
Practical Covert Authentication

Stanislaw Jarecki

University of California Irvine, stasio@ics.uci.edu

Abstract. Von Ahn, Hopper, and Langford [vAHL05] introduced the
notion of two-party steganographic a.k.a. covert computation, which as-
sures that neither party can distinguish its counterparty from a random
noise generator, except for what is revealed by the final output of the
securely computed function. The flagship motivation for covert compu-
tation is covert authentication, where two parties want to authenticate
each other, e.g. as some credential holders, but a party who lacks the
credentials is not only unable to pass the authentication protocol, but
cannot even distinguish a protocol instance from random noise.
Previous work on covert computation [vAHL05,CGOS07] showed general-
purpose protocols whose efficiency is linear in the size of the circuit rep-
resentation of the computed function. Here we show the first practical
(assuming a large-enough random steganographic channel) covert proto-
col for the specific task of two-party mutual authentication, secure un-
der the strong RSA, DQR, and DDH assumptions. The protocol takes 5
rounds (3 in ROM), O(1) modular exponentiations, and supports revoca-
tion and identity escrow. The main technical contribution which enables
it is a compiler from a special honest-verifier zero-knowledge proof to a
covert conditional key encapsulation mechanism for the same language.

1 Introduction

Steganography addresses a security/privacy property which is not usually con-
sidered in cryptography, which is how to make the very fact of secure protocol
execution hidden from the adversary. Such hiding of a protocol instance is in
principle possible if the public channels connecting the communicating parties
are steganographic in the sense that they have some intrinsic entropy. A protocol
is steganographic, or covert, if its messages can be efficiently injected into such
channels in a way that the resulting communication cannot be distinguished from
the (assumed) a priori random behavior of these channels. A simple example of
a steganographic channel is a random channel, which can be implemented e.g.
using protocol nonces, random padding bits, lower bits of time stamps, and var-
ious other standard communication mechanisms which exhibit inherent entropy.
Assuming such random channels between two parties A→ B and B → A, party
A would encode its protocol messages as bitstrings which are indistinguishable
from random, inject its out-going messages into the A→ B channel, and inter-
pret the messages on the B → A channel as B’s responses in the protocol. A
and B must synchronize the timing of using these channels, so they know which

bits to interpret as protocol messages, but this can be public information: The
covertness of the protocol implies that the messages which A and B exchange
cannot be distinguished from the a priori behavior of these channels.

Covert computation was formalized for two parties in [vAHL05] and in the
multi-party setting in [CGOS07] as a protocol that lets the participants securely
compute the desired functionality on their inputs, with the additional property
that no party can distinguish the other participants from “random beacons”
which send random bitstrings of fixed length instead of proscribed protocol mes-
sages, except for what is revealed by the final output of the computed function.
Both [vAHL05] and [CGOS07] show protocols for covert computation of any
functionality which tolerate malicious adversaries, resp. in the two-party and
the multi-party setting, but the costs of these protocols are linear in the size
of the circuit representation of the computed function. Moreover, these proto-
cols are not constant-round, and the subsequent work of [GJ10] showed that
this is a fundamental limitation on maliciously-secure covert computation in the
standard model, i.e. without access to trusted parameters or public keys. Still,
this begs the question whether useful two-party (or multi-party) tasks can be
accomplished covertly in a more practical way, with constant-round protocols
and constant number of public-key operations, in applications where common
trusted parameters and/or public keys are naturally available.

Indeed, the flagship motivation for covert computation, including [vAHL05]
and [CGOS07], was covert authentication, where two parties want to authenti-
cate each other, e.g. as holders of mutually accepted certificates, but a party
who lacks proper certificate is not only unable to pass in the authentication pro-
tocol, but cannot even distinguish an instance of such protocol from a random
beacon. In this work we show the first practical covert Mutual Authentication
(MA) protocol for the setting where mutually accepted certificates are defined
as group membership certificates issued by the same group manager. A very
similar mutual authentication setting was considered by “Secret Handshakes”
a.k.a. Private Mutual Authentication, see e.g. [JL09], but the goal of private
authentication is to protect the privacy of all authentication protocol inputs,
including the group public key assumed by each party in the protocol, while
covert authentication goes a step further, and aims to hide the very fact that
the authentication protocol takes place.

Our covert MA protocol relies on a covert Conditional Key Encapsulation
Mechanism (CKEM), a covert variant of Conditional Oblivious Transfer [COR99]
and a variant of the ZKSend gadget used in [CGOS07]. A covert CKEM is a
steganographic form of a zero-knowledge proof: It establishes a shared key be-
tween the prover and the verifier if and only if it is run on a true statement.
Unlike a zero-knowledge proof which involves an explicit verification which dis-
tinguishes the prover from a random beacon, a CKEM instance could appear
indistinguishable from a random noise to either participant. We show an efficient
compiler which converts a special Σ-protocol, i.e. a public-coin HVZK proof of
knowledge with certain (commonly satisfied) additional properties, into a covert
CKEM for the same language. A key property of this compiler is that it con-

structs a CKEM with a proof-of-knowledge property, which ensures extraction of
a witness for a verifier’s statement given a prover who distinguishes the verifier
from a random beacon. Witness-extraction makes covert CKEM’s more useful as
protocol building blocks, as we exemplify in our covert MA construction below.

Our covert MA scheme requires a group signature scheme which works by
committing to a group membership certificate and then proving in ZK that the
committed certificate is valid under the group public key. If the commitment is
covert and the ZK proof is replaced with a covert CKEM for the same language,
the result is a covert MA scheme. Crucially, if the CKEM enables extraction
of a witness given an adversary who breaks protocol covertness, then a security
reduction can extract a new membership certificate (and thus break the un-
forgeability of the underlying group signature scheme) given an adversary who
distinguishes an MA counterparty from a random beacon.

Note that covert CKEM’s without the proof-of-knowledge property, for rela-
tions involving discrete logarithm equalities, can be implemented using a Smooth
Projective Hash Function (SPHF) [CS01], if the verifier sends to the prover the
projection key, which is usually a tuple of random group elements, and so it can
be encoded as a random bitstring. What makes our covert CKEM construction
interesting is its proof-of-knowledge property, which is achieved as follows: On
statement x, the prover covertly commits to its first message a as C, sends re-
sponse z to the verifier’s challenge c, and then the two parties run an SPHF on
the statement that the prover’s presumed first message a, which can be computed
from (x, c, z), is indeed committed in C. Simulation follows from the covertness
of the commitment, and extraction follows by the standard rewinding technique
from the binding property of the commitment. The “special” property of the
Σ-protocol required by our CKEM construction is that a can be efficiently com-
puted given (x, c, z), and that z is an integer tuple distributed statistically close
to uniform over some integer ranges (and thus can be encoded as a random
bitstring), which is commonly the case in Σ-protocols for various arithmetic
relations on discrete logarithm and representations.

Organization. Section 2 introduces basic concepts and tools related to covert
computation. In Section 3 we define a covert CKEM and a covert MA scheme. In
Section 4 we construct a covert CKEM for any language which admits a special
Σ-protocol. In Section 5 we construct a covert MA scheme from (an interactive
version of) a group signature and a covert CKEM for a related language. In Sec-
tion 5.1 we instantiate this construction with the group signature of [ACJT00].

2 Preliminaries

Covertness. The paradigm of covert computation used in [vAHL05,CGOS07],
as well as in the work on steganographic key exchange of [vAH04], assumes that
the participants in a covert protocol are connected by a channel with sufficient
entropy, henceforth called a steganographic channel, and that the participants
communicate by using a steganographic algorithm, e.g. [HLvA02], to embed
protocol messages into this steganographic channel. As was shown by Ahn et al.

[vAHL05], if a protocol is covert for a random channel, i.e. if its messages are
indistinguishable from random bitstrings of some fixed length, then applying a
steganographic encoding to each protocol message makes the protocol covert for
the corresponding steganographic channel. Consequently we can limit our goal to
creating protocols whose messages are indistinguishable from random bitstrings.
Moreover, many steganographic channels are already uniform over fixed-length
bitstrings, e.g. a channel provided by random nonces in TCP/IP control packets,
in which case the steganographic encoding consists of simple splitting of protocol
messages into segments of length dictated by this channel. We use the following
notation to capture indistinguishability of a protocol participant from a random
beacon, i.e. a source that broadcasts random bitstrings of fixed length. Let A be
an interactive algorithm which engages in a fixed number k of protocol rounds
in each protocol instance, and where for each i = 1, .., k, A’s i-th message is a
bitstring of length ui(τ), where ui is a polynomial and τ is a security parameter.
Let u = (u1, ..., uk). We denote by A$(u) an interactive protocol which takes k
rounds s.t. its i-th outgoing message is a random bitstring of length ui(τ).

Covert Encodings. Our goal is to create efficient protocols whose messages are
indistinguishable from random bitstrings of fixed length. We will accomplish this
by designing protocols which communicate values which are indistinguishable
from either random group elements or random integers on integer intervals, and
then encoding these as fixed-length bitstrings using randomized encodings. Let
|R| denote the bit-length of R, and let [R] and ±[R] denote sets {0, . . . , R − 1}
and {−R + 1, . . . , R − 1}, respectively. Encoding EC[R] maps v ∈ [R] to an
(|R| + τ)-bit string by outputting v = v + Rk (over integers) for random k in
{0, . . . , b2|R|+τ/Rc}. Decoding DC|R|(v) outputs v = v mod R. Encoding EC±[R]

maps v ∈ ±[R] to an (|2R−1|+τ)-bit string by outputting EC[2R−1](v+(R−1)),
while DC±[R] reverses this process. Finally, if I = I1× . . .× It is a cross-product
of integer intervals then ECI maps I into bitstrings of length |I1|+ . . .+ |It|+t ·τ
by outputting v = (ECI1(v1), . . . ,ECIt(vt)) on input v = (v1, . . . , vt), while DCI

reverses this process. All these encodings are covert on their respective message
spaces in the following sense: (ECS ,DCS) is a covert encoding on space S if the
distribution {ECS(v)}v←S is statistically close to uniform over {0, 1}t for some t.

3 Covert KEM and Authentication Definitions

Covert Conditional KEM. Conditional OT (COT) for an NP relation R (and
an associated language LR), introduced by Di Crescenzo et al. [COR99], is a pair
of algorithms for sender S and receiver R, where S runs on a message m and a
statement x and R runs on a witness w, s.t. the receiver learns m if (x,w) ∈ R,
while the sender learns nothing from the protocol. COT sender’s privacy re-
quires that the receiver learns nothing about both m and x unless (x,w) ∈ R
[COR99,Cre00]. Since COT can be thought of as an interactive encryption, we
introduce a KEM-like version of this notion, a Conditional Key Encapsulation
Mechanism (CKEM). We define CKEM in a public parameter model, as a tu-
ple (PG,S,R) where S and R are interactive algorithms running on respective

inputs (π, xS) and (π, xR, w), for π ← PG(1τ). Both S and R output τ -bit keys,
respectively K and K ′, s.t. key K generated by S is a random bitstring, while
K ′ output by R is equal to K if ((π, xS), w) ∈ R (and xR = xS), and independent
from K if ((π, xS), w) 6∈ R. Note that CKEM implies COT if S encrypts its mes-
sage m under key K. Jarecki and Liu [JL09] introduced strong sender security
for COT, where an efficient extractor can extract w s.t. (xS, w) ∈ R from an
adversary which breaks sender’s security. We adapt this notion because witness-
extraction makes CKEM into a more useful protocol building block. Indeed, our
mutual authentication scheme of Section 5 relies on strong sender covertness of
CKEM to enable the reduction to extract a valid certificate (and thus forge a
certificate) from an adversary who breaks authentication security/privacy.

Definition 1 (Receiver Covertness). A CKEM (PG,S,R) for relation R
(and language LR) is receiver covert if for some polynomial sequence u =
(u1, u2, ...), for any efficient algorithm A, the difference between the probabil-
ity of A outputting 1 in the following two experiments is a negligible function
of τ . Both experiments run PG(1τ) to choose parameter π, and A(π) chooses
(x,w), and then in the first experiment A interacts with R(π, x, w), while in the
second experiment A interacts with R$(u).

Definition 2 (Strong Sender Covertness). A CKEM (PG,S,R) for relation
R (and language LR) is strong sender covert if there is a polynomial sequence
u, an efficient algorithm Ext, and a polynomial p s.t. for any efficient algorithm
A there exists a negligible function δ, s.t. for any τ , any π output by PG(1τ),
and any x of size polynomial in τ , it holds that Ext on input (π, x) and an oracle
access to A outputs w s.t. ((x, π), w) ∈ R with probability at least p(εA,π,x,u −
δ(τ)), where εA,π,x,u is defined as the difference between the probability that A
outputs 1 in the following two games: In the “real” game, A interacts with S(π, x)
and then receives key K output by this S instance, while in the “random” game,
A interacts with S$(u) and then receives K generated as a random τ -bit string.

Note on Computational Restrictions. We define CKEM covertness only for com-
putationally bounded adversaries because our CKEM construction in Section
4 depends on these bounds in both directions. Receiver’s covertness is compu-
tational because it encrypts the first Σ-protocol message using a commitment
which is only computationally hiding/covert, while sender’s covertness relies on
collision-resistance of a hash function. (Additionally, the 2-round version of this
CKEM, which works in the Random Oracle Model (ROM) for hash functions, re-
quires a polynomial bound on the number of adversary’s hash function queries.)

CKEM vs. Zero-Knowledge Proofs. One can view CKEM as an encryption coun-
terpart to a Zero-Knowledge Proof, with S playing the role of the Verifier and R
that of a Prover, except that in CKEM, the point is not for S to learn anything
about statement x, but for R to receive S’s key only if R has w s.t. (x,w) ∈ R.
In particular, one can view CKEM receiver privacy as a form of zero-knowledge
and CKEM strong sender security as a form of strong soundness, i.e. a proof
of knowledge. Indeed, both strong sender covertness and strong soundness of

an interactive proof require that if some algorithm A “ε-succeeds” on state-
ment x, then an efficient extractor can use A to extract w s.t. (x,w) ∈ R. In
an interactive proof A’s success is defined as convincing a verifier that x ∈ LR,
while CKEM covertness defines A’s success as distinguishing an interaction with
S(π, x) followed by the key K output by this instance of S, from an interaction
with a random beacon followed by a random τ -bit string.

CKEM vs. SPHF. CKEM’s can be seen as a generalization of Smooth Projective
Hash Functions [CS01] to interactive protocols. An SPHF gives rise to a one-
round CKEM by sending the projection key and treating the hash value as the
key K. Such CKEM is covert if the projection key can be covertly encoded, but
it is not strongly covert because it does not assure witness extraction.

CKEM vs. Covert 2PC. Our CKEM construction of Section 4 satisfies the above
game-based CKEM definition, but it is not a covert secure computation of a
CKEM functionality [vAHL05,CGOS07]. In particular, it enables extraction of
the witness w input by R but not the statement x input by S.

Covert Mutual Authentication. Consider a group manager GM who issues
certificates to group members and publishes revocation tokens for the users
whose membership it wants to revoke. An (implicit) Mutual Authentication (MA)
scheme, with verifier-local revocation, is a tuple of algorithms (KGen,CG,Auth)
which work as follows. KGen on security parameter τ outputs a master secret key
msk and a public key mpk. To issue a membership certificate to user Pi, GM gives
her a certificate generated as (ski, rti) ← CG(msk). To revoke membership, GM
adds rti to an initially empty revocation list CRL, which should then be propa-
gated to all current group members. If two players Pi and Pj want to authenticate
to each other, each player follows the interactive algorithm Auth, where Pi runs
on private inputs (mpk, (ski, rti),CRL) while Pj runs on (mpk′, (skj , rtj),CRL

′).
Each participant’s local outputs is a τ -bit session key, respectively K and K ′.
If both parties follows the protocol then K = K ′ if (1) mpk = mpk′, (2) both
(ski, rti) and (skj , rtj) are valid certificates under mpk, (3) neither certificate is
revoked in the CRL of the other player, i.e. rti 6∈ CRL′ and rtj 6∈ CRL.

Intuitively, we call an MA scheme covert if no one except a valid group mem-
ber can distinguish an interaction in the authentication scheme with a mem-
ber of the same group from an interaction with a random beacon. Formally,
we define MA covertness via the following game between an adversary A and
a game G. Let k be the number of message rounds in protocol Auth, and let
u = (u1, u2, ..., uk) be some sequence of polynomials. The MA security experi-
ment, denoted GA(1τ , b), is defined by an interaction between game G and an
attacker A which proceeds as follows:

Init. G on input (1τ , b) for bit b sets (msk,mpk) ← KGen(1τ), CRL ← ∅, and
generates (ski, rti)← CG(msk) for i = 1, . . . , N(τ) for a fixed polynomial N .
Corruptions. A, on input (1τ ,mpk), specifies a subset CorSet of corrupt play-
ers, and for each i ∈ CorSet, A receives (ski, rti), and rti is added to CRL.
Queries. A can (concurrently) make any number of Exec queries and a single
Test query, to which G responds as follows:

Exec(i,CRL∗): Execute Auth(mpk, (ski, rti),CRL
∗), interacting with A.

Test(i): If i 6∈ CorSet, respond as follows:
If b = 1, execute Auth(mpk, (ski, rti),CRL), interacting with A, and send the

local output K of this Auth instance to A;
If b = 0, execute Auth$(u), and send a random τ -bit string K ′ to A.

Guess. If A halts and outputs a bit, G halts and outputs the same bit.

Definition 3 (MA Covertness). We call an MA scheme (KGen,CG,Auth)
covert if for some polynomial sequence u function εA(τ) = |Pr[GA(1τ , 0) =
1]− Pr[GA(1τ , 1) = 1]| is negligible for any efficient algorithm A.

Revocation and Escrow. The MA definition implies that A can corrupt or partic-
ipate in Auth instances with any party, but this will not help A in distinguishing
an Auth instance ran by a non-corrupted party from a random beacon. This
can hold only if the honest party executes on a revocation list containing re-
vocation tokens of all corrupted players. (Otherwise the adversary could run
an Auth instance on a certificate of a corrupted player.) Note that we allow A
to interact with Auth instances executing on wrong revocation lists, to model
the fact that honest parties can execute on outdated or otherwise incorrect re-
vocation lists. While such instances can be recognizable to A, they should not
endanger covertness of instances which use the correct revocation list. One limi-
tation of our “verifier-local” revocation model, which we adopt from the work on
group signatures by Boneh and Shacham [BS04], is the lack of “perfect-forward
covertness”, i.e. an adversary who learns some party’s certificate can break the
covertness of all past protocol instances executed by this party. We model this
in the security experiment by requiring that the tested player is not on the revo-
cation list. However, this revocation model naturally supports identity escrow,
because GM can use revocation tokens to link protocol transcripts to users.

Authentication Security. MA covertness implies standard authentication security
because an attacker without a valid certificate cannot distinguish the key output
by a group member from a random string. However, our MA notion is quite far
from a full-fledged Authenticated Key Exchange (AKE) [BCK98,CK01]. First of
all, an adversary gets to see a session key only on a single tested session, so there
are no guarantees of independence between keys created by different instances,
and no guarantees of security against the man-in-the-middle attacks. In other
limitations, we offer only static security, because all corruptions must precede
protocol instance executions, and we offer limited security against malicious
insiders, because we never expose the session keys on Exec(i,CRL∗) instances.

4 Covert Conditional KEM Construction

We show a general compiler which uses a covert commitment with associated
SPHF to convert a special Σ-protocol for a given language, a form of three-
round public-coin Honest-Verifier Zero-Knowledge (HVZK) proof of knowledge,
into a covert CKEM for the same language. When the covert commitment is

instantiated as we explain below, the CKEM construction relies on the DDH
assumption on a prime-order subgroup of a prime residue group Z∗p, and its cost is
that of the underlying Σ-protocol plus 2 exponentiations in Z∗p for the sender and
3 for the receiver, assuming that the encoding of bitstrings output by the CKEM
into the underlying steganographic channel is not computationally intensive, e.g.
because the underlying steganographic channel is a random channel. Below we
first introduce our tools, the special Σ-protocol and the covert commitment with
associated SPHF, and then we show the covert CKEM construction.

Special Σ-Protocol. The notion of Σ-protocol was used by Damgard (see e.g.
[Dam10]) to describe common features of HVZK proof systems which extend
Schnorr’s proof of knowledge of the discrete logarithm to various arithmetic rela-
tions on discrete logarithms and representations. Let algorithm triple (P1, P2, V)
define a 3-round public-coin proof system for relation R, where P1 on input
(x,w) ∈ R and internal randomness r outputs the prover’s first message a, P2

on input (x,w, r) and a τ -bit challenge c outputs the prover’s second message
z, and V on input (x, a, c, z) outputs the verifier’s accept/reject decision bit.
We say that (P1, P2, V) is a Special Σ-Protocol for R if it satisfies the following
additional properties: (1) (“special soundness”) There exists an efficient extrac-
tor which outputs w s.t. (x,w) ∈ R given any two accepting transcripts that
share the same prover’s first message a but differ on the challenge c, i.e. given
(x, a, c, z, c′, z′) s.t. V (x, a, c, z) = V (x, a, c′, z′) = 1 and c′ 6= c; (2) The prover’s
second message z is a sequence of integers distributed statistically close to uni-
form over some integer ranges, i.e. for any (x,w) ∈ R and c ∈ {0, 1}τ , the
distribution of z’s output by P2(x,w, r, c) on random r is statistically close to
uniform over I = I1×. . .×It for some integer ranges I1, . . . , It; (3) (“special sim-
ulation”) There exists an efficiently computable function fV s.t. V (x, a, c, z) = 1
iff a = fV (x, c, z), c ∈ {0, 1}τ , and z ∈ I′ for some cross-product of ranges I′.
These properties are satisfied by Σ-protocols for many relations on discrete log-
arithms and representations (see e.g. [CM99] for examples). Such Σ-protocols
are usually given for prime order groups, but they extend to the QRn sub-
group of Z∗n for a safe RSA modulus n, such as the Σ-protocol for ACJT group
signature[ACJT00] possession (see Appendix A) used in the instantiation of our
covert MA construction in Section 5.1.

Covert Commitment with Associated SPHF. We call a tuple of efficient
algorithms (PG,Com,Hash,PHash) a perfectly binding covert commitment with
associated smooth projective hash function (SPHF) if the following requirements
are satisfied. (1) First, pair (PG,Com) is a covert commitment defined as follows:
There is a polynomial l(·) s.t. for any efficient algorithm A, quantity |p0− p1| is
a negligible function of τ , where pβ is defined as the probability that b = 1 in the
following experiment: Generate π ← PG(1τ), pick A’s randomness r, and gener-
ate m ← A(π; r). If β = 1 generate C ← Com(π,m), otherwise C ← {0, 1}l(τ).
Finally, let b ← A(π,C; r). Note that commitment covertness implies the stan-
dard notion of hiding for a commitment scheme. (2) Secondly, this commitment
must be perfectly binding, i.e. for any τ , any π ← PG(1τ), any m,m′, r, r′, if
Com((π,m); r) = Com((π,m′); r′) then m = m′. (3) Thirdly, (Hash,PHash) is

an SPHF system for the language of correct commitments, i.e. Hash(π,C,m)
outputs hash value h and projection key pk s.t. (3a) the SPHF is correct in the
sense that PHash(π, pk,m, r) = h if C = Com((π,m); r) for some r, and (3b)
the SPHF is covert in the sense that for any τ , any π ← PG(1τ), any C,m s.t.
C 6= Com((π,m); r) for all r, the pair (h, pk) output by Hash(π,C,m) is statisti-
cally close to a random bitstring of some length u(τ). Note that SPHF covertness
implies the standard notion of SPHF smoothness, because if m is not committed
in C then the hash value h is statistically independent of the projection key pk.

We construct such commitment using ElGamal encryption in a prime residue
group: Let PG(1τ) output π = (p, q, k, g,H) where p, q are primes s.t. p = qk+ 1
and gcd(q, k) = 1, g is a generator of subgroup G of order q in Z∗p, and H is a
universal hash from Z∗p to {0, 1}τ s.t. for any distribution D over Z∗p which has
at least |p| bits of entropy, {H(x)}x←D is statistically close to {0, 1}τ . Algorithm
Com(π,m) for m in message space Zq picks (t, z1, z2)← Zq×Z∗p×Z∗p, and outputs

C = (EC[p](e),EC[p](f)), where e = gt · z1q mod p and f = gt
2+m · z2q mod p.

Under the DDH assumption on subgroup G of Z∗p this commitment is covert,

because then pair (gt, gt
2

) is indistinguishable from two random G elements,
which makes pair (e, f) indistinguishable from two random Z∗p elements. Algo-
rithm Hash(π,C,m) decodes e and f from C, picks α, β ← Zq and z3 ← Z∗p, and

outputs (h, pk) where h = H
(
ek

2·α · (fg−m)k
2·β) and pk = EC[p]

(
gk·α · ek·β · z3q

)
.

Algorithm PHash(π, pk,m, r) for r = (t, z1, z2) decodes v ← DC[p](pk) and out-

puts h = H(vkt). Note that for both parties h = H(w) for w = gtk
2α+t2k2β

because (zi
q)k = zi

p−1 = 1. On the other hand, if C is not a commitment to
m then (h, pk) output by Hash(π,C,m) are distributed as (H(w),EC[p](x)) for

w = gk
2·(tα+t2β+δmβ) and x = gk·(α+tβ)z3

q for δm 6= 0 mod q. Since (α, β, z3)
is random in Zq × Zq × Z∗p, pair (w, x) is uniform in G × Z∗p, and therefore

(H(w),EC[p](x)) is statistically close to uniform in {0, 1}τ × {0, 1}|p|+τ .

Covert CKEM Construction. Let (P1, P2, V) be a special Σ-protocol for
relation R, with the associated integer ranges I, let (PG,Com,Hash,PHash) be
a perfectly binding covert commitment with associated SPHF, and let H be a
collision-resistant hash onto the message space of the commitment. Fig. 1 shows
algorithms S and R for a covert CKEM (PG,S,R) for relation R. Note that the
security argument for this construction uses rewinding, which degrades exact
security. Using the 2-round ROM version of this construction (see below), τ
should be at least 160, and H should hash onto at least 480-bit strings. If the
covert commitment is implemented using group Z∗p as shown above, this means
that the order q of the subgroup G of Z∗p must satisfy |q| ≥ 480.

Theorem 1. Tuple (PG,S,R) where S,R are specified in Fig. 1 is a receiver
covert and strong sender covert CKEM for relation R if (PG,Com,Hash,PHash)
is a perfectly binding covert commitment with associated SPHF, (P1, P2, V) is a
special Σ-protocol for R, and H is a collision resistant hash function.

Proof Sketch. To argue receiver covertness note that in the real execution the ad-
versary sees (C, z) generated as in Fig. 1, and this pair is indistinguishable from

On R’s inputs (π, x, w) and S’s inputs (π, x) for π generated by PG(1τ).

R: Pick random (r, r′), compute Σ-protocol first message a ← P1(x,w, r), com-
pute its hash C ← Com((π,H(a)); r′), and send C to S.

S: Pick challenge c← {0, 1}τ and send c to R.

R: Compute Σ-protocol response as z ← P2(x,w, r, c), send z ← ECI(z) to S.

S: Decode z ← DCI(z), use Σ-protocol verification to compute a ← fV (x, c, z),
compute (h, pk)← Hash(π,C,H(a)), send pk to R and output key K = h.

R: On sender’s message pk, output key K′ = PHash(π, pk,H(a), r′).

Fig. 1. A Covert CKEM for relation R

two random bitstrings of appropriate size: First, by covertness of the commit-
ment scheme, commitment C can be replaced by a random bitstring incurring
at most negligible change in the adversary’s behavior. Secondly, since z is sta-
tistically close to random in I by the properties of the Σ-protocol, and ECI is
covert on I, it follows that z is statistically close to a random bitstring. For
strong sender covertness, take any τ , any π output by PG(1τ), any x polynomial
in τ , and an efficient algorithm A. Let εA,π,x,u = |p0 − p1| where p0 is the prob-
ability that A(π, x) outputs 1 in an interaction where it gets (pk,K) = (pk, h)
computed by S(π, x), and p1 is the probability that A(π, x) outputs 1 given a
random u(τ)-bit string where u is given by the covertness property of the SPHF
for the commitment scheme (see property 3b in the definition above). First con-
sider executions where A sends (C, z) to S s.t. C is not a commitment to H(a)
for a = fV (x, c,DCI(z)). By the covertness of the SPHF for the commitment
scheme, in such executions pair (pk, h) is statistically indistinguishable random
u(τ)-bit string. Let εsphf(τ) be the upper-bound on the (negligible) amount such
executions can contribute to A’s distinguishing advantage εA,π,x,u. We conclude
that with probability at least ε′ = εA,π,x,u − εsphf(τ), a random interaction with
A(π, x) outputs (C, c, z) s.t. C is a commitment to H(a) for a = fV (x, c,DCI(z)).
Running such interaction twice with A’s initial randomness fixed until A outputs
C creates a “fork” with two transcripts (C, c, z) and (C, c′, z′) s.t. with probabil-
ity at least ε′′ = (ε′)2/2 (if ε′ ≥ 2 · 2−τ) we have that c 6= c′ and both transcripts
are successful in the sense that C is a commitment to H(a) for a = fV (x, c, z)
and C is a commitment to H(a′) for a′ = fV (x, c′, z′), for (z, z′) = DCI(z, z′).
H(a) = H(a′) by perfect binding of Com. Let εcrh(τ) be the (negligible) upper-
bound on the probability that this forked execution, running A(π, x) twice, pro-
duces a collision in H. Therefore with probability at least ε′′ − εcrh(τ) we have
that a = a′, in which case the extractor implied by the special soundness of the
Σ-protocol outputs w s.t. (x,w) ∈ R when executed on input (x, a, c, z, c′, z′),
which implies strong sender covertness for δ(τ) = 2−τ+2 + 2εsphf(τ) + 4

√
εcrh(τ)

and p(ε) = ε2/16.

2-round Covert CKEM in ROM. The same construction becomes a 2-round
CKEM in the Random Oracle Model (ROM), if c is computed as c = H ′(x,C)

for a hash function H ′ onto {0, 1}τ modeled as a random oracle. If A(π, x) can
make at most qH(τ) hash queries then using the version of the forking lemma in
[BN06] we get a (forking) algorithm which on input (π, x) runs two executions
of A(π, x) and creates the same two transcripts as above with probability ε′′ =
(ε′)2/(2qH(τ)) given ε′ ≥ 2·qH(τ)/2τ , which implies sender covertness for δ(τ) =
qH(τ) · 2−τ+2 + 2εsphf(τ) + 4

√
qH(τ)εcrh(τ) and p(ε) = ε2/(16qH(τ)).

5 Covert Mutual Authentication Scheme

We construct a covert Mutual Authentication (MA) from an Identity Escrow
(IE) scheme [KP98] where a group member commits to its certificate and then
proves in zero-knowledge that the committed value is a valid certificate under
the group public key. We turn such IE scheme into a covert MA scheme by
replacing the zero-knowledge proof with a covert CKEM for the same relation.
For revocation we require that each commitment can be linked to a committed
certificate given the revocation token corresponding to this certificate, and to
assure covertness we need this certificate commitment to be covert until the
revocation token is made public. Identity Escrow [KP98] is an interactive form of
a group signature [CvH91], and many group signatures can be converted to an IE
scheme which fits the above structure. Below we formalize the properties our MA
scheme construction requires of an IE scheme, and we show how to build a covert
MA protocol from such IE scheme and a covert CKEM for committed certificate
validity. In Section 5.1 we show how to instantiate this construction by modifying
the Ateniese-Camenisch-Joye-Tsudik (ACJT) group signature [ACJT00] into an
IE scheme that satisfies the properties required by this construction.

Compatible Identity Escrow Scheme. An IE scheme is a tuple of algorithms
(KG,CG,Ver, IECom,TraceCom), where KG(1τ) outputs a group secret key gsk
and a public key gpk, CG(gsk) generates a certificate (sk, rt), where sk is a user
secret and rt a revocation token, s.t. Ver(gpk, (sk, rt)) = 1, IECom(gpk, (sk, rt))
generates a commitment C to (sk, rt), and TraceCom(gpk, C, rt) = 1 if C ←
IECom(gpk, (sk, rt)). We call an IE scheme covert-MA-compatible if it satisfies
the following four properties. (1) First, (KG,Ver) must form an unforgeable cer-
tificate scheme, i.e. for any efficient algorithm A, the probability that A(gpk),
on access to an oracle CG(gsk), generates (sk∗, rt∗) s.t. Ver(gpk, (sk∗, rt∗)) = 1
and rt∗ 6= rti for all (ski, rti) pairs A receives from CG(gsk), is negligible, for
(gsk, gpk) randomly generated by KG(1τ). (2) Second, the scheme must be trace-
able, i.e. for any τ , any (gsk, gpk) output by KG(1τ), and any C and rt, it holds
that TraceCom(gpk, C, rt) = 1 if and only if C = IECom((gpk, (sk, rt)); r) for
some sk, r. (3) We define a committed certificate validity relation RIE as the set
((gpk, C), (sk, rt, r)) s.t. C = IECom((gpk, (sk, rt)); r) and Ver(gpk, (sk, rt)) = 1.
The third property of an IE scheme is that RIE admits a special Σ-protocol, so
that it can be converted into a covert CKEM by the construction in Fig. 1.

(4) The last property is the covertness of the commitment IECom. Note that
traceability implies that IECom cannot be semantically secure because the rt
part of the committed plaintext can be efficiently linked to the commitment.

However, the commitment must hide the committed certificate (sk, rt) as long
as the revocation token rt is not made public, and we need this commitment to
be covert and not just plaintext-hiding. Thus, we require the IE scheme to be
revocably covert in the sense that there exists some function l polynomial in τ s.t.
for any efficient algorithm A, quantity |p0−p1| is a negligible function of τ , where
pβ is defined as the probability that b = 1 in the following experiment: Generate
(gsk, gpk) ← KG(1τ) and (skt, rtt) ← CG(gsk), and then let A(gpk) repeatedly
query the CG(gsk) oracle which generates (sk, rt) and gives it to A, and an oracle
which returns C ← IECom(gpk, (skt, rtt)) for β = 1, or C ← {0, 1}l(τ) for β = 0.
A outputs bit b, its guess of bit β, after polynomially many queries of both types.

Covert MA Scheme Construction. Fig. 2 constructs a covert MA scheme
given a covert-MA-compatible IE scheme (KG,CG,Ver, IECom,TraceCom) and
a receiver covert and strong sender covert CKEM (PG,S,R) for the associated
committed certificate validity relation RIE . In the figure, uS stands for the poly-
nomial sequence implied by CKEM strong sender covertness.

KGen(1τ): Set (gsk, gpk)← KG(1τ), π ← PG(1τ), mpk = (gpk, π), and msk = gsk.

CG(gsk): Generate (sk, rt) following the CG(gsk) algorithm of the IE scheme.

Auth protocol for Pi((gpk, π), (ski, rti),CRLi) and Pj((gpk, π), (skj , rtj),CRLj):

1. Pi sets Ci ← IECom((gpk, (ski, rti)); ri) for random ri and sends Ci to Pj .
Pj sets Cj← IECom((gpk, (skj , rtj)); rj) for random rj and sends Cj to Pi.

Pi sets Fi ← 1 if TraceCom(gpk, Cj , rt) = 1 for any rt ∈ CRLi ∪ {rti},
and Fi ← 0 otherwise.

Pj sets Fj ← 1 if TraceCom(gpk, Ci, rt) = 1 for any rt ∈ CRLj ∪ {rtj},
and Fj ← 0 otherwise.

2. Pi runs protocol R on (π, (gpk, Ci), (ski, rti, ri)), interacting with Pj who runs
protocol S on (π, (gpk, Ci)) if Fj = 0, or runs S$(uS) if Fj = 1.
Pi sets Ki,R as its local output in R.
Pj sets Kj,S as its local output in S if Fj = 0, otherwise Kj,S ← {0, 1}τ .

3. Pj runs protocol R on (π, (gpk, Cj), (skj , rtj , rj)), interacting with Pi who runs
protocol S on (π, (gpk, Cj)) if Fi = 0, or runs S$(uS) if Fi = 1.
Pj sets Kj,R as its local output in R.
Pi sets Ki,S as its local output in S if Fi = 0, otherwise Ki,S ← {0, 1}τ .

Pi’s local output is Ki = Ki,R ⊕Ki,S and Pj ’s local output is Kj = Kj,R ⊕Kj,S.

Fig. 2. A Covert Mutual Authentication Scheme (KGen,CG,Auth).

Theorem 2. (KGen,CG,Auth) in Fig. 2 is a Covert Mutual Authentication
Scheme if (KG,CG,Ver, IECom,TraceCom) is a covert-MA-compatible IE scheme
and (PG,S,R) is a receiver covert and strong sender covert CKEM for RIE.

Proof Sketch. By the symmetry of the Auth protocol we can assume that in all
the Auth protocol instances adversary invokes its counterparty plays the role of
Pi in Fig. 2. Let l(·) be the length polynomial implied by revocable covertness
of the IE scheme, and let uR and uS be the polynomial sequences implied by
the receiver and sender covertness of the CKEM. The polynomial sequence u
which defines the random beacon Auth$(u) is composed of l(·) followed by the
elements of uR and then the elements of uS, because Pi first sends Ci, then
performs R, and then S (or S$(u)). Let A be an efficient algorithm with the
distinguishing advantage εA in the MA covertness experiment (see Definition 3).
For any i ∈ {0, . . . , N(τ)}, consider a game G(1τ , b, i∗) which follows G(1τ , b)
but fixes the index i used by A in the Test query by halting and outputting
1 if A calls the Test(i) query for i 6= i∗. There must exist an index i∗ s.t. A’s
advantage in distinguishing between G1 = G(1τ , 1, i∗) and G0 = G(1τ , 0, i∗) is at
least εA/N(τ). By a series of modifications starting from game G1 we show that
A’s distinguishing advantage between G1 and G0 must be negligible, implying
that εA is negligible. In the following we will only consider Exec(i,CRL∗) queries
for i s.t. rti 6∈ CRL, because A can execute the game response on such queries
for i ∈ CRL using the (ski, rti) certificate A received by corrupting Pi.

A hybrid argument shows that G1 is indistinguishable from G2 where all
Auth instances followed by Pi on Exec(i,CRL∗) queries are modified by replacing
R(π, (gpk, Ci), (ski, rti, ri)) with R$(uR) in step (2) of Auth. Let G1(t) be a hybrid
between G1 and G2 which responds to the first t of Exec queries as in G2,
and to the remaining ones as in G1. A’s advantage in distinguishing G1(t −
1) and G1(t) must be negligible for each t by CKEM receiver covertness. A
reduction which shows it runs on input π, generates (gsk, gpk), interacts with
either R(π, (gpk, Ci), (ski, rti, ri)) or R$(uR) on A’s t-th query Exec(i,CRL∗), and
simulates the rest of A’s view in either game.

Let CorSet+ = CorSet∪{i∗} and CRL+ = CRL∪{rti∗}. By another hybrid we
modify G2 into G3 by replacing the Ci values generated in the Auth instances by
each Pi for i 6∈ CorSet+, with random strings of length l(τ). This hybrid goes over
the players rather than over the Exec sessions. Let G2(t) be a game which follows
G2 in servicing each Exec(i,CRL∗) query for i > t, but on queries Exec(i,CRL∗)
for i ≤ t and i 6∈ CorSet+ it replaces Ci generated as Ci ← IECom(gpk, (ski, rti))
with a random l(τ)-bit string. Note that the subsequent steps of Pt in the Auth in-
stances triggered by Exec queries in G2 do not depend on either Ct or (skt, rtt, rt),
which allows us to reduce A’s advantage in distinguishing G2(t − 1) and G2(t)
to an attack on the revocable covertness of the IE scheme: The challenger gen-
erates (gsk, gpk)← KG(1τ) and (skt, rtt)← CG(gsk), the reduction on input gpk
receives certificates (ski, rti) for all i 6= t from the CG(gsk) oracle, receives either
a sequence of Ct’s computed as Ct ← IECom(gpk, (skt, rtt)) or as a sequence of
random bitstrings, and simulates everything else A sees in either game.

Note that G3 responds to each Exec(i,CRL∗) query for i 6∈ CorSet+ by pick-
ing Ci as a random string in step (1), running R$(uR) in step (2), and running
S(π, (gpk, Cj)) for Cj supplied by A in step (3). Therefore G3 can be simu-
lated given π, gpk, and the certificates (rti, ski) for i ∈ CorSet+. Let G4 be G3

with Pi∗ ’s code in the Auth instance triggered by the Test(i∗) query modified
by replacing the S(π, (gpk, Cj)) protocol Pi∗ follows if Fi∗ = 0 with a random
beacon S$(uS) and a random key Ki∗,S. If we assume that A’s advantage in
distinguishing between G3 and G4 is non-negligible, then by the strong sender
covertness of CKEM it follows that there is an efficient extractor which, on in-
put (gpk, π, {ski, rti}i∈CorSet+), extracts with non-negligible probability a witness
(sk, rt, r) s.t. ((gpk, Cj), (sk, rt, r)) ∈ RIE , i.e. Cj = IECom((gpk, (sk, rt)); r) and
Ver(gpk, (sk, rt)) = 1. Since the difference in this modification appears only for
Fi∗ = 0 (otherwise Pi∗ executes S$(uS) in either case), we can consider only ses-
sions where TraceCom(gpk, Cj , rti) = 0 for all rti ∈ CRL+. By the traceability
property this implies that the extracted witness (sk, rt, r) must satisfy rt 6∈ CRL+.
Therefore a reduction which simulates A’s view on input gpk, and on (ski, rti)
pairs for i ∈ CorSet+, can with non-negligible probability compute (sk, rt) s.t.
Ver(gpk, (sk, rt)) = 1 and rt 6= rti for all i ∈ CorSet+, which breaks the unforge-
ability of the (KG,Ver) certificate scheme.

Note that in G4 key Ki∗,S, computed in the Test(i∗) query, masks key Ki∗,R,
so now the latter key becomes irrelevant toA’s view andKi∗ can be picked at ran-
dom. This allows us to modify G4 into G5, by replacing R(π, (gpk, Ci∗), (ski∗ , rti∗ ,
ri∗)) in the Auth instance triggered by the Test(i∗) query with R$(uR). By CKEM
receiver covertness we get that G4 ≈ G5, via a reduction similar to the one which
shows that G1(t− 1) ≈ G1(t). We then modify G5 into G6, by replacing Ci∗ in
all Auth instances (in both Test(i∗) and Exec(i∗,CRL∗)) with a random l(τ)-bit
string. By revocable covertness of the IE scheme we get that G5 ≈ G6, via a
reduction similar to the one which shows that G2(t−1) ≈ G2(t). Note that in G6

player Pi∗ responds to the Test(i∗) query as Auth$(u) and outputs a random τ -bit
string as key Ki∗ , but also each Pi for i 6∈ CorSet responds to every Exec(i,CRL∗)
query by sending a random string instead of Ci in step (1) and following R$(uR)

instead of R in step (2). However, we can roll back those changes in responses
to Exec(i,CRL∗) queries. Using a similar argument as above for arguing indis-
tinguishability of G2 and G3, we first change Pi’s responses in Exec(i,CRL∗)
queries by replacing random Ci’s back with Ci ← IECom(gpk, (ski, rti)). Then,
using a similar argument as above for arguing indistinguishability of G1 and G2

we change Pi’s responses to Exec(i,CRL∗) queries by replacing R$(uR) back with
R(π, (gpk, Ci), (ski, rti, ri)). After these modifications the game is identical to G0,
which completes the proof.

5.1 Covert MA Instantiation from ACJT Group Signature

RSA Setting. We first introduce the cryptographic setting required by the
ACJT group signature scheme and by the covert encodings we will apply to
it. The safe RSA setting modulus of length ln = 2l + 2, for l polynomial in
security parameter τ , is a product n = pq of two primes p, q s.t. p = 2p′ + 1
and q = 2q′ + 1 where p′, q′ are also primes and |p′| = |q′| = l. The subgroup of
quadratic residues in Z∗n, denoted QRn, is a cyclic group of order n′ = p′q′. Let
g be a generator of QRn. Note that −1 6∈ QRn but Jn(−1), the Jacobi symbol
of −1 mod n, is equal to 1. We use ±QRn to denote the set of elements whose

Jacobi symbol is 1. (±QRn contains x and −x for x ∈ QRn.) We use the following
assumptions on safe RSA moduli, where negl stands for a negligible function:

Definition 4 (Strong RSA Assumption). For all efficient algorithms A
there is a negligible function negl s.t. if n is a random safe RSA modulus of
length ln, and z is a random element in Z∗n, the probability that A(n, z) outputs
(x, e) s.t. e 6= 1 and xe = z mod n, is upper-bounded by negl(ln). (Note that since
QRn makes 1/4-th of Z∗n∗, same assumption holds if z is sampled from QRn.)

Definition 5 (Decisional Quadratic Residuosity (DQR) Assumption).
For all efficient algorithms A there is a negligible function negl s.t. if n is a
random safe RSA modulus of length ln, the distinguishability advantage |ε0−ε1|,
where ε0 = Pr[1← A(n, a)] for a ∈ QRn and ε1 = Pr[1← A(n, a)] for a±QRn,
is upper-bounded by negl(ln).

Definition 6 (Decisional Diffie-Hellman (DDH) Assumption on QRn).
For all efficient algorithms A there is a negligible function negl s.t. if n is a
random safe RSA modulus of length ln, and ĝ is a random generator of QRn,
the distinguishability advantage |ε0 − ε1|, where ε0 = Pr[1 ← A(ĝ, ĝa, ĝb, ĝc)]
for a, b, c ← Zn′ and ε1 = Pr[1 ← A(n, ĝ, ĝa, ĝb, ĝab)] for a, b ← Zn′ , is upper-
bounded by negl(ln).

Covert Encoding for QRn. The ACJT group signature works in the QRn
subgroup of Z∗n, but a protocol whose messages are elements of QRn would not be
covert because one can distinguish QRn from Z∗n by computing a Jacobi symbol
mod n. We can handle it using the DQR assumption as follows. Let ν be any
element in Z∗n of order 2n′ s.t. Jn(ν) = −1. Let EC±QRn be an encoding of ±QRn
where EC±QRn(v) picks a random bit β and returns EC[n](ν

β · v). The decoding
DC±QRn(v) computes v′ ← DC[n](v) and outputs v = v′ if J(v′, n) = 1 and v =
v′/ν mod n if J(v′, n) = −1. EC±QRn is covert for message space ±QRn because
±QRn×{1, ν} is isomorphic to Z∗n and Z∗n is statistically indistinguishable from
[n]. Since under the DQR assumption QRn is indistinguishable from ±QRn, the
same encoding is also covert for message space QRn, assuming DQR.

Covert-MA-Compatible IE Scheme from ACJT Group Signature. We
explain how the ACJT group signature [ACJT00] can be transformed into a
covert-MA-compatible IE scheme (KG,CG,Ver, IECom,TraceCom) which we will
call a ACJT-IE. This provides an instantiation of the covert MA construction
of Fig. 2 because by the property (4) of a covert-MA-compatible IE scheme, we
can construct a receiver covert and strong sender covert CKEM for the RIE
relation associated with this IE scheme using the CKEM construction in Fig. 1,
and then we can use this CKEM together with the rest of the IE scheme in the
covert MA construction in Fig. 2. By combining the assumptions required for
the ACJT-IE scheme and for the CKEM construction (as stated in Theorem 1),
we get the following corollary of Theorem 2:

Corollary 1. The (KGen,CG,Auth) in Fig. 2 instantiated with the ACJT-IE
scheme and the CKEM scheme of Fig.1, is a Covert Mutual Authentication

Scheme, assuming the strong RSA and DQR assumptions on Z∗n for the safe
RSA modulus n, the DDH assumption on the QRn subgroup of Z∗n, and the DDH
assumption on a prime-order subgroup of a prime residue group.

We show the ACJT-IE scheme (KG,CG,Ver, IECom,TraceCom) and explain
how it relies on the strong RSA, DDH, and DQR assumptions stated above.
Algorithm KG sets the group public key as gpk = (n, a, a0, y, g, h), as in the
original ACJT group signature [ACJT00], where n is a safe RSA modulus and
a, a0, y, g, h are all random generators of QRn. The group secret key gsk is the
factorization of n. CG outputs (ski, rti) = ((Ai, ei), xi) where xi ← 2λ1 ± [2λ2],
ei is a random prime in 2γ1 ± [2γ2], and Ai = (axia0)1/ei mod n, for parameters
λ1, λ2, γ1, γ2 set as λ2 ≈ 2ln = 2|n|, λ1 ≈ λ2 + τ , γ2 ≈ λ1 + 2, and γ1 ≈ γ2 + τ .
Algorithm Ver(gpk, (Ai, ei), xi) returns 1 if Aeii = axia0 mod n and 0 otherwise.
Commitment IECom on inputs (gpk, ((Ai, ei), xi)) picks w ← [n/4] and computes
T1 ← Aiy

w, T2 ← gw, and T3 ← geihw, just like in the ACJT scheme, but in
addition it picks a random QRn element T4, computes T5 ← (T4)xi , and out-
puts C = (T 1, . . . , T 5) where T i ← EC±QRn(Ti) for each i. TraceCom(gpk, C, xi)
outputs 1 iff T5 = (T4)xi for T4, T5 decoded from T 4, T 5 in C.

Unforgeability of the (KG,Ver) certificate scheme is argued in [ACJT00] un-
der the strong RSA assumption on QRn. Traceability follows by the fact that
procedure TraceCom(gpk, C, xi) computes T5 from T4 in the same way as IECom
on xi. As for revocable covertness, since λ2 ≥ 2|n| we have that for xi uniform
in 2λ1 ± [2λ2] value (xi mod n′) is statistically indistinguishable from uniform
over Zn′ . Therefore, for secret xi, under DDH assumption on QRn the 5-tuple
(T1, . . . , T5) is indistinguishable from uniform over (QRn)5, and therefore by
covertness of EC±QRn commitment T is indistinguishable from a random bit-
string. Finally, the HVZK proof system given for the ACJT group signature in
[ACJT00], amended by the simple consistency check for the new (T4, T5) values,
is a special Σ-protocol for the associated relation RIE . We include this amended
proof system of [ACJT00] in Appendix A.

Efficiency of the Resulting Covert MA Scheme. The Covert MA protocol
of Fig. 2 can be condensed to three rounds in ROM: Player Pi can piggyback
R’s message in the CKEM instance of step 2 with the commitment Ci it sends
in step 1. Then player Pj can piggyback its commitment Cj with S’s response
in the CKEM instance of Step 2 and with R’s message in the CKEM instance
of step 3. Finally Pi would respond with S’s response in the CKEM instance of
step 3. As for the computational cost of this scheme instantiated with ACJT-IE
scheme, note that ACJT-IE uses 4 multi-exp’s in the certificate commitment
IECom and that the Σ-protocol for the associated relation RIE uses 5 multi-
exp’s for each party. Since each party plays the prover in one direction and
the verifier in the other, the total comes to 14 (multi-)exp’s in Z∗n. The CKEM
protocol in Fig. 1 adds 5 exp’s in Z∗p for each party (2 as the sender and 3 as
the receiver). Moduli p and n can both be 2048 bits long, but exp’s in Z∗p are
with much smaller exponents. Looking closer at the 14 multi-exp’s in Z∗n in the
computation of Ti’s, and di’s in either step 1 for the prover or step 4 for the
verifier (see the Σ-protocol in Appendix A), for |n| = 2048 and τ = 160 this

makes four 2048-bit exp’s (i.e. T1, T2, and d3 for both parties) and ten exp’s with
exponents between 4000 and 5000 bits. By comparison, the five exp’s in Z∗p have
only 480-bit exponents. The total cost for each party, of these 14 exp’s in Z∗n and
5 exp’s in Z∗p, can be approximated as 30 full exp’s in Z∗n for |n| = 2048. However,
each party additionally performs |CRL| + 1 exp’s in Z∗n in the TraceCom checks
for each rt in CRL and for one’s own rt. Since exponents xi are roughly twice
longer than |n|, the total cost is approximately 32 + 2|CRL| full exp’s in Z∗n with
|n| = 2048 and τ = 160. The bandwidth is about 29Kb in each direction. Note
that these costs are almost exactly as in the underlying ACJT group signature
scheme, so the practicality of our ACJT-based covert MA scheme depends on
whether the two parties have access to a random steganographic channel with
enough capacity to transmit 29Kb.

References

[ACJT00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A prac-
tical and provably secure coalition-resistant group signature scheme. In
CRYPTO, 2000.

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to
the design and analysis of authentication and key exchange protocols. In
STOC ’98, pages 419–428, 1998.

[BN06] M. Bellare and G. Neven. Multisignatures in the plain publickey model and
a general forking lemma. In Proceedings of ACM CCS, 2006.

[BS04] Dan Boneh and Hovav Shacham. Group signatures with verifier-local re-
vocation. In ACM Conference on Computer and Communications Security,
pages 168–177, 2004.

[CGOS07] Nishanth Chandran, Vipul Goyal, Rafail Ostrovsky, and Amit Sahai. Covert
multi-party computation. In FOCS, pages 238–248, 2007.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and
their use for building secure channels. In EUROCRYPT, pages 453–474,
2001.

[CM99] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a num-
ber is the product of two safe primes. In EUROCRYPT, 1999.

[COR99] Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Ra-
jagopalan. Conditional oblivious transfer and timed-release encryption. In
EUROCRYPT, pages 74–89, 1999.

[Cre00] Giovanni Di Crescenzo. Private selective payment protocols. In Financial
Cryptography, pages 72–89, 2000.

[CS01] Ronald Cramer and Victor Shoup. Universal hash proofs and and a paradigm
for adaptive chosen ciphertext secure public-key encryption. Electronic Col-
loquium on Computational Complexity (ECCC), 8(072), 2001.

[CvH91] D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology
– EUROCRYPT ’91, pages 257 –265, 1991.

[Dam10] Ivan Damgard. On Σ-protocols, 2010. url:www.cs.au.dk/ ivan/Sigma.pdf.
[GJ10] Vipul Goyal and Abhishek Jain. On the round complexity of covert compu-

tation. In STOC, 2010.
[HLvA02] Nicholas J. Hopper, John Langford, and Luis von Ahn. Provably secure

steganography. In CRYPTO, pages 77–92, 2002.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Private mutual authentication and con-
ditional oblivious transfer. In CRYPTO, pages 90–107, 2009.

[KP98] J. Kilian and E. Petrank. Identity escrow. In Advances in Cryptography -
CRYPT0 1998, Santa Barbara, CA, August 1998.

[vAH04] Luis von Ahn and Nicholas J. Hopper. Public-key steganography. In EU-
ROCRYPT, pages 323–341, 2004.

[vAHL05] Luis von Ahn, Nicholas J. Hopper, and John Langford. Covert two-party
computation. In STOC, pages 513–522, 2005.

A Special Σ-Protocol for the ACJT-IE Scheme

We show a proof system for the committed certificate validity relation RIE in
the ACJT-IE scheme of Section 5.1, which satisfies the properties of a special
Σ-protocol, and hence it can be compiled into a covert CKEM for the same
relation using our CKEM construction in Fig. 1. The proof system below is a
simple modification of the proof system for the ACJT group signature [ACJT00]
extended by a check that T5 = T xi4 . Relation RIE for the ACJT-IE scheme
consists of pairs (x̂, ŵ) = (((n, a, a0, y, g, h), (T 1, . . . , T 5)), ((Ai, ei), xi, w)) which
satisfy the following set of relations for Ti’s decoded from T i’s using DC±QRn :

T1 = Aiy
w , T2 = gw , T3 = geihw , T5 = T xi4 , Aeii = axia0 , xi ∈ 2λ1±[2λ2+2τ]

Below is the special Σ-protocol for this relation, which the honest prover
executes on (xi, ei, w) ∈

(
2λ1 ± [2λ2] × 2γ1 ± [2γ2] × [2ln−2]

)
:

1. P1 picks (r1, r2, r3, r4)← ±[2γ2+2τ]×±[2λ2+2τ]×±[2γ1+ln+2τ]×±[2ln+2τ],
sets (d1, d2, d3, d4, d5)← (T r11 /(ar2yr3) , T r12 /gr3 , gr4 , gr1hr4 , T r24),
sets r = (r1, r2, r3, r4), and outputs a = (d1, d2, d3, d4, d5).

2. Public coin challenge c is chosen as c← {0, 1}τ .
3. P2 sets z = (z1, z2, z3, z4) for z1 ← r1 − c(ei − 2γ1), z2 ← r2 − c(xi − 2λ1),
z3 ← r3 − ceiw, z4 ← r4 − cw [all computed over integers]

4. V accepts if z = (z1, . . . , z4) lies in the cross-space I′ = (I ′1×I ′2×I ′3×I ′4), for
I ′1 = ±[2γ2+2τ+1], I ′2 = ±[2λ2+2τ+1], I ′3 = ±[2γ1+ln+2τ+1], I ′4 = ±[2ln+2τ+1],
and if a = fV (x̂, c, z) where fV (x̂, c, z) computes (d1, . . . , d5) as follows:

d1
?
= ac0T

z1−c2γ1
1 /(az2−c2

λ1
yz3) d2

?
= T z1−c2

γ1

2 /gz3

d3
?
= T c2 g

z4 d4
?
= T c3 g

z1−c2γ1hz4 d5
?
= T c5T

z2−c2λ1
4

By the constraints on (xi, ei, w) used by an honest prover, z is statistically close
to uniform over I = I1 × I2 × I3 × I4 where I1 = ±[2γ2+2τ], I2 = ±[2λ2+2τ],
I3 = ±[2γ1+ln+2τ], I4 = ±[2ln+2τ]. The proof of knowledge property of the
ACJT proof system [ACJT00] satisfies the requirement that a valid witness
ŵ = ((Ai, xi), ei, w) is efficiently extractable from two accepting proof transcripts
(a, c, z) and (a, c′, z′) s.t. c′ 6= c, and this property holds for our extension which
involves the check that T5 = T xi4 .

