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Abstract. This paper presents three curious findings about determinis-
tic public-key encryption (D-PKE) that further our understanding of its
security, in particular because of the contrast with standard, randomized
public-key encryption (R-PKE):

• It would appear to be a triviality, for any primitive, that security
in the standard model implies security in the random-oracle model,
and it is certainly true, and easily proven, for R-PKE. For D-PKE
it is not clear and depends on details of the definition. In particular
we can show it in the non-uniform case but not in the uniform case.

• The power of selective-opening attacks (SOA) comes from an ad-
versary’s ability, upon corrupting a sender, to learn not just the
message but also the coins used for encryption. For R-PKE, secu-
rity is achievable. For D-PKE, where there are no coins, one’s first
impression may be that SOAs are vacuous and security should be
easily achievable. We show instead that SOA-security is impossible,
meaning no D-PKE scheme can achieve it.

• For R-PKE, single-user security implies multi-user security, but we
show that there are D-PKE schemes secure for a single user and
insecure with two users.

1 Introduction

Public-key encryption (PKE) schemes are usually randomized, in order to achieve
goals like IND-CPA [29]. BBO [5] introduced deterministic PKE (D-PKE), ar-
guing that it offers practical benefits over randomized PKE (R-PKE) in certain
applications. These include efficient search on encrypted databases [5] and re-
silience in the face of the low-quality randomness that pervades systems [6, 41].3

BBO [5] provide a definition PRIV of “best possible” security for D-PKE,
and ROM constructions achieving it. Equivalent, IND-style formulations ap-
pear in [10]. These definitions are unusual, and achieving them in the standard
model (SM) is challenging. Emerging as a practically-motivated notion of the-
oretical depth and interest, D-PKE has attracted significant foundational work

3 Weak randomness leads to catastrophic failures in R-PKE including the ability to
recover the plaintext from the ciphertext in schemes including GM, El Gamal and
Rabin-SAEP [36].
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as researchers aim to understand the properties and achievability of the basic
definitions and variants [10, 19, 20, 33, 28, 39, 11]. We continue this line of work.

Our work. This paper shows that determinism impacts security in beyond-
obvious ways. Specifically, we consider three questions. The first is whether se-
curity in the standard model implies security in the ROM. The second is whether
D-PKE is secure under selective-opening attack. The last is whether single-user
security implies multi-user security. Fig. 1 summarizes our findings, which are
discussed in more depth below. On the practical side, our work indicates that
care must be taken in the use of D-PKE. On the theoretical side it indicates
further foundational subtleties for D-PKE, and, more broadly, for multi-stage
security definitions, in the wake of those already indicated in [40, 42].

Background. In R-PKE, the encryption algorithm Enc takes the public (en-
cryption) key pk , message m and coins r to return a ciphertext c = Enc(pk ,m; r).
The basic notion of security is IND-CPA [29, 7]. An adversary is a pair (A1, A2)
of PT algorithms. The game picks keys (pk , sk) and a challenge bit b. We run
A1 on input pk to get a pair (m0,m1) of messages and state information st. The
game picks random coins r, computes challenge ciphertext c = Enc(pk ,mb; r)
and runs A2 on c, st to get a bit b′. Security requires that 2 Pr[b = b′] − 1 is
negligible.

In D-PKE [5], there are no coins, Enc taking pk ,m to return c = Enc(pk ,m).
Such a scheme cannot achieve IND-CPA. The notion we use is IND [10], an
indistinguishability variant of the PRIV notion of [5]. An adversary is a pair
(A1, A2) of PT algorithms. The game picks keys (pk , sk) and a challenge bit b.
We run A1 (it does not get pk) to get a pair (m0,m1) of vectors of messages
(but no state information). The game computes challenge ciphertext vector c =
Enc(pk ,mb), encryption being component-wise, and runs A2 on c, pk to get a
bit b′. Security requires that 2 Pr[b = b′]− 1 is negligible. Important restrictions
are that (1) A1 does not get the public key (2) each individual message in the
vectors m0,m1 has high min-entropy, meaning is statistically unpredictable, and
(3) A1, A2 do not communicate directly, meaning no state information is passed
from A1 to A2. These restrictions are necessary, for without them security is not
achievable.

In the ROM [14], both stages of the adversary have access to the random
oracle RO, whether for R-PKE or D-PKE. In the latter case, the min-entropy
condition is required to hold even given (conditioned on) the RO.

Does SM-security imply ROM-security? That security in the standard
model (SM) implies security in the ROM appears to be a triviality or tautology,
true for any primitive. To be specific, suppose we have a standard-model R-PKE
scheme, meaning the algorithms of the scheme make no calls to RO. Suppose it
is IND-CPA in the SM. Then it is IND-CPA in the ROM. Intuitively this seems
clear because if the scheme does not use the RO, then giving the adversary access
to RO cannot violate security. If we want to prove the claim formally, we could
do so by reduction. Given a ROM adversary (A1, A2), we build SM adversary
(B1, B2) with the same advantage by just having B1 and B2 simulate the RO.
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Thus, B1 maintains a table H, and runs A1. When the latter makes a query
RO(x), adversary B1 checks if H[x] is defined, and, if not, picks it at random,
in either case returning H[x] to A1 as the answer. When A1 halts with output
(m0,m1) and state stA, adversary B1 halts with output (m0,m1) and state stB ,
where the latter consists of stA plus the populated (defined) part of table H,
which has polynomial size. Now B2, given c, stB , runs A2(c, stA), continuing to
respond to A2’s oracle queries via table H, suitably augmenting it as necessary
for new queries. Eventually B2 returns whatever A2 returns. It is clear that
SM adversary (B1, B2) simulates ROM adversary (A1, A2) perfectly and has the
same advantage.

The claim that SM security implies ROM security, and the simulation argu-
ment above to establish it, hardly seem specific to R-PKE. It would appear to
be true that SM security trivially implies ROM security for any primitive via
such an argument.

But for D-PKE, the argument fails, and whether SM security implies ROM
security is not clear. To see why, let us try to mimic the above argument for D-
PKE. We can design B1, simulating A1, in the same way. The difficulty is that
B1 cannot pass its partial table H to B2, for no state information is allowed to
flow from B1 to B2. This leaves B2 stuck. It could simulate a new RO for A2,
but in the real ROM game, A1, A2 see the same RO, not different ones. The
question this raises is whether the difficulty is inherent, meaning SM security
does not imply ROM security, or whether some alternative argument can show
the implication.

We find that the answer depends on details of the definition. Let INDu, INDnu

denote, respectively, the uniform and non-uniform renditions of IND. That is,
in the first case, the adversaries are TMs while in the second they are families
of circuits. We show that SM security implies ROM security for INDnu. Our
proof works by starting with ROM adversaries A1,A2, hardwiring a q(·)-wise
independent hash function h into the circuits of B1, B2, and having these circuits
use h to simulate RO for A1, A2, with q(·) depending on the number of oracle
queries of A1 and A2. We show that there exists a “good” choice of h under
which the simulation is correct. However, in the case of INDu, we were not able
to settle the question. That is, we see no way to prove that SM security implies
ROM security (it is not clear how to perform a simulation, and it is not clear
there is any other approach to the proof) but nor can we imagine a counter-
example (it would need to exploit the fact that the scheme is secure for uniform
adversaries but not for non-uniform ones, for otherwise the claim is true).

Intuitively, it is hard for us to imagine how a SM scheme can be insecure in the
ROM, meaning how an adversary can exploit the RO when scheme algorithms
do not even use it.4 We found it curious that it was not obvious how to prove
this and that it is not clear if it is even true in the uniform case.

4 One might imagine the adversary gaining an advantage by having B1 pick messages
that depend on the RO in some clever way. The reason this does not appear to
help the adversary is that each message is required to have high min-entropy even
conditioned on the entire random oracle.
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Primitive SM ⇒ ROM SOA SU ⇒ MU

R-PKE Yes Yes Yes
D-PKE Sometimes No No

Fig. 1. Summary of our results: The first column indicates whether or not security
in the standard model (SM) implies security in the ROM, the “sometimes” for D-
PKE reflecting that we can show it in the non-uniform case but not in the uniform
case. The second column indicates whether or not security against selective-opening
attack (SOA) is achievable. The third column indicates whether or not single-user (SU)
security implies multi-user (MU) security.

These findings show further subtleties for multi-stage security definitions
following ones already discovered by [40, 42], making D-PKE a central test case
in this subtle and surprising domain.

Is SOA-secure D-PKE achievable? In a selective opening attack (SOA) on
a R-PKE scheme, a vector m of n messages is chosen from some distribution,
a vector r of random and independent coins is chosen, and the adversary A
is given the ciphertext vector c = Enc(pk ,m; r). A responds with a subset I
of {1, . . . , n}. In the message-only version of the attack, it is returned 〈m[i] :
i ∈ I〉; in full SOA, it is returned both 〈m[i] : i ∈ I〉 and 〈r[i] : i ∈ I〉.
In either case, to win, it has to compute some non-trivial information about
〈m[i] : i 6∈ I〉. Security for the message-only version is implied by IND-CPA, as
shown in [17], and is thus easily achievable. Security for full SOA is not implied by
IND-CPA [9]. However, using lossy encryption [32, 38, 12, 17], it is shown in [12,
17] that there exist schemes that provide full SOA under standard assumptions,
so full SOA security is achievable, under standard assumptions in the standard
model. Subsequently, further schemes have been provided as well [27, 30].

The question of security of D-PKE under SOA has not been considered
before, and we initiate an investigation. A vector m of n messages is again
chosen from some distribution, and the adversary A is given the ciphertext
vector c = Enc(pk ,m). A responds with a subset I of {1, . . . , n}, is returned
〈m[i] : i ∈ I〉, and, to win, has to compute some non-trivial information about
〈m[i] : i 6∈ I〉. We note that what we have defined is the message-only version.
Naturally, there is no “full” SOA here, since there are no coins used, and thus
none to expose.

The difficulty of achieving SOA-secure R-PKE lies in exposure of the coins.
Since D-PKE has no coins, one’s first impression may be that SOA-security for
it would be like message-only SOA-security for R-PKE and thus easy to achieve.
To the contrary, we show that SOA-secure D-PKE is impossible. That is, there
is no D-PKE scheme that is SOA-secure. Given any D-PKE scheme, we give an
attack violating SOA-security.

The contrast with R-PKE is two-fold. For the latter, SOA is easy in the
message-only case, and, with exposure of coins, even if not easy, it is achievable.
But for D-PKE, it is simply not achievable. The key element of our proof is to
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show that for any D-PKE scheme there is an algorithm that can impose and
verify an association between a message and ciphertext that is unique with high
probability, even for dishonestly chosen public keys. We combine this with the
technique of BDWY [9] to obtain our impossibility result. We note that for
R-PKE the BDWY technique did not show impossibility of (full) SOA for all
R-PKE schemes, but for a subclass of them, while we are using the technique to
rule out SOA-security for all D-PKE schemes.

The problem of SOA-security has been the subject of many works [3, 22, 21,
2, 24, 34, 26, 23, 37, 12, 17, 27, 16, 30, 18, 31]. These have looked at R-PKE, com-
mitment and IBE. We are the first to consider SOA for D-PKE.

Does SU security imply MU security? The basic IND-CPA notion for R-
PKE [29] is a single-user (SU) setting, meaning there is only one public key in
the game. In practice, many users, each with their own key pair, could encrypt
messages, and these messages may be related. Security of R-PKE in the multi-
user (MU) setting was defined in [4, 1]. They showed that SU security implied
MU security, meaning any R-PKE scheme that meets the usual SU IND-CPA
notion is also MU secure.

It is natural to ask whether the same is true for D-PKE, namely whether SU
security, in the form of IND, implies MU security. We define MU security for
D-PKE and show that the answer to the question is “no.” That is, we present
a counter-example, namely a D-PKE scheme that we show meets the standard
SU IND definition, but we give an attack showing that it fails to be MU-secure.
Indeed, it is insecure even with just two users, meaning when there are two
public keys in the picture.

BBO [5] had conjectured that indeed SU security did not in general imply
MU security for D-PKE. Our results prove and confirm this conjecture. Brakerski
and Segev [20] define MU security of D-PKE in the auxiliary input setting and
give a scheme that achieves it for messages that are block sources, but they do
not show a separation between the SU and MU settings. Dodis, Lee and Yum [25]
give another example of a setting where SU security does not imply MU security,
namely optimistic fair exchange.

2 Preliminaries

Notation and conventions. We let λ ∈ N denote the security parameter. If
n ∈ N then we let 1n denote the string of n ones and [n] denote the set {1, . . . , n}.
If A is a finite set, then let |A| denote its size, and a

$← A denote sampling a
uniformly at random from A. The empty string is denoted by ε. If a and b are
two bit strings, we denote by a ‖ b their concatenation. We use boldface letters
for vectors. For any vector x, we let |x| denote the number of its components. We
say x is an n-vector if |x| = n. For i ∈ [|x|] we let x[i] denote the i-th component
of x. We let Maps(D,R) denote the set of all functions f : D → R.

Algorithms are randomized, unless otherwise specified as being determin-
istic. “PT” stands for “polynomial-time,” whether for randomized algorithms
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or deterministic ones. If A is an algorithm, we let y ← A(x1, . . . ; r) denote
running A with random coins r on inputs x1, . . . and assigning the output to

y. We let y
$← A(x1, . . .) be the resulting of picking r at random and letting

y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all y that have positive
probability of being output by A(x1, . . .). A function ε: N→ R is negligible if for
every polynomial p, there exists λp ∈ N such that ε(λ) ≤ 1/p(λ) for all λ ≥ λp.
An algorithm A is uniform if there exists a Turing machine T which halts with
the output of A on all inputs. An algorithm A is non-uniform if there exists a
sequence of circuits {Cλ}λ∈N such that Cλ computes A(1λ, . . .).

Games. Our definitions and proofs use the code-based game-playing framework
of [15] with some of the syntax of [40]. A game G(λ) (see Fig. 2 for an example)
consists of a Main procedure, and possibly others, and begins by executing
Main, which runs an adversary A after some initialization steps. A is given
oracle access to certain game procedures. After A finishes executing, G performs
steps with A’s output to produce some output itself. We assume that boolean
variables are initialized to false, that sets are initialized to ∅, strings are initialized
to ε, and that integers are initialized to 0. We denote by GA ⇒ y the event that
an execution of G with A outputs y. We abbreviate GA ⇒ true as GA.

Functions families. A family of functions HF is a PT, deterministic algorithm
that defines for each λ ∈ N a map HF(1λ, ·, ·) : {0, 1}HF.kl(λ) × {0, 1}HF.il(λ) →
{0, 1}HF.ol(λ). Here HF.kl,HF.il,HF.ol: N → N are the key, input and output
lengths of HF, respectively. We extend HF to vectors (in a component-wise way)
via

HF(1λ, k,x) = (HF(1λ, k,x[1]), . . . ,HF(1λ, k,x[|x|]))
for all λ ∈ N, all k ∈ {0, 1}HF.kl(λ) and all vectors x over {0, 1}HF.il(λ).

3 Deterministic PKE

We provide definitions for D-PKE following [5, 10]. We give a unified treatment
of the ROM and the SM by regarding the latter as a special case of the former.

D-PKE. A deterministic public key encryption (D-PKE) scheme DE specifies
four PT algorithms and related functions as follows. The parameter generator
algorithm DE.Pg takes as input a unary representation 1λ of the security pa-
rameter λ ∈ N and returns the system parameters π ∈ {0, 1}DE.pl(λ) which are
common to all users. The key generation algorithm DE.Kg takes as input π and
outputs a public encryption key pk ∈ {0, 1}DE.pkl(λ) and a secret decryption key
sk . Given inputs 1λ, π, pk , a message m ∈ {0, 1}DE.ml(λ) and access to an ora-
cle R: {0, 1}DE.ROil(λ) → {0, 1}DE.ROol(λ), the deterministic encryption algorithm
DE.Enc outputs a ciphertext c = DE.EncR(1λ, π, pk ,m). Given inputs 1λ, π, sk , a
ciphertext c and oracle R, the deterministic decryption algorithm DE.Dec output
either a message m ∈ {0, 1}DE.ml(λ), or ⊥. Here DE.pl,DE.pkl,DE.ml: N→ N are
the parameter, public key and message length functions of DE, respectively, while
DE.ROil,DE.ROol: N→ N are the RO input and output length functions, respec-
tively. Correctness requires that for all λ ∈ N, all π ∈ [DE.Pg(1λ)], all [(pk , sk) ∈
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Main INDA
DE(λ)

st
$← A.csRO(1λ)

(m0,m1)
$← A.msgRO(1λ, st)

π
$← DE.Pg(1λ)

(pk , sk)
$← DE.Kg(1λ, π)

b
$← {0, 1}

c← DE.EncRO(1λ, π, pk ,mb)

b′
$← A.gRO(1λ, π, pk , st, c)

Return (b = b′)

RO(x)

If T [x] = ⊥ then T [x]
$← {0, 1}DE.ROol(λ)

Return T [x]

Main PREDP
A(λ)

(st,m,R)
$← P(1λ)

(m0,m1)
$← A.msgR(1λ, st)

Return (∃ i, b : mb[i] = m)

Fig. 2. The IND game used to define security of D-PKE scheme DE and the PRED
game used to define unpredictability of adversary A.

[DE.Kg(1λ, π)], all m ∈ {0, 1}DE.ml(λ) and all R ∈ Maps[DE.ROil(λ),DE.ROol(λ)]
we have DE.DecR(1λ, π, sk ,DE.EncR(1λ, π, pk ,m)) = m. We extend DE.Enc to
take input vectors of messages by defining DE.EncR(1λ, π, pk ,m) = (DE.EncR(1λ,
π, pk ,m[1]), . . . ,DE.EncR(1λ, π, pk ,m[|m|])), and similarly we let DE.DecR(1λ,
π, sk , c) = (DE.DecR(1λ, π, sk , c[1]), . . . ,DE.DecR(1λ, π, sk , c[|c|])). We say that
DE is a standard-model (SM) scheme if DE.Enc,DE.Dec make no oracle queries,
and in this case we will omit the superscript R to DE.Enc,DE.Dec.

IND security. We define IND security of a D-PKE scheme DE following
BFOR [10]. An IND adversary A specifies a common-state generation algorithm
A.cs, a message-generation algorithm A.msg and a guessing algorithm A.g, all
PT. On input 1λ, algorithm A.cs generates state information st that will be
passed to both A.msg and A.g. Algorithm A.msg, on input 1λ, st returns a pair
(m0,m1) of vectors of messages with |m0| = |m1| = A.nm(λ) and m0[i],m1[i] ∈
{0, 1}DE.ml(λ), where A.nm: N → N is the number-of-messages function asso-
ciated to A. It is required that the strings (messages) m0[1], . . . ,m0[|m0|] are
distinct and the strings (messages) m1[1], . . . ,m1[|m1|] are distinct. Also asso-
ciated to DE are functions DE.ROil,DE.ROol, the input and output length of the
RO that is used by the scheme. We say that A is a standard-model adversary if
it makes no oracle queries, and in this case we may omit giving it an oracle.

The INDA
DE(λ) game associated with DE and adversary A is described on the

left of Fig. 2. We define the advantage of A via Advind
DE,A(λ) = 2·Pr[INDA

DE(λ)]−1
for all λ ∈ N. If A is a class (set) of adversaries then we say that DE is IND[A]-
secure if Advind

DE,A(·) is negligible for all A ∈ A. It is convenient to view IND[A]
as a set, so that DE ∈ IND[A] iff DE is IND[A]-secure. With this framework,
we can now obtain various variants of the notion by varying and restricting the
class A.
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First, we must impose the necessary condition that messages being encrypted
have high min-entropy. In game PRED of Fig. 2, the predictor adversary P begins
by specifying st and a guess m as to a message that A.msg will generate. It
also specifies the function R ∈ Maps[DE.ROil(λ),DE.ROol(λ)] that will play the
role of the RO. This captures the requirement that high min-entropy is required
across all choices of the oracle. We let Advpred

A,P (λ) = Pr[PREDP
A(λ)] for all λ ∈ N.

We say that A is unpredictable if Advpred
A,P (·) is negligible for all P. We stress that

here P is not restricted to PT but may be computationally unbounded. If A is a
standard model adversary then we may omit R in the output of P.

Following [10], our adversaries A are three stage. If A.cs always returns ε then
we say that A has trivial initial state and we may refer to A as a two-stage adver-
sary. In BFOR [10], definitions of security are relative to two-stage adversaries,
three-stage ones being introduced in order to facilitate proofs. Accordingly, our
definitions of security will also be in terms of two-stage adversaries.

We are now ready to define adversary classes of interest. We consider two
dimensions: the model (ROM or SM), and the type of computation (non-uniform
or uniform). With two choices in each category, we get 4 classes of adversaries
and 4 corresponding notions of security for D-PKE. Proceeding to the details,
we let A3 be the class of all PT, 3-stage, unpredictable adversaries and A2 ⊆ A3

the class of all PT, 2-stage unpredictable adversaries. We let Arom denote the
class of ROM adversaries, and Asm ⊆ Arom the class of SM adversaries. We
let Anu denote the class of non-uniform adversaries, and Au ⊆ Anu the class
of uniform adversaries. Then our 4 classes are Axm−xu

2 = Axm ∩ Axu ∩ A2 for
xm ∈ {rom, sm} and xu ∈ {nu,u}. The 4 corresponding notions of D-PKE
security are IND[Axm−xu

2 ] for xm ∈ {rom, sm} and xu ∈ {nu,u}.

4 Does SM security imply ROM security?

We now explore if a D-PKE scheme that is IND-secure in the standard model
(SM) is IND-secure in the ROM.

Problem and approach. It is easy to show that a SM R-PKE scheme retains
its security in the ROM, where the adversary has access to the random oracle,
because a SM adversary can simply simulate the random oracle for a ROM
adversary. Indeed, that SM security implies ROM security seems to have been
viewed as trivial and true for any primitive. We are about to see, however, that
for D-PKE the answer is less clear.

We are given a SM D-PKE scheme DE that is secure in the SM, meaning
its algorithms make no calls to RO and it is secure against adversaries that
make no calls to RO. We ask if DE remains secure in the ROM, meaning when
the adversary is allowed to query RO. The reason an adversary A may be able
now to do more is that A.msg may create messages that depend in some clever
way on RO and then A.g could exploit the fact that it has access to the same
RO to figure out something about the messages from the ciphertexts. Intuitively,
however, it is difficult to see how this could happen because messages are required
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to have high min-entropy even given RO. However, it is not clear how to prove
it, which raises the question of whether it is even true. The difficulty is that no
communication is allowed from the message-finding stage of the adversary to the
guessing stage, and so a simulating SM adversary has no obvious way to ensure
that these two stages have a common view of the random oracle it is simulating.

We will first present Lemma 1 showing the claim is true in the 3-stage ad-
versary formulation of the IND games. Namely given a SM D-PKE scheme and
given a 3-stage ROM adversary A, we show how to simulate A with a 3-stage
SM adversary B so that the latter has the same advantage as A. The proof
uses a q(·)-wise independent hash function, with the polynomial q depending
on A, as the common initial state created by B.cs. The lemma is true both in
the uniform and the non-uniform settings. However, recall that IND security is
defined with respect to adversaries that have trivial initial state, meaning are
two stage. And in our reduction, B will have non-trivial initial state even if A
has trivial initial state. So the lemma does not directly show that IND in the
SM implies IND in the ROM. In the non-uniform case, however, we can flatten
the constructed 3-stage adversary B into an equivalent one with trivial initial
state, thereby concluding that if SM D-PKE scheme DE is in IND[Asm−nu

2 ] then
it is also in IND[Arom−nu

2 ]. In the uniform setting we have no obvious way to
remove the non-trivial initial state of B, and thus are not able to conclude that
DE being in IND[Asm−u

2 ] implies it is in IND[Arom−u
2 ]. This very basic question

(surprisingly) remains open.

q-wise independent function families. We say that a family HF of functions
is q(·)-wise independent if for all λ ∈ N, all q(λ)-vectors x over {0, 1}HF.il(λ) all
of whose entries are distinct, and all q(λ)-vectors y over {0, 1}HF.ol(λ) we have
Pr[HF(1λ, k,x) = y] = 2−q(λ)·HF.ol(λ), where the probability is over k chosen at
random from {0, 1}HF.kl(λ).
From SM security to ROM security with 3 stages. The following lemma
says that for any SM D-PKE scheme (meaning, the scheme algorithms do not
call the RO), a 3-stage ROM adversary A may be simulated by a 3-stage SM
adversary B who achieves the same advantage as A. It does not follow that
a 2-stage ROM adversary can be simulated by a 2-stage SM adversary since
our constructed adversary B will have non-trivial initial state even if the given
adversary A had trivial initial state.

Lemma 1. Let DE be a standard-model D-PKE scheme. Let A ∈ Arom ∩ A3

be a 3-stage, PT ROM adversary. Then there is a 3-stage, PT standard-model
adversary B ∈ Asm ∩ A3 such that

Advind
DE,B(λ) = Advind

DE,A(λ) (1)

for all λ ∈ N. Furthermore, if A is unpredictable then so is B and if A is uniform
then so is B.

Proof (Lemma 1). Without loss of generality, we assume that there exists a
polynomial q : N→ N such that for all λ ∈ N, adversary A always makes exactly
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q(λ) RO queries in game INDA
DE(λ). Let HF be a q(·)-wise independent family of

functions with HF.il = DE.ROil and HF.ol = DE.ROol. We define SM adversary
B as follows:

B.cs(1λ)

k
$← {0, 1}HF.kl(λ)

stA
$← A.csROSim(1λ)

Return (k, stA)

ROSim(x)

Return HF(1λ, k, x)

B.msg(1λ, stB)

(k, stA)← stB
(m0,m1)

$← A.msgROSim(1λ, stA)
Return (m0,m1)

ROSim(x)

Return HF(1λ, k, x)

B.g(1λ, π, pk , stB, c)

(k, stA)← stB
b′

$← A.gROSim(1λ, π, pk , stA, c)
Return b′

ROSim(x)

Return HF(1λ, k, x)

That is, B.cs picks at random a key defining a member of HF and passes it
to B.msg,B.g. The latter use the function HF(1λ, k, ·) to simulate the RO of A,
via the ROSim procedure. Since A makes at most q(λ) queries to RO, the q(λ)-
wise independence of the family should result in a perfect simulation of the RO.
Also, since both B.msg and B.g use the same function, A.msg and A.g will see a
consistent RO across their two stages. As a result we expect that Equation (1)
is true.

Formally proving that Equation (1) is true, however, is not straightforward
because the RO queries are adaptive and q(·)-wise independence is a non-adaptive
condition, so some care must be taken. In [8] we provide an analysis that handles
this, and do not discuss it further here.

It is clear that if A is uniform then so is B. Assuming A is unpredictable
we now have to show that B is unpredictable. Let PB be a predictor adversary
for B. We define a predictor adversary PA for A as follows. On input 1λ it
runs PB(1λ) to get back (stB,m). (Since B is SM, PB returns a pair, not a
triple.) It parses stB as (k, stA) and returns (stA,m,HF(1λ, k, ·)). Then we have

Advpred
A,PA

(·) = Advpred
B,PB

(·). But the LHS is negligible by assumption, so the RHS
is negligible as well. ut

We note that alternatively, in place of a family of q(·)-wise independent functions,
we could have used a PRF, the key being chosen by B.cs and included in the state
so that it is passed to B.msg,B.g. The latter would use the PRF under this key
to simulate the RO for A.msg,A.g, respectively. O’Neill used this technique [35,
Lemma 3.3.2] to partially remove the RO for a restricted class of D-PKE schemes.

SM security implies ROM security in the non-uniform setting. The
following theorem uses Lemma 1 to show that if a D-PKE scheme DE is IND-
secure in the standard model with respect to non-uniform adversaries, then it is
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IND-secure in the ROM with respect to non-uniform adversaries. The proof uses
non-uniformity in a crucial way, and hence cannot be adapted to the uniform
setting.

Theorem 2. Let DE be a SM D-PKE scheme such that DE ∈ IND[Asm−nu
2 ].

Then DE ∈ IND[Arom−nu
2 ].

Proof. Let A ∈ Arom−nu
2 be an unpredictable, non-uniform PT ROM adversary

with trivial initial state. By Lemma 1, we get an unpredictable, non-uniform PT
SM adversary B ∈ Asm∩Anu∩A3 such that Advind

DE,B(·) = Advind
DE,A(·). However,

B.cs is not trivial, so the assumption that DE ∈ IND[Asm−nu
2 ] does not allow us

to conclude that Advind
DE,B(·), and hence Advind

DE,A(·), is negligible. We modify B

to an unpredictable, trivial initial state, non-uniform SM adversary C ∈ Asm−nu
2

with Advind
DE,C(·) = Advind

DE,B(·). Now the assumption that DE ∈ IND[Asm−nu
2 ]

means that Advind
DE,C(·) is negligible and hence so is Advind

DE,A(·), showing that

DE ∈ IND[Arom−nu
2 ] as desired. To obtain C from B, we simply use coin fixing,

namely we hardwire a best choice of the key k chosen randomly by B.cs(1λ)
into the circuits C.msg(1λ, · · · ) and C.g(1λ, · · · ) while letting C.cs always return
ε. ut

We note that the issues and difficulties associated with showing that SM se-
curity implies ROM security could also be viewed as arising from definitional
shortcomings of existing formulations, and addressed definitionally, for example
by making the three-stage definition the basic one with respect to which secu-
rity is measured. Lemma 1 directly implies that if DE is a SM D-PKE scheme,
then: (1) If DE ∈ IND[Asm ∩ Au ∩ A3] then DE ∈ IND[Arom ∩ Au ∩ A3] and
(2) If DE ∈ IND[Asm ∩Anu ∩A3] then DE ∈ IND[Arom ∩Anu ∩A3]. That is, for
3-stage adversaries, SM security implies ROM security both in the uniform and
non-uniform settings. However the question of whether the implication holds for
two-stage adversaries and the current definitions would still be interesting.

5 Is SOA security achievable?

We initiate an investigation of SOA security for D-PKE. We provide definitions
and then show that the goal is impossible to achieve in the SM, meaning no SM
D-PKE scheme achieves it.

What makes this interesting is that the difficulty of achieving SOA security in
the R-PKE case arises from the fact that an attacker obtains not only messages
but the coins underlying the opened ciphertexts. If it only obtained messages,
security is easy to achieve [17]. Since in D-PKE there are no coins, one might
think security would be also easy to achieve. But in fact this is not true.

Preliminaries. We let ⊥n denote the vector of length n all of whose entries
are ⊥. For a set I ⊆ [|x|] we let x[I] denote the |x|-vector whose i-th component
is x[i] if i ∈ I and ⊥ otherwise.
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Main REALA
DE(λ)

k
$← A.cs(1λ)

m
$← A.msg(1λ)

π
$← DE.Pg(1λ)

(pk , sk)
$← DE.Kg(1λ, π)

c
$← DE.Enc(1λ, π, pk ,m)

st
$← A.corCor(1λ, π, pk , k, c)

w
$← A.g(1λ, k, I, st,m[I])

Return (w = A.f(1λ,m))

Cor(I)

Return m[I]

Main IDEALA,S
DE (λ)

k
$← A.cs(1λ)

m
$← A.msg(1λ)

st
$← SCor(1λ, k)

w
$← A.g(1λ, k, I, st,m[I])

Return (w = A.f(1λ,m))

Cor(I)

Return m[I]

Main PREDP
A(λ)

(I, st)
$← P(1λ)

m
$← A.msg(1λ)

m
$← P(st,m[I])

Return (∃ i 6∈ I : m[i] = m)

Main CCRC
DE,z(λ)

(π, pk)
$← C(1λ)

If (not DE.Vf(1λ, π, pk)) then return false

m0,m1
$← ({0, 1}DE.ml(λ))z(λ)

c0 ← DE.Enc(1λ, π, pk ,m0)
c1 ← DE.Enc(1λ, π, pk ,m1)
For i = 1, . . . , z(λ) do

If ((c0[i] = c1[i]) and (m0[i] 6= m1[i]))
then return true

Return false

Fig. 3. The REAL, IDEAL, PRED and CCR games.

Collision resistance of a function family HF is defined via game CRX
HF(λ)

associated to HF, adversary X and λ ∈ N. The game starts by picking k
$←

{0, 1}HF.kl(λ). Then X is run with inputs 1λ, k to return x0, x1 ∈ {0, 1}HF.il(λ).
The game returns true if x0 6= x1 and HF(1λ, k, x0) = HF(1λ, k, x1), and false
otherwise. The advantage of X is defined as Advcr

HF,X(λ) = Pr[CRX
HF(λ)] and we

say that HF is collision resistant if Advcr
HF,X(·) is negligible for all PT X.

Defining SOA security. Providing a meaningful definition of SOA-security
for D-PKE takes some care. A definition based on semantic security for relations,
as given for R-PKE in [12, 9], is trivially unachievable for D-PKE because a
ciphertext is already partial information about a plaintext. Thus we consider
semantic security for functions, where the adversary, given ciphertexsts, aims to
figure out a function of the message, this function not being given the public
key and thus unable to encrypt. Additionally we must continue to require that
messages do not depend on the public key and are unpredictable. Our definition
is simulation-based and combines ideas from the basic (non-SOA) definitions of
secure D-PKE [5, 10] with ideas from the definitions of SOA-security for R-PKE
from [12, 9].
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In Fig. 3 is the “real” game REALA
DE associated to D-PKE scheme DE and

adversary A. PT common state generation algorithm A.cs is executed on input
1λ to get a common state k that will be passed to the A.cor stage of A. (Other
stages can get it too, but since our results are negative, not giving it only makes
the results stronger.) Then PT message generator A.msg is executed on input
1λ to get a A.nm(λ)-vector of messages over {0, 1}DE.ml(λ), where A.nm is the
number-of-messages function associated to A. Then public parameters and keys
are generated. (It is important that the messages do not depend on the public pa-
rameters or public key of DE for the same reason as with PRIV [5] and IND [10],
namely that otherwise security is trivially unachievable.) Then the vector of
messages is encrypted, component-wise, to get a vector c of ciphertexts. The PT
corruption algorithm A.cor gets 1λ, π, pk , k, c and an oracle Cor to which it is
allowed exactly one query, this consisting of a subset I of [A.nm(λ)], indicating
positions at which it wants m opened. In response it gets m[I], meaning the val-
ues m[i] for i ∈ I, and returns state information st. The PT guessing algorithm
A.g gets 1λ, k, I, st,m[I], where I is the Cor-query previously made by A.cor
and recorded by the game, and outputs a guess w as to the value of A.f(1λ,m).
Here deterministic PT algorithm A.f, called the information function, represents
the information about m that the adversary is trying to compute. The game
returns true iff the guess is correct.

The “ideal” game IDEALA,S
DE of Fig. 3 is associated to DE, adversary A and

a simulator S. Here, the common state and message vector are chosen as before,
but the game neither chooses parameters and public key, nor generates any
ciphertexts. The simulator is given no information about m, but has access to
oracle Cor, to which it is allowed exactly one query, this consisting of a subset
I of [A.nm(λ)]. In response S gets m[I] and must then return state information
st that should resemble the output of A.cor. The rest is as in the real game.

We need to restrict A.msg to reflect the inherent weaknesses of D-PKE,
analogous to the restrictions made in defining PRIV and IND. Namely we
require a message-distinctness condition and a message unpredictability (high
min-entropy) condition. Before detailing definitions, we note that the A.msg
in Theorem 4 simply outputs uniform, independently distributed messages of
super-logarithmic length, so both the conditions will be trivially met, and thus
a reader can skip the rest of this paragraph if they wish. Proceeding, since
ciphertext equality leaks plaintext equality in D-PKE, we require the follow-
ing message-distinctness condition: there is a negligible function ν such that
Pr[∃ i, j : (i 6= j) ∧ (m[i] = m[j])] ≤ ν(λ) where the probability is over

m
$← A.msg(1λ). Second, we require that A is unpredictable, which we define

to mean that Advpred
A,P (λ) = Pr[PREDP

A(λ)] is negligible for all P (we emphasize

that here P is not restricted to be PT), where game PREDP
A is shown on the

middle, bottom of Fig. 3. The unpredictability condition we define here is very
strong, requiring that each component message of m has high min-entropy even
given the others, but this only strengthens our results since they are negative.
We let Asoa denote the class of all PT A that satisfy the message distinctness
and unpredictability conditions.
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We define the soa-advantage of an adversary A with respect to DE and a
simulator S via

Advsoa
DE,A,S(λ) = Pr

[
REALA

DE(λ)
]
− Pr

[
IDEALA,S

DE (λ)
]

for all λ ∈ N. We say that DE is SOA-secure if for all A ∈ Asoa, there exists a
PT simulator S such that Advsoa

DE,A,S(·) is negligible.

The definitions and results here are all in the standard model. Our impossi-
bility result does not rule out achieving an appropriate (programmable) ROM
version of our definition of SOA-security for D-PKE. In [8] we further discuss
the definitional choices made here.

Approach. BDWY [9] show that if CR hash functions exist then any R-PKE
scheme satisfying a certain binding property they define is not SOA-secure.
Roughly, binding says that encryption remains injective even on dishonestly-
chosen public keys. Not all R-PKE schemes satisfy this binding property, but
many common ones do, and the BDWY result shows in particular that IND-CPA
does not imply SOA for R-PKE. In the D-PKE case, rather than ask for schemes
that are binding, we introduce a verification algorithm that, given a dishonestly-
generated public key, tests the extent to which the encryption induced by this
key is an injective function. If it is far from injective, verification will catch it,
and otherwise we have some sort of binding. We then show that such a veri-
fication algorithm exists for every D-PKE scheme. Adapting the technique of
BDWY we can then use this to show that no D-PKE scheme is SOA-secure.

Injectivity verification. Let DE be a D-PKE scheme. A verification algo-
rithm DE.Vf for DE is a PT algorithm that takes as input 1λ, π, pk and re-
turns a boolean value. Here, π and pk play the role of parameters and a public
key but are to be thought of as adversarially chosen and not necessarily ones
that would actually arise in honest parameter and key generation. Informally,
DE.Vf checks if the provided π, pk induce an almost injective function on valid
DE messages. We impose a requirement we call completeness, which says that
for all λ ∈ N, all π ∈ [DE.Pg(1λ)] and all (pk , sk) ∈ [DE.Kg(1λ, π)] we have
DE.Vf(1λ, π, pk) = true. That is, if the parameters and key are honestly chosen
then the verifier accepts. To formalize the requirement for adversarially chosen
π, pk , consider the game described in Fig. 3, and define the ciphertext collision

resistance advantage of an adversary C via Advccr
DE,z,C(λ) = Pr

[
CCRC

DE,z(λ)
]
.

Here adversary C picks π, pk , so the encryption function induced by them, unlike
that induced by an honestly-generated π, pk , may not be injective. The advan-
tage of the adversary is the probability that it can get some non-injectivity to
surface via collisions. The following lemma says that it is possible to design a
verification algorithm that makes it hard for any adversary to defeat CCR.

Lemma 3. Let DE be a D-PKE scheme and z: N→ N. Define the verification
algorithm DE.Vf as follows:
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DE.Vf(1λ, π, pk)

If (|π| 6= DE.pl(λ) or |pk | 6= DE.pkl(λ)) then return false
For t = 1, . . . , z(λ) do

m′0[t]
$← {0, 1}DE.ml(λ) ; m′1[t]

$← {0, 1}DE.ml(λ)

If ((DE.Enc(1λ, π, pk ,m′0[t]) = DE.Enc(1λ, π, pk ,m′1[t])) ∧ (m′0[t] 6= m′1[t]))
then return false

Return true

Then DE.Vf is PT and complete. Also for any (not necessarily PT) adversary C
we have Advccr

DE,z,C(λ) ≤ 1
4 for all λ ∈ N.

Proof (Lemma 3). For any λ ∈ N, any π ∈ {0, 1}DE.pl(λ) and any pk ∈ {0, 1}DE.pkl(λ)

let CPDE(1λ, π, pk) equal the probability that there exists t ∈ [z(λ)] such that

DE.Enc(1λ, π, pk ,m0[t]) = DE.Enc(1λ, π, pk ,m1[t]) and m0[t] 6= m1[t]

where the probability is over m0,m1
$← ({0, 1}DE.ml(λ))z(λ). In game CCR the

probability that the test performed using DE.Vf is passed is 1−CPDE(1λ, π, pk).
If such test is passed, the probability that some ciphertext collision appears (thus
making the game CCR return true) is upper bounded by CPDE(1λ, π, pk). Since
passing the verification algorithm’s test and having some ciphertext collision is
the only combination in which game CCR returns true, for any adversary C, we
get

Advccr
DE,z,C(λ)

≤ max
π∈{0,1}DE.pl(λ)

max
pk∈{0,1}DE.pkl(λ)

((
1−CPDE(1λ, π, pk)

)
CPDE(1λ, π, pk)

)
≤ 1

4

where the last inequality is from the maximum of the quadratic function. ut

Impossibility of SOA security. In order to prove that a given D-PKE scheme
DE is not SOA-secure we need to prove the existence of an adversary A ∈ Asoa

such that for every PT simulator S, the function Advsoa
DE,A,S(·) is not negligible.

We assume a collision-resistant hash function HF in the following.

Theorem 4. Let DE be a D-PKE scheme such that 2−DE.ml(·) is negligible. As-
sume the existence of a collision-resistant family of functions. Then, there exists
a PT adversary A ∈ Asoa such that, for all PT simulators S there exists a func-
tion ν that is not negligible and is such that Advsoa

DE,A,S(λ) ≥ ν(λ) for all λ ∈ N.
Furthermore, message sampler A.msg returns a vector of uniformly and inde-
pendently distributed messages. ut

The proof follows the template of the proof from [9] but makes crucial use of
Lemma 3. We use a variant of the reset lemma of [13].
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Algorithm A.cs(1λ)

k
$← {0, 1}HF.kl(λ) ; Return k

Algorithm A.msg(1λ)

m
$← ({0, 1}DE.ml(λ))n(λ) ; Return m

Algorithm A.corCor(1λ, π, pk , k, c)

b[1] . . . b[z(λ)]← HF(1λ, k, c)‖π‖pk
I ← { 2j − 1 + b[j] : 1 ≤ j ≤ z(λ) }
m← Cor(I)
st← (π, pk , c)
Return st

Algorithm A.g(1λ, k, I, st,m)

(π, pk , c)← st
If (|π| 6= DE.pl(λ) or |pk | 6= DE.pkl(λ))

then return 0
If |c| 6= n(λ) then return 0
If (not DE.Vf(1λ, π, pk)) then return 0
b[1] . . . b[z(λ)]← HF(1λ, k, c)‖π‖pk
If (I 6= { 2j − 1 + b[j] : 1 ≤ j ≤ z(λ) })

then return 0
For all i ∈ I do

If (DE.Enc(1λ, π, pk ,m[i]) 6= c[i])
then return 0

Return 1

Algorithm A.f(1λ,m)

Return 1

Fig. 4. Adversary A for the proof of Theorem 4.

Proof (Theorem 4). Let HF be a collision-resistant family of functions. Let
z(·) = HF.ol(·) + DE.pkl(·) + DE.pl(·). Let n(·) = 2z(·). Let A be the adver-
sary defined in Fig. 4. We should emphasize that the hash function here is not
being applied element-wise, but to the ciphertext vector as a whole. Here, DE.Vf
is the verification algorithm provided by Lemma 3 for DE. We first note that
A ∈ Asoa. Indeed, A is unpredictable due to the assumption that 2−DE.ml(·) is neg-
ligible and the fact that messages in the message vector are independently and
uniformly distributed. It also satisfies the distinctness condition since 2−DE.ml(·)

is negligible and n(·) is a polynomial. Next we note that

Pr
[

REALA
DE(λ)

]
= 1 (2)

for all λ ∈ N. This follows from the description of A and the completeness of the
verifier. We will build adversaries X and C such that

Pr
[

IDEALA,S
DE (λ)

]
≤ 2−DE.ml(λ)z(λ) +

√
Advccr

DE,z,C(λ) + Advcr
HF,X(λ) (3)

for all λ ∈ N. But by the assumption that HF is CR and by Lemma 3, we have
that the above probability is not negligibly close to 1 and hence

Advsoa
DE,A,S(·) = 1− Pr

[
IDEALA,S

DE (·)
]

(4)

is a function that is not negligible.
It may seem strange that security fails for A.f that always returns 1, because

this function does not leak anything about m. What we are saying is that it is not
possible to prove even this simple, intuitive claim, meaning to give a simulator
for an adversary relative to this simple information function.
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We proceed to prove Equation (3). Given any S, we divide it in two parts,
S1 and S2. S1 is the execution until the point at which the subset that will be
corrupted is chosen, and S2 is the rest of the execution. We assume without loss
of generality that S1 forwards the coins to S2, so S2 is deterministic. This means
we can view S as operating as follows:

Simulator SCor(1λ, k)

(st∗, I)
$← S1(1λ, k) ; m← Cor(I) ; st← S2(1λ, st∗,m) ; Return st

We now provide some intuition about why we expect the simulator to fail.
We consider an experiment where we run A.cs(1λ) to get k, run S1(1λ, k) to
get (st∗, I), pick two, random vectors m0,m1 that are ⊥ on positions not in I,
and then run S2 twice, getting st0 ← S2(1λ, st∗,m0) and st1 ← S2(1λ, st∗,m1).
Parse stb as (πb, pk b, cb) for b = 0, 1. If st0 6= st1 then, because I is the same
in both cases, we have (π0, pk0) = (π1, pk1) and thus c0 6= c1, leading to a
collision for HF(1λ, k, ·). So assume st0 = st1 = (π, pk , c). If both runs make the
game return true then by definition of A.g we have DE.Enc(1λ, π, pk ,m0[I]) =
c[I] and DE.Enc(1λ, π, pk ,m1[I]) = c[I]. This is highly unlikely if the function
DE.Enc(1λ, π, pk , ·) is injective. So the only way the simulator can hope to suc-
ceed is pick π, pk so that this function is highly non-injective. But A.g is running
the verifier so if the simulator tries this, A.g is likely to return 0 by Lemma 3.
In [8] we formalize the above intuition and establish Equation (3) via the reset
lemma. ut

Indistinguishability-based SOA. Theorem 4 rules out SOA-secure D-PKE
under a simulation-style definition. A natural question is whether SOA-secure
D-PKE may be achieved under a weaker definition, in particular an indistin-
guishability style one. Indeed, for R-PKE, SOA-security definitions in both styles
have been made and investigated, and the indistinguishability style is easier
to achieve [12, 17, 18, 31]. The difficulty is that for D-PKE it is not clear how
to give a meaningful indistinguishability style definition of SOA-security. For
R-PKE, the indistinguishability definition involves conditional re-sampling of
the un-opened messages. In the D-PKE case we cannot provide the un-opened
messages in the distinguishing test, since the adversary could easily win by re-
encrypting to check versus the ciphertexts. It is not clear to us what could be
done instead. Additionally, even for R-PKE, re-sampling is rarely polynomial
time so either we consider security for a very limited set of distributions or we
have a non-polynomial time game, and both choices have problems. Defining
some achievable notion of SOA-secure D-PKE is an interesting open problem.

6 Does SU security imply MU security?

We now define mIND, the multi-key version of IND security, and show a separa-
tion between the two notions by showing the existence of a D-PKE scheme that
is IND-secure but not mIND-secure.
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Main mINDA
DE(λ)

st
$← A.cs(1λ) ; (m0,m1)

$← A.msg(1λ, st)

π
$← DE.Pg(1λ) ; b

$← {0, 1}
For i = 1 to A.nu(λ) do

(pk[i], sk[i])
$← DE.Kg(1λ, π)

For j = 1 to A.nm(λ) do
c[i, j]← DE.Enc(1λ, π,pk[i],mb[i, j])

b′
$← A.g(1λ, π,pk, st, c)

Return (b = b′)

Main PREDP
A(λ)

(st,m)
$← P(1λ)

(m0,m1)
$← A.msg(1λ, st)

Return (∃ i, j, b : mb[i, j] = m)

Fig. 5. The mIND game used to define multi-user security of D-PKE scheme DE and
the PRED game used to define unpredictability of adversary A.

mIND security. Let DE be a D-PKE scheme. An mIND adversary A speci-
fies a common-state generation algorithm A.cs, a message-generation algorithm
A.msg and a guessing algorithm A.g, all PT. On input 1λ, algorithm A.cs gener-
ates state information st that will be passed to both A.msg and A.g. Algorithm
A.msg, on input 1λ, st returns a pair (m0,m1) of A.nu(λ) by A.nm(λ) matrices
over {0, 1}DE.ml(λ), where A.nu is the number-of-users function associated to A
and A.nm is the number-of-messages function associated to A. It is required that
for each b, i the strings mb[i, 1], . . . ,mb[i,A.nm(λ)], which are the messages en-
crypted under the public key pk[i] of user i, be distinct. (However, messages
may repeat across columns, meaning the same message may be encrypted under
different public keys.)

The mINDA
DE(λ) game associated with DE and adversary A is described

on the left of Fig. 5. We define the advantage of A via Advmind
DE,A(λ) = 2 ·

Pr[mINDA
DE(1λ)] − 1 for all λ ∈ N. We let Advpred

A,P (λ) = Pr[PREDP
A(λ)] for

all λ ∈ N, where game PRED is in the middle in Fig. 5. We say that A is
unpredictable if Advpred

A,P (·) is negligible for all P. If A is a class (set) of adver-

saries then we say that DE is mIND[A]-secure if Advmind
DE,A(·) is negligible for all

A ∈ A. It is convenient to view mIND[A] as a set, so that DE ∈ mIND[A] iff
DE is mIND[A]-secure. If A.cs always returns ε then we say that A has trivial
initial state and we may refer to A as a two-stage adversary. Let Am

2 be the class
of all PT, 2-stage unpredictable uniform adversaries, and for any polynomial
n: N→ N let Am

2,n be the class of all A ∈ Am
2 for which A.nu = n. Then security

for n users is captured by mIND[Am
2,n] and security for any number of users is

captured by mIND[Am
2 ].

In the case of IND we had four variants, depending on whether adversaries
were uniform or non-uniform and whether we were in the SM or the ROM. For
simplicity, we address mIND in the uniform, SM case. The separation extends to
the other three cases. Thus, below, the understanding is that IND,mINDn,mIND
refer, respectively, to IND[Asm−u

2 ],mIND[Am
2,n] and mIND[Am

2 ].
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DE.Pg(1λ)

π
$← DE.Pg(1λ)

(pk∗, sk∗)
$← DE.Kg(1λ, π)

Return (π, pk∗)

DE.Kg(1λ, (π, pk∗))

(pk , sk)
$← DE.Kg(1λ, π)

Return (pk , sk)

DE.Enc(1λ, (π, pk∗), pk ,m)

c← DE.Enc(1λ, π, pk ,m)
c∗ ← DE.Enc(1λ, π, pk∗,m)
Return (c, c∗)

DE.Dec(1λ, (π, pk∗), sk , (c, c∗))

m← DE.Dec(1λ, π, sk , c) ; Return m

Fig. 6. D-PKE scheme DE constructed from D-PKE scheme DE.

Separation result. Our separation is based on the minimal assumption that
some IND-secure D-PKE scheme exists, and is established by a somewhat curious
case analysis. The proof of the following is in [8].

Theorem 5. Assume there exists an IND-secure D-PKE scheme. Then there
exists a D-PKE scheme that is (1) IND-secure but (2) not mIND2-secure.

Proof (Theorem 5). We establish the theorem by considering two cases.

Case 1: There does not exist a D-PKE scheme that is mIND2-secure.

The assumption in the theorem statement says there exists a D-PKE scheme
DE that is IND-secure. But the assumption made for Case 1 says that no D-
PKE scheme is mIND2-secure. So in particular DE is not mIND2-secure. This
establishes the theorem trivially in this case.

Case 2: There exists a D-PKE scheme that is mIND2-secure.

Let DE be a D-PKE scheme that is mIND2-secure. We construct from it a D-PKE
scheme DE that is (1) IND-secure but (2) not mIND2-secure. This establishes
the theorem in Case 2. Since either Case 1 or Case 2 must be true, we have
established the theorem overall.

The D-PKE scheme DE is shown in Fig. 6. The parameters of the new scheme
include a public key pk∗ for the old scheme. The new encryption of a message
m under public key pk consists of two encryptions of m under the old scheme,
one with pk and the other with pk∗. Intuitively, (2) is true because if users 1,
2 encrypt messages m1,m2 then the second components of their ciphertexts are
equal iff m1 = m2, allowing an adversary to detect whether or not m1 = m2.
On the other hand, (1) is true because pk∗ can be viewed as a key of a dummy
second user in the old scheme. Encryption in the new scheme is then tantamount
to encryption of m under two independent keys of the old scheme, which is secure
by the assumed mIND2-security of the old scheme. We now proceed to the details.

We first establish (2), that DE is not mIND2-secure, via the following adver-
sary A ∈ Am

2,2. Let A.cs(1λ) return ε. Let A.msg(1λ, ε) return 2 by 1 matrices
(m0,m1) defined via

m0[1, 1],m0[2, 1],m1[1, 1]
$← {0, 1}DE.ml(λ) ; m1[2, 1]←m1[1, 1] .
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Let A.g(1λ, (π, pk∗),pk, ε, c) parse (c[i, 1], c∗[i, 1])← c[i, 1] for i = 1, 2. If c∗[1, 1] =
c∗[2, 1] then it returns 1 else it returns 0. Then Advmind

DE,A
(λ) ≥ 1− 2−DE.ml(λ).

To establish (1), that DE is IND-secure, let A ∈ A2. We will provide A ∈ Am
2,2

such that

Advind
DE,A

(λ) ≤ Advmind
DE,A(λ) (5)

for all λ ∈ N. Then (1) follows from the assumption that DE is mIND2-secure.
Let A.cs = A.cs return ε. Let A.nm = A.nm. Let A.nu = 2. Define A.msg and A.g
as follows:

A.msg(1λ, ε)

(m0,m1)
$← A.msg(1λ, ε)

For j = 1, . . . ,A.nm(λ) do
m0[1, j]←m0[j] ; m0[2, j]←m0[j]
m1[1, j]←m1[j] ; m1[2, j]←m1[j]

Return (m0,m1)

A.g(1λ, π,pk, ε, c)

For j = 1, . . . ,A.nm(λ) do
c[j]← (c[1, j], c[2, j])

b′
$← A.g(1λ, (π,pk[2]),pk[1], ε, c)

Return b′

Then Equation (5) follows. ut

We remark that the proof of Theorem 5 is non-constructive. It proves the ex-
istence of a scheme that is IND-secure but not mIND2-secure but does not put
in our hands a concrete, specific example of such a scheme. This is because,
although either Case 1 or Case 2 in the proof must be true, we do not know
which. We also remark that our proof makes crucial use of the system parame-
ters. Whether or not single and multi-user security are equivalent for D-PKE in
the absence of system parameters is an interesting open question.
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