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Abstract. We describe a method to bootstrap a packed BGV ciphertext which
does not depend (as much) on any special properties of the plaintext and cipher-
text moduli. Prior “efficient” methods such as that of Gentry et al (PKC 2012)
required a ciphertext modulus q which was close to a power of the plaintext mod-
ulus p. This enables our method to be applied in a larger number of situations.
Also unlike previous methods our depth grows only asO(log p+log log q) as op-
posed to the log q of previous methods. Our basic bootstrapping technique makes
use of a representation of the group Z+

q over the finite field Fp (either based on
polynomials or elliptic curves), followed by polynomial interpolation of the re-
duction mod p map over the coefficients of the algebraic group.
This technique is then extended to the full BGV packed ciphertext space, using a
method whose depth depends only logarithmically on the number of packed ele-
ments. This method may be of interest as an alternative to the method of Alperin-
Sheriff and Peikert (CRYPTO 2013). To aid efficiency we utilize the ring/field
switching technique of Gentry et al (SCN 2012, JCS 2013).

1 Introduction

Since the invention of Fully Homomorphic Encryption (FHE) by Gentry in 2009 [14,15],
one of the main open questions in the field has been how to “bootstrap” a Somewhat
Homomorphic Encryption (SHE) scheme into a FHE scheme. Recall an SHE scheme
is one which can evaluate circuits of a limited multiplicative depth, whereas an FHE
scheme is one which can evaluate circuits of arbitrary depth. Gentry’s bootstrapping
technique is the only known way of obtaining unbounded FHE.

The ciphertexts of all known SHE schemes include some noise to ensure security,
and unfortunately this noise grows as more and more homomorphic operations are per-
formed, until it is so large that the ciphertext will no longer decrypt correctly. In a
nutshell, bootstrapping “refreshes” a ciphertext that can not support any further homo-
morphic operation by homomorphically decrypting it, and obtaining in this way a new
encryption of the some plaintext, but with smaller noise. This is possible if the under-
lying SHE scheme has enough homomorphic capacity to evaluate its own decryption
algorithm. Bootstrapping is computationally very expensive and it represents the main
bottleneck in FHE constructions.



Several SHE schemes, with different bootstrapping procedures, have been proposed
in the past few years [1,2,4,6,7,8,14,15,10,18,19,32]. The most efficient are ones which
allow SIMD style operations, by packing a number of plaintext elements into indepen-
dent “slots” in the plaintext space. The most studied of such “SIMD friendly” schemes
being the BGV scheme [5] based on the Ring-LWE Problem [25].

Prior Work on Bootstrapping. In almost all the SHE schemes supporting bootstrap-
ping, decryption is performed by evaluating some linear function D, dependent on the
ciphertext c, on the secret key sk modulo some integer q, and then reducing the re-
sult modulo some prime p, i.e. dec(c, sk) = ((DC(sk) mod q) mod p). Given an
encryption of the secret key, bootstrapping consists in evaluating the above decryption
formula homomorphically. One can divide the bootstrapping of all efficient currently
known SHE schemes into three distinct sub-problems.

1. The first problem is to homomorphically evaluate the reduction (mod p)-map on
the group Z+

q (see Fig. 1), where for the domain one takes representatives centered
around zero. To do this the group Z+

q is first mapped to a set G in which one can
perform operations native to the homomorphic cryptosystem. In other words we
first need to specify a representation, rep : Z+

q −→ G, which takes an integer in
the range (−q/2, . . . , q/2] and maps it to the set G. The group operation on Z+

q

needs to induce a group operation on G which can be evaluated homomorphically
by the underlying SHE scheme. Then we describe the induced map red : G −→ Zp
as a algebraic operation, which can hence be evaluated homomorphically.

2. The second problem is to encode the secret key in a way that one can publicly,
using a function dec-eval (decryption evaluation), create a set of ciphertexts which
encrypt the required input to the function red.

3. And thirdly one needs a method to extend this to packed ciphertexts.

Z+
q G

Zp

rep

(mod p) red

Fig. 1.

To solidify ideas we now expand on these problems in the context of the BGV scheme
[5]. Recall for BGV we have a set of L + 1 moduli, corresponding to the levels of the
scheme, q0 < q1 < . . . < qL, and a (global) ring R, which is often the ring of integers
of a cyclotomic number field. We let p denote the (prime) plaintext modulus, i.e. the
plaintexts will be elements in Rp (the localisation of R at the prime p), and to ease



notation we set q = q0. The secret key sk is a small element in R. A “fresh” ciphertext
encrypting µ′ ∈ Rp is an element ct′ = (c′0, c

′
1) in R2

qL such that

(c′0 + sk · c′1 (mod qL)) (mod p) = µ′.

After the evaluation of L levels of multiplication one obtains a ciphertext ct = (c0, c1)
in R2

q , encrypting a plaintext µ, such that

(c0 + sk · c1 (mod q)) (mod p) = µ.

At this point to perform further calculations one needs to bootstrap, or recrypt, the
ciphertext to one of a higher level.

Assume for the moment that each plaintext only encodes a single element of Zp, i.e.
each plaintext is a constant polynomial in polynomial basis for Rp. To perform boot-
strapping we need to place a “hint” in the public key pk (usually an encryption of sk at
level L), which allows the following operations. Firstly, we can evaluate homomorphi-
cally a function dec-eval which takes ct and the “hint”, and outputs a representation of
the Zq element corresponding to the constant term of the element c0 + sk · c1 (mod q).
This representation is an encryption of an element in G, i.e. dec-eval also evaluates the
rep map as well as the decryption map. Then we apply, homomorphically, the function
red to this representation to obtain a fresh encryption of the plaintext. Since to homo-
morphically evaluate red we need the input to red to be defined over the plaintext space,
this means the representation of Zq must be defined over Fp. One is then left with the
task of extending such a procedure to packed ciphertexts.

In the original bootstrapping technique of Gentry [15], implemented in [16], the
function dec-eval is obtained from a process of bit-decomposition. Thus the represen-
tation G of Zq is the bit-representation of an integer in the range (−q/2, . . . , q/2], i.e.
we use a representation defined over F2. The function to evaluate red is then the circuit
which performs reduction modulo p. The extension of this technique to packed cipher-
texts, in the context of the Smart–Vercauteren SIMD optimisations [29] of Gentry’s
SHE scheme, was given in [30]. Due to the use of bit-decomposition techniques this
method is mainly suited to the case of p = 2, although one can extend it to other primes
by applying a p-adic decomposition and then using an arithmetic circuit to evaluate the
reduction modulo p map.

In [18] the authors present a bootstrapping technique, primarily targeted at the BGV
scheme, which does away with the need for evaluating the “standard” circuit for the re-
duction modulo pmap. This is done by choosing q close to a power of p, i.e. one selects
q = pt ± a for some t and a small value of a, typically a ∈ {−1, 1}. The paper [18]
expands on this idea for the case of p = 2, but the authors mention it can be clearly
extended to arbitrary p. The advantage is that the mapping red can now be expressed
as algebraic formulae; in fact formulae of multiplicative depth log2 q. The operation
dec-eval obtains the required representation for Zq by mapping it into Zpt+1 . The re-
sulting technique requires the extension of the modulus of the plaintext ring to pt+1

(for which all the required properties of Rp carry over, assuming that p does not ram-
ify). The extension to packed ciphertexts is performed using an elaborate homomorphic
evaluation of the Fourier Transform.



To enable the faster evaluation of this Fourier Transform step from [18], a method
for ring/field switching is presented in [17]. The technique of ring/field switching also
enables general improvements in efficiency as ciphertext noise grows. This enables the
ring R to be changed to a sub-ring S (both for the ciphertext and plaintext spaces). In
[1] this use of field switching is combined with the red map from [18] to obtain an
asymptotically efficient bootstrapping method for BGV style SHE schemes; although
the resulting technique does not fully map to our blueprint, as q = pv for some value of
v. In [28] this method is implemented, with surprisingly efficient runtimes, for the case
of plaintext space F2; i.e. p = 2 and no plaintext SIMD-packing is supported.

In another line of work, the authors of [2] and [8] present a bootstrapping technique
for the GSW [21] homomorphic encryption scheme. The GSW scheme is one based
on matrices, and this property is exploited in [2] by taking a matrix representation of
Zq and then expressing the map red via a very simple algebraic relationship on the
associated matrices. In particular the authors represent elements of Zq by matrices (of
some large dimension) over Fp.

Thus we see almost all bootstrapping techniques require us to come up with a rep-
resentation G of Zq for which there is an algebraic method over Fp to evaluate the
induced mapping red, from the said representation of Zq , to Zp. Since SHE schemes
usually homomorphically have add and multiply operations as their basic homomorphic
operations, this implies we are looking for representations of Z+

q as a subgroup of an
algebraic group over Fp.

Our Contribution. We return to consider the Ring-LWE based BGV scheme, and we
present a new bootstrapping technique with small depth growth, compared with previ-
ous methods, and which supports a larger choice of p and q. Instead of concentrating
on the case of plaintext moduli p such that a power of p is close to q, we look at a much
larger class of plaintext moduli. Recall the most efficient prior technique, based on [1]
and [18], requires a method whose multiplicative depth is O(log q), and for which q is
close to a power of p. As p increases the ability to select a suitable modulus q which is
both close to a power of p, is of the correct size for most efficient implementation (i.e.
the smallest needed to ensure security), and has other properties related to efficiency
(i.e. the ring Rq has a double-CRT representation as in [20]) diminishes.

To allow a wider selection for p we utilize two “new” (for bootstrapping) represen-
tations of the ring Zq , in much the same way as [2] used an Fp-matrix representation
(a.k.a. a linear algebraic group) of Z+

q . The first one, used for much of this paper for
ease of presentation, is based on a polynomial representation for Z+

q over Fp, the sec-
ond one (which is less efficient but allows a greater freedom in selecting q) is based
on a representation via elliptic curves. The evaluation of the mapping red using these
representations can then be done in expected multiplicative depth O(log p+ log log q),
i.e. a much shallower circuit than used in prior works, using polynomial interpolation
of the red map over the coefficients of the algebraic group.

To ensure this method works, and is efficient, we do not have completely free reign
in selecting q for the first polynomial representation. Whilst [18] required q = pt ± a,
for a small value of a, we instead will require that q divides

lcm
(
pk1 − 1, . . . , pkt − 1

)
,



for some pairwise co-prime values ki. Even with this restriction, the freedom on select-
ing q is much greater than for the method in [18], especially for large values of p. In
the second representation, described in Section 7, we simply need to find elliptic curves
over Fpki whose group order is divisible by ei where

∏
ei = q. For the elliptic curve

based version we do not need pairwise co-prime values of ki. Indeed on setting t = 1
we simply need one curve E(Fpk1 ) whose group order is divisible by q, which is highly
likely to exist, since p � q, by the near uniform distribution of elliptic curve group
orders in the Hasse interval.

Note also that, in the polynomial representation, one does not have complete free-
dom on selecting the ki values. If we let E =

∑
ki and M = 1

2

∑
ki · (ki + 1) then the

depth of the circuit (which is approximately log2 log2 q − log2 log2E) to evaluate red
will decrease as E grows, but the number of multiplications required, which is a mono-
tonically increasing function of M , will increase. Note, we can asymptotically make
M = O(

∑
ki · log ki) using FFT techniques, or M = O(

∑
k1.58i ) using Karatsuba

based techniques, but in practice the ki will be too small to make such optimization
fruitful. For the elliptic curve based version we replace the above E by E + 1 and we
replace M by a constant multiple of M . However, the depth required by our elliptic
curve based version increases.

Our method permits to bootstrap a certain number of packed ciphertexts in parallel,
using a form of p-adic decomposition and a matrix representation of the ciphertext ring,
combined with ring switching. The resulting depth depends only logarithmically on the
number of packed ciphertexts.

Overview and paper organization. Here we give a brief overview of the paper. In
Section 2 and 3 we recall the basic algebraic background required for our construction,
and the BGV SHE scheme from [5], respectively. Typically, the main technical difficult
in bootstrapping is to homomorphically evaluate in a efficient way the (mod p)-map
on the group Z+

q . In Section 4 we describe a simple way to evaluate the (mod p)-map
using a polynomial representation of the group G in Fig. 1. In Section 5 we prepare to
bootstrap packed ciphertexts and we show how to homomorphically evaluate a product
of powers of SIMD vectors. In particular we calculate the depth and the number of
multiplications required to compute this operation. Finally, in Section 6 we show how
to bootstrap BGV ciphertexts. We use a matrix representation of the product of two
elements in a ring and a single ring switching step in such a way that we can bootstrap
a number, say C, of packed ciphertexts in one step. We describe the homomorphic
evaluation of the decryption equation using the SIMD evaluation of the maps red and
rep. Using the calculation of Section 5, we can compute the depth and the number of
multiplications necessary to bootstrap C packed ciphertexts in parallel. In Section 7 we
give a different instantiation of our method using elliptic curves.

2 Preliminaries

Throughout this work vectors are written using bold lower-case letters, whereas bold
upper-case letters are used for matrices. We denote by Ma×b(K) the set of a × b di-
mensional matrices with entries in K. For an integer modulus q, we let Zq = Z/qZ



denote the quotient ring of integers modulo q, and Z+
q its additive group. This notation

naturally extends to the localisation Rq of a ring R at q.

2.1 Algebraic Background

Let m be a positive integer we define the mth cyclotomic field to be the field K =
Q[X]/Φm(X), where Φm(X) is the mth cyclotomic polynomial. Φm(X) is a monic
irreducible polynomial over the rational, and K is a field extension of degreeN = φ(m)
over Q since Φm(X) has degree N . Let ζm be an abstract primitive mth roots of
unity, we have that K ∼= Q(ζm) by identifying ζm with X . In the same way, let
us denote by R the mth cyclotomic ring Z[ζm] ∼= Z[X]/Φm(X), with “power ba-
sis” {1, ζm, . . . , ζN−1m }. The complex embeddings of K are σi : K → C, defined by
σi(X) = ζim, i ∈ Z∗m. In particular K is Galois over Q and Gal(Q(ζm)/Q) ∼= Z∗m. As
a consequence we can define the Q-linear (field) trace TrK/Q : K → Q as the sum of
the embeddings σi, i.e. TrK/Q(a) =

∑
i∈Z∗m

σi(a) ∈ Q. Concretely, these embeddings
map ζm into each of its conjugates, and they are the only field homomorphisms from
K to C that fix every element of Q. The canonical embedding σ : K → CN is the
concatenation of all the complex embeddings, i.e. σ(a) = (σi(a))i∈Z∗m , a ∈ K.

Looking ahead, we will use the ring R and its localisation Rq , for some modulus q.
Given a polynomial a ∈ R, we denote by ‖a‖∞ = max0≤j≤N−1 |aj | the standard l∞-
norm. All estimates of noise are taken with respect to the canonical embedding norm
‖a‖can∞ = ‖σ(a)‖∞, a ∈ R. When considering short elements in Rq , we define short in
terms of the following quantity:

|a|canq = min{‖a′‖can∞ : a′ ∈ R and a′ ≡ a mod q}.

To map from norms in the canonical embedding to norms on the coefficients of the
polynomial defining the elements of R, we have ‖a‖∞ ≤ cm · ‖a‖can∞ , where cm is the
ring constant. For more details about cm see [13]. Note, if the dual basis techniques
of [26] are used, then one can remove the dependence on cm. However, for ease of
exposition we shall use only polynomial basis in this work.

Let m′ be a positive integer such that m′|m. As before we define K′ ∼= Q(ζm′) and
S ∼= Z[ζm′ ], such that K′ has degree n = φ(m′) over Q and Gal(K′/Q) ∼= Z∗m′ . It is
trivial to show that K and R are a field and a ring extension of K′ and R′, respectively,
both of dimension N/n. In particular we can see S as a subring of R via the ring
embedding that maps ζm′ 7→ ζ

m/m′

m .
It is a standard fact that if Q ⊆ K′ ⊆ K is a tower of number field, then TrK/Q(a) =

TrK′/Q(TrK/K′(a)), and that all the K′-linear maps L : K→ K′ are exactly the maps of
the form TrK/K′(r · a), for some r ∈ K.

2.2 Plaintext Slots

Let p be a prime integer, coprime to m, and Rp the localisation of R at p. The polyno-

mial Φm(X) factors modulo p into `(R) irreducible factors, i.e. Φm(X) ≡
∏`(R)

i=1 Fi(X)
(mod p). Each Fi(X) has degree d(R) = φ(m)/`(R), where d(R) is the multiplicative



order of p in Z∗m. Looking ahead, each of these `(R) factors corresponds to a “plaintext
slot”, i.e.

Rp ∼= Zp[X]/F1(X)× · · · × Zp[X]/F`(R)(X) ∼= (F
pd

(R) )`
(R)

.

More precisely, we have `(R) isomorphismsψi : Zp[X]/Fi(X)→ F
pd

(R) , i = 1, . . . , `(R),

that allow to represent `(R) plaintext elements of Fp(d) as a single element in Rp. By
the Chinese Remainder Theorem, addition and multiplication correspond to SIMD op-
erations on the slots and this allows to process `(R) input values at once.

2.3 Ring Switching

As mentioned in the introduction, our technique uses a method for ring/field switching
from [17] so as to aid efficiency. We use two different cyclotomic rings R and S such
that S ⊆ R. This procedure permits to transform a ciphertext ct ∈ (Rq)

2 corresponding
to a plaintext µ ∈ Rp with respect to a secret key sk ∈ R, into a ciphertext ct′ ∈ (Sq)

2

corresponding to a plaintext µ′ ∈ Sp with respect to a secret key sk′ ∈ S. The security
of this method relies on the hardness of the ring-LWE problem in S ([25]). At a high
level the ring switching consists of three steps. Given an input ciphertext ct ∈ (Rq)

2:

– First, it switches the secret key; it uses the “classical” key-switching ([6],[5]), get-
ting a ciphertext c̄t ∈ (Rq)

2, still encrypting µ ∈ Rp, but with respect to a secret
key sk′ ∈ S.

– Second, it multiplies c̄t by a fixed element r ∈ R, which is determined by a S-
linear function L : Rp → Sp corresponding to the induced projection function
P : (F

pd
(R) )`

(R) → (F
pd

(S) )`
(S)

(see [17] for details).

– Finally, it applies to c̄t the trace function TrR/S : R→ S. In such a way the output
of the ring-switching is a ciphertext ct ∈ S with respect to the secret key sk′ and
encrypting the plaintext µ′ = L(µ).

We conclude this section noting that, while big-ring ciphertexts correspond to `(R)

plaintext slots, small-ring ciphertexts only correspond to `(S) ≤ `(R) plaintext slots.
The input ciphertexts to our bootstrapping procedure are defined over (Sq)

2, and so
are of degree n and contain `(S) slots. We take `(R)/n of these ciphertexts and use the
dec-eval map to encode the coefficients of the plaintext polynomials in the slots of a
single big-ring ciphertext. Eventually, via ring switching and polynomial interpolation,
we return to `(R)/n ciphertexts which have been bootstrapped and are at level one
(or more). These fresh ciphertexts may be defined over the big ring or the small ring
(depending when ring switching occurs). However, our parameter estimates imply that
ring switching is best performed at the lowest level possible, and so our bootstrapped
ciphertexts will be in the big ring. We could encode all of the slots of the bootstrapped
ciphertexts in a big-ring single ciphertext, or not, depending on the application, since
slot manipulation is a linear operation.



3 The BGV Somewhat Homomorphic Encryption Scheme

In this section we outline what we need about the BGV SHE scheme [5]. As anticipated
in Section 2, we present the scheme with the option of utilizing two rings, and hence at
some point we will make use of the ring/field switching procedure from [17]. We first
define two rings R = Z[X]/F (X) and S = Z[X]/f(X), where F (X) (resp. f(x))
is an irreducible polynomial over Z of degree N (resp. n). In practice both F (X) and
f(X) will likely be cyclotomic polynomials. We assume that n dividesN , and so here is
an embedding ι : S −→ R which maps elements in S to their appropriate equivalent in
R. The map ι can be expressed as a linear mapping on the coefficients of the polynomial
representation of the elements in S, to the coefficients of the polynomial representation
of the elements in R. In this way we can consider S to be a subring of R.

Let Rq (resp. Sq) denote the localisation of R (resp S) at q, i.e. Zq[X]/F (X) (resp.
Zq[X]/f(X)), which can be constructed for any positive integer q. Let p be a prime
number, which does not ramify in either R or S. Since the rings are Galois, the ring Rp
(resp. Sp) splits into `(R) (resp. `(S)) “slots”; with each slot being a finite field extension
of Fp of degree d(R) = N/`(R) (resp. d(S) = n/`(S)). We make the assumption that n
divides `(R). This is not strictly necessary but it ensures that we can perform bootstrap-
ping of a single ciphertext with the smallest amount of memory. In fact our method will
support the bootstrapping of `(R)/n ciphertexts in parallel.

There will be two secret keys for our scheme; depending on whether the cipher-
texts/plaintexts are associated with the ring R or the ring S. We denote these secret
keys by sk(R) and sk(S), which are “small” elements in the ring R (resp. S). The mod-
ulus q = q0 = p0 will denote the smallest modulus in the set of BGV levels. Fresh
ciphertexts are defined for the modulus Q = qL =

∏L
i=0 pi and live in the ring R2

Q

(thus at some point we not only perform modulus switching but also ring switching).
We assume L1 levels are associated with the big ring R and L2 levels are associated
with the small ring S, hence L1+L2 = L (level zero is clearly associated with the small
ring S, but we do not count it in the number of levels in L2). Thus we encrypt at level
L; perform standard homomorphic operations down to level zero, with a single field
switch at level L2 +1. For ease of analysis we assume no multiplications are performed
at level L2 + 1. This means that we can evaluate a depth L− 1 circuit.

A ciphertext at level i > L2, encrypting a message µ ∈ Rp, is a pair ct = (c0, c1) ∈
R2
qi , where qi =

∏i
j=0 pj , such that

(
c0 + sk(R) · c1 (mod qi)

)
(mod p) = µ.

We let Encpk(µ) denote the encryption of a message µ ∈ Rp, this produces a ciphertext
at level L. A similar definition holds for ciphertexts at level i < L2, for messages
in Sp and secret keys/ciphertexts elements in Sqi . When performing a ring switching
operation between levels L2 + 1 and L2, the `(R) plaintext slots, associated with the
input ciphertext at level L2 + 1, become associated with `(R)/`(S) distinct ciphertexts
at level L2.



We want to “bootstrap” a set of BGV ciphertexts. Each of these ciphertexts is a pair
ctj = (c

(j)
0 , c

(j)
1 ) ∈ S2

q , for j = 1, . . . , `(R)/n, such that(
c
(j)
0 + sk(S) · c(j)1 (mod q)

)
(mod p) = µj , for j = 1, . . . , `(R)/n.

4 Evaluating the Map red ◦ rep : Z+
q −→ Fp (Simple Version)

As explained in the introduction at the heart of most bootstrapping procedures is a
method to evaluate the induced mapping red ◦ rep : Z+

q −→ Fp. In this section we
present our simpler technique for doing this based on polynomials over Fp, in Section
7 we present a more general (and complicated in terms of depth) technique based on
elliptic curves. The key, in this and in all techniques, is to find a representation G for
Z+
q for which the reduction modulo p map can be evaluated algebraically over Fp. This

means that the representation of Zq must defined over Fp. Prior work has looked at the
bit-representation (when p = 2), the p-adic representation and a matrix representation;
we use a polynomial representation.

We select a coprime factorization q =
∏t
i=1 ei (with the ei not necessarily prime,

but pairwise coprime), such that ei divides pki − 1 for some ki. Since F∗
pki

is cyclic
we know that F∗

pki
has a subgroup of order ei. We fix a polynomial representation of

Fpki , i.e. an irreducible polynomial fi(x) of degree ki such that Fpki = Fp[x]/fi(x).
Let gi ∈ Fpki denote a fixed element of order ei in Fpki .

By the Chinese Remainder Theorem we therefore have a group embedding

rep :

{
Z+
q −→ G =

∏t
i=1 F∗pki

a 7−→ (ga11 , . . . , gatt )
(1)

where ai = a (mod ei). Without loss of generality we can assume that the ki are
also coprime, by modifying the decomposition of q into coprime eis. Given this group
representation of Z+

q in G, addition in Z+
q translates into multiplication in G. With one

addition in Z+
q translating into M = 1

2

∑t
i=1 ki · (ki + 1) multiplications in Fp (and a

comparable number of additions; assuming school book multiplication is used). Each
element in the image of rep requires E =

∑t
i=1 ki elements in Fp to represent it.

There will be a map red : G → Fp, such that red ◦ rep is the reduction modulo p
map; and red can be defined by algebraically from the coefficient representation of G
to Fp. Here algebraically refers to algebraic operations over Fp. An arbitrary algebraic
expression onE variables of degree dwill contain d+ECd terms. Thus, by interpolating,
we expect the degree d of the map red to be the smallest d such that d+ECd > q, which
means we expect we expect d ≈ E · (2log(q)/E − 1). Thus the larger E is, the smaller
d will be. This interpolating function needs to be created once and for all for any given
set of parameters, thus we ignore the cost in generating it in our analysis.

The algebraic circuit which implements the map red can hence be described as a
circuit of depth dlog2 de which requires D(E, d) = E+dCd − (E + 1) multiplications
(corresponding to the number of distinct monomials in E variables of degree between
two and d). In particular, by approximating E ≈ log2(q)/ log2(p), we obtain that the



circuit implementing the map red has depth dlog2 de = log2(p− 1) + log2(log2(q))−
log2(log2(p))).

We pause to note the following. By selecting a large finite field it would appear at
first glance that one can reduce our degree d even further. This however comes at the
cost of having more terms, i.e. a larger value of E. This in turn increases the overall
complexity of the method (i.e. the number of multiplications needed) but not the depth.

5 A Product of Powers of SIMD Vectors

Before proceeding with our method to turn the above methodology for reduction mod-
ulo p into a bootstrapping method for our set of BGV ciphertexts, we first examine how
to homomorphically compute the following function

v ·
λ∏
k=0

vMk

k ,

where each v and vk, k = 0, . . . , λ, represents a set of E ciphertexts, each of which
encode (in a SIMD manner) `(R) elements in Fp. The multiplication of two such sets
of E ciphertexts is done with respect to the multiplication operation in G, and thus
requires M homomorphic multiplications (this is for our simple variation of red, for
the variant based on elliptic curve the number of ciphertexts and the complexity of the
group operation in G increase a little). The values Mk are matrices in M`(R)×`(R)(Fp).
By the notation u = vM, where M = (mi,j), we mean the vector with components

ui =

`(R)∏
j=1

v
mi,j

j , i ∈ {1, . . . , `(R)}.

Notice that each ui and vj is a vector of E elements in Fp representing a single element
in G. In what follows we divide this operation into three sub-procedures and compute
the number of multiplications, and the depth required, to evaluate the function.

5.1 SIMD Raising of an Encrypted Vector to the Power of a Public Vector
The first step is to take a vector v which is the SIMD encryption of E sets of `(R)

elements in Fp, i.e. it represents `(R) elements in G. We then raise v to the power of
some public vector c = (c1, . . . , c`(R)), i.e. we want to compute

x = vc.

In particular v actually consists of E vectors each with `(R) components in their slots.
We write

v = (v1,0, . . . ,v1,k1−1, . . . ,vt,0, . . . ,vt,kt−1).

Note, multiplying such a vector by another vector of the same form requires M homo-
morphic multiplications and depth 1. We first write

c = c0 + 2 · c1 + . . .+ 2dlog2 pe · cdlog2 pe,

where ci ∈ {0, 1}`
(R)

. We let c∗i denote the bitwise complement of ci. Thus to compute
x = vc we use the following three steps:



Step 1: Compute v2i for i = 1, . . . , dlog2 pe, by which we mean every element in v
is raised to the power 2i. This requires dlog2 pe ·M homomorphic multiplications and
depth dlog2 pe.

Step 2: For i ∈ {0, . . . , dlog2 pe}, j ∈ {1, . . . , t} and k = {0, . . . , kt − 1} compute,

w
(i)
j,k =


Encpk(ci) · v2i

j,k k 6= 0,

Encpk(ci) · v2i

j,k + Encpk(c
∗
i ) k = 0.

Where Encpk(ci) means encrypt the vector ci so that the jth component of ci is mapped
to the jth plaintext slot of the ciphertext. The above procedure selects the values which
we want to include in the final product. This involves a homomorphic multiplication
by a constant in {0, 1} and the homomorphic addition of a constant in {0, 1} for each
entry, and so is essentially fast (and moderately bad on the noise, so we will ignore this
and call it depth 1/2).

Step 3: We now compute x as

x =

dlog2 pe∏
i=0

w(i),

where we think of w(i) as a vector of E SIMD encryptions. This step (assuming a
balanced multiplication tree) requires depth dlog2dlog2 pee and M · dlog2 pe multipli-
cations.

Executing all three steps above therefore requires a depth of 1
2+dlog2 pe+dlog2dlog2 pee,

and 2 ·M · dlog2 pe multiplications.

5.2 Computing u = vM

Given the previous subsection, we can now evaluate ui =
∏`(R)

j=1 v
mi,j

j , i = 1, . . . , `(R),
where v is a SIMD vector consisting of E vectors encoding `(R) elements, as is the
output u. For this we use a trick for systolic matrix-vector multiplication in [22], but
converted into multiplicative notation.

We write the matrix M as `(R) SIMD vectors di, for i = 1, . . . , `(R), so that di,j =
mj,(j+i−1) (mod `(R)) for j = 1, . . . , `(R). We let v ≪ i denote the SIMD vector v
rotated left i positions (with wrap around). Since v actually consists ofE SIMD vectors
this can be performed using time proportional toE multiplications, but with no addition
to the overall depth (it is an expensive in terms of time, but cheap in terms of noise. See
the operations in Table 1 of [22]).



Step 1: First compute, for i = 1, . . . , `(R),

xi = (v ≪ (i− 1))di

using the method previously described in Subsection 5.1. This requires a depth of 1
2 +

dlog2 pe+ dlog2dlog2 pee, and essentially `(R) · (E + 2 ·M · dlog2 pe) multiplications.

Step 2: All we need now do is compute

u =

`(R)∏
i=1

xi.

This requires (assuming a balanced multiplication tree) a depth of dlog2 `
(R)e and `(R)

multiplications in G.

Thus far, for the operations in Subsection 5.1 and this subsection we have used a total
depth of 1

2 + dlog2 `
(R)e+ dlog2 pe+ dlog2dlog2 pee and a cost of `(R) · (M +E + 2 ·

M · dlog2 pe) multiplications.

5.3 Computing v ·
∏λ
k=0 v

Mk

k

To evaluate our required output we need to execute the above steps λ times, in order to
obtain the elements which we then multiply together. Thus in total we have a depth of

1

2
+ dlog2 `

(R)e+ dlog2 pe+ dlog2dlog2 pee+ dlog2 λe

and a cost of
λ ·
(
M + `(R) · (M + E + 2 ·M · dlog2 pe)

)
multiplications.

6 Bootstrapping a Set of Ciphertexts

To perform our bootstrapping operation we introduce another representation, this time
more standard. This is the matrix representation of the ring Sq . Since Sq can be con-
sidered a vector space over Zq by the usual polynomial embedding, we can associate
an element a to its coefficient vector a. We can also associate an element b to a n × n
matrix Mb over Zq such that the vector

c = Mb · a

is the coefficient vector of c where c = a · b. This representation, which associates an
element in Sq to a matrix, is called the matrix representation.

Recall we want to bootstrap `(R)/n ciphertexts in one go. We also recall the maps
red and rep from Section 4 and define τ = red ◦ rep to be the reduction modulo p map



on Z+
q . To do this we can first extend rep and τ to the whole of S+

q by linearity, with

images in Gn and Fnp respectively. Similarly, we can extend rep and τ to S`
(R)/n
q to

obtain maps rep : (S+
q )`

(R)/n −→ G`(R)

and τ : (S+
q )`

(R)/n −→ F`(R)

p , as in Section
4. Again this induces a map red, which is just the SIMD evaluation of red on the image
of rep in G`(R)

. We let repj,i denote the restriction of rep to the (i− 1)th coefficient of
the j-th Sq component, for 1 ≤ i ≤ n and 1 ≤ j ≤ `(R)/n.

We can then rewrite the decryption equation of our `(R)/n ciphertexts as

((
c
(j)
0 + sk(S) · c(j)1 (mod q)

)
(mod p))

`(R)/n
j=1

= red
(
rep
(
c
(1)
0 + sk(S) · c(1)1 , . . .

. . . , c
(`(R)/n)
0 + sk(S) · c(`

(R)/n)
1

))
= red (rep (x)) ,

where x is the vector consisting of Sq elements c(j)0 +sk(S) ·c(j)1 , for j = 1, . . . , `(R)/n.
Thus, if we can compute rep(x), then to perform the bootstrap we need only evaluate (in
`(R)-fold SIMD fashion) the arithmetic circuit of multiplicative depth dlog2 de repre-
senting red. Since we have enough slots, `(R), in the large plain text ring, we are able to
do this homomorphically on fully packed ciphertexts. The total number of monomials
in the arithmetic circuit (i.e. the multiplications we would need to evaluate red) being
D(E, d).

6.1 Homomorphically Evaluating rep(x)

We wish to homomorphically evaluate rep(x) such that the output is a set of E cipher-
texts and if we took the i+ (j− 1) · `(R)/nth slot of each plaintext we would obtain the
E values which represent repj,i(x). Let λ = dlog q/ log pe. We add to the public key of
the SHE scheme the encryption of rep(pk ·sk(S), . . . , pk ·sk(S)) for k = 0, . . . , λ (where
each component is copied `(R)/n times). For a given k this is a set of E ciphertexts,
such that if we took the i + (j − 1) · `(R)/nth slot of each plaintext we would obtain
the E values which represent repj,i(p

k · sk(S)). Let the resulting vector of ciphertexts
be denoted ctk, for k = 1, . . . , λ, where ctk is a vector of length E.

Let M
c
(j)
1

be the matrix representation of the second ciphertext component c(j)1 of
the j-th ciphertext that we want to bootstrap. We write

M
c
(j)
1

=

λ∑
k=0

pk ·M(j,k)
1



where M
(j,k)
1 is a matrix with coefficients in {0, . . . , p− 1}. We then have that

c
(j)
0 + sk(S) · c(j)1 = c

(j)
0 +

λ∑
k=0

(
pk ·M(j,k)

1 · sk(S)
)

= c
(j)
0 +

λ∑
k=0

(
M

(j,k)
1 · (pk · sk(S))

)
,

where sk(S) is the vector of coefficients of the secret key sk(S).

We let M(k)
1 =

⊕`(R)/n
j=1 M

(j,k)
1 = diag(M

(1,k)
1 , . . . ,M

(`(R)/n,k)
1 ). We now apply

rep to both sides, which means we need to compute homomorphically the ciphertext
which represents

rep
(
c
(1)
0 , . . . , c

(`(R)/n)
0

)
·
λ∏
k=0

rep
(
pk · sk(S), . . . , pk · sk(S)

)M(k)
1

.

We are thus in the situation described in Section 5. Thus the homomorphic evaluation
of rep(x) requires a depth of

1

2
+ dlog2 `

(R)e+ dlog2 pe+ dlog2dlog2 pee+ dlog2 λe

and
λ ·
(
M + `(R) · (M + E + 2 ·M · dlog2 pe)

)
multiplications.

6.2 Repacking

At this point in the bootstrapping procedure (assuming for simplicity that a ring switch
has not occured) we have a single ciphertext ct whose `(R) slots encode the coefficients
(over the small ring) of the `(R)/n ciphertexts that we are bootstrapping. Our task is
now to extract these coefficients to produce a ciphertext (or set of ciphertexts) which
encode the same data. Effectively this is the task of performing `(R)/n inverse Fourier
transforms (a.k.a interpolations) over S in parallel, and then encoding the result as ele-
ments in R via the embedding ι : S −→ R.

There are a multitude of ways of doing this step (bar performing directly an in-
verse FFT algorithm), for example the general method of Alperin-Sheriff and Peikert
[1] could be applied. This makes the observation that the FFT to a vector of Fourier
coefficients x is essentially applying a linear operation, and hence we can compute it
by taking the trace of a value α · x for some fixed constant α.

We select a more naive, and simplistic approach. Suppose x is the vector which is
encoded by the input ciphertext. We first homomorphically compute

b1, . . . ,b`(R) = replicate(x).



Where replicate(x) is the Full Replication algorithm from [22]. This produces `(R)

ciphertexts, the ith of which encodes the constant polynomial over Rp equal to the i
slot in x. In [22] this is explained for the case where `(R) = N , but the method clearly
works when `(R) < N . The method requires time O(`(R)) and depth O(log log `(R)).

Given the output b1, . . . ,b`(R) , which encode the coefficients of the `(R)/n original
plaintext vectors, we can now apply ι (which recall is a linear map) to obtain any linear
function of the underlying plaintexts. For example we could produce `(R)/n ciphertexts
each of which encodes one of the original plaintexts, or indeed a single ciphertext which
encodes all of them.

So putting all of the sub-procedures for bootstrapping together, we find that we can
bootstrap `(R)/n ciphertexts in parallel using a procedure of depth of

dlog2 de+
1

2
+ dlog2 `

(R)e+ dlog2 pe+ dlog2dlog2 pee+ dlog2 λe+O(log2 log2 `
(R))

and a cost of

D(E, d) + λ ·
(
M + `(R) · (M + E + 2 ·M · dlog2 pe)

)
+O(`(R))

multiplications, where d ≈ (log2 q) · (p − 1)/(log2 p), E =
∑t
i=1 ki and M = 1

2 ·∑t
i=1 ki · (ki + 1).

7 Elliptic Curves Based Variant

We now extend our algorithm from representations in finite fields to representations in
elliptic curve groups. Recall we need to embed Z+

q into a group defined over Fp whose
operations can be expressed in terms of the functionality of the homomorphic encryp-
tion scheme. This means that the range of the representation should be an algebraic
group. We have already seen linear algebraic groups (a.k.a. matrix representations) used
in this context in work of Alperin-Sherriff and Peikert, thus as it is natural (to anyone
who has studied algebraic groups) to consider algebraic varieties. The finite field case
discussed in the previous sections corresponds to the genus zero case, thus the next
natural extension would be to examine the genus one case (a.k.a. elliptic curves).

The reason for doing this is the value of q from Table 2 compared to the estimated
values from Table 1 are far from optimal. This is because we have few possible group
orders of F∗

pki
. The standard trick in this context (used for example in the ECM fac-

torization method, the ECPP primality prover, or even indeed in all of elliptic curve
cryptography) is to replace the multiplicative group of a finite field by an elliptic curve
group.

Just as before we select a coprime factorization q =
∏t
i=1 ei (with the ei not nec-

essarily prime, but pairwise coprime). But now we require that ei divides the order of
an elliptic curve Ei defined over pki . Since the group orders of elliptic curves are dis-
tributed roughly uniformly within the Hasse interval it is highly likely that there are
such elliptic curves. Determining such curves may however be a hard problem for a
fixed value of q; a problem which arose previously in cryptography in [3]. However,



since we have some freedom in selecting q in our scheme we can select q and the Ei
simultaneously, and hence finding the elliptic curves will not be a problem.

Again, we fix a polynomial representation of Fpki , i.e. an irreducible polynomial
fi(x) of degree ki such that Fpki = Fp[x]/fi(x), and now we let Gi ∈ Ei(Fpki )
denote a fixed point on the elliptic curve of order ei. We now can translate our method
into this new setting. For example Equation (1) translates to

rep :

{
Z+
q −→ G =

∏t
i=1Ei(Fpki )

a 7−→ ([a1]G1, . . . , [at]Gt)
(2)

where ai = a (mod ei).
Homomorphic calculations in G are then performed using Jacobian Projective co-

ordinates. This means that general point addition can be performed with multiplicative
depth five andM ′ = 16·M homomorphic multiplications. Our method then proceeds as
before, except we replace homomorphic multiplication in F∗

pki
with Jacobian projective

point addition in Ei(Fpki ).
The computation of red is then performed as follows. We first homomorphically

map the projective points in G into an affine point. Each such conversion, in component
i, requires an Fpki -field inversion and three Fpki -field multiplications. If we let DInvi
(resp. MInvi) denote the depth (resp. number of multiplications in Fp) of the circuit to
invert in the field Fpki . This implies that the conversion of a set of projective points in
G to a set of affine points requires depth 3 + maxti=1 DInvi and 4 ·M +

∑t
i=1 MInvi

homomorphic multiplications over Fp.
Given this final conversion to affine form, we have effectively E′ = E + t, as

opposed to E, variables defining the elements in G. The extra t variables coming from
the y-coordinate; it is clear we only need to store t such variables as opposed to E such
variables as each x coordinate corresponds to at most two y-coordinates and hence a
naive form of homomorphic point compression can be applied.

This means the map red (after the conversion to affine coordinates so as to reduce
the multiplicative complexity of the interpolated polynomial) can be expressed as a
degree d′ map; where we expect d′ to be the smallest d′ such that E

′+d′Cd′ > q, which
means we expect d′ ≈ E′ ·(2log(q)/ log(E′)−1). This means, as before, that the resulting
depth will be dlog2 d

′e and the number of multiplications will be D(E′, d′).
So putting all of the sub-procedures for bootstrapping together, we find that we can

use the elliptic curve variant of our bootstrapping method to bootstrap `(R)/n cipher-
texts in parallel using a procedure of depth of

dlog2 d
′e+ 5 ·

(
1

2
+ dlog2 `

(R)e+ ·dlog2 pe+ ·dlog2dlog2 pee+ dlog2 λe
)

+ 3 +
t

max
i=1

DInvi +O(log2 log2 `
(R))

and

D(E′, d′) + λ ·
(
M ′ + `(R) · (M ′ + 3 · E + 2 ·M ′ · dlog2 pe)

)
+ 4 ·M +

t∑
i=1

MInvi +O(`(R))



multiplications, where d′ ≈ log q/ logE′, E′ =
∑t
i=1(ki + 1), M =

∑t
i=1 ki · (ki +

1)/2 and M ′ = 16 ·M . Note the 3 · E term comes from needing to rotate the three
projective coordinates.

However, the ability to use arbitrary q comes at a penalty; the depth required has
dramatically increased due to the elliptic curve group operations. For example if we
consider a prime p of size roughly 216 and k = 2, then we need about 200 levels, as
opposed to 56 with the finite field variant. This then strongly influences the required
value of N , pushing it up from around 85, 000 to 220, 000. Thus in practice the elliptic
curve variant is unlikely to be viable.
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A Parameter Calculation

In [20] a concrete set of parameters for the BGV SHE scheme was given for the case of
binary message spaces, and arbitrary L. In [12] this was adapted to the case of message
space Rp for 2-power cyclotomic rings, but only for the schemes which could support
one level of multiplication gates (i.e. for L = 1). In [11] these two approaches were
combined, for arbitrary L and p, and the analysis was (slightly) modified to remove
the need for a modulus switching upon encryption. In this section we modify again the
analysis of [11] to present an analysis which includes a step of field switching from [17].
We assume in this section that the reader is familiar with the analysis and algorithms
from [20,11,17].

Our analysis will make extensive use of the following fact: If a ∈ R be chosen from
a distribution such that the coefficients are distributed with mean zero and standard
deviation σ, then if ζm is a primitive mth root of unity, we can use 6 ·σ to bound a(ζm)
and hence the canonical embedding norm of a. If we have two elements with variances
σ2
1 and σ2

2 , then we can bound the canonical norm of their product with 16 · σ1 · σ2.

Ensuring We Can Evaluate the Required Depth: Recall we have two rings R and
S of degree N and n respectively. The ring S is a subring of R and hence n divides
N . We require a chain of moduli q0 < q1 . . . < qL corresponding to each level of
the scheme. We assume (for sake of simplicity) that qi/qi−1 = pi are primes. Thus
qL = q0 ·

∏i=L
i=1 pi. Also note, that as in [11], we apply a SHE.LowerLevel (a.k.a.

modulus switch) algorithm before a multiplication operation. This often leads to lower
noise values in practice (which a practical instantiation can make use of). In addition it
eliminates the need to perform a modulus switch after encryption, which happened in
[20].

We utilize the following constants described in [12], which are worked out for the
case of message space defined modulo p (the constants in [12] make use of an additional
parameter, arising from the key generation procedure. In our case we can take this
constant equal to one). In the following h is the Hamming weight of the secret keys
sk(R) and sk(S).

BClean =N · p/2 + p · σ ·
(

16 ·N√
2

+ 6 ·
√
N + 16 ·

√
h ·N

)
B

(R)
Scale =p ·

√
3 ·N ·

(
1 +

8

3
·
√
h

)



B
(S)
Scale =p ·

√
3 · n ·

(
1 +

8

3
·
√
h

)
B

(R)
Ks =p · σ ·N ·

(
1.49 ·

√
h ·N + 2.11 · h+ 5.54 ·

√
h+ 1.96

√
N + 4.62

)
B

(S)
Ks =p · σ · n ·

(
1.49 ·

√
h · n+ 2.11 · h+ 5.54 ·

√
h+ 1.96

√
n+ 4.62

)
As in [20] we define a small “wiggle room” ξ which we set to be equal to eight; this
is set to enable a number of additions to be performed without needing to individually
account for them in our analysis. These constants arise in the following way:

– A freshly encrypted ciphertext at level L has noise bounded by BClean.
– In the worst case, when applying SHE.LowerLevel to a (big ring) ciphertext at level
l > L2 + 1 with noise bounded by B′ one obtains a new ciphertext at level l − 1
with noise bounded by

B′

pl
+B

(R)
Scale.

– In the worst case, when applying SHE.LowerLevel to a (small ring) ciphertext at
level l ≤ L2 + 1 with noise bounded by B′ one obtains a new ciphertext at level
l− 1 with noise bounded by

B′

pl
+B

(S)
Scale.

– When applying the tensor product multiplication operation to (big ring) ciphertexts
of a given level l > L2 + 1 of noise B1 and B2 one obtains a new ciphertext with
noise given by

B1 ·B2 +
B

(R)
Ks · ql
PR

+B
(R)
Scale,

where PR is a value to be determined later.
– When applying the tensor product multiplication operation to (small ring) cipher-

texts of a given level l ≤ L2 of noise B1 and B2 one obtains a new ciphertext with
noise given by

B1 ·B2 +
B

(S)
Ks · ql
PS

+B
(S)
Scale,

where again PS is a value to be determined later.

A general evaluation procedure begins with a freshly encrypted ciphertext at level
L with noise BClean. When entering the first multiplication operation we first apply a
SHE.LowerLevel operation to reduce the noise to a universal bounds.B(R), whose value
will be determined later. We therefore require

ξ ·BClean

pL
+B

(R)
Scale ≤ B

(R),

i.e.
pL ≥

8 ·BClean

B(R) −B(R)
Scale

. (3)



We now turn to dealing with the SHE.LowerLevel operations which occurs before a
multiplication gate at level l ∈ {1, . . . , L− 1} \ {L2 + 1}. In what follows we assume
l > L2 + 1, to obtain the equations for l ≤ L2 one simply replaces the R-constants
by their equivalent S-constants. We perform a worst case analysis and assume that
the input ciphertexts are at level l. We can then assume that the input to the tensoring
operation in the previous multiplication gate (just after the previous SHE.LowerLevel )
was bounded byB(R), and so the output noise from the previous multiplication gate for
each input ciphertext is bounded by (B(R))2 + B

(R)
Ks · ql/PR + B

(R)
Scale. This means the

noise on entering the SHE.LowerLevel operation is bounded by ξ times this value, and
so to maintain our invariant we require

ξ · (B(R))2 + ξ ·B(R)
Scale

pl
+
ξ ·B(R)

Ks · ql
PR · pl

+B
(R)
Scale ≤ B

(R).

Rearranging this into a quadratic equation in B(R) we have

ξ

pl
· (B(R))2 −B(R) +

(
ξ ·B(R)

Scale

pl
+
ξ ·B(R)

Ks · ql−1
PR

+B
(R)
Scale

)
≤ 0.

We denote the constant term in this equation by Rl−1. We now assume that all primes
pl are of roughly the same size (for the ring R), and noting the we need to only satisfy
the inequality for the largest modulus l = L− 1 (resp. l = L2 for the ring S). We now
fix RL−2 by trying to ensure that RL−2 is close to B(R)

Scale · (1 + ξ/pL−1) ≈ B
(R)
Scale, so

we set RL−2 = (1− 2−3) ·B(R)
Scale · (1 + ξ/pL−1), and obtain

PR ≈ 8 ·
ξ ·B(R)

Ks · qL−2
B

(R)
Scale

, (4)

since B(R)
Scale · (1 + ξ/pL−1) ≈ B(R)

Scale. Similarly for the small ring we find

PS ≈ 8 ·
ξ ·B(S)

Ks · qL2−1

B
(S)
Scale

, (5)

To ensure we have a solution we require 1 − 4 · ξ · RL−2/pL−1 ≥ 0, (resp. 1 − 4 · ξ ·
RL2−1/pL2

≥ 0) which implies we should take, for i = 2, . . . , L− 1,

pi ≈

{
4 · ξ ·RL−2 ≈ 32 ·B(R)

Scale = pR For i = L2 + 2, . . . , L− 1,

4 · ξ ·RL2−1 ≈ 32 ·B(S)
Scale = pS For i = 1, . . . , L2.

(6)

We now examine what happens at levelL2+1 when we perform a ring switch operation.
Following Lemma 3.2 of [17] we know the noise increases by a factor of (p/2)·

√
N/n.

The noise output from the previous multiplication gate is bounded by (B(R))2 +B
(R)
Ks ·



qL2+2/PR +B
(R)
Scale. Note that

B
(R)
Ks · qL2+2

PR
≈
B

(R)
Ks · qL2+2 ·B(R)

Scale

8 · ξ ·B(R)
Ks · qL−2

≈
B

(R)
Scale

8 · ξ · pL1−4
R

Thus the we know that the noise after the ring switch operation is bounded by

BRingSwitch =
p

2
·
√
N/n ·

(
(B(R))2 +

B
(R)
Scale

8 · ξ · pL1−4
R

+B
(R)
Scale

)
.

We now modulus switch down to level L2, and obtain a ciphertext (over the ring S)
with noise bounded by

BRingSwitch

pL2+1
+B

(S)
Scale.

We would like this to be less than the universal bound B(S), which implies

pL2+1 ≥
BRingSwitch

B(S) −B(S)
Scale

. (7)

We now need to estimate the size of p0. Due to the above choices the ciphertext to which
we apply the bootstrapping has norm bound by B(S). This means that we require

q0 = p0 ≥ 2 ·B(S) · cm′ , (8)

to ensure a valid decryption/bootstrapping procedure. Recall cm′ is the ring constant for
the polynomial ring S and it depends only on m′ (see [13] for details).

Ensuring We Have Security: The works before [31,23], such as Lindner and Peikert
[24], did not include the rank of the lattice into account when estimating the cost of the
attacker. The reason is that the lattice rank appears to be only a second order term in
the cost of the attack. However, for applications such as FHE, the dimension is usually
very big, e.g. 216, and lattice algorithms are often polynomial in the rank. Therefore,
even as a second order term it can contribute significantly to the cost of the attack.
The largest modulus used in our big ring (resp. small ring) key switching matrices, i.e.
the largest modulus used in an LWE instance, is given by QL−1 = PR · qL−1 (resp.
QL2

= PS · qL2
).

We recall the approach of [31,23] here. First, fix some security level as measured
in enumeration nodes, e.g. 2128. Now, use estimates by Chen and Nguyen [9] are used
to determine the cost of running BKZ 2.0 for various block sizes β. Combining this
with the security level gives an upper bound on the rounds an attacker can perform,
depending on β. Then, for various lattice dimensions r, the BKZ 2.0 simulator by Chen
and Nguyen is used to determine the quality of the vector as measured by the root-
Hermite factor δ(β, r) = (‖b‖/vol(L)1/r)1/r. Now, the best possible root-Hermite
factor achievable by the attacker is given by δ(r) = minβ δ(β, r)



In LWE, the relevant parameters for the security are the ring dimension n (resp.N ),
the modulus Q = QL2

(resp. Q = QL−1) and the standard deviation σ. Note that in
most scenarios, an adversary can choose how many LWE samples he uses in his attack.
This number r is equal to the rank of the lattice. The distinguishing attack against LWE
uses a short vector in the dual SIS lattice to distinguish the LWE distribution from the
uniform distribution. More precisely, an adversary can distinguish between these two
distributions with distinguishing advantage ε if the shortest vector he can obtain (in
terms of its root-Hermite factor) satisfies

δ(r)r ·Qn/r−1 · σ <
√
− log(ε)/π.

It follows that in order for our system to be secure against the previously described
adversary, we need that

log2(Q) ≤ min
r>n

r2 · log2(δ(r)) + r · log2(σ/α)

r − n
, (9)

where α =
√
− log(ε)/π. See also[27,24,23] for more information. For every nwe can

now compute an upper bound on log2(q) by iterating the right hand side of Equation (9)
over m and selecting the minimum.

Putting it all together As in [20,12], we set σ = 3.2, B(R) = 2 · B(R)
Scale and B(S) =

2 · B(S)
Scale. From our equations (3), (4), (5), (6), (7), and (8) we obtain equations for pi

for i = 0, . . . , L, PR and PS in terms of n, N , L, h and the security level κ.

B Example Parameters

In Appendix A we present a calculation of suitable parameters for our scheme, and
the resulting complexity of the polynomial representation of red, here we work out a
concrete set of parameters for various plaintext moduli p.

We target κ = 128-bits of security, and set the Hamming weight h of the secret key
sk to be 64 as in [20,12]. On inputN and n the to the formulae in Appendix A we obtain
an upper bounds on log(QL−1) and log(QL2

). We now use equations (3)-(8) from the
Appendix for different values of the plaintext modulus p to obtain a lower bound on
log(QL−1) and log(QL2

). Then, we increase N and n until the lower bound on QL−1
and QL2 from the functionality is below the upper bound from the security analysis. In
this way we obtain lower bounds for N and n.

In Table 1 we consider four different values of p; for simplicity we also set t = 1 in
(1), i.e. G = F∗pk , for a suitable choice of k. After finding approximate values for N , n
and q we can then search for exact values ofN , n and q. More precisely, we are looking
for cyclotomic rings R and S such that the degree N = φ(m) of F (X) = Φm(X) and
n = φ(m′) of f(x) = Φm′(X) are larger than the bounds above and n divides both N
and `(R) (the number of plaintext slots associated with R). In addition we require that
q divides pk − 1. See Table 2 for some values.

Notice that the value of q is strongly influenced by the ring constant cm′ . In Table 1
we set cm′ = 1.28 (i.e. we assume the best case of m′ being prime), whereas in Table 2



Table 1. Lower bounds on N and n

p κ c = `(R)/n n ≈ N ≈ q ≈
2 128 1 860 23100 11637

2 24100

≈ 28 128 1 1040 51800 1635087
2 53100

3, 4, 56000
[5, . . . , 10] 57600

≈ 216 128 1 1300 96000 467989106
2, 3 98500

[4, . . . , 10] 103000

≈ 232 128 1 1750 181000 3.558467651 · 1013
2 183000

[3, . . . , 10] 185000

Table 2. A concrete set of cyclotomic rings with an estimation of the number of multiplications
and the depth required to perform our bootstrapping step

p m N = φ(m) m′ n = φ(m′) cm′ `
(R)/n k L # Mults q

2 31775 24000 1271 1200 3.93 1 16 23 ≈ 8.3 · 106 65535
32767 27000 1057 900 2.69 2 15 23 ≈ 1.02 · 107 32767

28 + 1 62419 51840 1687 1440 2.72 1 3 40 ≈ 4.6 · 106 4243648
91149 58080 1321 1320 1.28 1 3 39 ≈ 2.3 · 106 2121824
137384 63360 1321 1320 1.28 4 3 41 ≈ 3.5 · 106 2121824

216 + 1 113993 100800 2651 2400 2.9 1 2 56 ≈ 1.5 · 109 2147549184
160977 102608 2333 2332 1.28 2 2 58 ≈ 6.3 · 108 715849728
272200 108800 1361 1360 1.28 4 2 57 ≈ 4.8 · 108 536887296

232 + 15 198203 183040 2227 2080 3.6 1 2 79 ≈ 1.1 · 1014 414161297767368
202051 199872 2083 2082 1.28 4 2 79 ≈ 3.9 · 1013 50637664608480
352317 190512 2649 1764 1.81 6 2 82 ≈ 5.1 · 1014 50637664608480

we compute the actual value of the ring constant for each cyclotomic ring we consider.
For example for p = 2, in Table 1 we obtain an approximate value q ≈ 11637, but in
Table 2 we need a larger value due to the additional condition that q divides pk− 1, and
the ring constant, which is bigger than 1.27 for m′ = 1271 and m′ = 1057.


	Bootstrapping BGV Ciphertexts with a Wider Choice of p and q

