
Functional Signatures and Pseudorandom
Functions

Elette Boyle1,?, Shafi Goldwasser2,3,??, ? ? ?, and Ioana Ivan2

1 Technion – Israel Institute of Technology
eboyle@alum.mit.edu

2 MIT CSAIL
shafi@theory.csail.mit.edu, ioanai@mit.edu

3 Weizmann Institute of Science

Abstract. We introduce two new cryptographic primitives: functional
digital signatures and functional pseudorandom functions.
In a functional signature scheme, in addition to a master signing key that
can be used to sign any message, there are signing keys for a function f ,
which allow one to sign any message in the range of f . As a special case,
this implies the ability to generate keys for predicates P , which allow
one to sign any message m for which P (m) = 1.
We show applications of functional signatures to constructing succinct
non-interactive arguments and delegation schemes. We give several gen-
eral constructions for this primitive based on different computational
hardness assumptions, and describe the trade-offs between them in terms
of the assumptions they require and the size of the signatures.
In a functional pseudorandom function, in addition to a master secret key
that can be used to evaluate the pseudorandom function F on any point
in the domain, there are additional secret keys for a function f , which
allow one to evaluate F on any y for which there exists an x such that
f(x) = y. As a special case, this implies pseudorandom functions with
selective access, where one can delegate the ability to evaluate the pseu-
dorandom function on inputs y for which a predicate P (y) = 1 holds. We
define and provide a sample construction of a functional pseudorandom
function family for prefix-fixing functions. This construction yields, in
particular, punctured pseudorandom functions, which have proven an in-
valuable tool in recent advances in obfuscation (Sahai and Waters ePrint
2013).

? The research of the first author has received funding from the European Union’s
Tenth Framework Programme (FP10/ 2010-2016) under grant agreement no. 259426
ERC-CaC. This work was primarily completed while the first author was a student
at MIT.

?? This work was supported in part by Trustworthy Computing: NSF CCF-1018064.
? ? ? This material is based on research sponsored by the Air Force Research Laboratory

under agreement number FA8750-11-2-0225. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Air Force Research
Laboratory or the U.S. Government.

1 Introduction

We introduce new cryptographic primitives with a variety of accompanying con-
structions: functional digital signatures (FDS), functional pseudorandom func-
tions (F-PRF), and psuedorandom functions with selective access (PRF-SA).4

Functional Signatures

In digital signature schemes, as defined by Diffie and Hellman [11], a signature
on a message provides information which enables the receiver to verify that the
message has been created by a proclaimed sender. The sender has a secret sign-
ing key, used in the signing process, and there is a corresponding verification key,
which is public and can be used by anyone to verify that a signature is valid.
Following Goldwasser, Micali and Rackoff [20], the standard security require-
ment for signature schemes is unforgeability against chosen-message attack: an
adversary that runs in probabilistic polynomial time and is allowed to request
signatures for a polynomial number of messages of his choice, cannot produce a
signature of any new message with non-negligible probability.

In this work, we extend the classical digital signature notion to what we call
functional signatures. In a functional signature scheme, in addition to a master
signing key that can be used to sign any message, there are secondary signing keys
for functions f (called skf), which allow one to sign any message in the range of
f . These additional keys are derived from the master signing key. The notion of
security we require such a signature scheme to satisfy is that any probabilistic
polynomial time (PPT) adversary, who can request signing keys for functions
f1 . . . fl of his choice, and signatures for messages m1, . . .mq of his choice, can
only produce a signature of a message m with non-negligible probability, if m is
equal to one of the queried messages m1, . . .mq, or if m is in the range of one of
the queried functions f1 . . . fl.

An immediate application of a functional signature scheme is the ability to
delegate the signing process from a master authority to another party. Suppose
someone wants to allow their assistant to sign on their behalf only those mes-
sages with a certain tag, such as “signed by the assistant”. Let P be a predicate
that outputs 1 on messages with the proper tag, and 0 on all other messages. In
order to delegate the signing of this restricted set of messages, one would give
the assistant a signing key for the following function:

f(m) :=

{
m if P (m) = 1

⊥ otherwise
.

4 We note that independently the notion of pseudorandom functions with selective
access was studied by Boneh-Waters under the name of constrained pseudorandom
functions [9] and by Kiayias, Papadopoulos, Triandopoulos and Zacharias under
the name delegatable pseudorandom functions [23]. Subsequent to our posting of an
earlier manuscript of this work, [4] and [2] have additionally posted similar results
on functional signatures.

P could also be a predicate that checks if the message does not contain a given
phrase, if it is related to a certain subject, or if it satisfies a more complex policy.

Another application of functional signatures is to certify that only allowable
computations were performed on data. For example, imagine the setting of a dig-
ital camera that produces signed photos (i.e the original photos produced by the
camera can be certified). In this case, one may want to allow photo-processing
software to perform minor touch-ups of the photos, such as changing the color
scale or removing red-eyes, but not allow more significant changes such as merg-
ing two photos or cropping a picture. Functional signatures can naturally address
this problem by providing the photo processing software with keys which enable
it to sign only the allowable modifications of an original photograph. Generaliz-
ing, we think of a client and a server (e.g. photo-processing software), where the
client provides the server with data (e.g. signed original photos, text documents,
medical data) which he wants to be processed in a restricted fashion.A functional
signature of the processed data provides proof of allowable processing.

Functional signatures can also be used to construct a delegation scheme.
In this setting, there is a client who wants to allow a more powerful server to
compute a function f on inputs chosen by the client, and wants to be able to
verify that the result returned by the server is correct. The verification process
should be more efficient than for the client to compute f himself. The client can
give the server a key for the function f ′(x) = (f(x)|x). To prove that y = f(x),
the prover gives the client a signature of y|x, which he could only have obtained
if y|x is in the range of f ′; that is, if y = f(x).

A desirable property of a functional signature scheme is function privacy :
the signature should reveal neither the function f corresponding to the key used
in the signing process, nor the message m that f was applied to. In the example
with the signed photos, one might not wish to reveal the original image, just that
the final photographs were obtained by running one of the allowed functions on
some image taken with the camera.

An additional desirable property is succinctness: the size of the signature
should only depend on the size of the output f(m) and the security parameter (or
just the security parameter), rather than the size of the circuit for computing f .

Functional Pseudorandomness

Pseudorandom functions (PRFs), introduced by Goldreich, Goldwasser, and Mi-
cali [14], are a family of indexed functions F = {Fs} such that: (1) given the
index s, Fs can be efficiently evaluated on all inputs, and (2) no probabilistic
polynomial-time algorithm without s can distinguish evaluations Fs(xi) for in-
puts xi of its choice from random values. Pseudorandom functions are useful for
numerous symmetric-key cryptographic applications, including generating pass-
words, identify-friend-or-foe systems, and symmetric-key encryption schemes se-
cure against chosen-ciphertext attacks.

In this work, we extend pseudorandom functions to a primitive which we call
functional pseudorandom functions (F-PRF). The idea is that in addition to a

master secret key (that can be used to evaluate the pseudorandom function Fs

on any point in the domain), there are additional secret keys skf per function
f , which allow one to evaluate Fs on any y for which there exists x such that
f(x) = y (i.e y ∈ Range(f)). An immediate application of such a construct is
to specify succinctly the randomness to be used by parties in a randomized dis-
tributed protocol with potentially faulty players, so as to force honest behavior.
A centralized authority holds an index s of a pseudorandom function Fs. One
may think of this authority as providing a service which dispenses pseudoran-
domness (alternatively, the secret s can be shared among players in an MPC).
The authority provides each party id with a secret key sid which enables party id
to (1) evaluate Fs(y) whenever y = “id‖h”, where h corresponds to say the pub-
lic history of communication, and (2) use Fs(y) as her next sequence of coins in
the protocol. To prove that the appropriate randomness was used, id can utilize
NIZK proofs. An interesting open question is how to achieve a verifiable F-PRF,
where there is additional information vks that can be used to verify that a given
pair (x, Fs(x)) is valid, without assuming the existence of an honestly generated
common reference string, as in the NIZK setting. Note that in this example the
function f(x) = y is simply the function which appends the string prefix id to x.
We note that there are many other ways to force the use of proper randomness
in MPC protocols by dishonest parties, starting with the classical paradigm [19,
15] where parties interact to execute a “coin flip in the well” protocol forcing
players to use the results of these coins, but we find the use of F-PRF appealing
in its simplicity, lack of interaction and potential efficiency.

The notion of functional pseudorandom functions has many variations. One
natural variant that immediately follows is PRFs with selective access, in which
secondary keys skP can be produced per predicate P to enable computing Fs(x)
on inputs x for which P (x) = 1. This is a special case of F-PRF, as we can take
the secret key for predicate P to be skf where f(x) = x if P (x) = 1 and ⊥
otherwise. The special case of punctured PRFs, in which secondary keys allow
computing Fs(x) on all inputs except one, is similarly implied and has recently
been shown to have important applications (e.g., [29, 22]). Another variant is
hierarchical PRFs, with an additional property that parties with functional keys
skf may also generate subordinate keys skg for functions g of the form g = f ◦f ′
(i.e., first evaluate f ′, then evaluate f). Note that the range of such composition
g is necessarily contained within the range of f .

1.1 Our Results on Functional Signatures and Their Applications

We provide a construction of functional signatures achieving function privacy
and succinctness, assuming the existence of succinct non-interactive arguments
of knowledge (SNARKS) and (standard) non-interactive zero-knowledge argu-
ments of knowledge (NIZKAoKs) for NP languages.

As a building block, we first give a construction of a functional signature
scheme that is not succinct or function private, based on a much weaker as-
sumption: the existence of one-way functions.

Theorem 1 (Informal). Based on any one-way function, there exists a func-
tional signature scheme that supports signing keys for any function f computable
by a polynomial-sized circuit. This scheme satisfies the unforgeability requirement
for functional signatures, but not function privacy or succinctness.

Overview of the construction: The master signing and verification keys for
the functional signature scheme will correspond to a key pair, (msk,mvk), in an
underlying (standard) signature scheme. To generate a signing key for a function
f , we sample a fresh signing and verification key pair (sk′, vk′) in the underlying
signature scheme, and sign the concatenation f |vk′ using msk. The signing key
for f consists of this signature together with sk′. Given this signing key, a user
can sign any message m∗ = f(m) by signing m using sk′, and outputting this
signature, together with the signature of f |vk′ given as part of skf .

We then now show how to use SNARKs, together with this initial construc-
tion, to construct a succinct, function-private functional signature scheme.

A SNARK system for an NP language L with corresponding relation R is
an extractable proof system where the size of a proof is sublinear in the size
of the witness corresponding to an instance. SNARKs have been constructed
under various non-falsifiable [26] assumptions. Bitansky et al. [6] construct zero-
knowledge SNARKs where the length of the proof and the verifier’s running
time are bounded by a polynomial in the security parameter, and the logarithm
of running time of the corresponding relation R(x,w), assuming the existence
of collision-resistant hash functions and a knowledge-of-exponent assumption.5

(More details are given in the full version).

Theorem 2 (Informal). Assuming the existence of SNARK and NIZKAoK for
NP, and a functional signature scheme that is not necessarily function-private
or succinct, there exists a succinct, function-private functional signature scheme
that supports signing keys for the class of polynomial-sized circuits.

Overview of the construction: In the setup algorithm for our functional
signature scheme, we sample a key pair (msk,mvk) for the underlying (non-
succinct, non-function-pivate) functional signature scheme FS1, and a common
reference string crs for the SNARK system. We use msk as the new master singing
key and (mvk, crs) as the new master verification key. The skf key generation
algorithm is the same as in the underlying functional signature scheme FS1.
To sign a message m∗ using a resulting key skf , we generate a zero-knowledge
SNARK for the following statement: ∃σ such that σ is a valid signature of m∗

under mvk in the functional signature scheme FS1. To verify the signature, we
run the verification algorithm for the SNARK argument system.

Resorting to non-falsifiable assumptions, albeit strong, seems necessary to
obtain succinctness for functional signatures. We show that, given a functional
signature scheme with short signatures, we can construct a SNARG system.

5 In [5], Bitansky et al. also show that any SNARK + NIZKAoK directly yield zero-
knowledge (ZK)-SNARK with analogous parameters.

Theorem 3 (Informal). If there exists a functional signature scheme sup-
porting keys for all polynomial-sized circuits f , with short signatures (i.e., of
size poly(k) · (|f(m)| + |m|)o(1) for security parameter k), then there exists a
SNARG scheme with preprocessing for any language L ∈ NP with proof size
poly(k) · (|w|+ |x|)o(1), where w is the witness and x is the instance.

The main idea in the SNARG construction is for the verifier (CRS generator)
to give out a single signing key skf for a function whose range consists of exactly
those strings that are in the language L. Then, with skf , the prover will be
able to sign only those messages x that are in L, and thus can use this (short)
signature as his proof.

Gentry and Wichs showed in [13] that SNARG schemes with proof size
poly(k) · (|w| + |x|)o(1) cannot be obtained using black-box reductions to fal-
sifiable assumptions. We can thus conclude that in order to obtain a functional
signature scheme with signature size poly(k) · (|f(m)|+ |m|)o(1) we must either
rely on non-falsifiable assumptions (as in our SNARK construction) or make use
of non black-box techniques.

Finally, we can construct a scheme which satisfies unforgeability and func-
tional privacy but not succinctness, based on the weaker assumption of non-
interactive zero-knowledge arguments of knowledge (NIZKAoK) for NP.

Theorem 4 (Informal). Assuming the existence of non-interactive zero-
knowledge arguments of knowledge (NIZKAoK) for NP, there exists a functional
signature scheme that supports signing keys for any function f computable by
a polynomial-sized circuit. This scheme satisfies function privacy, but not suc-
cinctness: the size of the signature is dependent on the size of f and m.

Overview of the construction: The construction is analogous to the SNARK-
based construction above, with the SNARK replaced with NIZKAoK. Namely, a
signature will be a NIZK Argument of Knowledge for the following statement: ∃σ
such that σ is a valid signature of m∗ under mvk, in an underlying non-succinct,
non-function-private functional signature scheme, as before (recall such a scheme
exists based on OWF). The signature size is now polynomial in the size of σ,
which, if m∗ = f(m), and sigma was generated using skf , is itself polynomial in
the security parameter, |m|, and |f |.

Relation to Delegation: Functional signatures are highly related to delegation
schemes. A delegation scheme allows a client to outsource evaluation of a function
f to a server, allowing the client to verify the correctness of the computation
more efficiently than evaluating f himself. We show that given any functional
signature scheme supporting a class of functions F , we can obtain a delegation
scheme in the preprocessing model for functions in F , with related parameters.

Theorem 5 (Informal). If there exists a functional signature scheme for func-
tion class F , with signature size s(k), and verification time t(k), then there exists
a one-round delegation scheme for functions in F , with server message size s(k)
and client verification time t(k).

Overview of the construction: The client gives the server a key skf ′ for the
function f ′(x) = (f(x)|x). To prove that y = f(x), the prover gives the client a
signature of y|x, which he could only have obtained if y|x is in the range of f ′;
that is, if y = f(x). The length of a proof is equal to the length of a signature in
the functional signature scheme, s(k), and the verification time for the delegation
scheme is equal to the verification time of the functional signature scheme.

1.2 Summary of our Results on Functional Pseudorandom
Functions and Selective Pseudorandom Functions

We present formal definitions and constructions of functional pseudorandom
functions (F-PRF) and pseudorandom functions with selective access (PRF-SA).
In particular, we present a construction based on one-way functions of an F-PRF
supporting the class of prefix-fixing functions. Our construction is based on the
Goldreich-Goldwasser-Micali (GGM) tree-based PRF construction [GGM86].

Theorem 6 (Informal). Assuming the existence of OWF, there exists an F-
PRF supporting keys for the class of prefix-matching functions: Fpre = {fz|z ∈
{0, 1}m,m ≤ n}, where fz(x) = x if z is a prefix of x, and ⊥ otherwise. The
pseudorandomness property holds against a selective adversary, who declares the
functions he will query before seeing the public parameters.

We remark that one can directly obtain a fully secure F-PRF for Fpre, in
which security holds against an adversary who adaptively requests key queries,
from our selectively secure construction, with a loss of 2−n in security for each
functional secret key skfz queried by the adversary, via standard complexity
leveraging. For appropriate choices of the input length n, security of the under-
lying OWF, and number of key queries, this still provides desirable security.

Overview of the construction. We show that the original Goldreich-Goldwasser-
Micali (GGM) tree-based PRF construction [14] provides the desired function-
ality, where the functional key skf corresponding to a prefix-fixing function
fz(x) = z1z2 · · · zixi+1 · · ·xn will be given by the partial evaluation of the PRF
down the tree, at the node corresponding to prefix z1z2 · · · zi.

This partial evaluation clearly enables a user to compute all possible con-
tinuations in the evaluation tree, corresponding to the output of the PRF on
any input possessing prefix z. Intuitively, security holds since the other partial
evaluations at this level i in the tree still appear random given the evaluation
skf (indeed, this corresponds to a truncated i-bit input GGM construction).

Punctured pseudorandom functions. Punctured pseudorandom functions [29] are
a special case of functional PRFs, where one can generate keys for the function
family F = {fx(y) = y if y 6= x, and ⊥ otherwise}. Namely, a key for function
fx allows one to compute the pseudorandom function on any input except for x.
Punctured PRFs have recently proven useful as one of the main techniques used
in proving the security of various cryptographic primitives based on the exis-
tence of indistinguishability obfuscation. Some examples include a construction

of public-key encryption from symmetric-key encryption and the construction
of deniable encryption given by Sahai and Waters in [29], as well as an instan-
tiation of random oracles with a concrete hash function for full-domain hash
applications by Hohenberger et al. in [22].

We note that the existence of a functional PRF for the prefix-fixing function
family gives a construction of punctured PRFs. A key that allows one to compute
the PRF on all inputs except x = x1 . . . xn consists of n functional keys for the
prefix-fixing function family for prefixes: x̄1, x1x̄2, x1x2x̄3, . . . , x1x2 · · ·xn−1x̄n.

Corollary 1 (Informal). Assuming the existence of OWF, there exists a (se-
lectively secure) punctured PRF for any desired poly-size input length.

Our construction has the additional beneficial property of hierarchical key
generation: i.e., a party with a functional key skfz for a prefix z may generate
valid “subordinate” functional keys skfz′ for any prefix z′ = z|∗. That is, we
prove the following additional statement.

Corollary 2 (Informal). Assuming the existence of OWF, there exists a (se-
lectively secure) hierarchical functional PRF for the class of functions Fpre.

1.3 Other Related Work

Functional Encryption. This work is inspired by recent results on the problem
of functional encryption, introduced by Sahai and Waters [28], and formalized
by Boneh et al. [8]. In the past few years there has been significant progress
on constructing functional encryption schemes for general classes of functions
(e.g., [21, 17, 18]). In this setting, a party with access to a master secret key can
generate secret keys skf for functions f , which allow a third party with skf and
an encryption of a message m to learn f(m), but nothing else about m. In [17],
Goldwasser et al. construct a functional encryption scheme supporting general
functions, and secure according to a simulation-based definition, as long as a
single key is given out. In [1], Agrawal et al. show that constructing functional
encryption schemes achieving this notion of security in the presence of an un-
bounded number of secret keys is impossible for general functions. In contrast,
no such impossibility results are known in the setting of functional signatures.

Connections to Obfuscation. The goal of program obfuscation is to construct
a compiler O that takes as input a program P and outputs a program O(P)
that preserves the functionality of P , but hides all other information about the
original program. Following [3], this is often formalized by requiring that the
single-bit output of an efficient adversary given access to an obfuscation of P
can be simulated given only black-box access to P . However, Barak et al. [3]
show that this definition is unachievable for general functions. Furthermore,
in [16], Goldwasser and Kalai give evidence that several natural cryptographic
algorithms, including the signing algorithm of any unforgeable signature scheme,
are not obfuscatable with respect to this strong definition.

Consider the function Sign ◦ f , where Sign is the signing algorithm of an
unforgeable signature scheme, f is an arbitrary function and ◦ denotes function
composition. Based on the results in [16] we would expect this function not to
be obfuscatable according to the black-box simulation definition. A meaningful
relaxation of the definition is that, while having access to an obfuscation of this
function might not hide all information about the signing algorithm, it does not
completely reveal the secret key, and does not allow one to sign messages that
are not in the range of f . In our function signature scheme, the signing key
corresponding to a function f achieves exactly this definition of security, and
we can think of it as an obfuscation of Sign ◦ f according to this relaxed defini-
tion. Indeed it has recently come to our attention that Barak in an unpublished
manuscript has considered delegatable signatures, a highly related concept.

Homomorphic Signatures. In a homomorphic signature scheme, a third party
is able to perform computations over already-signed data, and obtain a new
signature that authenticates the resulting message with respect to this compu-
tation. In [12], Gennaro and Wichs construct homomorphic (privately verifiable)
message authentication codes. For homomorphic signature schemes with public
verification, the most general construction of Boneh and Freeman [7] only al-
lows the evaluation of multivariate polynomials on signed data. Constructing
homomorphic signature schemes for general functions remains an open problem.

Signatures of correct computation. Papamanthou, Shi and Tamassia consider
a notion of functional signatures under the name “signatures of correct com-
putation” [27]. They give constructions for schemes that support operations
over multivariate polynomials, such as polynomial evaluation and differentia-
tion. Their schemes are secure in the random oracle model and allow efficient
updates to the signing keys: the keys can be updated in time proportional to
the number of updated coefficients. In contrast, our constructions that support
signing keys for general functions, in the plain model, assuming the existence of
succinct non-interactive arguments of knowledge.

Independent work. Finally, as mentioned earlier, related notions to functional
PRFs appear in the concurrent and independent works [9, 23]. Based on the
Multilinear Decisional Diffie-Hellman assumption (a recently coined assumption
related to existence of secure multilinear maps), [9] show that PRFs with Se-
lective Access can be constructed for all predicates describable as polynomial-
sized circuits. We remark that this is not equivalent to functional PRFs for
polynomial-sized circuits, which additionally captures NP relations (i.e., the
predicate y ∈ Range(f) may not be efficiently testable directly). Subsequent
to our posting of an earlier manuscript of this work, [4] and [2] have additionally
posted similar results on functional signatures.

1.4 Overview of the paper

In Section 2, we give a formal definition of functional signature schemes, and
present three constructions satisfying the definition. In Section 3, we show how to

construct delegation schemes and succinct non-interactive arguments (SNARGs)
from functional signatures schemes. In Section 4, we give a formal definition of
functional pseudorandom functions and pseudorandom functions with selective
access, and present a sample construction for the prefix-fixing function family. In
Section 5, we discuss open problems. Due to space constraints, we defer the pre-
liminaries and proofs of theorem statements to the full version of the paper [10].

2 Functional Signatures: Definition and Constructions

We now give a formal definition of a functional signature scheme, specifying the
desired unforgeability, function-privacy, and succinctness properties.

Definition 1. A functional signature scheme for a message spaceM, and func-
tion family F = {f : Df → M} consists of algorithms (FS.Setup, FS.KeyGen,
FS.Sign, FS.Verify):
– FS.Setup(1k) → (msk,mvk): the setup algorithm takes as input the security

parameter and outputs the master signing key and master verification key.
– FS.KeyGen(msk, f) → skf : the key generation algorithm takes as input the

master signing key and a function f ∈ F (represented as a circuit), and
outputs a signing key for f .

– FS.Sign(f, skf ,m)→ (f(m), σ): the signing algorithm takes as input the sign-
ing key for a function f ∈ F and an input m ∈ Df , and outputs f(m) and
a signature of f(m).

– FS.Verify(mvk,m∗, σ)→ {0, 1}: the verification algorithm takes as input the
master verification key mvk, a message m and a signature σ, and outputs 1
if the signature is valid.

We require the following conditions to hold:

Correctness:
∀f ∈ F ,∀m ∈ Df , (msk,mvk)← FS.Setup(1k), skf ← FS.KeyGen(msk, f),
(m∗, σ)← FS.Sign(f, skf ,m), it holds that FS.Verify(mvk,m∗, σ) = 1.

Unforgeability:
The scheme is unforgeable if the advantage of any PPT algorithm A in the fol-
lowing game is negligible:
– The challenger generates (msk,mvk)← FS.Setup(1k), and gives mvk to A.
– The adversary is allowed to query a key generation oracle Okey, and a signing

oracle Osign, that share a dictionary indexed by tuples (f, i) ∈ F × N, whose
entries are signing keys: skif ← FS.KeyGen(msk, f). This dictionary keeps
track of the keys that have been previously generated during the unforgeability
game. The oracles are defined as follows :
• Okey(f, i) :
∗ if there exists an entry for the key (f, i) in the dictionary, then output

the corresponding value, skif .

∗ otherwise, sample a fresh key skif ← FS.KeyGen(msk, f), add an entry

(f, i)→ skif to the dictionary, and output skif

• Osign(f, i,m):

∗ if there exists an entry for the key (f, i) in the dictionary, then gen-
erate a signature on f(m) using this key: σ ← FS.Sign(f, skif ,m).

∗ otherwise, sample a fresh key skif ← FS.KeyGen(msk, f), add an entry

(f, i) → skif to the dictionary, and generate a signature on f(m)

using this key: σ ← FS.Sign(f, skif ,m).

– The adversary wins if it can produce (m∗, σ) such that

• FS.Verify(mvk,m∗, σ) = 1.
• there does not exist m such that m∗ = f(m) for any f which was sent

as a query to the Okey oracle.
• there does not exist a (f,m) pair such that (f,m) was a query to the

Osign oracle and m∗ = f(m).

Function privacy:
Intuitively, we require the distribution of signatures on a message m′ generated
via different keys skf to be computationally indistinguishable, even given the
secret keys and master signing key. Namely, the advantage of any PPT adversary
in the following game is negligible:

– The challenger honestly generates a key pair (mvk,msk)← FS.Setup(1k) and
gives both values to the adversary.

– The adversary chooses a function f0 and receives an (honestly generated)
secret key skf0 ← FS.KeyGen(msk, f0).

– The adversary chooses a second function f1 for which |f0| = |f1| (where
padding can be used if there is a known upper bound) and receives an (hon-
estly generated) secret key skf1 ← FS.KeyGen(msk, f1).

– The adversary chooses a pair of values m0,m1 for which |m0| = |m1| and
f0(m0) = f1(m1).

– The challenger selects a random bit b← {0, 1} and generates a signature on
the image message m′ = f0(m0) = f1(m1) using secret key skfb , and gives
the resulting signature σ ← FS.Sign(skfb ,mb) to the adversary.

– The adversary outputs a bit b′, and wins the game if b′ = b.

Succinctness:
There exists a polynomial s(·) such that for every k ∈ N, f ∈ F ,m ∈ Df , it holds
with probability 1 over (msk,mvk)← FS.Setup(1k), skf ← FS.KeyGen(msk, f),
(f(m), σ) ← FS.Sign(f, skf ,m) that the resulting signature on f(m) has size
|σ| ≤ s(k, |f(m)|). In particular, the signature size is independent of the size |m|
of the input to the function, and of the size |f | of a description of the function f .

Constructions. In the full version of the paper, we give three constructions
of functional signature schemes, and describe the trade-offs between them in
terms of the assumptions they require and the function privacy and succinctness
properties of the functional signature scheme.

Theorem 7. The following three implications hold:

1. Assuming the existence of one-way functions, there exists a functional sig-
nature scheme for the class F of polynomial-size circuits that satisfies the
unforgeability requirement described above.

2. Assuming the existence of Non-Interactive Zero Knowledge Arguments of
Knowledge for NP and one-way functions, there exists a function-private
(but not necessarily succinct) functional signature scheme for the class F of
polynomial-size circuits.

3. Assuming the existence of an unforgeable (but not necessarily succinct or
function-private) functional signature scheme supporting the class of func-
tions F , and an adaptive zero-knowledge Succinct Non-Interactive Argu-
ment of Knowledge (SNARK) system for NP, there exists succinct, function-
private functional signatures for F .

As a corollary, it follows that succinct, function-private functional signatures for
the class of polynomial-size circuits can be based on SNARKs for NP and OWFs.

3 Applications of Functional Signatures

In this section we discuss applications of functional signatures to other cryp-
tographic problems, such as constructing delegation schemes and succinct non-
interactive arguments (SNARGs).

3.1 SNARGs from Functional Signatures

Recall that in a SNARG system for a language L, there is a verifier V , and a
prover P who wishes to convince the verifier that an input x is in L. To achieve
succinctness, proofs produced by the prover must be sublinear in the size of the
input plus the size of the witness.

We show how to use a functional signature scheme supporting keys for func-
tions f describable as polynomial-size circuits, and which has short signatures
(i.e of size r(k) · (|f(m)|+ |m|)o(1) for a polynomial r(·)) to construct a SNARG
scheme with preprocessing for any language L ∈ NP with proof size bounded
by r(k) · (|w| + |x|)o(1), where w is the witness and x is the instance. We note
that this is the proof size used in the lower bound of [13].

Let L be an NP-complete language, and R the corresponding relation. The
main idea in the construction is for the verifier (or CRS setup) to give out a single
signing key for a function whose range consists of exactly those strings that are
in L. Note that this can be efficiently described by use of the relation R (where
the function also takes as input a witness). Then, with skf for this appropriate
function f , the prover will be able to sign only those messages that are in the
language L, and hence can use a signature on x as a convincing argument that
x ∈ L. The resulting argument is succinct and publicly verifiable.

More explicitly, let FS = (FS.Setup,FS.KeyGen,FS.Sign,FS.Verify) be a suc-
cinct functional signature scheme (as in Definition 1) supporting the class F of
polynomial-size circuits. We construct the desired SNARG system Π = (Π.Gen,
Π.Prove,Π.Verify) for NP language L with relation R, as follows:

– Π.Gen(1k):
• run the functional signature scheme setup: (mvk,msk)← FS.Setup(1k).
• generate a signing key skf ← FS.KeyGen(msk, f) for the function
f(x|w) := x if R(x,w) = 1,⊥ otherwise, and output crs = (mvk, skf).

– Π.Prove(x,w, crs): output FS.Sign(f, skf , x|w).
– Π.Verify(crs, x, π): output FS.Verify(mvk, x, π).

Theorem 8. If FS is a functional signature scheme supporting the class F of
polynomial-sized circuits, then Π is a succinct non-interactive argument (SNARG)
for NP language L.

We defer the proof of Theorem 8 to the full version.

Remark 1 (Functional PRFs as Functional MACs). Note that functional pseu-
dorandom functions directly imply a notion of functional message authentication
codes (MACs), where the master PRF seed s serves as the (shared) master secret
MAC key, and a functional PRF subkey skf enables one to both MAC and verify
messages f(m). Using the transformation above with such a functional MAC in
the place of functional signatures yields a privately verifiable SNARG system.

Remark 2 (Lower bound of [13]). Gentry and Wichs showed in [13] that SNARG
schemes for NP, with proof size r(k) ·(|x|+ |w|)o(1) for polynomial r(·) cannot be
obtained using black-box reductions to falsifiable assumptions [26]. Therefore,
combined with Theorem 8, it follows that in order to obtain a functional signa-
ture scheme with signature size r(k) · (|f(m)| + |m|)o(1) we must either rely on
non-falsifiable assumptions (as in our SNARK-based construction) or make use
of non black-box techniques.

In the full version of this paper, we demonstrate a similar implication of
functional signatures on the existence of efficient delegation schemes.

4 Functional Pseudorandom Functions

In a standard pseudorandom function family, the ability to evaluate the chosen
function is all-or-nothing: a party who holds the secret seed s can compute Fs(x)
on all inputs x, whereas a party without knowledge of s cannot distinguish
evaluations Fs(x) on requested inputs x from random. We propose the notion
of a functional pseudorandom function (F-PRF) family, which partly fills this
gap between evaluation powers. The idea is that, in addition to a master secret
key that can be used to evaluate the pseudorandom function F on any point in
the domain, there are additional secret keys per function f , which allow one to
evaluate F on y for any y for which there exists an x such that f(x) = y (i.e., y
is in the range of f).

Definition 2 (Functional PRF). We say that a PRF family {Fs : D →
R}s∈S is a functional pseudorandom function (F-PRF) with respect to a class
of functions F = {f : Af → D} if there exist additional algorithms

KeyGen(s, f) : On input a seed s ∈ S and function description f ∈ F , the
algorithm KeyGen outputs a key skf .

Eval(skf , f, x) : On input key skf , function f ∈ F , and input x ∈ Af , then Eval
outputs the PRF evaluation Fs(f(x)).

which satisfy the following properties:

– Correctness: For every f ∈ F , ∀x ∈ Af , it holds that ∀s ← S, ∀skf ←
KeyGen(s, f), Eval(skf , f, x) = Fs(f(x)).

– Pseudorandomness: Given a set of keys skf1 . . . skf` for functions f1 . . . f`,
the evaluation of Fs(y) should remain pseudorandom on all inputs y that are
not in the range of any of the functions f1 . . . f`. That is, for any PPT
adversary A, the advantage of A in distinguishing between the following two
experiments is negligible (for any polynomial ` = `(k)):

Experiment Rand Experiment PRand
Key query Phase Key query Phase
(pp, s)← Gen(1k) (pp, s)← Gen(1k)
f1 ← A(pp) f1 ← A(pp)
skf1 ← KeyGen(s, f1) skf1 ← KeyGen(s, f1)
...

...
f` ← A(pp, f1, skf1 , . . . , fl−1, skfl−1

) f` ← A(pp, f1, skf1 , . . . , fl−1, skfl−1
)

skf` ← KeyGen(s, f`) skf` ← KeyGen(s, f`)
Challenge Phase Challenge Phase
H ← FD→R a random function

b← AO
{fi}
s,H (·)(f1, skf1 , . . . , f`, skf`) b← AFs(·)(f1, skf1 , . . . , f`, skf`)

where O{fi}s,H (y) :=

{
Fs(y) if ∃i ∈ [l] and x s.t. fi(x) = y

H(y) otherwise
.

Note that, as defined, the oracle O{fi}s,H (y) need not be efficiently computable.
This inefficiency stems both from sampling a truly random function H, and
from testing whether the adversary’s evaluation queries y are contained within
the range of one of his previously queried functions fi. However, within par-
ticular applications, the system can be set up so that this oracle is efficiently
simulatable: For example, evaluations of a truly random function can be simu-
lated by choosing each queried evaluation one at a time; Further, the range of
the relevant functions fi may be efficiently testable given trapdoor information
(e.g., determining the range of f : r 7→ Enc(pk, 0; r) for a public-key encryption
scheme is infeasible given only pk but efficiently testable given the secret key).

We also consider a weaker security definition, where the adversary has to
reveal which functions he will request keys for before seeing the public parameters
or any of the keys. Namely, the key query phase takes place as follows:

Selective Key query Phase
(pp, s)← Gen(1k)
(f1, . . . , f`)← A(pp)
For i ∈ [`], skfi ← KeyGen(s, fi)

We refer to this as a selectively secure F-PRF.
A special case of functional PRFs arises when access control is to be de-

termined by predicates. (Indeed, fitting within the F-PRF framework, one can
emulate predicate policies by considering the corresponding functions fP (x) = x
if P (x) = 1 and = ⊥ if P (x) = 0). We refer to this as PRFs with selective access.

Finally, we consider hierarchical F-PRFs, where a party holding key skf for
function f : B → D can generate subsidiary keys skf◦g for functions g : A→ B.

We present formal definitions of these notions in the full version of this paper.

4.1 Construction Based on OWF

We now construct a functional pseudorandom function family Fs : {0, 1}n →
{0, 1}n supporting the class of prefix-fixing functions, building upon the Goldreich-
Goldwasser-Micali (GGM) tree-based PRF construction [14]. More precisely, our
construction supports the function class

Fpre =
{
fz(x) : {0, 1}n → {0, 1}n

∣∣∣ z ∈ {0, 1}m for m ≤ n
}
,

where fz(x) :=

{
x if (x1 = z1) ∧ · · · ∧ (xm = zm)

⊥ otherwise
.

Recall that the GGM construction makes use of a length-doubling pseudorandom
generator G : {0, 1}k → {0, 1}2k (which can be constructed from any one-way
function). Denoting the two halves of the output of G as G(y) = G0(y)G1(y),
the PRF with seed s is defined as Fs(y) = Gyk

(· · ·Gy2
(Gy1

(s))).
We show that we can obtain a functional PRF for Fpre by adding the follow-

ing two algorithms on top of the GGM PRF construction. Intuitively, in these
algorithms the functional secret key skfz corresponding to a queried function
fz ∈ Fpre will be the partial evaluation of the GGM prefix corresponding to
prefix z: i.e., the label of the node corresponding to node z in the GGM eval-
uation tree. Given this partial evaluation, a party will be able to compute the
completion for any input x which has z as a prefix. However, as we will argue,
the evaluation on all other inputs will remain pseudorandom.

KeyGen(s, fz) : output Gzm(· · ·Gz2(Gz1(s))), where m = |z|

Eval(skfz , y) : output

{
Gyn

(· · ·Gym+2
(Gym+1

(skfz))) if y1 = z1 ∧ · · · ∧ ym = zm

⊥ otherwise

Theorem 9. Based on the existence of one-way functions, the GGM pseudoran-
dom function family together with algorithms KeyGen and Eval defined as above,
yields a selectively secure functional PRF for the class of functions Fpre.

We remark that one can directly obtain a fully secure F-PRF for Fpre (as
in Definition 2) from our selectively secure construction, with a loss of 2−n in
security for each secret key skfz queried by the adversary. This is achieved simply
by guessing the adversary’s query fz ∈ Fpre. For appropriate choices of input size
n and security parameter k, this can still provide useful security.

As an immediate corollary of Theorem 9, we obtain a (selectively secure)
PRF with selective access for the class of equivalent prefix-matching predicates
Ppre = {Pz : {0, 1}n → {0, 1}|z ∈ {0, 1}m for m ≤ n}, where Pz(x) := 1 if (x1 =
z1) ∧ · · · ∧ (xm = zm) and 0 otherwise.

Our F-PRF construction has the additional benefit of being hierarchical.
Given a secret key skfz for a prefix z ∈ {0, 1}m, a party can generate subordinate

secret keys skfz′ for any z′ ∈ {0, 1}m′ , m′ > m that aligns with z on its first m
bits. This secondary key generation process is accomplished simply by applying
the PRGs to skfz , traversing the GGM tree according to the additional bits of z′.

Punctured Pseudorandom Functions Punctured PRFs, formalized by [29],
are a special case of functional PRFs where one can generate keys for the function
family F = {fx(y) = y if y 6= x, and ⊥ otherwise}. Such PRFs have recently
been shown to have important applications, including use as a primary technique
in proving security of various cryptographic primitives based on the existence of
indistinguishability obfuscation (see, e.g., [29, 22]).

The existence of a functional PRF for the prefix-fixing function family gives
a construction of punctured PRFs. Namely, a punctured key skx allowing one
to compute the PRF on all inputs except x = x1 . . . xn consists of n functional
keys for the prefix-fixing function family for prefixes:

(x̄1), (x1x̄2), (x1x2x̄3), . . . , (x1x2 . . . xn−1x̄n).

Our GGM-based construction in the previous section thus directly yields a
selectively secure punctured PRF based on OWFs.

Corollary 3 (Selectively-Secure Punctured PRFs). Assuming the exis-
tence of OWF, there exists a selectively secure punctured PRF for any desired
poly-size input length.

We remark that full security can be achieved with a security loss of 2−n (as
the reduction needs only to guess which of the 2n query sets will be made by
the adversary, corresponding to the 2n possible point puncturings).

5 Open Problems

The size of the signatures in our SNARK-based functional signature scheme
is dependent only on the security parameter (as one would desire), but the
construction is based on non-falsifiable assumptions. In Section 3, we show that,
for any sufficiently expressive functional signature scheme (supporting a function
class F that contains any NP-complete relation), a functional signature for y =

f(x) cannot be sublinear in the size of y or x, unless the construction is either
proven secure under a non-falsifiable assumption or makes use of non-black-box
techniques. However, no lower bound exists that relates the size of the signature
to the description of f (which may have short inputs/outputs x, y but a large
description). Constructing functional signatures with short (sublinear in the size
of the functions supported) signatures and verification time under falsifiable
assumptions remains an open problem.

An interesting problem left open by this work is to construct a functional
PRF that is also verifiable. A verifiable PRF, introduced by Micali, Rabin and
Vadhan in [25] has the property that, in addition to the secret seed s of the PRF,
there is a corresponding public key pks and a way to generate a proof πx given
the secret seed, such that given pks, x, y and πx, one can check that y is indeed
the consistent output of the PRF on x. (The challenge arises in guaranteeing
soundness even though the public key is produced by the potentially malicious
party. This, for example, rules out direct application of non-interactive zero-
knowledge proofs, which require an honestly generated common reference string.)
The public parameters and proofs πx should not allow an adversary to distinguish
the outputs of the PRF from random on any point x′ for which the adversary
has not received a proof. A construction of standard verifiable PRFs was given
by Lysyanskaya based on the many-DH assumption in bilinear groups in [24].

One may extend the notion of verifiable PRFs to the setting of functional
PRFs by enabling a user with functional key skf to also generate verifiable
proofs πx of correctness for evaluations of the PRF on inputs x for which his
key allows. We note that such a verifiable functional pseudorandom function
family supporting keys for a function class F , implies a functional signature
scheme that supports signing keys for the same function class, so the lower
bound mentioned for functional signatures applies also to the proofs output in
the verifiable functional PRF context.

References

1. S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption:
New perspectives and lower bounds. In CRYPTO, 2013.

2. M. Backes, S. Meiser, and D. Schrder. Delegatable functional signatures. Cryptol-
ogy ePrint Archive, Report 2013/408, 2013.

3. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages
1–18, 2001.

4. M. Bellare and G. Fuchsbauer. Policy-based signatures. Cryptology ePrint Archive,
Report 2013/413, 2013.

5. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In
ITCS, pages 326–349, 2012.

6. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and
bootstrapping for snarks and proof-carrying data. In STOC, pages 111–120, 2013.

7. D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions.
In EUROCRYPT, pages 149–168, 2011.

8. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-
lenges. In TCC, pages 253–273, 2011.

9. D. Boneh and B. Waters. Constrained pseudorandom functions and their applica-
tions. Cryptology ePrint Archive, Report 2013/352, 2013.

10. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom
functions. Cryptology ePrint Archive, Report 2013/401, 2013.

11. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

12. R. Gennaro and D. Wichs. Fully homomorphic message authenticators. IACR
Cryptology ePrint Archive, 2012:290, 2012.

13. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In STOC, pages 99–108, 2011.

14. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

15. O. Goldreich, S. Micali, and A. Wigderson. How to prove all np-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In CRYPTO,
pages 171–185, 1986.

16. S. Goldwasser and Y. T. Kalai. On the impossibility of obfuscation with auxiliary
input. In FOCS, pages 553–562, 2005.

17. S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.
Succinct functional encryption and applications: Reusable garbled circuits and
beyond. IACR Cryptology ePrint Archive, 2012:733, 2012.

18. S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.
Overcoming the worst-case curse for cryptographic constructions. In CRYPTO,
2013.

19. S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In STOC, pages 365–377, 1982.

20. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

21. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with
bounded collusions via multi-party computation. In CRYPTO, pages 162–179,
2012.

22. S. Hohenberger, A. Sahai, and B. Waters. Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. Cryptology ePrint Archive, Report
2013/509, 2013.

23. A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable
pseudorandom functions and applications. Cryptology ePrint Archive, Report
2013/379, 2013.

24. A. Lysyanskaya. Unique signatures and verifiable random functions from the dh-
ddh separation. In CRYPTO, pages 597–612, 2002.

25. S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In FOCS,
pages 120–130, 1999.

26. M. Naor. On cryptographic assumptions and challenges. In CRYPTO, pages 96–
109, 2003.

27. C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In
TCC, pages 222–242, 2013.

28. A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457–473, 2005.

29. A. Sahai and B. Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. Cryptology ePrint Archive, Report 2013/454, 2013.

