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Abstract. Protecting user data entails providing authenticated users access to
their data. The most prevalent and probably also the most feasible approach to
the latter is by username and password. With password breaches through server
compromise now reaching billions of affected passwords, distributing the pass-
word files and user data over multiple servers is not just a good idea, it is a
dearly needed solution to a topical problem. Threshold password-authenticated
secret sharing (TPASS) protocols enable users to share secret data among a set
of servers so that they can later recover that data using a single password. No
coalition of servers up to a certain threshold can learn anything about the data or
perform an offline dictionary attack on the password. Several TPASS protocols
have appeared in the literature and one is even available commercially. Although
designed to tolerate server corruptions, unfortunately none of these protocols
provide details, let alone security proofs, about how to proceed when a com-
promise actually occurs. Indeed, they consider static corruptions only, which for
instance does not model real-world adaptive attacks by hackers. We provide the
first TPASS protocol that is provably secure against adaptive server corruptions.
Moreover, our protocol contains an efficient recovery procedure allowing one to
re-initialize servers to recover from corruption. We prove our protocol secure in
the universal-composability model where servers can be corrupted adaptively at
any time; the users’ passwords and secrets remain safe as long as both servers are
not corrupted at the same time. Our protocol does not require random oracles but
does assume that servers have certified public keys.

Keywords: Universal composability, threshold cryptography, passwords, tran-
sient corruptions.

1 Introduction
Properly protecting our digital assets still is a major challenge today. Because of their
convenience, we protect access to our data almost exclusively by passwords, despite
their inherent weaknesses. Indeed, not a month goes by without the announcement of
another major password breach in the press. In 2013, hundreds of millions of passwords
were stolen through server compromises, including massive breaches at Adobe, Ever-
note, LivingSocial, and Cupid Media. In August 2014, more than one billion passwords
from more than 400,000 websites were reported stolen by a single crime ring. Barring
some technical blunders on the part of Adobe, most of these passwords were properly
salted and hashed. But even the theft of password hashes is detrimental to the security
of a system. Indeed, the combination of weak human-memorizable passwords (NIST
estimates sixteen-character passwords to contain only 30 bits of entropy [5]) and the



blazing efficiency of brute-force dictionary attacks (currently testing up to 350 billion
guesses per second on a rig of 25 GPUs [20]) mean that any password of which a hash
was leaked should be considered cracked.

Stronger password hash functions [32] only give a linear security improvement, in
the sense that the required effort from the attacker increases at most with the same factor
as the honest server is willing to spend on password verification. Since computing pass-
word hashes is the attacker’s core business, but only a marginal activity to a respectable
web server, the former probably has the better hardware and software for the job.

A much better approach to password-based authentication, first suggested by Ford
and Kaliski [19], is to distribute the capability to test passwords over multiple servers.
The idea is that no single server by itself stores enough information to allow it to test
whether a password is correct and therefore to allow an attacker to mount an offline
dictionary attack after having stolen the information. Rather, each server stores an
information-theoretic share of the password and engages in a cryptographic protocol
with the user and the other servers to test password correctness. As long as less than a
certain threshold of servers are compromised, the password and the stored data remain
secure.

Building on this approach, several threshold password-authenticated key exchange
(TPAKE) protocols have since appeared in the literature [19, 24, 28, 4, 16, 34, 26, 25],
where, if the password is correct, the user shares a different secret key with each of
the servers after the protocol. Finally addressing the problem of protecting user data,
threshold password-authenticated secret sharing (TPASS) protocols [1, 10, 9, 25] com-
bine data protection and user authentication into a single protocol. They enable the
password-authenticated user to reconstruct a strong secret, which can then be used
for further cryptographic purposes, e.g., decrypting encrypted data stored in the cloud.
An implementation of the protocol by Brainard et al. [4] is commercially available as
EMC’s RSA Distributed Credential Protection (DCP) [17].

Unfortunately, none of the protocols proposed to date provide a satisfying level of
security. Indeed, for protocols that are meant to resist server compromise, the research
papers are surprisingly silent about what needs to be done when a server actually gets
corrupted and how to recover from such an event. The work by Di Raimondo and Gen-
naro [16] is the only one to mention the possibility to extend their protocol to provide
proactive security by refreshing the shares between time periods; unfortunately, no de-
tails are provided. The RSA DCP product description [17] mentions a re-randomization
feature that “can happen proactively on an automatic schedule or reactively, making in-
formation taken from one server useless in the event of a detected breach.” This feature
is not described in any of the underlying research papers [4, 34], however, and neither
is a security proof known. Taking only protocols with provable security guarantees into
account, the existing ones can protect against servers that are malicious from the begin-
ning, but do not offer any guarantees against adaptive corruptions. The latter is a much
more realistic setting, modelling for instance servers getting compromised by malicious
hackers. This state of affairs is rather troubling, given that the main threats to password
security today, and arguably, the whole raison d’être of TPAKE/TPASS schemes, come
from the latter type of attacks.



One would hope to be able to strengthen existing protocols with ideas from proac-
tive secret sharing [21] to obtain security against adaptive corruptions, but this task is
not straightforward and so far neither the resulting protocol details nor the envisaged se-
curity properties have ever been spelled out. Indeed, designing cryptographic protocols
secure against adaptive corruptions is much more difficult than against static corrup-
tions. One difficulty thereby is that in the security proof the simulator must generate
network traffic for honest parties without knowing their inputs, but, once the party is
corrupted, must be able to produce realistic state information that is consistent with the
now revealed actual inputs as well as the previously simulated network traffic. Generic
multiparty computation protocols secure against adaptive corruption can be applied, but
these are too inefficient. In fact, evaluating a single multiplication gate in the most ef-
ficient two-party computation protocol secure against adaptive corruptions [7] is more
than three times slower than a full execution of the dedicated protocol we present here.

Our contributions. We provide the first threshold password-authenticated secret shar-
ing protocol that is provably secure against adaptive corruptions, assuming data can be
securely erased, which in this setting is a standard and also realistic assumption. Our
protocol is a two-server protocol in the public-key setting, meaning that servers have
trusted public keys, but users do not. We do not require random oracles. We also de-
scribe a recovery procedure that servers can execute to recover from corruption and to
renew their keys assuming a trusted backup is available. The security of the password
and the stored secret is preserved as long as both servers are never corrupted simultane-
ously.

We prove our protocol secure in the universal composability (UC) framework [11,
12]. The very relevant advantages of composable security notions for the particular case
of password-based protocols have been argued before [13, 10]; we briefly summarize
them here. In composable notions, the passwords for honest users, as well as their pass-
word attempts, are provided by the environment. Passwords and password attempts can
therefore be distributed arbitrarily and even dependently, reflecting real users who may
choose the same or similar passwords for different accounts. It also correctly models ty-
pos made by honest users when entering their passwords: all property-based notions in
the literature limit the adversary to seeing transcripts of honest users authenticating with
their correct password, so in principle security breaks down as soon as a user mistypes
the password. Finally, composable definitions absorb the inherent polynomial success
probability of the adversary into the functionality. Thus, security is retained when the
protocol is composed with other protocols, in particular, protocols that use the stored
secret as a key. In contrast, composition of property-based notions with non-negligible
success probabilities is problematic because the adversary’s advantage may be inflated.
Also, strictly speaking, the security provided by property-based notions is guaranteed
only if a protocol is used in isolation.

Our construction uses the same basic approach as the TPASS protocols of Brainard
et al. [4] and Camenisch et al. [10]. During the setup phase, the user generates shares of
his key and password and sends them to the servers (together with some commitments
that will later be used in the retrieve phase). During the retrieve phase, the servers run
a subprotocol with the user to verify the latter’s password attempt using the commit-
ments and shares obtained during setup. If the verification succeeds, the servers send



the shares of the key back to the user, who can then reconstruct the key. Furthermore,
the correctness of all values exchanged is enforced by zero-knowledge proofs. Like the
recent work of Camenisch et al. [9], we do not require the user to share the password
during the retrieve phase but run a dedicated protocol to verify whether the provided
password equals the priorly shared one. This offers additional protection for the user’s
password in case he mistakenly tries to recover his secret from servers different from
the ones he initially shared his secret with. During setup, the user can be expected to
carefully choose his servers, but retrieval happens more frequently and possibly from
different devices, leaving more room for error.

The novelty of our protocol lies in how we transform the basic approach into an
efficient protocol secure against an adaptive adversary. The crux here is that parties
should never be committed to their inputs but at the same time must prove that they
perform their computation correctly. We believe that the techniques we use in our pro-
tocol to achieve this are of independent interest when building other protocols that are
UC-secure against adaptive corruptions. First, instead of using (binding) encryptions
to transmit integers between parties, we use a variant of Beaver and Haber’s non-
committing encryption based on one-time pads (OTP) [3]: the sender first commits
to a value with a mixed trapdoor commitment scheme [7] and then encrypts both the
value and the opening with the OTP. This enables the recipient to later prove state-
ments about the encrypted value. Second, our three-party password-checking protocol
achieves efficiency by transforming commitments with shared opening information into
an Elgamal-like encryption of the same value under a shared secret key. To be able to
simulate the servers’ state if they get corrupted during the protocol execution, each pair
of parties needs to temporarily re-encrypt the ciphertext with a key shared between
them.

Finally, we note that our protocol is well within reach of a practical implementation:
users and servers have to perform a few hundred exponentiations each, which translates
to an overall computation time of less than 0.1 seconds per party.

2 Our Ideal Functionality F2pass

We now describe on a high level our ideal functionalityF2pass for two-server password-
authenticated secret sharing, secure against transient corruptions. We provide the formal
definition of F2pass in the GNUC variant [22] of the UC framework [11] in the full
version [6]. F2pass is reminiscent of similar functionalities by Camenisch et al. [10,
9], the main differences being our modifications to handle transient corruptions. We
compare the ideal functionalities in the full version [6].

The functionality F2pass involves two servers, P andQ, and a plurality of users. We
chose to defineF2pass for a single user account, specified by the session id sid . Multiple
accounts can be realized by multiple instances of F2pass or with a multi-session realiza-
tion of F2pass. The session identifier sid consists of (pidP , pidQ, (G, q, g), uacc, ssid),
i.e., the identity of the two servers, the description of a group of prime order q with gen-
erator g, the name of the user account uacc (any string), and an arbitrary suffix ssid .
Only the parties with identities pidP and pidQ can provide input in the role of P and
Q, respectively, to F2pass. When starting a fresh query, any party can provide input in
the role of a user to F2pass; for subsequent inputs in that query, F2pass ensures it comes



F2pass processes the instructions as follows. F2pass accepts inputs and messages only for a spe-
cific sid . It further checks that the sid has the correct format. Whenever F2pass receives an input
from a party it will eventually send a message to A containing the identity of the party, the type
of input, sid , qid , and—if applicable—sends out delayed messages. a

Setup: The user inputs 〈Setup, sid , qid = “Setup”, p, k〉 to F2pass and the two servers each
inputb 〈ReadySetup, sid , qid = “Setup”〉 to F2pass. F2pass then sends a public delayed
message 〈Done, sid , qid〉 to the user and each of the two servers.

Retrieve: To start, the user inputs 〈Retrieve, sid , qid , a〉 to F2pass, and the two servers each
input 〈ReadyRetrieve, sid , qid〉 toF2pass.F2pass waits for a message 〈Lock, sid , qid〉 from
A, and then replies whether the user’s password attempt was correct by sending 〈Lock, sid ,
qid , b〉 toA—where b = 1 if a = p and b = 0 otherwise.F2pass then sends a public delayed
message 〈Delivered, sid , qid , b〉 to the two servers, and a private delayed message 〈Deliver,
sid , qid , k′〉 to the user, where k′ = k if a = p, and k′ = ε otherwise.

Corrupt: When a party becomes corrupt, the party’s ideal peer will input 〈Corrupt, sid〉 to
F2pass. Recall that A thereafter obtains control of the corrupted party’s input to and out-
put from F2pass. A may prevent a subsequent Refresh query from succeeding in case the
server later recovers from corruption—in a real protocol, A may tamper with the server’s
internal state. If both servers are corrupted at the same time (or corrupted in sequence with
no Refresh query in between), F2pass will send (k, p) toA and allowA to provide arbitrary
replacement values. That is, A can force F2pass to return arbitrary values to the user if the
latter interacts with two corrupted servers in a Retrieve query.

Recover: When a party recovers from corruption, the party’s ideal peer will input 〈Recover,
sid〉 to F2pass. F2pass then stops accepting input and messages for all currently running
Setup and Retrieve queries, and will not accept any further Setup and Retrieve queries until
a Refresh query suceeds.

Refresh: To start a Refresh query, each server inputs 〈Refresh, sid , qid〉 to F2pass. While this
query is in progress, no further Setup, Retrieve, and Refresh queries are accepted, and cur-
rently running queries are dropped. Once it has received a message from both servers,F2pass

sends 〈RefreshDone, sid , qid〉 as public delayed messages to the two servers. F2pass then
resumes accepting new queries. Note that while a server was corrupted, A might have pre-
vented it from completing this Refresh query.

Hijack: Just after a user provided its first input to F2pass in a Setup or Retrieve query and before
A sends anything to F2pass for the same query, A has the option of stealing the id of the
query by sending a 〈HijackSetup, sid , qid , p, k〉 or 〈HijackRetrieve, sid , qid , a〉 message,
respectively, to F2pass. In that case, F2pass ignores the user’s first message and runs the
query with A instead of the user, with the qid chosen by the user but input—(p, k) or a—
provided by A.

a Messages from an ideal functionality to a party are direct outputs, unless they are specified
to be delayed outputs. In the latter case, F2pass notifies A it wishes to send the message and
waits for a confirmation byA before actually sending out the message. A public delayed output
means that A learns the message; a private message means that A will learn only the type of
the message and the recipient.

b The GNUC coventions forbid that F2pass sends a message to the servers at this point, as the
servers might not yet exist.

Fig. 1: High-level definition of F2pass. See the text for explanations, and see the full
version [6] for the full formalization.



from the same party; additionally, F2pass does not disclose the identity of the user to
the servers.
F2pass[sid ] reacts to a set of instructions, each requiring the parties to send multiple

inputs to F2pass in a specific order. The main instructions are Setup, Retrieve, and Re-
fresh. Additionally F2pass reacts to instructions modelling dishonest behavior, namely
Corrupt, Recover, and Hijack. F2pass may process multiple queries (instances of in-
structions) concurrently. A query identifier qid is used to distinguish between separate
executions of the main instructions. We now provide a summary of the instructions. We
refer to Figure 1 for a high-level definition of F2pass and to the full version [6] for the
full formalization.

With the Setup instruction, a user sets up the user account by submitting a key k
and a password p to F2pass for storage, protected under the password. This instruction
can be run only once, which we enforce by fixing qid to “Setup”. With the Retrieve in-
struction, any user can then retrieve that k provided her submitted password attempt a
is correct, i.e., a = p, and the servers are willing to participate in this query. Giving the
server the choice to refuse to participate in a query is important to counter online pass-
word guessing attacks. F2pass allows for the adaptive corruption of users and servers
with the Corrupt instruction, and for recovery from corruption of servers at any time
with the Recover instruction. Servers should run the Refresh instruction whenever they
recover from corruption or at regular intervals; in the real protocol, the two servers re-
randomize their state in this instruction and thereby clear the residual knowledge A
might have. If both servers are corrupted at the same time or sequentially with no Re-
fresh in between, the adversary A will learn the current key and password (k, p) and is
allowed to set them to different values. Finally, recall that in our realization of F2pass,
the first message from the user to the servers is not authenticated.A can therefore learn
the qid from that message, drop the message, and send his own message to the servers
with that qid . We model this attack in F2pass with the Hijack instruction. Servers will
not notice this attack, but the user will conclude his query failed.

Our F2pass functionality gives the following security guarantees: k and p are pro-
tected from A as long as at least one server is honest and no corrupt user is able to
correctly guess the password. Furthermore, if at least one server is honest, no offline
password guessing attacks are possible. Honest servers can limit online guessing at-
tacks by limiting Retrieve queries after too many failed attempts. Finally, an honest
user’s password attempt a remains hidden even if a Retrieve query is directed at two
corrupt servers.

3 Preliminaries
In this section, we introduce the notation used throughout this paper, give the ideal func-
tionalities and cryptographic building blocks we use as subroutines in our construction,
and provide a refresher on corruption models in the UC framework.

3.1 Notation

Let η ≥ 80 be the security parameter. Let ε denote the empty string. If S is a set,
then s $← S means we set s to a random element of that set. If A is a probabilistic
polynomial-time (PPT) algorithm, then y $← A(x) means we assign y to the output of



A(x) when run with fresh random coins on input x. If s is a bitstring, then by |s| we
denote the length of s. If U and P are parties, and Sub is a two-party protocol, then by
(out U ; outP)

$← 〈U .Sub(in U ),P.Sub(inP)〉(in UP) we denote the simultaneous ex-
ecution of the protocol by the two parties, on common input in UP , with U’s additional
private input in U , with P’s additional private input inP , and where U’s output is out U
and P’s output is outP . We use an analogue notation for three-party protocols.

We use the following arrow-notation: publicData to denote the transmission
of public data over a channel that the two parties have already established between
themselves (we discuss how such a channel is established in more detail later). When we
write ( : dataToErase) next to such an arrow, we mean that the value dataToErase
is securely erased before the public data is transmitted. When we write

[
secretData

]
on such an arrow, we mean that secretData is sent in a non-committing encrypted
form. All these transmissions must be secure against adaptive corruptions in the erasure
model.

3.2 Ideal Functionalities that we Use as Subroutines

We now describe the ideal functionalities we use as subroutines in our construction.
These are authenticated channels (Fac), one-side-authenticated channels (Fosac), zero-
knowledge proofs of existence (Fgzk), and common reference strings (FDcrs).

Authenticated channels. Let Fac[sid ] be a single-use authenticated channel [22].
In our construction, we allow only servers to communicate among themselves using
Fac[sid ]. We recall the formal definition in the full version [6].

One-side-authenticated channels. Let Fosac[sid ] be a multi-use channel where only
one party, the server, authenticates himself towards the other party, the client. The server
has the guarantee that in a given session all messages come from the same client. Note
that the first message from the client to the server is not authenticated and can be modi-
fied (hijacked) by the adversary—the original client will be excluded from the rest of the
interaction. We provide a formal definition in the full version [6]. We also refer to the
work of Barak et al. [2] for a formal treatment of communication without or with partial
authentication. A realization of Fosac[sid ] is out of scope, but not hard to construct.

Zero-knowledge proofs of knowledge and existence. Let Fgzk[sid ] be the zero-
knowledge functionality supporting proofs of existence [8], also called “gullible” zero-
knowledge proofs. These proofs of existence are cheaper than the corresponding proofs
of knowledge, but they impose limitations on the simulator S in the security proof.
In a realization of Fgzk, the prover reveals the statement to be proven only in the last
message. This is crucial for our construction, as this allows the prover to erase ( ) wit-
nesses and other data before disclosing the statement to be proven. We recall the formal
definition [8] in the full version [6].

Notation. When specifying the predicate to be proven, we use a combination of the
Camenisch-Stadler notation [15] and the notation introduced by Camenisch, Krenn, and
Shoup [8]; for example: Fgzk[sid ]{( α, β ; ∃γ) : y = gγ ∧ z = gαkβhγ} is used for
proving the existence of the discrete logarithm to the base g, and of a representation of z
to the bases g, k, and h such that the h-part of this representation is equal to the discrete



logarithm of y to the base g. Furthermore, knowledge of the g-part and the k-part of the
representation is proven. Variables quantified by (knowledge) can be extracted by the
simulator S in the security proof, while variables quantified by ∃ (existence) cannot.

By writing a proof on an arrow:
π0 we denote the performance of such

an interactive zero-knowledge proof protocol secure against adaptive corruptions with
erasures. If additional public or secret data is written on the arrow, or data to be erased
besides the arrow, then this data is transmitted with, or erased before, respectively, the
last message of the proof protocol (cf. §3.1). The predicate of the proof may depend on
that data.

Proofs with two verifiers. Let F2v
gzk[sid ] be the three-party ideal functionality to de-

note the parallel execution of two independent zero-knowledge proofs with the same
prover and same specification, but two different verifiers. The prover waits for a reply
from both verifiers before sending out the last message of each proof. This gives the
prover the opportunity to erase the same witnesses in both proofs. We provide a formal
definition in the full version [6]. The proof that the special composition theorem by
Camenisch, Krenn, and Shoup [8] holds also for F2v

gzk is very similar to the proof that it
holds for Fgzk and is omitted.

Common reference string. Let FDcrs[sid ] be a common reference string (CRS) func-
tionality, which provides a CRS distributed according to some distribution D. We make
use of two distributions in this paper: FG3

crs provides a uniform CRS over G3 and Fgzk
crs

provides a CRS as required by Camenisch et al.’s protocol π, the intended realization
of Fgzk [8]. We provide a formal definition in the full version [6].

3.3 Cryptographic Building Blocks of Our Construction
Our construction makes use of two cryptographic building blocks: a CCA2-secure en-
cryption scheme, and a homomorphic mixed trapdoor commitment scheme.

CCA2-secure encryption. We denote the key generation function (pk , sk , kgr)
$←

Gen(1η), where kgr is the randomness that was used to generate the key pair. We denote
the encryption function (e, er)

$← Enc(pk , pt , l) that takes as input a public key pk , a
plaintext pt ∈ {0, 1}∗, and a label l ∈ {0, 1}∗; and outputs the ciphertext e and the ran-
domness er used to encrypt. The corresponding decryption function pt

$← Dec(sk , e, l)
takes as input the secret key sk , the ciphertext e, and the label l. We require the scheme
to be secure against adaptive chosen ciphertext attacks [33]. An example of such an
encryption scheme is Cramer-Shoup encryption in a hybrid setting over a group G of
prime order q [15, §5.2]. To accommodate the label l in the encryption function, it must
be added as an additional input to the hash function used during encryption.

Homomorphic mixed trapdoor (HMT) commitment. An HMT commitment scheme
[7] is a computationally binding equivocable homomorphic commitment scheme, con-
structed from Pedersen commitments [31]. It works well with proofs of existence using
Fgzk, resulting in an efficiency gain in our protocol compared to a construction using
plain Pedersen commitments, which would have to use proofs of knowledge. We pro-
vide a high-level overview of HMT commtiments here and recall the definition of HMT
commitments in the full version [6].



HMT commitments operate in a group G of prime order q (with generator g) where
the decision Diffie-Hellman (DDH) problem is hard. They implicitly use a CRS (h, y, w)

provided by FG3

crs . By (c, o)
$← Com(s) we denote the function that takes as input a

value s ∈ Zq to be committed, and outputs a commitment c and an opening o ∈ Zq
to the commitment. We will also use the notation c ← Com(s, o), where the opening
is chosen outside the function. The commitments are homomorphic with respect to ad-
dition over Zq: i.e., c ∗ c′ = Com(s + s′, o + o′). With a trapdoor to the CRS it is
possible to efficiently equivocate commitments. Finally, we note that it is possible to
extract a Pedersen commitment pc from a commitment c, we denote this operation by
pc := ysho ← PedC(c).

3.4 Corruption in the UC Model

The UC model defines several types of party corruptions, the most important being
static, adaptive, and transient corruptions. In protocols secure against static party cor-
ruptions, parties are either honest or corrupt from the start of the protocol and do not
change their corruption status. In protocols secure against adaptive corruptions, parties
can become corrupted at any time; once corrupted, they remain so for the rest of the
protocol. Finally, transient corruptions [11] are similar to the adaptive corruptions, but
parties can recover from corruption and regain their security.

In the following we discuss the modelling of transient corruptions in the UC frame-
work, how one can use ideal functionalities designed for adaptive corruptions in a pro-
tocol designed for transient corruptions, and finally we discuss a particular problem
that appears in protocols secure against adaptive or transient corruptions: the selective
decommitment problem.

Modelling transient corruptions in real/hybrid protocols. We now recall how cor-
ruption and recovery is modelled in real/hybrid protocols.

Corruption of a party. When a party becomes corrupted, all of its internal state exclud-
ing the parts that were explicitly erased ( ) is handed over to the adversary A. A then
controls that party. The ideal functionalities that were used as subroutines are notified of
the corruption, and may provide additional information or capabilities to A. Note that
A can always choose to let a corrupted party follow the honest protocol, but passively
monitor the party’s internal state.

Recovery from corruption. A may cede control from a party. When doing that, A may
specify a new internal state for the party. We then say that the party formally recovered.
In real life, a party might know it recovered if it detected a breach and has restored from
backup.

In most protocols however, formal recovery is not enough: the adversary still knows
parts of the internal state of the formally recovered party. To allow the party to ef-
fectively recover its security, it must take additional steps, e.g., notify its subroutines
(and stop using the subroutines that cannot handle recovery) and run a protocol-specific
Refresh instruction. The party might thereby drop all currently running queries.

A party initiates a Refresh query to modify its internal state so that firstly it is syn-
chronized with the other protocol participants, and so that secondly A’s knowledge of
the old state does not interfere with security of the new state. Parties should initiate



a Refresh query when they formally recover from corruption. (If parties cannot detect
formal recovery, they should run Refresh periodically.) The Refresh query might fail if
the state of the party is inconsistent with that of the others. The party might also not nec-
essarily recover its security even after succesful completion of the query, e.g., because
all other participants are corrupted. Note that the security of a party is fully restored
(if at all) only after Refresh completes: in the grey zone bewteen formal recovery and
completion of Refresh, the party must not run any queries other than Refresh.

Using ideal functionalities designed for the adaptive type in a transient-secure hy-
brid protocol. Protocols secure against transient corruptions may use ideal functional-
ities as subroutines that were designed to handle adaptive corruptions, e.g., Fac, Fosac,
Fgzk, and F2v

gzk: upon formal recovery, the party must stop using all instances of these
ideal functionalities. Thereby, it has to abort all currently running queries. Thereafter,
it has to use fresh instances of these ideal functionalities for running the Refresh query,
and all subsequent queries.

The selective decommitment problem. Hofheinz demonstrated that it is impossible to
prove any protocol secure against adaptive corruptions (and thus, against transient cor-
ruptions) that uses perfectly binding commitments or (binding) encryptions to commit
to or to encrypt the parties’ input, respectively [23]. Let us expand on this. For example,
assume that in a protocol a user U with an input i must send out a binding commitment
c or an encryption e depending on i, e.g., (c, o) = Com(i) or (e, er) = Enc(pk , i, l).
The simulator S in the security proof must be able to simulate the honest U without
knowing her input i, i.e., S must send c or e to the adversary A, containing some value
that is most likely different from i. If U then gets corrupted, S must produce an inter-
nal state for U , namely the opening o or the randomness er used to encrypt and—if
applicable—the secret key sk , that is consistent with both her real input i and the values
c or e already sent out to the adversary. However, due to the binding nature of the com-
mitment and encryption, and unless it could predict i, S cannot find an internal state for
U consistent with these values and therefore the security proof will not go through.

We explain how we avoid the selective decommitment problem in our protocol in
Section 4.2.

4 Our Construction of TPASS Secure Against Transient
Corruptions

In this section we present our realization Π2pass of the F2pass ideal functionality in the
(FG3

crs ,Fosac,Fac,Fgzk,F2v
gzk)-hybrid setting. OurΠ2pass protocol further uses a CCA2-

secure cryptosystem and an HMT commitment scheme. As for F2pass, we describe
Π2pass for a single user account only, i.e., each instance of Π2pass uses a fixed sid .

We start this section by discussing the high-level ideas of our construction. We then
elaborate on the novel core ideas in our construction, before providing the detailed
construction, and we comment on a multi-session version ofΠ2pass that uses a constant
size CRS. We finish by providing an estimate of the computational and communication
complexity of Π2pass in both the standard and random oracle models, and compare it
with the complexity of related work.



4.1 High Level Approach of our TPASS Protocol
Our protocolΠ2pass implements the Setup, Retrieve, and Refresh instructions ofF2pass.
An adversary can hijack a Setup or Retrieve query through the Fosac subroutine. The
other instructions of F2pass are purely conceptual for the security proof. At a high level,
the realizations of the Setup and Retrieve instructions of Π2pass are reminiscent of the
schemes by Camenisch et al. [10, 9] and Brainard et al. [4]: during Setup, the user gen-
erates shares of his key and password and sends them to the servers (together with some
commitments that will later be used in Retrieve). During Retrieve, the servers run a sub-
protocol with the user to verify the latter’s password attempt using the commitments and
shares obtained in Setup. If the verification succeeds, the servers send the shares of the
key back to the user, who can then reconstruct the key. Furthermore, the correctness
of all values exchanged is enforced by zero-knowledge proofs. To deal with transient
corruptions, our Π2pass needs to implement the Refresh instruction, which allows the
servers to re-randomize their shares of the key and password and thereby to re-secure
their states when one of them is recovering from corruption. Naturally, prior schemes
do not have a Refresh instruction as they do not provide security against transient cor-
ruptions.

The novelties of our construction arise from how we turn this basic approach into
a scheme that is secure against adaptive and transient corruptions and at the same time
efficient enough to be considered for practical deployment.

4.2 Key Ideas of our TPASS Protocol
We now present the key ideas that make it possible for our TPASS protocol to be secure
against transient corruptions. These ideas are novel and of independent interest.

Three-party computation for determining equality to zero. The core subprotocol
ChkPwd is depicted in Figure 2. To check if the password attempt a input by the user
during a Retrieve query matches the stored password p = pP + pQ, the user and the two
servers engage in a three-party computation to check if δ := pP + pQ −a ?= 0, where pP
and pQ are the shares stored by the respective servers. For efficiency reasons, it does not
make sense to base that protocol on a generic multiparty computation protocol. Indeed,
running one Retrieve query in our protocol is more than 3.7 times faster than evaluating
a single multiplication gate in the best generic two-party computation protocol that is
secure against adaptive corruptions [7] (see the full version [6]).

The first observation is that a commitment in the HMT scheme we use essentially
consists of a pair of Pedersen commitments. Thus, while all components need to be
considered to prove that a commitment is formed correctly, it is often sufficient to con-
sider just one component later when doing computations with them. Now, based on this,
a first idea for the desired subprotocol would be as follows. The servers’ commitments
cpP and cpQ to the shares of the password are distributed to all the parties, who then
generate a commitment on the sum of the two shares using the homomorphic property
of HMT commitments, and extract the first component thereof to obtain a value

C := PedC(cpP ∗ cpQ) = ypP+pQhopP+opQ ,
where y and h are part of the CRS. That value is an equivocable Pedersen commitment
to p := pP +pQ with equivocation trapdoor logy h. Given C, the user subtracts his pass-
word attempt a from that commitment:
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Fig. 2: Subroutine ChkPwd: the servers check if U’s password attempt a is equal to
the password pP + pQ. See the next figure for the instantiation of the zero-knowledge
proofs.



π3 := Fgzk[sid , qid , 3]
{(

pP , opP
)
: cpP = Com(pP , opP)

}
.

π4 := Fgzk[sid , qid , 4]
{(

pQ, opQ
)
: cpQ = Com(pQ, opQ)

}
.

π5 := F2v
gzk[sid , qid , cpP , cpQ, 5]

{(
a, σ ; ∃ρ, β

)
:

h = AρU ∧ C = (B−1
U )ρyahσ ∧ (csUP ∗ csUQ) = Com(σ, β)}

, where σ := sUP + sUQ, ρ := −1/rU , and β := osUP + osUQ.

U runs two proofs, one with P and one with Q, in parallel: she performs the erasures
and sends out the last message of both proofs only after she received the second message
of the proof from both servers (see Proofs with two verifiers in §3.2).

π6 := Fgzk[sid , qid , cpP , cpQ, csUP , csUQ, AU , BU , 6]
{(
∃pP , opP , rP , σ, β

)
:

AP = ArPU ∧AP 6= g0 ∧BP = BrPU A
opP+σ
P ∧

cpP = Com(pP , opP) ∧
(
csPQ ∗ cs−1

UP
)
= Com(σ, β)}

,where σ := sPQ − sUP and β := osPQ − osUP .

π7 := Fgzk[sid , qid , csPQ, AP , BP , 7]
{(
∃pQ, opQ, rQ, σ, β

)
:

AQ = A
rQ
P ∧AQ 6= g0 ∧BQ = B

rQ
P A

opQ−σ
Q ∧

cpQ = Com(pQ, opQ) ∧ (csUQ ∗ csPQ) = Com(σ, β)}
,where σ := sUQ + sPQ and β := osUQ + osPQ.

Fig. 3: Instantiation of zero-knowledge proofs for ChkPwd.

B := Cy−a = yδhopP+opQ .
We now consider the Elgamal “ciphertext”

(
A := h−1, B

)
, which is an encryption of

yδ under the shared secret key (−opP − opQ) with fixed randomness −1. This cipher-
text is then passed from U to P , from P to Q, and then from Q back to P , where at
each step, the sender exponentiates that ciphertext by a non-zero random number rU ,
rP , and rQ, respectively, thereby multiplying the plaintext by that random number. Also,
if possible, the sender will partially decrypt the ciphertext by removing opP or opQ: U
computes (

AU , DU
)

:=
(
ArU , BrU

)
=

(
h−rU , yδ∗rUh(opP+opQ)rU

)
and sends it to P , P computes(

AP , DP

)
:=

(
ArPU , D

rP
U A

opP
P

)
=

(
h−rUrP , yδ∗rUrPhopQrUrP

)
and sends it to Q, and Q computes(

AQ, BQ
)

:=
(
ArQP , D

rQ
P A

opQ
Q

)
=

(
h−rUrPrQ , yδ∗rUrPrQ

)
and sends it to P . If in the end the result BQ is the neutral element, then δ = 0, and the
password was correct.

Unfortunately, this first idea doesn’t quite work: if δ = 0, DU fixes a value for
(opP + opQ) and DP fixes a value for opQ. Thus cpP and cpQ, together with DU and
DP form unequivocable statistically binding commitments to pP and pQ. This causes a
selective decommitment problem. Our solution is to blind the values DU and DP with
non-committing random shifts sUP , sUQ, and sPQ as follows, thereby circumventing the
problem. U chooses sUP and sUQ, and sends them to P and Q, respectively, in a non-
committing manner. U then generates BU by multiplying DU with the blinding factor
A
sUP+sUQ
U , i.e.,



(
AU , BU

)
:=

(
ArU , BrUA

sUP+sUQ
U

)
=

(
h−rU , yδ∗rUh(opP+opQ−sUP−sUQ)rU

)
and sends BU instead of DU to P . The ciphertext (AU , BU) is now encrypted under the
shared key (sUP + sUQ − opP − opQ). Similarily, P chooses sPQ and sends it to Q. P
generates BP like DP but uses BU instead of DU in the formula and multiplies the result
by A−sUP+sPQP , i.e.,(

AP , BP
)

:=
(
ArPU , B

rP
U A

opP−sUP+sPQ
P

)
=

(
h−rUrP , yδ∗rUrPh(opQ−sUQ−sPQ)rUrP

)
and sends BP to Q instead of DP , i.e., the ciphertext (AP , BP) is now encrypted under
the shared key (sUQ + sPQ − opQ). Finally Q computes BQ differently by replacing DP

by BP in the formula and multiplying the result by A−sUQ−sPQQ , i.e.,(
AQ, BQ

)
:=

(
ArQP , B

rQ
P A

opQ−sUQ−sPQ
Q

)
=

(
h−rUrPrQ , yδ∗rUrPrQ

)
.

At the end of each step, the parties prove to each other in zero-knowledge that they
computed their values correctly; whereby the parties use the trick explained in the next
paragraph to refer to sUP , sUQ, and sPQ in the proofs. These proofs also allow the simu-
lator to extract a, pP , pQ, opP , opQ, and (sUP + sPQ) in the security proof.

Transmission of secrets for later use in proofs. In the protocol just described, U
must send the value sUP to P in a non-committing manner and all parties must be able
to prove knowledge of that same value in subsequent zero-knowledge proofs. Simply
having U encrypt sUP is not sufficient, because P can later not prove knowledge of the
encrypted sUP in proofs. A similar situation also arises in other parts of our protocol, for
example in the Setup instruction when U must send a share pP to the password to P in
a non-committing manner.

In a setting that considers only static corruptions, such problems are often solved by
requiring U to send a Pedersen commitment csUP to sUP to all parties, and to send sUP
and the opening osUP to the commitment to P , encrypted under P’s public key. Thus,
with csUP , P can later prove that it correctly used sUP in its computations.

When dealing with adaptive or transient corruptions, this does not work: the en-
cryption of sUP causes a selective decommitment problem. Instead, we have U gener-
ate an equivocable commitment csUP to sUP with opening osUP , then establish a one-
time pad (OTP) with P , and then encrypt both sUP and osUP with the OTP. U then
sends the resulting ciphertext to P in any convenient manner (in this specific exam-
ple, U sends it as part of proof protocol π5 in Figure 2 that actually uses the val-
ues sUP , osUP , and csUP in some indirect form; in the Setup instruction where she
needs to send pP to P in a non-committing manner, U sends the ciphertext to P di-
rectly). Afterwards, P can refer to sUP in zero-knowledge proofs by means of csUP ,
e.g., Fgzk[sid]{(∃sUP , osUP) : csUP = Com(sUP , osUP)}. This approach will allow S to
equivocate sUP , provided that no extra dependencies on the opening osUP are introduced
in other protocol steps (the first idea of the three-party protocol above describes the
problems when such an extra dependency is introduced on opP).

4.3 Detailed Construction of Π2pass in the Standard Model (with Erasures)
We now give the full details of the instructions of our protocol and their respective
subprotocols. Let us start with five remarks. First, we implicitly assume that all par-
ties query FG3

crs to obtain a CRS (h, y, w) whenever they need it. Second, all com-
mitments Com must be realized with HMT commitments (see §3.3). Using Peder-
sen commitments instead would require expensive zero-knowledge proofs of knowl-



T .secureSend(sid , qid , secretData): R.secureSend(sid , qid , |secretData|):

(pk T , sk T , kgr)
$← Gen(1η). otpT R

$← {0, 1}|secretData|.

pk T( : kgr)

(eT , er T )←Enc(pk T , otpT R, (sid , qid , pidT , pidR)).

eT ( : er T )

otpT R ← Dec(sk T , eT , (sid , qid , pidT , pidR)).
eR ← secretData ⊕ otpT R.

eR( : sk T , secretData, otpT R)

secretData ← eR ⊕ otpT R.
Output secretData .

Fig. 4: Subroutine secureSend, the realization of
[
secretData

]
: a party T (user or

server) sends secretData toR (user or server) in a non-committing encrypted form.

edge in the protocol, thereby massively increasing the computational complexity. Third,
we assume that for each query the user establishes a single instance of a one-side-
authenticated channel Fosac[(sid , qid),P] and Fosac[(sid , qid),Q] with each respec-
tive server; all communication denoted by arrows: , and all communication in-
side the zero-knowledge functionalities Fgzk and F2v

gzk happen through that instance.3

The two servers communicate with each other through regular authenticated channels
Fac[(sid , qid),P,Q, ssid ]. Fourth, parties can send data in a non-committing and con-
fidential manner, i.e., secure against adaptive corruptions, by using the secureSend
subroutine depicted in Figure 4. We denote such communication by:

[
secretData

]
(cf. §3.1). The parties establish a one-time pad (OTP) with each other, encrypt the data
with that OTP, and erase the OTP before sending the ciphertext [3]. Fifth, we implicitly
assume that a party aborts a query without output if any check fails.

The Setup instruction. Recall that the goal of the Setup instruction is for a user to set
up an account uacc with the two servers P and Q and store a key k ∈ Zq protected
under a password p ∈ Zq therein. The servers will silenty abort a Setup query if the
user account has already been established.

When a user U receives an input 〈Setup, sid = (pidP , pidQ, (G, q, g), uacc, ssid),
qid = “Setup”, p, k〉 from the environment Z , she starts a Setup query. Each of the
servers starts a Setup query when he receives an input 〈ReadySetup, sid , qid〉 from Z .
As the first step of the Setup query, U distributes shares of k and p to both servers
using the Share subprotocol. In that subprotocol, the user establishes an OTP with
each server and encrypts the shares with the respective OTPs in order to circumvent
the selective decommitment problem [23]. Finally, the servers store their shares as their
internal state and send an acknowledgement back to the user. See Figure 5. At the end
of the Setup query, each of the three parties outputs 〈Done, sid , qid〉 to Z .

The Share subprotocol Setup uses is depicted in Figure 6. In that subprotocol U
splits her inputs p and k into random additive shares pP + pQ := p and kP + kQ := k,

3 Refer to Barak et al. [2] for details about modelling communication with partial authentication
in the UC model.



U .Setup(sid , qid , p, k) P .Setup(sid , qid)

p, k
shr, cmt shares, commitments

shr, cmt shr, cmt

Share

ok

Q.Setup(sid , qid)

ok

1.

2. 2.

3. 3.

1. 1.

1. U generates shares and commitments to her password and key and sends them to the servers:(
ε; (cpP , ckP , cpQ, ckQ, pP , kP , opP , okP); (cpP , ckP , cpQ, ckQ, pQ, kQ, opQ, okQ)

) $←〈
U .Share

(
p, k
)
,P.Share

()
,Q.Share

()〉(
sid , qid

)
.

2. Each serverR ∈ {P,Q} stores
(
cpP , ckP , cpQ, ckQ, pR, kR, opR, okR

)
into his long-term storage.

3. The servers send an acknowledgement to U .

Fig. 5: Setup instruction: U distributedly stores a key k protected under a password p
on two servers P and Q.

U .Share(sid , qid , p, k): P .Share(sid , qid): Q.Share(sid , qid):

pP
$← Zq ; (cpP , opP)

$← Com(pP).

kP
$← Zq ; (ckP , okP)

$← Com(kP).

pQ ← p− pP ; (cpQ, opQ)
$← Com(pQ).

kQ ← k − kP ; (ckQ, okQ)
$← Com(kQ).

cpP , ckP , cpQ, ckQ,
[
pP , opP , kP , okP

]
cpP , ckP , cpQ, ckQ,

[
pQ, opQ, kQ, okQ

]
Check: cpP

?= Com(pP , opP)

and ckP
?= Com(kP , okP).

Check: cpQ
?= Com(pQ, opQ)

and ckQ
?= Com(kQ, okQ).

π1

π2

Output (cpP , ckP , cpQ, ckQ,
pP , kP , opP , okP).

Output (cpP , ckP , cpQ, ckQ,
pQ, kQ, opQ, okQ).

Instantiation of zero-knowledge proofs:

π1 := Fgzk[sid , qid , cpP , ckP , cpQ, ckQ, 1]
{(

pP , kP ; ∃opP , okP
)

:

cpP = Com(pP , opP) ∧ ckP = Com(kP , okP)
}
.

π2 := Fgzk[sid , qid , cpP , ckP , cpQ, ckQ, 2]
{(

pQ, kQ, opQ ; ∃okQ
)

:

cpQ = Com(pQ, opQ) ∧ ckQ = Com(kQ, okQ)
}
.

Fig. 6: Subroutine Share: U generates shares to her password p and key k, and sends
them to the servers.

and sends (pP , kP) to P and sends (pQ, kQ) toQ. She commits to all shares and sends all
commitments to both servers; additionally she sends the openings for a server’s shares
to the respective server; thus enabling the servers to later perform zero-knowledge
proofs about their shares and the commitments to them. The servers then ensure they



got the same commitments and prove to each other that they know their shares. In π2,
Q also proves to P that he knows the opening opQ corresponding to his share of the
password: this is needed so that S can properly simulate BP = (AP)

sUQ+sPQ−opQ in
ChkPwd (we note that S does not need to know the value opP from π1 at this point).

The Retrieve instruction. Recall that the goal of the Retrieve instruction is for a user
(not necessarily the same as during Setup) to retrieve the key k, contingent upon her
holding a correct password attempt a ∈ Zq .

When a user U receives an input 〈Retrieve, sid , qid , a〉 with the same sid as during
Setup from Z , she starts a Retrieve query. Each of the servers starts a Retrieve query
when he receives an input 〈ReadyRetrieve, sid , qid〉 from Z . The servers may refuse to
service the query if they for instance suspect that an online password guessing attack is
in progress, e.g., if they have processed too many failed Retrieve queries for that user
account already. As many policies for throttling down can be envisaged, we decided not
to include the policy in our model but rather to let Z decide: if the server should refuse
service, Z does not provide the initial input 〈ReadyRetrieve, sid , qid〉. The Retrieve
instruction runs as follows and is depicted in Figure 7. The servers start a Retrieve query
by retrieving their internal state. The user and the servers then engage in a three-party
computation to determine whether δ := pP + pQ − a ?= 0, i.e., whether the password
attempt is correct, using the ChkPwd subprotocol. If the password is correct, the servers
send their shares of the key back to the user using the Reconstr subprotocol; if wrong,
they send back ε. At the end of the Retrieve query, U outputs 〈Deliver, sid , qid , k′〉 to
Z , and each server outputs 〈Delivered, sid , qid , b〉 to Z—where k′ = k and b = 1 if
the password attempt was correct, else k′ = ε and b = 0.

We now describe the two subprotocols that the Retrieve instruction uses. ChkPwd
was already explained in §4.2 and was depicted in Figure 2. Reconstr is depicted in
Figure 8. In this subprotocol, each server sends his share of the key (kP or kQ) and the
corresponding opening to U . Both servers also send her the two commitments to the
shares of the key. The user checks that she received the same commitments from both
servers, that the shares and openings are correct, and reconstructs the key k := kP +kQ.
The servers may send ε instead to denote a failed password attempt; in that case U
outputs ε.

In both the ChkPwd and the Reconstr subprotocols, U needs to send data in a
non-committing and confidential manner to P . Instead of generating the OTPs for each
subprotocol separately, the two parties could generate a single OTP of double the length
in one operation and use the first half of the OTP during ChkPwd and the second half
during Reconstr. This optimization would save one key generation (for the CCA2-
secure cryptosystem), one encryption, and one decryption. The same optimization can
be applied between U and Q.

The Refresh instruction. In the Refresh instruction, the servers re-randomize their
shares and generate new commitments to them. This ensures that A no longer has any
knowledge about the internal state of a party who recovered from corruption. Servers
execute a Refresh query immediately after they formally recover from corruption (see
§3.4). Upon starting a Refresh query, the servers abort all running Setup and Retrieve
queries and stop accepting new ones. Upon completion of the Refresh query, they re-
sume acceptance of new Setup and Retrieve queries.



U .Retrieve(sid , qid , a)

a

b := (a ?= p) b := (a ?= p)ChkPwd

Reconstr

4. Output k or ε 4. Output b

k or ε

shr, cmt or ε

shr, cmt

P .Retrieve(sid , qid) Q.Retrieve(sid , qid)

shr, cmtshares, cmt

shr, cmt

shr, cmt or ε

4. Output b

2.

3.

1. 1.

3. 3.

2.2.

1. Each serverR ∈ {P,Q} retrieves
(
cpP ,ckP ,cpQ,ckQ,pR,kR,opR,okR

)
from his long-term storage.

2. U , P , andQ run a three-party protocol to determine if the password attempt is correct:(
ε,b,b

) $←
〈
U .ChkPwd

(
a
)
,P.ChkPwd

(
cpP ,cpQ,pP ,opP

)
,Q.ChkPwd

(
cpP ,cpQ,pQ,opQ

)〉(
sid , qid

)
.

3. – If b = 1 (i.e., a = p: the password attempt was correct), the servers send the key k′ = k to U :(
k′,ε,ε

) $←
〈
U .Reconstr

()
,P.Reconstr

(
ckP ,ckQ,kP ,okP

)
,Q.Reconstr

(
ckP ,ckQ,kQ,okQ

)〉(
sid,qid

)
.

– Else if b = 0, the servers send a empty value k′ = ε instead:(
k′; ε; ε

) $←
〈
U .Reconstr

()
,P.Reconstr

(
ε, ε, ε, ε

)
,Q.Reconstr

(
ε, ε, ε, ε

)〉(
sid , qid

)
.

Fig. 7: Retrieve instruction: U retrieves the key k if she provides the correct password.

U .Reconstr(sid , qid): P .Reconstr(sid , qid ,
ckP , ckQ, kP , okP):

Q.Reconstr(sid , qid ,
ckP , ckQ, kQ, okQ):

ckP , ckQ,
[
kP , okP

]
ckP , ckQ,

[
kQ, okQ

]
Check that she received the same
(ckP , ckQ) from both servers.

If ckP 6= ε: Check ckP
?= Com(kP , okP)

and ckQ
?= Com(kQ, okQ).

Output k ← kP + kQ.

Else: Output ε.

Fig. 8: Subroutine Reconstr: the servers send their commitments and shares of the key
to U so that she may reconstruct her key k.

When a server receives an input 〈Refresh, sid , qid〉 with the same sid as during
Setup from Z , he starts the Refresh instruction. The Refresh protocol runs as follows
and is depicted in Figure 9. The servers start by recovering their internal state. The
servers then re-randomize their shares of the password and key using the ComRefr
subprotocol. Finally both servers store their new internal state. At the end of the proto-
col, each server outputs 〈RefreshDone, sid , qid〉 to Z .

The Refresh instruction uses the ComRefr subprotocol, depicted in Figure 10, the
goal of which is for both servers P and Q to re-randomize their respective shares
(pP , kP) and (pQ, kQ). P randomly selects two offsets p̊ and k̊ and subtracts them from
his shares. P then commits to the offsets and his new shares. P proves to Q that all
operations were done correctly. As part of the proof, P sends all the commitments and
a ciphertext that contains the offsets and the corresponding openings encrypted under



P .Refresh(sid , qid) Q.Refresh(sid , qid)

ComRefr

old-shares, old-cmt

new-shr, new-cmt

old-shr, old-cmt
new-shr, new-cmt

old-shr, old-cmt

new-shr, new-cmt

old-shr, old-cmt

new-shr, new-cmt

1.

3.

2.

1.

3.

2.

1. Each serverR ∈ {P,Q} retrieves
(
cpP ,ckP ,cpQ,ckQ,pR,kR,opR,okR

)
from his long-term storage.

2. The servers re-randomize their shares:(
(ĉpP , ĉkP , ĉpQ, ĉkQ, p̂P , k̂P , ôpP , ôkP); (ĉpP , ĉkP , ĉpQ, ĉkQ, p̂Q, k̂Q, ôpQ, ôkQ)

) $←〈
P.ComRefr

(
pP , kP , opP , okP

)
,Q.ComRefr

(
pQ, kQ, opQ, okQ

)〉(
sid , qid , cpP , ckP , cpQ, ckQ

)
.

3. Each serverR ∈ {P,Q} stores
(
ĉpP , ĉkP , ĉpQ, ĉkQ, p̂R, k̂R, ôpR, ôkR

)
into his long-term storage.

Fig. 9: Refresh instruction: the servers re-randomize their internal state.

P .ComRefr(sid , qid , cpP , ckP , cpQ, ckQ,
pP , kP , opP , okP):

Q.ComRefr(sid , qid , cpP , ckP , cpQ, ckQ,
pQ, kQ, opQ, okQ):

p̊
$← Zq ; (c̊p, o̊p)

$← Com(p̊).

k̊
$← Zq ; (c̊k , o̊k)

$← Com(̊k).

p̂P ← pP − p̊; (ĉpP , ôpP)
$← Com(p̂P).

k̂P ← kP − k̊; (ĉkP , ôkP)
$← Com(k̂P).

c̊p, c̊k , ĉpP , ĉkP ,
[
p̊, o̊p, k̊, o̊k

]
, π8( : pP ,kP ,p̊,̊k,opP ,okP ,o̊p,o̊k)

Check: c̊p ?= Com(p̊, o̊p) and c̊k ?= Com(̊k, o̊k).

p̂Q ← pQ + p̊; (ĉpQ, ôpQ)
$← Com(p̂Q).

k̂Q ← kQ + k̊; (ĉkQ, ôkQ)
$← Com(k̂Q).

ĉpQ, ĉkQ, π9 ( : pQ, kQ, p̊, k̊, opQ, okQ, o̊p, o̊k)

Output (ĉpP , ĉkP , ĉpQ, ĉkQ, p̂P , k̂P , ôpP , ôkP). Output (ĉpP , ĉkP , ĉpQ, ĉkQ, p̂Q, k̂Q, ôpQ, ôkQ).

Instantiation of zero-knowledge proofs:

π8 := Fgzk[sid , qid , cpP , ckP , cpQ, ckQ, 8]
{(

pP , kP ; ∃opP , okP , α, β
)

:

cpP = Com(pP , opP)∧(ĉpP ∗ c̊p) = Com(pP , α)∧ckP = Com(kP , okP)∧(ĉkP ∗ c̊k) = Com(kP , β)}
,where α := ôpP + o̊p and β := ôkP + o̊k .

π9 := Fgzk[sid , qid , c̊p, c̊k , ĉpP , ĉpQ, 9]
{(

p̂Q, k̂Q, ôpQ ; ∃ôkQ, α, β,
)

:

ĉpQ = Com(p̂Q, ôpQ)∧ ĉkQ = Com(k̂Q, ôkQ)∧(cpQ∗ c̊p) = Com(p̂Q, α)∧(ckQ∗ c̊k) = Com(k̂Q, β)}
,where α := opQ + o̊p and β := okQ + o̊k .

Fig. 10: Subroutine ComRefr: the servers generate new commitments and shares of the
password and key based on the old ones.

an OTP to Q. Q likewise updates his shares and generates new commitments to them.
Q proves to P that all operations were done honestly and that he knows the opening
ôpQ corresponding to his new share of the password (for the same reason as in Share:
S needs ôpQ when simulating BP in ChkPwd). As part of the proof, Q sends the new
commitments to P .



4.4 Constructing a Multi-Session Π2pass with Constant-Size CRS
In order to handle multiple user accounts, one can run multiple independent sessions
of Π2pass. With that first approach, security is guaranteed by direct application of the
UC composition theorem. Each session however needs an independent copy of FG3

crs . In
the full version [6] we argue that using the same instance of FG3

crs for all the otherwise
independent sessions is secure as well. Informally, the second approach works because
the CRS is used chiefly by the HMT commitments, which are all bound to sid by the
zero-knowledge proofs. Further, the JUC theorem [14] guarantees that all instances in
the realizations of Fgzk and F2v

gzk can use the same instance of Fgzk
crs .

4.5 Computational and Communication Complexity in the Standard Model
The sum of the computation time of all parties for Setup, Retrieve, and Refresh queries
is less than 0.08, 0.16, and 0.09 seconds for 80/1248-bit security4 on modern comput-
ers,5 and the communication complexity is 5, 7, and 3 round trips (when combining
messages wherever possible), respectively. For the Setup instruction, 43 elements of
Zq , 56 elements of G, 12 elements of Zn, and 4 elements of Zn2 are transmitted over
plain/TCP channels in our preferred embodiment, corresponding to roughly 5.2 kilo-
bytes for 80/1248-bit security when G is an elliptic curve. For the Retrieve instruction,
73.5, 99, 16, and 6 elements of Zq ,G,Zn, and Zn2 are transmitted respectively (8 kB).
For the Refresh instruction, 34, 46, 10, and 4 elements of Zq ,G,Zn, and Zn2 are trans-
mitted respectively (4.5 kB). Due to the fact that our protocol is secure against adaptive
corruptions, it is computationally more expensive than a standard-model instantiation
of the CLN protocol [10] (i.e., with interactive zero-knowledge proofs): our Retrieve
queries are about 10 and 2.6 times slower for users and servers, respectively; and more
data is transferred; however the number of round trips is identical. See the full version
[6] for a detailed analysis.

4.6 Construction of Π2pass in the Random-Oracle Model
Our Π2pass can be improved in several ways when security in the random-oracle model
only is sufficient. First, one can transform all interactive zero-knowledge proofs into
non-interactive ones using the Fiat-Shamir transformation [18] in combination with
encryption to a public key in the CRS for online extraction [30]. Second, one can re-
place our secureSend protocol by Nielsen’s NINCE [29]. Third, one can use faster
encryption and signature algorithms. This improves the computational complexity of
our Setup, Retrieve, and Refresh queries by only about 15%, 25%, and 6% but the
number of communication rounds is now much smaller: 3, 3, and 2 round trips, respec-
tively. Compared to CLN [10], the computational complexity of our Retrieve queries
are then about 11 and 3.7 times larger for users and servers, respectively; the number
of round trips is the same. Compared to 1-out-of-2 CLLN [9], the computational com-
plexity of our Retrieve queries are about 2.6 and 4.1 times larger for users and servers,
respectively, but need 2 round trips less: if the network delay is large then our protocol
is faster than CLLN. See the full version [6] for a detailed analysis.

4 The subgroup size |q| is 2*80 bits and the RSA modulus size |n| is 1248 bits.
5 When using the GNU MP (GMP) bignum library on 64-bit Linux on a computer with an Intel

Core i7 Q720 1.60GHz CPU.



5 Proof Sketch

For reasons of space, we provide the security proof in the full version [6] and explain
only the main ideas here.

We use the standard approach for proving the security of UC protocols: we construct
a straight-line simulator S such that for all polynomial-time bounded environments and
all polynomial-time bounded adversaries A it holds that the environment Z cannot dis-
tinguish its interaction with A and Π2pass in the (FG3

crs ,Fosac,Fac,Fgzk,F2v
gzk)-hybrid

real world from its interaction with S andF2pass in the ideal world. We prove this state-
ment by defining a sequence of intermediate hybrid worlds (the first one being the real
world and the last one the ideal world) and showing that Z cannot distinguish between
any two consecutive hybrid worlds.

The main difficulties in constructing S (and accordingly in designing our protocol
to allow us to address those difficulties) are as follows: 1) S has to extract the inputs
of all corrupted parties from the interaction with them; 2) S has to compute and send
commitments and ciphertexts to the corrupted parties on behalf of the honest parties
without knowing the latter’s inputs, i.e., S needs to commit and encrypt dummy values;
3) but when an honest party gets corrupted mid-protocol, S has to provide A with the
full non-erased intermediate state of that party, in particular the opening of commit-
ments that were sent out and the randomness used to compute encryptions that were
sent out (if these value need to be retained by a party).

To address the first difficulty, recall that parties are required to perform proofs of
knowledge of their shares upon their first use in the protocol. S can therefore recover
the inputs of all corrupted parties with the help of Fgzk and F2v

gzk. The commitments
and proofs of existence with Fgzk and F2v

gzk ensure that the corrupted parties are unable
to alter their inputs mid-protocol.

The second and third difficulty we address as follows. In general, S runs honest
parties with random input and adjusts their internal state as follows when it learns the
correct values. When S is told by F2pass whether the password attempt was correct
in a Retrieve query, it can generate credible values BU , BP , and BQ in the ChkPwd
subroutine because S can recover the opening values op from dishonest servers through
Fgzk and F2v

gzk. When a user gets corrupted during Setup, or both servers get corrupted,
S can recover the actual password and key associated with the user account fromF2pass

and then needs to equivocate all relevant commitments and encryptions sent earlier to
the corrupted parties. This is also the case when a user gets corrupted during Retrieve,
where S is also allowed to recover the actual password attempt. S can equivocate such
commitments, with the help of the trapdoor, and equivocate the ciphertexts containing
the openings of commitments it sent between two honest parties by altering the one-time
pads. By the time a one-time pad is used, the decryption keys and randomness used to
establish it have been erased and so they can be changed to equivocate. Additionally, S
never needs to reveal the randomness used inside the ChkPwd subroutine, in particular
becauseFgzk andF2v

gzk allow for the erasure of witnesses before delivering the statement
to be proven to the other party. The rest of the security proof is rather straightforward.



6 Conclusion
We presented the first TPASS protocol secure against adaptive corruptions and where
servers can recover from corruptions in a provably secure way. Our protocol involves
two servers, and security for the user is guaranteed as long as at most one server is
corrupted at any time. Our protocol is efficient enough to be well within reach of a
practical implementation. Designing an efficient protocol in the more general t-out-of-
n setting is an interesting open problem.
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