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Abstract. Divisible E-cash systems allow users to withdraw a unique
coin of value 2n from a bank, but then to spend it in several times to
distinct merchants. In such a system, whereas users want anonymity of
their transactions, the bank wants to prevent, or at least detect, double-
spending, and trace the defrauders. While this primitive was introduced
two decades ago, quite a few (really) anonymous constructions have been
introduced. In addition, all but one were just proven secure in the random
oracle model, but still with either weak security models or quite complex
settings and thus costly constructions. The unique proposal, secure in
the standard model, appeared recently and is unpractical. As evidence,
the authors left the construction of an efficient scheme secure in this
model as an open problem.

In this paper, we answer it with the first efficient divisible E-cash system
secure in the standard model. It is based on a new way of building the
coins, with a unique and public global tree structure for all the coins.
Actually, we propose two constructions: a very efficient one in the ran-
dom oracle model and a less efficient, but still practical, in the standard
model. They both achieve constant time for withdrawing and spending
coins, while allowing the bank to quickly detect double-spendings by a
simple comparison of the serial numbers of deposited coins to the ones
of previously spent coins.

1 Introduction

Electronic Cash (E-cash), introduced by Chaum [20, 21], is the digital analogue
of regular money. It allows users to withdraw coins from a bank and to spend
them to merchants, in an anonymous way, thus perfectly emulating conventional
cash transactions.

Unfortunately, with E-cash, as any digital data, coins can easily be dupli-
cated, and thus spent several times. It is therefore essential to be able to detect
double-spending and even to identify the defrauders. As for group signatures [4,
6], one solution could be to give to a specific entity the ability of revoking
anonymity for any transaction of his choice. However, such an approach (called
fair E-cash [9, 31]) weakens the anonymity of the scheme because, ideally, user’s
privacy should be guaranteed as long as the user is honest. Moreover, such an
entity should be trusted by all the users or distributed among a large group of
authorities, which makes the tracing procedure, in case of fraud, quite costly.



E-cash systems achieve their ultimate goal when the user’s side of the proto-
col is implemented on a mobile device (e.g. a smartphone). However, the limited
power of such devices along with the strong time constraints of electronic trans-
actions require very efficient withdrawal and spending procedures. Moreover,
even if the bank is more powerful than the users, it has to centralize a huge
number of transactions, and thus double-spending detection should be made as
efficient as possible. Reconciling security requirements with efficiency is therefore
the main challenge when designing E-cash systems.

1.1 Related Work

Compact E-Cash. Camenisch, Hohenberger and Lysyanskaya [10] described
the first compact E-cash system (later extended to systems supporting addi-
tional features [12, 16, 14]), allowing users to withdraw wallets with 2n coins at
once. Each coin is associated with a unique serial number, allowing the bank to
efficiently detect double-spending. Unfortunately, while the withdrawal of many
coins can be done at once, the spending procedure is done coin by coin, which is a
major drawback for concrete use. Indeed, in order to provide a good granularity,
one must use coins of one cent, and thus transactions often involve thousands of
coins. An alternative could be the use of coins with several denominations, but
then one should use several systems in parallel for each value, and in addition
anonymity would be more difficult to achieve since users would withdraw dif-
ferent kinds of coins. Then, the bank could classify the users according to their
withdrawals and then infer where users spend their money from the coins the
merchants deposit.

Divisible E-Cash Systems. The purpose of divisible E-cash systems is to
address this problem of splitting coins of large values. As above, users withdraw
a large coin of value 2n (or withdraw 2n coins at once), but can spend it in
several times by dividing it (or spend several coins at once): more concretely,
one can spend a coin of value 2`, for any 0 ≤ ` ≤ n, at once, instead of spending
2` unitary coins, which is clearly much more efficient.

Since their introduction, many schemes have been proposed [29, 28, 19, 27]
but they only achieved quite weak levels of anonymity. Indeed, transactions
involving the same coin (from the same withdrawal) were all linkable, except
with [27], which however still reveals which part of the coin is spent (which
is not compatible with the highest security notion) and in addition requires a
trusted authority to recover spenders’ identities.

Canard and Gouget [13] introduced the first truly anonymous E-cash sys-
tem. Unfortunately, it makes use of complex zero-knowledge proofs of knowledge
(ZKPK) and of groups of different but related orders, whose generation requires
a huge computational power. Despite its inefficiency (pointed out in [2, 15]) this
system was a proof of concept: a “truly” anonymous divisible E-cash system is
possible. Au, Susilo, and Mu [2] proposed a more efficient scheme but at the
cost of an unconventional security model where the bank is only ensured that



it will not loose money on average (provided that it can legally impose fines on
users, which is not necessarily the case). Canard and Gouget [15] later proposed
another construction, but still with groups of different orders, leading to rather
inefficient ZKPK. All these schemes were proven secure in the random oracle
model (ROM) [5]. More recently, Izabachène and Libert [26] provided the first
construction with security proven in the standard model. However their con-
struction is rather inefficient, especially the deposit phase whose computational
cost for the bank depends on the number of previously deposited coins with a
pairing computation between every new coin and every past coin. Such a down-
side makes the scheme impractical, leading the authors to leave the construction
of an efficient scheme secure in the standard model as an open problem.

1.2 Our Contribution

In this paper, we address this open problem, with the first really efficient divisible
E-cash system. It can be designed either in the ROM or the standard model.
Our main contribution is a new way for building the serial numbers. As noticed
in [26], the use of serial numbers is indeed the best approach for the bank to
quickly detect double-spending.

In previous solutions [13, 2, 15], every divisible coin is associated with a binary
tree whose nodes correspond to expendable amounts. When a user withdraws
a coin, he selects a random number kε associated with the root of the tree and
then computes, for each internal node s, the corresponding number ks, using
kε and a one-way function. The user then obtains signatures on these numbers
(or on elements accumulating them) from the bank and defines the coin to be
the binary tree along with the signatures. However, to ensure that the user
will not spend more than the amount he has withdrawn, he will have to prove
(either during the spending or the withdrawal protocol) that the tree (and so
the numbers ks) is well-formed. Unfortunately, the construction from [2] is not
compatible with any zero-knowledge proof construction because the numbers ks
are computed using a hash function, modeled as a random oracle. The authors
therefore proposed a cut-and-choose method to detect cheaters which leads to the
problem mentioned above. Canard and Gouget [13, 15] used groups of different
orders which are compatible with zero-knowledge proofs in the ROM (although
they are rather inefficient) but not in the standard model since the Groth-Sahai
[25] methodology does no longer work in this setting.

In our construction, we use a totally different approach: instead of using one
tree by coin, we define, in the public parameters, one single tree which will be
common to all the coins. The key point of this solution is obvious: users no longer
have to prove that the tree is well-formed. Moreover, it considerably alleviates
the withdrawal procedure since the bank no longer has to certify each tree.

We will use bilinear groups (i.e. a set of three cyclic groups G1,G2 and GT of
prime order p along with a bilinear map e : G1×G2 → GT ), which are compatible
with Groth-Sahai proofs. In a nutshell, our system works as follows: it uses a
unique tree T of depth n (for coins of value 2n), where each leaf f is associated
with an element χf ∈ GT and each internal node s is associated with an element



gs ∈ G1. In addition to these group elements, the public parameters also contain,
for each leaf f and any node s on the path to f , an element g̃s7→f ∈ G2 such that
e(gs, g̃s7→f ) = χf (a setup algorithm will efficiently generate these parameters).
When a user withdraws a coin, he gets a certificate on some random scalar
x ∈ Zp, which will implicitly define all the serial numbers associated with this
coin as χxf for each leaf f . To spend a node s of height ` in the tree, corresponding

to a value of 2`, the user can compute ts ← gxs and prove that it is well-formed:
such a proof can easily be done in either the ROM or the standard model.
Informally, the unlinkability property follows from the fact that it is hard, given
gxs and gxs′ for two nodes s and s′, to decide whether they were computed using
the same x (and thus belong to the same tree) under the XDH assumption.
However, using the elements g̃s 7→f , the bank will be able to recover the 2` serial
numbers by computing e(ts, g̃s7→f ) = χxf for each f in the subtree below s. A
double-spending means that two transactions involve two nodes s and s′ with
non-disjoint subtrees: a common leaf f is in both subtrees issued from s and
s′, and so the bank will detect a collision between the serial numbers since
e(ts, g̃s7→f ) = χxf = e(ts′ , g̃s′ 7→f ).

Of course, several problems have to be addressed to fulfill all the security
requirements, but the above key idea allows to design a system with constant
cost for both the withdrawal and spending protocols, which can be proven secure
in either the random oracle and the standard models.

1.3 Organization

In Section 2, we review some classical definitions and notations. Section 3 de-
scribes the security model for divisible E-cash. We provide a high level descrip-
tion of our construction in Section 4, and a more detailed presentation in Sec-
tion 5. Eventually, security proofs are given in Section 6.

2 Preliminaries

Bilinear Groups. Bilinear groups are a set of three cyclic groups G1, G2, and
GT of prime order p along with a bilinear map e : G1 × G2 → GT with the
following properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a·b;
2. for g 6= 1G1 and g̃ 6= 1G2 , e(g, g̃) 6= 1GT ;
3. e is efficiently computable.

Computational Assumptions. Our construction will rely on several compu-
tational assumptions that have been considered reasonable in well chosen groups:

– the DL assumption holds in the group G if it is hard, given (g, gx) ∈ G2,
to output x;

– the XDH assumption holds in bilinear groups (G1,G2,GT ) if it is hard,
given (g, gx, gy, gz) ∈ G4

1, to decide whether z = x · y or z is random;



– the q − SDH assumption [8] holds in a group G if it is hard, given a tuple

(g, gx, gx
2

, . . . , gx
q

) ∈ Gq+1, to output a pair (m, g
1

m+x ).

Digital Signature Scheme. A digital signature scheme Σ is defined by three
algorithms:

– the key generation algorithm Σ.Keygen which outputs a pair of signing and
verification keys (sk, pk) – we assume that sk always contains pk;

– the signing algorithm Σ.Sign algorithm which, on input the signing key sk
and a message m, outputs a signature σ;

– and the verification algorithm Σ.Verify which, on input m, σ and pk, out-
puts 1 if σ is a valid signature on m under pk and 0 otherwise.

The standard security notion for a signature scheme is existential unforgeabil-
ity under chosen message attacks (EUF-CMA) [24] which means that it is hard,
even given access to a signing oracle, to output a valid pair (m,σ) for a message
m never asked to the oracle. In this paper we will also use two weaker different
security notions for signature schemes. The former is the security against selec-
tive chosen message attacks, which limits the oracle queries to be asked before
having seen the key pk. The latter is a strong one-time security notion where the
adversary can ask only one query to the signing oracle, but strong means that
an output with a new signature on an already signed message is also considered
a forgery. In our instantiation in the full version [17], we use a deterministic
one-time signature, and thus one-time security is equivalent to strong one-time
security.

3 Divisible E-cash System

3.1 Syntax

As in [13, 15], a divisible e-cash system is defined by the following algorithms,
that involve at least three entities: the bank B, a user U and a merchant M.
Although not necessary, it is often easier to assume that the Setup algorithm is
run by a trusted entity (we refer to Remark 3 in Section 4 for more discussion).

– Setup(1k, V ): On inputs a security parameter k and an integer V , this prob-
abilistic algorithm outputs the public parameters p.p. for divisible coins of
global value V . We assume that p.p. are implicit to the other algorithms, and
that they include k and V . They are also an implicit input to the adversary,
we will then omit them.

– BKeygen(): This probabilistic algorithm executed by the bank B outputs a
key pair (bsk, bpk). It also sets L as an empty list, that will store all deposited
coins. We assume that bsk contains bpk.

– Keygen(): This probabilistic algorithm executed by a user U (resp. a mer-
chant M) outputs a key pair (usk, upk) (resp. (msk,mpk)). We assume that
usk (resp. msk) contains upk (resp. mpk).



– Withdraw(B(bsk, upk),U(usk, bpk)): This is an interactive protocol between
the bank B and a user U . At the end of this protocol, the user gets a divisible
coin C of value V or outputs ⊥ (in case of failure) while the bank stores the
transcript Tr of the protocol execution or outputs ⊥.

– Spend(U(usk, C, bpk,mpk, v),M(msk, bpk, v)): This is an interactive protocol
between a user U and a merchantM. At the end of the protocol the merchant
gets a master serial number Z of value v (the amount of the transaction they
previously agreed on) along with a proof of validity Π or outputs ⊥. U either
updates C or outputs ⊥.

– Deposit(M(msk, bpk, (v, Z,Π)),B(bsk, L,mpk)): This is an interactive pro-
tocol between a merchant M and the bank B. B checks that Π is valid on
v and Z and that (v, z,Π) has never been deposited (corresponding to the
case of a cheating merchant). B then recovers the m (for some m ≥ v) serial
numbers z1, . . . , zm corresponding to this transaction and checks whether,
for some 1 ≤ i ≤ m, zi ∈ L. If none of the serial numbers is in L, then the
bank creditsM’s account of v, stores (v, Z,Π) and appends {z1, . . . , zm} to
L. Else, there is at least an index i ∈ {1, . . . ,m} and a serial number z′ in L
such that z′ = zi. The bank then recovers the tuple (v′, Z ′, Π ′) corresponding
to z′ and publishes [(v, Z,Π), (v′, Z ′, Π ′)].

– Identify((v1, Z1, Π1), (v2, Z2, Π2), bpk): On inputs two different valid tran-
scripts (v1, Z1, Π1) and (v2, Z2, Π2), this deterministic algorithm outputs a
user’s public key upk if there is a collision between the serial numbers derived
from Z1 and from Z2, and ⊥ otherwise.

It is worthy to note that the Identify algorithm does not require knowledge
of any secret element and can thus be run by anyone. So, there is no need
for a VerifyGuilt algorithm (as provided in [13, 15]) since any entity can be
convinced of the culpability of a user by recovering his public key upk from the
transcripts published by the bank.

3.2 Security Model

Besides the usual correctness property (informally meaning that an honest user
running a Withdraw protocol with an honest bank will receive a divisible coin
accepted by any honest merchant), a secure e-cash system must achieve sev-
eral security properties, defined through games between an adversary A and a
challenger C. Our security model makes use of the following oracles.

– OAdd() is an oracle used by A to register a new honest user (resp. merchant).
The challenger runs the Keygen algorithm, stores usk (resp. msk) and returns
upk (resp. mpk) to A. In this case, upk (resp. mpk) is said honest.

– OCorrupt(upk/mpk) is an oracle used by A to corrupt an honest user (resp.
merchant) whose public key is upk (resp. mpk). The challenger then returns
the corresponding secret key usk (resp. msk) to A along with the secret values
of every coin withdrawn by this user. From now on, upk (resp. mpk) is said
corrupted.



Expanon−b
A (1k, V )

1. p.p.← Setup(1k, V )
2. bpk← A()
3. (v, upk0, upk1,mpk)← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If upk0 or upk1 is not registered, then return 0
5. If cupki > mupki · V − v for i ∈ {0, 1}, then return 0
6. (v, Z,Π)← Spend(C(uskb, C,mpk, v),A())
7. b∗ ← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend∗()
8. If upk0 or upk1 has been corrupted, then return 0
9. Return (b = b∗)

Fig. 1. Anonymity Security Game

– OAddCorrupt(upk/mpk) is an oracle used by A to register a new corrupted
user (resp. merchant) whose public key is upk (resp. mpk). In this case, upk
(resp. mpk) is said corrupted. The adversary could use this oracle on a public
key already registered (during a previous OAdd query) but for simplicity, we
reject such case as it will gain nothing more than using the OCorrupt oracle
on the same public key.

– OWithdrawU (upk) is an oracle that executes the user’s side of the Withdraw

protocol. This oracle will be used by A playing the role of the bank against
the user with public key upk.

– OWithdrawB(upk) is an oracle that executes the bank’s side of the Withdraw
protocol. This oracle will be used by A playing the role of a user whose
public key is upk against the bank.

– OSpend(upk, v) is an oracle that executes the user’s side of the Spend pro-
tocol for a value v. This oracle will be used by A playing the role of the
merchant M.

In our experiments, we denote users by their public keys upk, the value spent
by user upk during OSpend queries by cupk, and the number of divisible coins
withdrawn by this user by mupk. This means that the total amount available by
a user upk is mupk · V .

Anonymity. Informally, anonymity requires that the bank, even helped by
malicious users and merchants, cannot learn anything about a spending other
than what is available from side information from the environment. We define
the anonymity experiments Expanon−bA (1k, V ) as described on Figure 1. After
the challenge phase, the OSpend queries are restricted to avoid A trivially wins:
A then has access to a OSpend∗ oracle that is the same as the OSpend oracle
except that it cannot be asked on upki if cupki > mupki · V − v, for i ∈ {0, 1}.
Otherwise one can easily deduce which user has spent v during the challenge
phase.



ExptraA (1k, V )

1. p.p.← Setup(1k, V )
2. (bsk, bpk)← BKeygen()

3. [(v1, Z1, Π1), . . . , (vu, Zu, Πu)]
$← AOAdd,OCorrupt,OAddCorrupt,OWithdrawB,OSpend(bpk)

4. If
∑u

i=1 vi > m · V and ∀i 6= j, Identify((vi, Zi, Πi), (vj , Zj , Πj)) =⊥,
then return 1

5. Return 0

Fig. 2. Traceability Security Game

We define AdvanonA (1k, V ) as Pr[Expanon−1A (1k, V )]−Pr[Expanon−0A (1k, V )]. A
divisible e-cash system is anonymous if, for any probabilistic polynomial adver-
sary A, this advantage is negligible. Of course, the adversary must choose the
users involved in the challenge phase among the registered users, and never cor-
rupted, and cannot ask them to spend more than withdrawn, hence restrictions
in steps 4, 5, and 8 respectively.

Remark 1. The scheme from [27] achieves an unlinkability property, meaning
that it is hard to link two spendings from the same coin. This protocol makes
use of a tree for the global coin, and each transcript reveals which part of the
tree (i.e. which node) is spent. In some cases, this property can be enough
(we describe informally in Section 4.2 a protocol fulfilling this property) but
we stress that a scheme revealing the spent nodes in a tree structure is not
anonymous (according to our above model) even if it is unlinkable (and our main
scheme given in Section 5 is anonymous in the sense of the above definition).
Indeed, to break the anonymity of such a scheme, the adversary can make one
OWithdrawU (bsk, uski) and then (V − 1) OSpend(upki, 1) queries, for each user
(i ∈ {0, 1}). Therefore, it will only remain one unspent node supki for each user.
If the nodes are randomly selected among the unspent nodes during a spending
(which is even worse if this is deterministic or chosen by the adversary), with
overwhelming probability, the two unspent nodes will not be the same for the
two users upk0 and upk1: supk0 6= supk1 . The node involved in the challenge phase
will then reveal the user identity.

Traceability. Informally, traceability requires that no coalition of malicious
users can spend more than they have withdrawn, without revealing their identity.
We define the traceability experiment ExptraA (1k, V ) as described on Figure 2. We
denote by m the total number of coins withdrawn during the entire experiment.
It is assumed that {(v1, Z1, Π1), . . . , (vu, Zu, Πu)} is a set of different and valid
transcripts (else, we do not consider the invalid or duplicated ones when com-
puting the sum v =

∑
vi). We define AdvtraA (1k, V ) as Pr[ExptraA (1k, V ) = 1]. A

divisible e-cash system ensures the traceability property if, for any probabilistic
polynomial adversary A, this advantage is negligible.



ExpexcuA (1k, V )

1. p.p.← Setup(1k, V )
2. bpk← A()
3. [(v1, Z1, Π1), (v2, Z2, Π2)]← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If Identify((v1, Z1, Π1), (v2, Z2, Π2), bpk) = upk and upk not corrupted,

then return 1
5. Return 0

Fig. 3. Exculpability Security Game

Remark 2. The E-cash systems from [13, 2, 15, 26] considered the balance prop-
erty, requiring that no coalition of users can spend (and then later accepted
for deposit) more than they have withdrawn, and the identification property,
requiring that no coalition of users can double-spend a coin without reveal-
ing their identity. We argue that traceability is enough. Indeed, an adversary
against the balance property must produce [(v1, Z1, Π1), . . . , (vu, Zu, Πu)] (with∑u
i=1 vi > m ·V ) that the bank accepts as valid, not duplicated and not double-

spent. This adversary can therefore be easily converted into an adversary against
our traceability experiment.

Similarly, an adversary against the identification property must produce two
valid transcripts (v1, Z1, Π1) and (v2, Z2, Π2) which are detected as a double-
spending but such that the Identify algorithm does not output one name from
the collusion: either this is a name outside the collusion, we deal with this case
below, with the exculpability, or Identify((v1, Z1, Π1), (v2, Z2, Π2)) =⊥. By
legally spending all the remaining parts of this coin, one breaks the traceability
property too.

Exculpability. Informally, exculpability requires that the bank, even cooperat-
ing with malicious users and merchants, cannot falsely accuse honest users of hav-
ing double-spent a coin. We define the exculpability experiment ExpexcuA (1k, V )
as described on Figure 3. We emphasize that any adversary able to spend a coin
of a honest user can easily break the exculpability property, by simple making
a double-spending in the name of this honest user. We define AdvexcuA (1k, V )
as Pr[ExpexcuA (1k, V ) = 1]. A divisible e-cash system is exculpable if, for any
probabilistic polynomial adversary A, this advantage is negligible.

4 Our Construction: Intuition

Our construction makes use of a binary tree, as in most previous works [13, 2, 15].
The main difference is the way the tree is built. In the previous systems, each user
constructs his own tree by selecting elements ki,j associated with the nodes of the
tree and then has to get certificates on all of them (during the Withdraw protocol)
and more importantly, must prove (either during the Withdraw protocol or the



Spend one) that these elements are well-formed. This latter proof led to complex
systems with either unconventional security properties [2] or costly operations
in groups of different orders [13, 15].

In our system, there is only one tree, which is part of the public parameters.
It allows us to avoid proving its well-formedness and so to achieve a better
efficiency while working with zero-knowledge proofs compatible with the Groth-
Sahai methodology [25]. In the following we first describe our Setup algorithm
and then give a high level description of our divisible e-cash system.

4.1 Setup

ε

0

00

... ...

0

01

010

0

011

1

1

0

1

... ...

1

Fig. 4. Divisible coin

Notation. Let Sn be the set
of bitstrings of size smaller than
or equal to n and Fn be the
set of bitstrings of size exactly
n. We then define, ∀s ∈ Sn,
the set Fn(s) as {f ∈ Fn :
s is a prefix of f}. For every s ∈
Sn, |s| denotes the length of s.

Intuitively, since we will make
use of a tree of depth n for coins
of value V = 2n, as illustrated on
Figure 4, each node of the tree (or
its path from the root) will refer
to an element s ∈ Sn, the root
to the empty string ε, and each
leaf to an element of Fn. For any
node x ∈ Sn, Fn(s) contains all
the leaves in the subtree below s.

Public Parameters. Let (G1,G2,GT , e) be the description of bilinear groups of
prime order p, g, h, u1, u2, w (resp. g̃) be generators of G1 (resp. G2), G = e(g, g̃)
is thus a generator of GT , and H : {0, 1}∗ → Zp be a collision-resistant hash
function. In addition, a trusted authority generates

– for each s ∈ Sn, rs
$← Zp and (gs, hs)← (grs , hrs);

– for each f ∈ Fn, lf
$← Zp;

– for each s ∈ Sn, for each f ∈ Fn(s), g̃s7→f ← g̃lf/rs .

The public parameters p.p. are set as the bilinear groups (G1,G2,GT , e),
with the generators g, h, u1, u2, w, g̃, and G, the hash function H, as well as all
the above elements {(gs, hs), s ∈ Sn} and {g̃s 7→f , s ∈ Sn, f ∈ Fn(s)}. In addition,
according to the setting, either the random oracle model or the standard model,
we also have

– another hash function H : {0, 1}∗ → Zp, that will be modeled by a random
oracle;



– or a CRS for the Groth-Sahai [25] proofs and a one-time signature scheme
Σots (such as the one from [8]).

It is worthy to note that users and merchants need to know the groups and the
generators, but then just {(gs, hs), s ∈ Sn} (along with H, or CRS and Σots).
The set {g̃s 7→f , (s, f) ∈ Sn×Fn} is only used by the bank, while {lf , f ∈ Fn} is
not useful anymore in the system.

Remark 3. An entity knowing the random scalars (rs, lf ) used to generate the
public parameters will be able to break the anonymity of our scheme. This
problem already appears when generating the CRS from Groth-Sahai proofs
(whose construction is not specified in [26]). To avoid the need of a trusted
entity (although this last one would intervene only during the Setup phase) the
public parameters can be cooperatively generated by the bank and a set of users.
For example,

– one party can first generate as, cf
$← Zp for all s ∈ Sn and f ∈ Fn, compute

As ← gas and Ãs7→f ← g̃cf/as , and prove knowledge of as and cf ;

– the second party will then select random bs, df
$← Zp, compute Bs ← Abss

and B̃s7→f ← Ã
df/bs
s , and prove knowledge of bs and df .

If the proofs are valid then gs ← Bs and g̃s7→f ← B̃s 7→f .

4.2 High Level Description

The main challenge when designing a divisible e-cash system is to describe an
efficient way for the bank to recover all the serial numbers of the spent coins
without endangering the anonymity of the honest users. For the sake of clarity,
we describe our construction in three stages.

– In the first one, we describe a system fulfilling a weak anonymity property
(called unlinkability, see Remark 1, in Section 3.2) meaning that no one
can decide, given two transcripts of the Spend protocol, whether they were
produce by using the same global coin but where the spent part (i.e. the
node) of the coin can be revealed;

– In the second stage, we show how to increase the level of anonymity, reaching
a stronger version of unlinkability (that we call strong unlinkability) meaning
that it is now impossible to decide which node was spent. However, the level
of the node is inevitably revealed since it corresponds to the amount paid
by the user.

– Eventually, it remains to explain how to recover the identity of a double-
spender without the help of a trusted entity. This is done in our third stage
where we describe the construction of a security tag which, added to the
scheme from the second stage, leads to an anonymous divisible e-cash system
in the sense of the definition given in Section 3.2.

All our three stages use the same idea: each divisible coin is associated with a
secret scalar x

$← Zp, known to the user only, and certified by the bank during
the Withdraw protocol.



Unlinkability. To spend a value of v = 2`, the user first selects an unspent
node s at level n − `, computes ts ← gxs and proves in a zero-knowledge way
that ts is well formed and that x is certified. This can be efficiently performed
in either model: the random oracle model or standard model.

Since we consider here the unlinkability property, the user can reveal the
chosen s so that B can compute, for each f ∈ Fn(s), the 2` elements Sf (x) ←
e(ts, g̃s7→f ) = e(gs, g̃s7→f )x = Gx·lf which actually are the 2` serial numbers.
Indeed, these elements only depend on (i) the spent leaves and (ii) the secret of
the coin, which makes the bank able to detect double-spending (i.e. two identical
spent leaves, which equivalently means that two nodes s and s′ are such that
one of them is the prefix of the other): the bank simply checks whether for some
f , there are s and s′ such that e(ts, g̃s7→f ) = Gx·lf = e(ts′ , g̃s′ 7→f ).

For honest users, the unlinkability property follows from the fact that it is
hard, knowing gs, gs′ and gxs , to decide whether an element of G1 is random or
equal to gxs′ under the XDH assumption.

Strong Unlinkability. We now want to leak less information about the node
s: actually, just its level can be leaked, since it corresponds to the value of the
transaction. To address this issue, the bank will now certify every element gs,
using a different key for each level of the tree (and so according to the value),
and publish all certificates. To prove that ts is well-formed, the user now has
to prove that he used a certified value gs of the appropriate level, which is still
possible in either the random oracle model or the standard model, with a slight
increase of the size of the proof. Since the bank does not know the exact node
s, but only its level n − `, given ts, it now needs to compute and stores all the
elements e(ts, g̃s′ 7→f ) for every leaf f and every node s′ of the same level n− `.
Of course, some of these elements (and maybe most of them) do not correspond
to any valid serial number, but the point is that all the 2` valid serial numbers
will be among them, making the bank able to detect double spendings.

Remark 4. One has to take care of additional false positive cases for a leaf f :
for two distinct coins whose associated secrets are x1 and x2 respectively (x1 6=
x2), there exist four nodes rs1 , rs′1 and rs′2 , rs′2 such that e(gx1rs1 , g̃

yf/rs′1 ) =

e(gx2rs2 , g̃
yf/rs′2 ), and thus x1rs1rs′2 = x2rs′1rs2 . For randomly chosen x’s, this

happens with negligible probability.

Anonymity. Once a double-spending is detected, the procedure for recovering
the user’s identity depends on the kind of opening we want. In the case of fair
e-cash systems, an opening authority uses, as for group signatures schemes, the
knowledge of some trapdoor to recover the identity of the user from any valid
transaction. Such system can be used in association with the above strongly
unlinkable solution to provide identification of the double spender. However, to
reach the true anonymity property we must avoid such a powerful authority and
then allow anyone to recover this identity from any double-spent coins, and only
in case of fraud.



Let usk ∈ Zp be the secret key of a user and upk ← gusk his public key.
When spending a node s, each user will also compute and send a security tag
vs ← upkr · hxs , where r is deterministically obtained by hashing some public
information info related to the transaction (amount, date, public key of the
merchant, etc). Of course, it will also have to prove that this tag is well formed
(x and upk are certified and hs corresponds to the same node as gs).

If the bank detects a double-spending, it means that there are two transcripts
containing (ts, vs) and (ts′ , vs′) such that there exists f ∈ Fn which is a descen-
dant of both s and s′. Therefore, we have both e(ts, g̃s7→f ) = e(ts′ , g̃s′ 7→f ) =
Gx·lf and e(hs, g̃s7→f ) = e(hs′ , g̃s′ 7→f ) = e(h, g̃)lf . Anyone can then compute,
from the involved transcripts and the public parameters, T ← e(vs, g̃s7→f ) and
T ′ ← e(vs′ , g̃s′ 7→f ). Using the bilinearity of the pairing we get:

T · T ′−1 = e(upkr, g̃s 7→f ) · e(hxs , g̃s7→f ) · e(upk−r
′
, g̃s′ 7→f ) · e(hxs′ , g̃s′ 7→f )−1

= e(upk, g̃rs7→f · g̃−r
′

s′ 7→f ).

It remains to check, for each registered upki, whether T · T ′−1 = e(upki, g̃
r
s7→f ·

g̃−r
′

s′ 7→f ). We recall that r and r′ are scalar deterministically computed from the
transaction information info, and thus publicly computable.

The Identify algorithm thus has a linear cost in the number of registered
users, but we can argue that this is not a major drawback because it will be run
offline and double-spending should not occur too often: the possibility of tracing
back defrauders is an incentive not to try to cheat. Note that this algorithm does
not make use of any private information, it can thus be run in parallel by many
users, as for the public traceability in broadcast encryption [18].

5 Our Divisible E-Cash System

5.1 The protocol

In this section, we focus on the anonymous version of our solution. We then de-
scribe all the algorithms in more details, except the Setup one, already fully
described above. Our Spend protocol will make use of non-interactive zero-
knowledge (NIZK) proofs which can be provided either in the random oracle
model (using the Fiat-Shamir heuristic [22]) or in the standard model (using
the Groth-Sahai proof systems [25], since we are in a bilinear setting). Even if
the frameworks are similar, some algorithms differ according to the model. We
provide in the full version [17] some instantiations of our protocol.

– BKeygen(): Upon receiving the public parameters, the bank will select two
different signatures schemes:
• Σ0 = (Keygen, Sign, Verify), whose message space is G2

1, to sign some
elements of the public parameters. We can use the structure preserving
construction from [1]. But we stress that we do not need the EUF-CMA
security. A signature scheme secure against selective chosen-message at-
tacks would be enough.



• Σ1 = (Keygen, Sign, Verify), whose message space depends on the se-
curity model.

∗ ROM: The message space is Z2
p. But we additionally require that Σ1

is compatible with a protocol Σ1.SignCommit which, given (ux1 , u
y
2)

for some (x, y) ∈ Z2
p (and so a kind of commitment of (x, y)), outputs

a valid signature σ on (x, y) (we can then use the scheme from [11]
or a variant of [8]).

∗ Standard Model: The message space is G2
1, and we can then use

again the scheme from [1].

The bank will then get (sk1, pk1) ← Σ1.Keygen(p.p.) and (sk
(i)
0 , pk

(i)
0 ) ←

Σ0.Keygen(p.p.) for each level of the tree, 0 ≤ i ≤ n, and compute, for every

s ∈ Sn, τs ← Σ0.Sign(sk
(|s|)
0 , (gs, hs)). Eventually, it will set bsk as sk1 and

bpk as ({pk(i)0 }i, pk1, {τs}s∈Sn).

– Keygen(): Each user (resp. merchant) selects a random usk← Zp (resp. msk)
and gets upk ← gusk (resp. mpk ← gmsk). In the following we assume that
upk (resp. mpk) is public, meaning that anyone can get an authentic copy of
it.

– Withdraw(B(bsk, upk),U(usk, bpk)): To withdraw a divisible coin, the user
first selects a random x ∈ Zp and computes uusk1 and ux2 . He then sends
upk, uusk1 , ux2 and proves, using for example the Schnorr’s interactive protocol
[30], knowledge of x and usk. If the proof is valid and if ux2 was not previously
used, the bank

• ROM: runs the Σ1.SignCommit on (uusk1 , ux2) and sends the resulting
signature σ to the user who sets C ← (x, σ).

• Standard Model: computes σ ← Σ1.Sign(sk1, (u
usk
1 , ux2)) and sends it

to the user who sets C ← (x, σ).

– Spend(U(usk, C, bpk,mpk, 2`),M(msk, bpk, 2`)): To spend a value 2`, the user
selects an unspent node s of level n − ` and computes r ← H(info) and
(ts, vs)← (gxs , upk

r ·hxs ). He must then prove that ts and vs are well-formed,
i.e. that he used values certified during a withdrawal, hence a proof of knowl-
edge of σ, and that he used a valid pair (gs, hs), hence a proof of existence
of τs. The protocol in the ROM differs from the one in the standard model.

• ROM: The user provides a zero-knowledge proof of knowledge of usk,
x, gs, hs, τs, and σ such that:

ts = gxs ∧ vs = (gr)usk · hxs ∧ Σ1.Verify(pk1, (usk, x), σ) = 1

∧ Σ0.Verify(pk
(n−`)
0 , (gs, hs), τs) = 1.

Using appropriate signature schemes, as shown in the full version [17],
such zero-knowledge proofs of knowledge ‘à la Schnorr’ can be done. The
global proof is then converted into a signature of knowledge Π on the
message r, using the Fiat-Shamir heuristic [22].

• Standard Model: The user first generates a new key pair (skots, pkots)←
Σots.Keygen(1k) and computes µ ← w

1
usk+H(pkots) . He then computes



Groth-Sahai commitments to usk, x, gs, hs, τs, σ, µ, U1 = uusk1 , U2 = ux2
and provides a NIZK proof π that the committed values satisfy:

ts = gxs ∧ vs = (gr)usk · hxs ∧ U2 = ux2 ∧ U1 = uusk1 ∧ µ(usk+H(pkots)) = w

along with a NIWI proof π′ that the committed values satisfy:

1 = Σ0.Verify(pk
(n−`)
0 , (gs, hs), τs) ∧ 1 = Σ1.Verify(pk1, (U1, U2), σ)

Again, using appropriate signature schemes, as shown in the full ver-
sion [17], the Groth-Sahai methodology [25] can be used. Finally, the
user computes η ← Σots.Sign(skots, H(ts||vs||π||π′||r)) and sends it to
M along with ts, vs, pkots, π, π

′.

In both cases, the merchant checks the validity of the proofs and of the
signatures and accepts the transaction if everything is correct. In such a
case, he stores Z ← (ts, vs) and either the signature of knowledge Π in the
ROM or Π ← (π, π′, pkots, η) in the standard model.

– Deposit(M(msk, bpk, (2`, Z,Π)),B(bsk, L,mpk)): Upon receiving a transcri-
pt, the bank will check that it was not previously deposited and verify its
validity. Then, for each s′ of level n− ` and f ∈ Fn(s′) it will compute zi ←
e(ts, g̃s′ 7→f ) and check whether zi ∈ L. If ∀i, zi /∈ L then the bank will add
these elements to this list (see Remark 5) and store the transcript (2`, Z,Π).
Else, there is an element z′ ∈ L such that zi = z′. The bank will recover the
corresponding transcript (2`

′
, Z ′, Π ′) and output [(2`, Z,Π), (2`

′
, Z ′, Π ′)].

– Identify((2`1 , Z1, Π1), (2`2 , Z2, Π2), bpk): To recover the identity of a double-
spender, the entity running this algorithm will first check the validity of both
transcripts and return ⊥ if one of them is not correct. He then computes,
for i ∈ {1, 2} and for every leaf f , the lists Si,f ← {e(tsi , g̃s 7→f ), where s ∈
Sn is the prefix of length |si| of f}, and returns ⊥ if there is no collision be-
tween S1,f and S2,f for any leaf f . Else, we can assume (see Remark 4) that
we have e(ts1 , g̃s1 7→f ) = e(ts2 , g̃s2 7→f ) with ts1 = gxs1 and ts2 = gxs2 for some
s1, s2 ∈ Sn. As explained in section 4.2, e(vs1 , g̃s1 7→f ) · e(vs2 , g̃s2 7→f )−1 =

e(upk, g̃rs 7→f · g̃
−r′
s′ 7→f ) so it remains to compute e(upki, g̃

r
s7→f · g̃

−r′
s′ 7→f ) for each

public key upki until we get a match, in which case one outputs upki.

Remark 5. Since the node used to spend a coin C is not known, the bank has
to store 2n elements zi each time a transcript is deposited by a merchant, even
if the amount deposited is 2` with ` ≤ n: one for each leaf f . In the worst case
scenario (if the user only spends values of 1), a divisible coin of 2n will require
that the bank stores 22n elements. However, the bank does not need to store
the elements zi ∈ GT , it may only store H ′(zi) (for some hash function H ′)
and so compare the (smaller) hash values. If a collision is found, the bank will
first recover and compare the elements zi from the involved transcripts to ensure
that this collision was not due to the function H ′ (which would anyway be quite
unlikely). Hash tables or Bloom filters can be used to improve on the storage
efficiency.



Even if the constructions in both models are quite similar, there are some
necessary differences, especially in the Spend protocol. Our results concerning
the security of our scheme will then also differ according to each model. The
security proofs of the following theorems are provided in Section 6.

Theorem 6. In the random oracle model, assuming that the hash function H
is collision-resistant, our divisible e-cash system is anonymous under the XDH
assumption, traceable if Σ0 is secure against selective chosen-message attacks
and Σ1 is an EUF-CMA secure signature scheme, and achieves the exculpability
property under the DL assumption.

Theorem 7. In the standard model, assuming that the hash function H is
collision-resistant, our divisible e-cash system is anonymous under the XDH
assumption, traceable if Σ0 is secure against selective chosen-message attacks
and Σ1 is an EUF-CMA secure signature scheme, and achieves the exculpability
property under the q − SDH assumption if Σots is a strong one-time signature
scheme.

5.2 Efficiency

We compare in Figure 5 the efficiency of our construction with the one of [15],
which is the most efficient protocol in the ROM, and the one of [26], which is
the only construction in the standard model.

The different settings of these constructions make this comparison difficult
but this table can still be useful to compare the asymptotic complexity of the
different algorithms. We refer to the full version [17] for instantiations of our
construction. One may note some differences between our table and the one
provided in [15]. They are due to the fact that the authors of [15] denote the
computations of accumulators by Acc. Since these accumulators can store up to
2n+2 elements their computations actually involve up to 2n+2 exponentiations
(during the creation of these accumulators inside the withdrawal protocol) while
their definitions significantly increase the size of the public parameters (hence
the 2n+3 elements).

The scheme from [15] uses subgroups of Zri for some primes ri and bilinear
groups of similar orders for their accumulators. Assuming that the parameters of
the accumulators (which are elliptic curve points) are provided in a compressed
way (i.e. only one coordinate by point) and that q is an approximation of the
orders of the different groups, we will consider that each element involved in their
protocol has a |q|-bit representation. The scheme from [26] and the one described
in this paper use bilinear groups of prime order p. For a 128-bits security level, we
have |p| = 256, |G1| = 256 and |G2| = 512 by using Barreto-Naehrig curves [3]
whereas |q| must be greater than 3072 for [15] (see [23]).

Public Parameters. A downside of our protocol is the size of the public pa-
rameters. However, it is worthy to note that by using the curve parameters from
[3] and the structure preserving signature scheme from [1], the storage space



Schemes Canard-Gouget [15] Izabachène-Libert [26] Our work

Standard Model no yes yes

Public
Parameters

2n+3|q| + 1 pk 2 G1 + 1 G2 + 1 pk
(n+ 2) pk + 1 G2

+ (2n+2 + 3) G1

+ (2n+1 − 1) |Sign|
Withdraw

Computations
(2n+3 + 2n+2 − 5)exp

+ (n+ 2) Sign
1 Sign 1 Sign

Coin Size
(2n+2 + n+ 1) |q|
+ (n+ 2) |Sign| 3 |p| + |Sign| 2 |p| + |Sign|

Spend

Computations

NIZK{ 3 exp∗

+ 2 Sign + 2 Pair }
+ 1 exp

NIZK{ (n− l) exp

+ (7(n− l) + 6) Pair

+ 1 Sign }
+ (8(n− l) + 4) exp

NIZK{ 2 exp

+ 2 Sign } + 3 exp

+ 1 Sign

Transfer size of
Spend

3 |q| + |NIZK| 3(n− l) G2 +
3(n−l)GT + |NIZK|

3 G1 + 1 |Sign|
+|NIZK|

Deposit

Computations
2l+1exp unbounded 2n Pair

Deposit size 2l |q| + |Spend| |Spend| 2n GT + |Spend|

Fig. 5. Efficiency comparison between related works and our construction for coins of
value 2n and Spend and Deposit of value 2l. The space and times complexities are
given from the user’s point of view. exp refers to an exponentiation, pair to a pairing
computation, Sign to the cost of the signature issuing protocol, from the user point
of view, whose public key is pk. NIZK{exp} denotes the cost of a NIZK proof of
a multi-exponentiation equation, NIZK{pair} the one of a pairing product equation
and NIZK{Sign} the one of a valid signature. NIZK{exp∗} refers to the cost of a
proof of equality of discrete logarithms in groups of different orders.

required by these parameters for n = 10 (enabling users to divide their coin in
1024 parts) is 330 KBytes which can easily be handled by any smartphone. Our
parameters (see the full version [17]) require then less storage space than the
ones of [15] (since 210+3 · |q| = 3.1 MBytes). For the bank, the additional cost of
storing the elements {g̃s7→f} is only 721 KBytes.

Withdrawal and Spending. The strong time constraints of electronic trans-
actions require very efficient withdrawal and spending protocols. Compared to
any paper in the literature with similar security level (especially [15] and [26]),
our protocol is the only one to achieve constant time for both the Withdraw and
the Spend protocols. Moreover, even if the Spend protocol from [15] can be per-
formed in constant time, it involves zero-knowledge proofs in groups of different
orders which are rather complex, even in the ROM.

Deposit. Unfortunately, our Deposit protocol involves up to 2n pairings and
so is less efficient than the one from [15]. For n = 10 it means that the bank must
compute 1024 pairings. Even if they can be computed in parallel and even if each



of them can be performed on a computer in less than 1 ms [7], the computational
cost is significant. However, since this protocol is run offline (without the strong
time constraints of the previous protocols) and since the computational power of
a bank can be assumed to be far more important than the one of a computer, we
argue that the cost for the bank remains reasonable. Regarding the storage size,
the bank must store 2n serial numbers by transaction. As explained in Remark 5,
the bank does not need to store the elements zi but only their hash values H ′(zi)
for some hash function H ′ whose output space can be rather small since, in the
event of a collision, the bank will first recompute the elements zi before running
the Identify algorithm. For example, considering that the output space of H ′

has a 80 bits size, the space required to store the serial numbers of one million
transactions is about 10 GBytes, which is still practical for the bank.

Finally, we stress that our Deposit protocol is the first one in the standard
model with a bounded computational cost, i.e. which does not depend on the
number of previous transactions, as in [26] (excepted for the lookup in tables for
double-spending detection).

6 Security Proofs

The proofs of anonymity and traceability are similar in the ROM and in the
standard model so we only describe one proof for both models. This is no longer
the case for the exculpability property which requires two different proofs.

6.1 Proof of Anonymity

Let A be an adversary against the anonymity with advantage ε. We construct
a reduction R using A against XDH challenges in G1. Let (g, gx, gy, gz) be a
XDH-challenge in G1, R randomly selects f∗ ∈ Fn and generates the public
parameters as follows.

– (h, u1, u2)← (gc, gd1 , gd2) for some c, d1, d2
$← Zp

– For each f ∈ Fn, lf
$← Zp

– For each s ∈ Sn, rs
$← Zp

– For each s ∈ Sn:
• If s is a prefix of f∗ then gs ← (gy)rs

• Else gs ← grs

• hs ← gcs

– For each s ∈ Sn, for each f ∈ Fn(s), output g̃s7→f ← g̃
lf
rs .

In this way, only the prefixes of f∗ will involve challenge elements. In the standard
model, R also generates a simulated common reference string. Let qw be a bound
on the number of OWithdraw queries, R randomly selects i∗ from [0,qw] and
answers to the oracle queries as follows:

– OAdd() queries: R runs the Keygen algorithm and returns upk (or mpk).



– OWithdrawU (bsk, upk) queries: When the adversary makes the ith query to
the OWithdrawU oracle, the reduction acts normally if i 6= i∗ and as if the
secret value of the coin is x otherwise (by sending (gx)d2 and simulating
the proof of knowledge, since x is not known by R). The chosen public key
corresponding to this last case will be denoted upk∗.

– OCorrupt(upk/mpk) queries: R acts normally if the query was not made on
upk∗. Else, it aborts the experiment.

– OAddCorrupt(upk/mpk): R stores the public key which is now considered
as registered.

– OSpend(upk, 2`) queries: R is able to deal with any of these queries if upk 6=
upk∗. Else, the reduction is able to answer as long as cupk < mupk · 2n − 2`

(and aborts otherwise) since this condition means that there is at least one
unspent node s which is not the prefix of f∗. The reduction can then compute
a valid pair (ts, vs) ← ((gx)rs , upkr · tcs) where r ← H(info) and simulates
the non-interactive proof (which is possible even in the standard model since
we use a simulated CRS).

During the challenge phase, A outputs {upk0, upk1} along with a value 2`. Of
course, it is assumed that none of these users has spent more than mupkb ·2

n−2`.
If upk∗ /∈ {upk0, upk1} then R aborts, else it selects the prefix s∗ of length
n − ` of f∗, which cannot have been spent, by the assumption made on the
OSpend queries. R also provides a simulated proof and then answers the oracle
queries as previously. Since gs∗ = (gy)rs∗ , the reduction returns (ts∗ , vs∗) ←
((gz)rs∗ , (upk∗)r · tcs∗), which is valid for upk∗ iff z = x · y. R returns a random
element from G2

1 if z 6= x · y. Then, R uses the bit returned by A to solve the
XDH challenge.

When A selects the users involved in the challenge phase, it actually selects
the two subsets S0 and S1 of the withdrawn coins belonging to these users. The
condition on the challenge phase implies that there is at least one coin in each
subset which has not been totally spent. If the coin withdrawn during the i∗th

query is one of them, R will not abort. Its probability of success in breaking the
XDH-assumption is then greater than 2ε/qw.

6.2 Proof of Traceability

Let A be an adversary against the traceability. We construct a reduction R using
A against the unforgeabiliy of Σ0 or Σ1. R generates the public parameters
as in the Setup algorithm and selects 0 ≤ i∗ ≤ n. It then generates n keys

pairs (sk
(i)
0 , pk

(i)
0 ) ← Σ0.Keygen(1k) for 1 ≤ i 6= i∗ ≤ n and uses sk

(i)
0 to sign

(gs, hs) such that |s| = i. Finally, it sends (gs, hs) for every s ∈ Sn such that
|s| = i∗ to the Σ0.Sign oracle which returns the signatures τs along with the

verification key pk
(i∗)
0 . R also receives the public key pk1 from the challenger

of the experiment of the EUF-CMA security of Σ1 and sets its public key as

({pk(j)0 }j , pk1, {τs}s∈Sn). The reduction will proceed as usual when it receives
OAdd, OCorrupt, OAddCorrupt and OSpend queries and uses its Σ1.Sign oracle
to answer OWithdrawB queries.



Let qw be the number of withdrawn queries. In order to succeed, A must
output u valid transcripts (2`j , Zj , Πj) such that

∑
2`j > qw · 2n and such

that Identify((2`i , Zi, Πi), (2
`j , Zj , Πj)) =⊥ for every 1 ≤ i 6= j ≤ n. The

perfect soundness of the proof implies that each transcript (2`j , Zj , Πj) involves

a pair (gj , hj) and a signature τj such that Σ0.Verify((gj , hj), τj , pk
(n−lj)
0 ) = 1.

We may then assume that (gj , hj) = (gsj , hsj ) for some sj ∈ Sn such that
|sj | = n − lj . Else, ((gj , hj), τj) is a valid forgery which breaks the security of
Σ0 with probability 1

n+1 (i.e. if i∗ = n− lj).
Let x1, ..., xqw be the qw secret values (one for each withdrawn coin). Since

an amount of
∑

2`j > qw · 2n has been deposited, the bank has computed
∑

2`j

elements zi ← e(tsj , g̃sj 7→f ). If {zi}i ⊂ {e(g, g̃)lf ·xi}f∈Fn,1≤i≤qw then there is at
least one couple (i, j) such that i 6= j and zi = zj , because the size of the last
set is qw · 2n. Such a collision implies (see remark 4) that the security tags vsi
and vsj have been produced with the same secret x and so with the same public
key upk which would have been returned by the Identify algorithm. We can
therefore assume that {zi}i * {e(g, g̃)lf ·xi}f∈Fn,1≤i≤qw , implying that at least
one of the element tsj is equal to gxsj for some x /∈ {x1, ..., xqw}. We can then
extract, from the corresponding spending, a valid forgery σ on (usk, x) in the
ROM and on (uusk1 , ux2) in the standard model and so breaks the security of Σ1.

6.3 Proof of Exculpability

We distinguish the proof in the ROM from the one in the standard model.

ROM: Let A be an adversary against the exculpability property. We construct
a reduction R using A against the DL challenges in G1. Let (g, gα) be a DL
challenge, R generates the public parameters as in the Setup algorithm and
selects 1 ≤ i∗ ≤ qa where qa is a bound on the number of OAdd queries. R will
answer the oracle queries as follows.

– OAdd() queries: When the adversary makes the i-th OAdd query to register a
user, R will run the Keygen algorithm if i 6= i∗ and set upk∗ ← gα otherwise.

– OCorrupt(upk/mpk) queries: R returns the secret key if upk 6= upk∗ and
aborts otherwise.

– OAddCorrupt(upk/mpk) queries: R stores the public key which is now con-
sidered as registered.

– OWithdrawU (bsk, upk) queries: R acts normally if upk 6= upk∗ and simulates
the interactive proof of knowledge of α otherwise.

– OSpend(upk, 2`) queries: R acts normally if upk 6= upk∗ and simulates the
non-interactive proof of knowledge of α otherwise.

The adversary then outputs two valid transcripts (2`1 , Z1, Π1) and (2`2 , Z2, Π2)
which accuse upk of double-spending. If upk 6= upk∗ then R aborts. Else, at least
one of this transcript was not produced by R (else it would have double-spent
its own coins). The soundness of the signature of knowledge implies then that
we can extract α from this forged transcript. R is then able to solve the discrete
logarithm problem in G1 since it will not abort with probability 1/qa.



Standard Model: An adversary A against the exculpability property outputs
two transcripts accusing an honest user upk of double-spending. As explained
above, at least one of these transcripts was not produced by R. Let pk′ots be
the one-time signature key used in this forged transcript, there are two kinds of
attacks that can be mounted by A:

– Type-1 Attack: pk′ots is one of the key used by R to answer a OSpend query.
– Type-2 Attack: pk′ots was not used by R to answer OSpend queries.

Clearly, an adversary succeeding in a Type-1 attack with non-negligible prob-
ability can be used to break the security of the one-time signature scheme Σots.
We therefore only consider Type-2 attacks in what follows.
Let (g, gα, ..., gα

qs
) be a SDH-challenge where qs is a bound on the number of

OSpend queries, R generates the public parameters as in the Setup algorithm
(except that it sets u1 as gt for some random t ∈ Zp) and selects 1 ≤ i∗ ≤ qa
where qa is a bound on the number of OAdd queries. R computes qs key pairs

(sk
(i)
ots, pk

(i)
ots) ← Σots.Keygen(1k) and sets w as g

∏qs
i=1(α+H(pk

(i)
ots)) (which is pos-

sible using the SDH challenge [8]). The reduction will answer the oracle queries
as follows.

– OAdd() queries: When the adversary makes the i-th OAdd query to register a
user, R will run the Keygen algorithm if i 6= i∗ and set upk∗ ← gα otherwise.

– OCorrupt(upk/mpk) queries: R returns the secret key if upk 6= upk∗ and
aborts otherwise.

– OAddCorrupt(upk/mpk) queries: R stores the public key which is now con-
sidered as registered.

– OWithdrawU (bsk, upk) queries: R acts normally if upk 6= upk∗ and simulates
the interactive proof of knowledge of α otherwise.

– OSpend(upk, 2`) queries: R acts normally if upk 6= upk∗. Else, to answer

the j−th query on upk∗, it will recover the pair (sk
(j)
ots, pk

(j)
ots) and computes

µ ← g
∏qs
i=1,i 6=j(α+H(pk

(i)
ots)) which verifies µ = w

1

α+H(pk
(j)
ots) . It then uses sk

(j)
ots

as in the Spend protocol.

The adversary then outputs two valid transcripts (2`1 , Z1, Π1) and (2`2 , Z2, Π2)
which accuse upk of double-spending. If upk 6= upk∗ then R aborts. The sound-
ness of the proof implies that the forged transcript was signed using a key skots
and so that the proof involves an element µ = w

1
α+H(pkots) . Since here we consider

Type-2 attacks, pkots /∈ {pk(i)ots}i, so R extracts from the proof the element µ
which can be used to break the qs-SDH assumption in G1 (as in [8]).
R is then able to solve the SDH problem or to break the security of Σots

since it will not abort with probability 1/qa.

7 Conclusion

In this work, we have proposed the first practical construction of divisible E-
cash which can be instantiated and proven secure in both the random oracle and



standard models. Our Withdraw and Spend protocols are efficient and can be
performed in constant times. Moreover, the bank can detect double-spendings
by comparing the serial numbers of deposited coins to the ones of previously
spent coins. Our protocol thus answers the problem left open by Izabachène and
Libert. However, the computational cost and the storage space of our Deposit

protocol remains important but we argue that it is reasonable to assume that the
bank has enough storage capacity and computational power. Finally, the way we
build our tree is also compatible with divisible E-cash systems achieving weaker
notions of anonymity (such as unlinkability) leading to very efficient protocols
without these downsides (see the full version [17]).
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17. Sébastien Canard, David Pointcheval, Olivier Sanders, and Jacques Traoré. Di-
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