = (ψ1, . . . , ψ`, T ), B can query (ψi,XVer(·, T )) (note that XVer(·, T ) is
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a predicate) to his own constrained decryption oracle if ψ∗ 6= ψi; B then replies
to A with decrypted bit 0 iff B gets ⊥ from its own oracle. The decryption
is correct because B’s oracle outputs ⊥ iff the decapsulated key is Ki = ⊥ or
XVer(Ki, T ) = 0. If ψ∗ = ψi, B is not allowed to query his own oracle, but
can instead respond to A with the output of XVer(K∗, T ) as the decrypted bit.
This decryption is also correct with overwhelming probability for the following
reasons: (1) If K∗ is the encapsulated key of ψ∗, then XVer(K∗, T ) = 1 and
decryption is correct. (2) If (K∗, ψ∗) is a random pair, then all the information
leaked about K∗ is just the very tag T ∗ that is computed by K∗ during the
generation of some challenge ciphertext. The semi-uniqueness of XAC guarantees
that T 6= T ∗, and the adversary’s corruption only reveals information about a
re-sampled K̂∗. The security of XAC against substitution attacks shows that
even if A knows T ∗ and all keys other than K∗, then A forges a different tag T
such that XVer(K∗, T ) = 1 with negligible probability. Therefore, B will almost
always respond to A with bit 0, which is the correct answer.

The security of our modified construction using CR hash functions is stated
in the following theorem, whose proof is similar to that of Theorem 1.

Theorem 2 Suppose KEM is a tailored KEM, the (` + 1)-cross-authentication
code XAC is δ(κ)-strong, semi-unique, and secure against impersonation and
substitution attacks, and H is collision-resistant. Then the PKE scheme PKE’
constructed in Figure 5 is SIM-SO-CCA secure. More precisely, for every ppt ad-
versary A = (A1,A2,A3) against PKE’ in the SIM-SO-CCA real experiment that
makes at most qd decryption queries, for every ppt n-message sampler M, and
every ppt relation R, we can construct a stateful ppt simulator S = (S1,S2,S3)
for the ideal experiment, a ppt adversary B against the IND-tCCCA security of
KEM, and a ppt algorithm F against the collision-resistance of H such that:

Advso-ccaPKE’,A,S,n,M,R(κ) ≤ n` · AdvtcccaKEM,B(κ) + n`2qd ·
(
AdvsubXAC(κ) + Advimp

XAC(κ) + η(κ)
)

+ n` · δ(κ) + AdvcrH,F (κ).

5 Instantiations

In this section, we explore three different constructions of tailored KEMs, each
suitable for the application of Theorems 1 and 2. The first is based on any
Strongly Universal2 hash proof system, the second is a direct construction relying
on the n-Linear Assumption and a target collision-resistant hash function, while
the third uses indistinguishability obfuscation.

5.1 Strongly Universal2 Hash Proof Systems

We use hash proof systems [8] to build tailored KEMs suitable for application
in our main theorem.
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Let Ψ ⊂ C be a language. The hardness of the subset membership problem for
Ψ with respect to C requires that a random element from Ψ is indistinguishable
from a random element from C. Let K be a set and Λsk : C → K be a hash
function indexed with sk ∈ SK. Then Λsk is said to be projective if there exists
a map µ : SK → PK such that µ(sk) ∈ PK defines the action of Λsk on the
subset Ψ ; µ is then said to be a projection on subset Ψ .

A hash proof system (HPS) HPS consists of three algorithms (HPS.param,
HPS.pub, HPS.priv). The randomized algorithm HPS.param(1κ) outputs params =
(G, C, Ψ,PK,SK, Λ, µ), where G is a group. The secret key sk is randomly chosen
from SK, and the public key is computed as pk = µ(sk) where µ is a projection
on Ψ . Algorithm HPS.Pub(pk, ψ,w) is given the public key pk, an element ψ ∈ Ψ
and its witness w, and outputs an encapsulated key K = HPS.Pub(pk, ψ,w) such
that K = Λsk(ψ). Algorithm HPS.Priv(sk, ψ) recovers K = Λsk(ψ) using sk.

The Strongly Universal2 (SU2) property of an HPS characterizes the unpre-
dictability of Λsk(ψ) for ψ ∈ C \ Ψ .

Definition 5 Let HPS = (HPS.param,HPS.pub,HPS.priv) be a hash proof sys-
tem. Then HPS is said to be SU2 if

Pr [Λsk(ψ) = K | pk = µ(sk), ψ′,K ′ = Λsk(ψ′)] = 1/|K|,

for all pk ∈ PK, all ψ,ψ′ ∈ C \ Ψ with ψ′ 6= ψ and all K,K ′ ∈ K, where the
probability is taken over sk ← SK.

Given that HPS is an SU2 HPS, a KEM KEM can be constructed as shown
in Figure 6. The output params of HPS.param is used as a set of public param-
eters implicitly used as input in the algorithms of KEM. Notice that the valid
ciphertext set for KEM is Ψ .

KEM.Kg(1κ):
sk ← SK
pk = µ(sk).
Return (pk, sk)

KEM.Encap(pk):
ψ ← Ψ with witness w
K ← HPS.Pub(pk, ψ,w)
Return(K,ψ)

KEM.Decap(sk, ψ):

K ← HPS.Priv(sk, ψ)

Return(K)

Fig. 6. Construction of a KEM from an SU2 hash proof system.

Theorem 3 Let HPS be an SU2 HPS with params = (G, C, Ψ,PK,SK, Λ, µ).
Suppose the subset membership problem is hard for Ψ with respect to C. Then the
KEM KEM constructed from HPS as shown in Figure 6 is IND-tCCCA secure.
Furthermore, if Ψ is sparse in C, and both C and K are efficiently samplable and
explainable, then KEM is a tailored KEM.

Proof. It was already proved in [16] that the SU2 property and the hardness of
the subset membership problem for Ψ with respect to C implies the IND-CCCA
security of KEM. On the other hand, public and secret key pairs can be generated
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independently from C and Ψ and the subset membership problem holds even if
the secret key is known to the adversary. More precisely, when an adversary B
is given ψ and tries to distinguish whether ψ is randomly chosen from Ψ or C,
it can establish a VCI experiment for a VCI adversary A as follows: first call
(pk, sk)←KEM.Kg(1κ) and use sk to answer decryption queries. B gives pk to A
and gives ψ as the challenge ciphertext. Finally B outputs whatever A returns. It
is clear that B has the same advantage as A. This implies that the VCI property
holds for KEM under the hardness of the subset membership problem. Then
IND-tCCCA security follows from Lemma 1.

The SU2 property of HPS implies that

Pr [KEM.Decap(sk, ψ) = K] = Pr [HPS.Priv(sk, ψ) = K] =
1

|K|
for all invalid ciphertexts ψ ∈ C \ Ψ , all K ∈ K, and all pk = µ(sk), where the
probability is taken over sk ← SK. Then

Pr [KEM.Decap(sk, ψ) = K | ψ ← C] = Pr [KEM.Decap(sk, ψ) = K | ψ ∈ Ψ ] · |Ψ |
|C|

+ Pr [KEM.Decap(sk, ψ) = K | ψ ∈ C \ Ψ ] ·
(

1− |Ψ |
|C|

)
= Pr [KEM.Decap(sk, ψ) = K | ψ ∈ Ψ ] · |Ψ |

|C|
+

1

|K|
·
(

1− |Ψ |
|C|

)
≤ |Ψ |
|C|

+
1

|K|
.

Noting that Pr [KEM.Decap(sk, ψ) = K | ψ ∈ Ψ ] lies between 0 and 1, it follows
that the statistical distance between KEM.Decap(sk, ψ) (when ψ is uniformly
selected from C) and the uniform distribution is at most |Ψ |/|C|, which is negli-
gible due to the sparseness of Ψ . This establishes that KEM.Decap has tailored
functionality.

Finally, KEM is a tailored KEM because it has samplable and explainable
domains C and K, it has IND-tCCCA security, and KEM.Decap has tailored
functionality. ut
Remark 1. . As pointed out in [12], both DDH-based and DCR-based HPS could
have samplable and explainable platform groups. For example, we can choose
the subgroup of order q in Z∗p (with p = 2q + 1) as the DDH group, and choose
Z∗N2 as the DCR group.

5.2 Tailored KEM Based on n-Linear Assumption

Let G(1κ) be a group generator, that is, a ppt algorithm which outputs (G, g, p)
where G is a group of prime order p (having κ bits) and g a generator of G.

Definition 6 The n-Linear Assumption for G(1κ) states that for all ppt adver-
saries B, the advantage of B defined below is negligible.

Advn-linB (κ) :=
∣∣∣Pr

[
B(g1, . . . , gn, g

r1
1 , . . . , g

rn
n , h, h

∑n
i=1 ri) = 1

]
− Pr [B(g1, . . . , gn, g

r1
1 , . . . , g

rn
n , h, hz) = 1]

∣∣∣,
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KEM.Kg(1κ):

b← Zp; h← gb

For i = 1 to n
ai, αi, βi ← Zp
gi ← gai ; ωi = a−1

i b
ui ← gαii ; vi ← gβii

pk = (h, (gi, ui, vi)i∈[n])
sk ←

(
(αi, βi, ωi)i∈[n], pk

)
Return (pk, sk)

KEM.Encap(pk):
For i = 1 to n
ri ← Zp; ci ← grii

t = TCR(c1, . . . , cn)
π ←

∏n
i=1(utivi)

ri

K ← hr1+...+rn

ψ ← (c1, . . . , cn, π)
Return(K,ψ)

KEM.Decap(sk, ψ):
For i = 1 to n

Check if ci ∈ G
t = TCR(c1, . . . , cm)
If
∏n
i=1 c

αit+βi
i 6= π

Return (⊥)
K ←

∏n
i=1 c

ωi
i

Return(K)

Fig. 7. KEM from n-Linear Assumption [16].

where (G, g, p)← G(1κ), (gi)i∈[n], h← G and (ri)i∈[n], z ← Zp.

In [16], Hofheiz and Kiltz presented a KEM based on the n-Linear Assump-
tion for a group generator G(1κ) and a target collision-resistant hash function,
and proved its IND-CCCA security. We replicate the algorithms of this KEM in
Figure 7. Note that this construction does not fall into the category of HPS-based
KEMs.

Lemma 3. If the n-Linear Assumption holds for G(1κ), and TCR is target
collision-resistant, then the Hofheinz-Kiltz KEM in Figure 7 is IND-tCCCA se-
cure.

Proof. In view of the results of [16] and Lemma 1, we need only prove that the
KEM in Figure 7 has the VCI property.

Given an adversary A winning the VCI experiment with non-negligible prob-
ability, we can construct a ppt algorithm B solving the n-Linear problem with
help of A with non-negligible probability. Let (g1, . . . , gn, g

r1
1 , . . . , g

rn
n , h,K∗) be

a challenge instance from the n-Linear problem, where K∗ = h
∑n
i=1 ri or K∗ is

a random element from G. Here, B simulates the VCI experiment for A using
its input (gr11 , . . . , g

rn
n , h,K∗).

– B chooses (xi, yi)i∈[n], z, z
′ ← Z∗p, and computes ui = gxii h

z and vi = gyii h
z′

for i ∈ [n]. B sets pk =
(
(gi, ui, vi)i∈[n], h

)
. All the elements in pk is randomly

distributed, as in the real VCI experiment. Here B implicitly sets sk =(
(αi, βi, ωi)i∈[n], pk

)
with αi = xi + ωiz, βi = yi + ωiz

′ and ωi = loggi h.
– B computes the challenge ciphertext ψ∗ = (c∗1, . . . , c

∗
n, π

∗) for A, where c∗i :=

grii for i ∈ [n], t∗ = TCR(c∗1, . . . , c
∗
n) and π∗ = (K∗)zt

∗+z′
∏n
i=1(c∗i )

xit
∗+yi .

• If K∗ = h
∑n
i=1 r

∗
i , we have π∗ =

∏n
i=1

(
ut
∗

i vi
)ri

. Hence ψ∗ is just a valid
ciphertext output by the KEM’s encapsulation algorithm with random-
ness (ri)i∈[n].

• If K∗ is random, then π∗ is also random, so that ψ∗ is uniformly dis-
tributed in C = Gn.

– B uses
(
(xi, yi)i∈[n], z, z

′) to answerA’s constrained decryption queries (P,ψ).
Let ψ = (c1, . . . , cn, π). We have that t = TCR(c1, . . . , cn) 6= t∗ due to the



SIM-SO-CCA Security for PKE from KEMs 19

target-collision resistance of TCR. B computes K =

(
π∏n

i=1 c
xit+yi
i

)1/(zt+z′)

.

If P (K) = 1 then B returns K; otherwise B returns ⊥.

• If ψ is consistent, i.e., ψ satisfies
∏n
i=1 c

αit+βi
i = π, then π = h(zt+z

′)
∑n
i=1 r

′
i

·
∏n
i=1 c

xit+yi
i , where t = TCR(c1, . . . , cn) and r′i = loggi ci. Then K =

h
∑n
i=1 r

′
i is exactly the encapsulated key. Thus the correct K is returned

to A when P (K) = 1.

• If ψ is NOT consistent, then π 6=
∏n
i=1 c

αit+βi
i . Let β = logg π, ω =

logg h, ai = logg gi, and r′i = loggi ci. Then γ := β−
∑n
i=1 air

′
i(αit+βi) 6=

0. Consequently, loggK = γ/(zt+ z′) + ω
∑n
i=1 r

′
i. The following 2n+ 2

equations in 2n+2 unknowns ((xi, yi)i∈[n], z, z
′) are linearly independent,

as long as t 6= t∗, which is guaranteed by the target-collision resistance
of TCR:

logg ui = aixi + ωz i = 1, 2, . . . , n

logg vi = aiyi + ωz′ i = 1, 2, . . . , n

logg π
∗ =

n∑
i=1

airi(t
∗xi + yi) + (loggK

∗) · (t∗z + z′)

γ

(
loggK − ω

n∑
i=1

r′i

)−1
= zt+ z′.

This establishes that zt+ z′ is uniformly distributed over Zp. Therefore,
loggK is uniformly distributed over Zp and the predicate P satisfies
P (K) = 0 except with negligible probability. As a result, ψ will be
correctly rejected (due to the failed predicate) except with negligible
probability.

Hence, B provides an almost perfect decryption oracle to A as long as t 6= t∗,
for all queried encapsulations ψ 6= ψ∗.

– Eventually, B returns what A returns.

Finally, A’s non-negligible advantage in the VCI game is converted into B’s non-
negligible advantage in breaking the n-Linear Assumption. ut

Theorem 4. Suppose that the n-Linear Assumption holds for G(1κ), and TCR
is target collision-resistant. If groups G output by G(1κ) are samplable and ex-
plainable, then the KEM in Figure 7 is a tailored KEM.

Proof. We note that the ciphertext space C equals Gn+1 and the encapsulated
key space K equals G. If group G is samplable and explainable, so are C and K.

Next, we have |C| = pn+1. For a valid ciphertext ψ = (c1, . . . , cn, π), we
note that π is uniquely determined by c1, . . . , cn and pk. Therefore, the valid
ciphertext set |Ψ | has size pn. Consequently, a random ciphertext from Gn+1

passes the verification test π =
∏n
i=1 c

αit+βi
i in the decapsulation algorithm with

negligible probability 1/p. Therefore, the decapsulation algorithm has tailored
functionality.
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KEM.Kg(1κ):
k ← PGen(1κ)
pk ← iO(Encap(k, ·))
sk ← k
Return (pk, sk)

KEM.Encap(pk):
r ← {0, 1}κ
(K,ψ)← iO(Encap(k, r))
Return(K,ψ)

Encap(k, r):
ψ ← PRG(r)
K ← PEval(k, ψ)
Return(K,ψ)

KEM.Decap(sk, ψ):
k ← sk
K ← PEval(k, ψ)
Return(K)

Fig. 8. Sahai-Waters KEM from iO and Puncturable PRF [24].

Together with Lemma 3, it follows that the KEM in Figure 7 is a tailored,
and therefore suitable for the application of Theorem 1.

5.3 Tailored KEM Based on Indistinguishability Obfuscation and
Puncturable PRF

Background definitions for this construction can be found in [24] and the full
paper [22].

Sahai and Waters [24] gave a KEM construction from an indistinguishability
obfuscator (iO) and a puncturable PRF, as shown in Figure 8. Their construction
makes use of a Pseudo-Random Generator (PRG) PRG : {0, 1}κ → {0, 1}2κ
and a puncturable PRF family PRF = (PGen,PEval,Punc) whose functions map
{0, 1}2κ to {0, 1}κ. We assume that (descriptions of) PRG and PRF are implicitly
part of the inputs to KEM.Kg, Encap, and KEM.Decap in Figure 8.

The ciphertext space of the KEM is C = {0, 1}2κ, the valid ciphertext set is
Ψ = {ψ | ψ = PRG(r); r ∈ {0, 1}κ}, and the key space is K = {0, 1}κ. Obviously,
both of C andK are efficiently samplable and explainable with SampleC−1(C, ψ) :=
ψ and SampleK−1(K,K) := K.

Lemma 5 If iO(·) is an indistinguishability obfuscator for P/poly, PRG is a
secure PRG, and PRF is a puncturable PRF, then the Sahai-Waters KEM in
Figure 8 is IND-tCCCA secure.

Proof. In [24], the Sahai-Waters KEM was proved to be IND-CCA secure, so it
is obviously IND-CCCA secure.

Next we prove the VCI property, based on the security of PRG. If there is a
ppt adversary A that can distinguish a random ciphertext from a random valid
ciphertext with non-negligible probability, then we can construct a ppt algorithm
B that breaks the security of PRG. Suppose B is given an element ψ∗ and tries
to decide whether ψ∗ is the output of PRG or a randomly chosen element from
C. B will simulate a VCI experiment for A. It first chooses a puncturable PRF
PRF and calls KEM.Kg(1κ) to generate (pk, sk). The public key pk is given to
A. Then B gives ψ∗ as the challenge encapsulation to A. Using the secret key
sk and algorithm PEval, B is able to provide a (constrained) decryption oracle
for A. Finally, B outputs whatever A outputs. Then it is easy to see that A’s
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non-negligible advantage in the VCI security game results in a non-negligible
advantage for B in breaking the security of PRG.

The IND-CCCA security and VCI property in combination with Lemma 1
establish that the Sahai-Waters KEM in Figure 8 has IND-tCCCA security. ut

Extracting puncturable PRFs are a strengthening of puncturable PRFs in-
troduced in [24]; essentially, an extracting puncturable PRF acts as a strong
extractor on its inputs.

Definition 7 (Extracting puncturable PRF) Let ε(·) and hmin(·) be func-
tions. A puncturable PRF family PRF=(PGen, PEval, Punc) mapping {0, 1}`1(κ)
to {0, 1}`2(κ) is said to be extracting with error ε(κ) for min-entropy function
hmin(κ) if for all κ ∈ N and for all random variables X on {0, 1}`1(κ) with min-
entropy greater than hmin(κ), the statistical distance between (k,PEval(k,X))
and (k, U`2(κ)) is at most ε(κ), where k ← PGen(1κ) and U`2(κ) denotes the

uniform distribution over {0, 1}`2(κ). The family PRF is said to be extracting
puncturable if the error ε(κ) is negligible (for some choice of function hmin).

The existence of extracting puncturable PRFs is implied by the existence of
one-way functions, as was proved in [24]:

Lemma 4. [24] Assume that one-way functions exist. Then for all efficiently
computable functions `1(κ), `2(κ), e(κ) and hmin(κ) such that `1(κ) ≥ hmin(κ) ≥
`2(κ) + 2e(κ) + 2, there exists an extracting puncturable PRF family PRF =
(PGen,PEval,Punc) mapping {0, 1}`1(κ) to {0, 1}`2(κ) with error function ε(κ) =
2−e(κ) and min-entropy function hmin(κ).

Lemma 6 If PRF is an extracting puncturable PRF obtained from Lemma 4,
then the decapsulation algorithm KEM.Decap of the Sahai-Waters KEM in Figure
8 has tailored functionality.

Proof. We show that the output of PRF(sk, ψ) is statistically close to the uniform
distribution on {0, 1}κ so long as ψ is chosen from C uniformly at random, and
the puncturable PRF satisfies the bounds in Lemma 4.

Recall that PRF maps 2κ bits to κ bits. When ψ is randomly chosen from
{0, 1}2κ, the min-entropy of ψ is 2κ. According to Lemma 4, the statistical
distance between (k,PEval(k, ψ)) and (k, Uκ) is upper-bounded by 2−(κ/2−1),
where k ← PGen(1κ) and Uκ is the uniform distribution over {0, 1}κ. Hence,
KEM.Decap has 2−(κ/2−1)-tailored functionality. ut

Theorem 7. If iO(·) is an indistinguishability obfuscator for P/poly, PRG is a
secure PRG, and PRF is an extracting puncturable PRF, then the Sahai-Waters
KEM in Figure 8 is a tailored KEM.

Proof. The fact that the KEM in Figure 8 is a tailored KEM follows immediately
from Lemma 5, Lemma 6 and the fact that C = {0, 1}2κ and K = {0, 1}κ are
efficiently samplable and explainable.
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The existence of one-way functions implies the existence of PRGs and ex-
tracting puncturable PRFs. Hence the existence of one-way functions and iO
implies the existence of a tailored KEM by the above theorem. Such a tailored
KEM can further be used to build a PKE scheme encrypting ` bits at a time
with the help of an information-theoretically secure (` + s)-XAC (for suitable
parameter s), by following the construction in Figure 4; the SIM-SO-CCA secu-
rity of the PKE scheme follows from Theorem 1. Thus we obtain the following
corollary:

Corollary 8 Suppose one-way functions and indistinguishability obfuscation for
P/poly exist. Then there exists a PKE scheme with SIM-SO-CCA security.
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