
Verifiable Set Operations over Outsourced Databases?

Ran Canetti1,2, Omer Paneth1, Dimitrios Papadopoulos1, and
Nikos Triandopoulos3,1

1 Dept. of Computer Science, Boston University, USA
2 Dept. of Computer Science, Tel Aviv University, Israel

3 RSA Laboratories, Cambridge MA, USA

Abstract. We study the problem of verifiable delegation of computation over
outsourced data, whereby a powerful worker maintains a large data structure for
a weak client in a verifiable way. Compared to the well-studied problem of ver-
ifiable computation, this setting imposes additional difficulties since the verifier
also needs to check the consistency of updates succinctly and without maintain-
ing large state. We present a scheme for verifiable evaluation of hierarchical set
operations (unions, intersections and set-differences) applied to a collection of
dynamically changing sets of elements from a given domain. The verification
cost incurred is proportional only to the size of the final outcome set and to the
size of the query, and is independent of the cardinalities of the involved sets. The
cost of updates is optimal (involving O(1) modular operations per update). Our
construction extends that of [Papamanthou et al., CRYPTO 2011] and relies on
a modified version of the extractable collision-resistant hash function (ECRH)
construction, introduced in [Bitansky et al., ITCS 2012] that can be used to suc-
cinctly hash univariate polynomials.

1 Introduction

Outsourcing of storage and computation to the cloud has become a common practice for
both enterprises and individuals. In this setting, typically, a client with bounded com-
putational and storage capabilities wishes to outsource its database to a cloud provider
and, over time, issue queries over the database that are answered by powerful servers.

We consider a client that outsources a dataset D to a server. The client can then
issue to the server informational queries that are answered according to D, or it can
issue update queries that change D, for example by inserting or removing elements.
This model captures a variety of real-world applications such as outsourced relational
databases, streaming datasets and outsourced file systems. We also consider the more
general setting where multiple other clients can issue informational queries to D, while
only one designated source client can issue update queries. For example, consider a
company that outsources its data to a cloud service provider that will also be responsible
for accommodating queries from the company’s multiple customers.
? Research supported in part by the Check Point Institute for Information Security, an NSF

EAGER grant, an NSF Algorithmic foundations grant 1218461, the Simons award for graduate
students in theoretical computer science, and NSF grants CNS-1012798 and CNS-1012910.

2 R. Canetti, O. Paneth, D. Papadopoulos, N. Triandopoulos

In such outsourcing scenarios, clients may want to verify the integrity of the out-
sourced operations over the datasetD to protect themselves against servers that provide
wrong results because they are themselves malicious or have been compromised by an
external attacker, or simply provide false results (e.g., inaccurate or inconsistent data)
due to bugs. Specifically, when answering a client’s query, the server will also compute
a proof of the integrity of the data used to compute the answer as well as the integrity
of the computation, i.e., that the correct function was computed. For this purpose, we
allow the source client to perform some preprocessing onD before outsourcing it to the
server, and to save a small verification state that allows it to verify the server’s proofs.
Analogously, when issuing an update query, the source client will also update its verifi-
cation state. If the verification state can be made public we say that the server’s proofs
are publicly verifiable, which is particularly important in the multi-client setting.

Several different measures of efficiency can be considered in this setting. First, the
time it takes for the client to verify a proof should be short, ideally some fixed poly-
nomial in the security parameter that is independent of the size of server’s computa-
tion cost and the size of D. Second, the server’s computational overhead in comput-
ing proofs should be kept minimal. Additional efficiency properties include small proof
sizes, efficient update queries as well as non-interactive solutions where the client sends
a query and receives back an answer and a proof in one round of interaction.
Set operations over outsourced databases. This work focuses on the problem of ver-
ifying general set operations in the above outsourcing setting. That is, we consider a
dataset D that consists of m sets S1, ..., Sm, where the clients’ queries are arbitrary
set operations over D represented as formulas of union, intersection, and set-difference
gates over some of the inputs S1, ..., Sm. A particularly interesting case is when the
sets appearing at intermediate steps of the computation are much larger than the final
answer (e.g., consider a number of unions, followed by an intersection resulting in the
empty set). The motivation for set operations comes from their great expressiveness
and the range of computations that can be mapped by them. Real-world applications of
general set operations include a wide class of SQL database queries, keyword search
with elaborate queries, access control management and similarity measurement, hence
a practical protocol for verifiable general set operations would be of great importance.
Verifiable computation - The generic approach. The settings considered here are
closely related to the setting of verifiable computation that has been extensively stud-
ied in recent years. In verifiable computation the client outsources a computation to the
server and receives an answer that can be quickly verified. The main difference is that
in verifiable computation it is usually assumed that the input to the computation is short
and known to both parties, while in our settings the server’s answers are computed over
the outsourced dataset that must also be authenticated. This problem was addressed in
the work of [15] on memory delegation with a construction based on Micali’s CS proofs.
One possible approach for designing a practical protocol is based on the memory del-
egation solution where Micali’s CS proofs are replaced by a succinct non-interactive
argument-of-knowledge (SNARK). Good candidates for more practical constructions
of such a SNARK are provided in the recent works of [4, 6, 27].

However, one major obstacle for implementing the generic approach described
above (discussed already in [27]) is that it only considers computations that are rep-

Verifiable Set Operations over Outsourced Databases 3

resented as boolean or arithmetic circuits. For example, in the context of set operations
the transformation from formulas of set operations to circuits can be extremely wasteful
as the number of sets participating in every query and the set sizes may vary dramati-
cally between queries. Here, another source of inefficiency is that the generic approach
considers a universal circuit that gets the query, in the form of the set-operation formula,
as input which introduces additional overheads. Overall, while asymptotically the com-
putational overhead of the server can be made poly-logarithmic, in practice the large
constants involved can be an obstacle for using the generic solution for set operations.
Our result. In this work we propose a new practical scheme for publicly verifiable se-
cure delegation of general set operations. The verification state is of constant size and
the proof verification time is O(t + δ) where t is the size of the query formula and δ
is the answer set size. That is, a main advantage of our scheme is that the verification
time and the proof length do not grow with the sizes of all other sets involved in the
computation. For instance, the intersection of two unions, each defined over a constant
number of sets each having a large cardinality, may result in intermediate results of size
O(|D|) but only produce the empty set as output; in this extreme case, our scheme pro-
vides optimal, constant-time verification. The dependence on the answer size is inherent
since the client must receive the answer set from the server. Another advantage of our
scheme over the generic approach is that is does not involve translating the problem to
an arithmetic or boolean circuit. In particular, the server will need to perform only 4N
exponentiations in a group with a symmetric bilinear pairing, where N is the sum of
the sizes of all the intermediate sets in the evaluation of the set formula.

For updates, the source client maintains an update state of length O(m), where m
is the number of sets in the dataset, and it can add or remove a single element for every
set in constant time. The source then updates the server and all other clients with a
new verification state. We note that our definitions and construction can be extended to
support also server-assisted updates, where the source client updates a given set inD to
a new set defined as the output of a set operation performed by the server, thus updating
a large number of elements at once—details are deferred to the full version [13].
Overview of techniques. The starting point for our construction is the scheme of Pa-
pamanthou, Tamassia and Triandopoulos [26] that supports verification of a single set
operation, one union or intersection, over t sets in time O(t+ δ), where δ is the answer
size. The “naive” way to extend that scheme to support general set-operation formulas
is to have the server provide a separate proof for each intermediate set produced in the
evaluation of the formula. However, proving the security of such an extended scheme
is problematic. The problem is that in the scheme of [26] the proofs do not necessarily
compose. In particular, it might be easy for a malicious server to come up with a false
proof corresponding to an incorrect answer set without “knowing” what this incorrect
answer is (if the malicious server would be able to also find the answer set, the scheme
of [26] would not have been secure). Therefore, to make the security proof of the naive
scheme go though, the server would also have to prove to the client that it “knows” all
the intermediate sets produced in the evaluation of the query formula. One way for the
server to prove knowledge of these sets is to send them to the client, however, this will
result in a proof that is as long as the entire server computation.

4 R. Canetti, O. Paneth, D. Papadopoulos, N. Triandopoulos

To solve this problem we need to further understand the structure of the proofs in
[26] which is based on the notion of a bilinear accumulator [24]. We can think of a
bilinear accumulator as a succinct hash of a large set that makes use of a representa-
tion of a set by its characteristic polynomial (i.e., a polynomial that has as roots the set
elements). The main idea in our work is to use a different type of accumulator, a knowl-
edge accumulator, that has “knowledge” properties, i.e., the only way for an algorithm
to produce a valid accumulation value is to “know” the set that corresponds to this value.
This knowledge property of our accumulator together with the soundness of the proof
for every single operation allows us to prove the soundness of the composed scheme.
Our construction of knowledge accumulators is very similar to the previous construc-
tions of knowledge commitments in [6, 20], which are based on the q-PKE assumption,
a variant of the knowledge-of-exponent assumption [16]. We capture the knowledge
properties of our accumulator by using the notion of an extractable collision-resistant
hash function (ECRH), originally introduced in [6]. However, we follow the weaker
definition of ECRH with respect to auxiliary input, for which the recent negative evi-
dence presented in [7] does not apply and the auxiliary-input distributions we consider
here are not captured by the negative result of [11] either.

We also need to change the way a single set operation is proven. Specifically, in
[26], a proof for a single union of sets requires one accumulation value for every ele-
ment in the union. This will again result in a proof that is as long as the entire server
computation. Instead our scheme involves proofs that are independent of the set sizes.

Moreover, in order to verify a proof in our scheme, the client only needs to know
the accumulation values for the sets that participate in a computation. Instead of storing
the accumulation values of all sets in the dataset, the client only stores a constant-
size verification state that contains a special hash of these accumulation values. We
compute this special hash using an accumulation tree, introduced in [25]. This primitive
can be thought of as a special “tree hash” that makes use of the algebraic structure of
accumulators to provide authentication paths of constant length.

Finally we note that our definition of security follows the popular framework of
authenticated data structures introduced in [29].
Related work. The very recent work of [3] also considers a practical secure database
delegation scheme supporting a restricted class of queries, namely functions expressed
by arithmetic circuits of degree up to 2. This scheme is based on homomorphic MACs
and appears practical while also having a security proof that is based on standard hard-
ness assumptions. However, their solution is only privately verifiable and it does not
support deletions from the dataset. In a sense, the work of [3] is complementary to ours,
as arithmetic and set operations are two desirable classes of computations for a database
outsourcing scheme.

With respect to set operations, previous works focused mostly on the aspect of pri-
vacy and less on the aspect of integrity [2, 10, 18, 21]. There exists a number of works
from the database community that address this problem [22, 30], but to the best of our
knowledge, this is the first work that directly addresses the case of nested operations.

Characteristic polynomials for set representation have been used before in the cryp-
tography literature (see for example [24, 26]) and this directly relates our work with
a line of publications coming from the cryptographic accumulators literature [12, 24].

Verifiable Set Operations over Outsourced Databases 5

Indeed our ECRH construction, viewed as a mathematical object, is identical to a pair
of bilinear accumulators (introduced in [24]) with related secret key values. Our ECRH
can be viewed as an extractable extension to the bilinear accumulator that allows an ad-
versarial party to prove knowledge of a subset to an accumulated set (without explicitly
providing said subset). It also allows us to use the notion of accumulation trees which
was originally defined for bilinear accumulators.

The authenticated data structure (ADS) paradigm, originally introduced in [29],
appears extensively both in the cryptography and databases literature (see for exam-
ple [1, 19, 22, 23, 26, 31, 32]). A wide range of functionalities has been authenticated
in this context including range queries and basic SQL joins.

2 Tools and Definitions

We denote with l the security parameter and with ν(l) a negligible function. We say
that an event can occur with negligible probability if its occurrence probability is upper
bounded by a negligible function. Respectively, an event takes place with overwhelming
probability if its complement takes place with negligible probability. In our technical
exposition we adopt the access complexity model: Used mainly in the memory checking
literature [8, 17], this model allows us to measure complexity expressed in the number
of primitive cryptographic operations made by an algorithm without considering the
related security parameter.
Bilinear pairings. Let G be a cyclic multiplicative group of prime order p, generated by
g. Let also GT be a cyclic multiplicative group with the same order p and e : G×G→
GT be a bilinear pairing with the following properties: (1) Bilinearity: e(P a, Qb) =
e(P,Q)ab for all P,Q ∈ G and a, b ∈ Zp; (2) Non-degeneracy: e(g, g) 6= 1; (3)
Computability: There is an efficient algorithm to compute e(P,Q) for all P,Q ∈ G.
We denote with pub := (p,G,GT , e, g) the bilinear pairings parameters, output by a
randomized polynomial-time algorithm GenBilinear on input 1l.

For cleaner presentation, in what follows we assume a symmetric (Type 1) pairing
e. In [13] we discuss the modifications needed to implement our construction in the
(more efficient) asymmetric pairing case (see [14] for a general discussion of pairings).

Our security analysis makes use of the following two assumptions :

Assumption 1 (q-Strong Bilinear Diffie-Hellman [9]) For any poly-size adversaryA
and for q being a parameter of size poly(l), the following holds:

Pr

[
pub← GenBilinear(1l); s←R Z∗p;

(z, γ) ∈ Z∗p ×GT ← A(pub, (g, gs, ..., gs
q

)) s.t. γ = e(g, g)1/(z+s))

]
≤ ν(l)] .

Assumption 2 (q-Power Knowledge of Exponent [20]) For any poly-size adversary
A, there exists a poly-size extractor E such that:

Pr

pub← GenBilinear(1l); a, s←R Z∗p;σ = (g, gs, ..., gs

q

, ga, gas, ..., gas
q

)

(c, c̃)← A(pub, σ); (a0, ..., an)← E(pub, σ)

s.t. e(c̃, g) = e(c, ga) ∧ c 6=
n∏
i=0

gais
i

for n ≤ q

 ≤ ν(l) .

6 R. Canetti, O. Paneth, D. Papadopoulos, N. Triandopoulos

Extractable collision-resistant hash functions. These functions (or ECRH for short)
were introduced in [6] as a strengthening of the notion of collision-resistant hash func-
tions. The key property implied by an ECRH is the hardness of oblivious sampling
from the image space. Informally, for a function f , sampled from an ECRH function
ensemble, any adversary producing a hash value h must have knowledge of a value
x ∈ Dom(f) s.t. f(x) = h. Formally, an ECRH function is defined as follows:

Definition 1 (ECRH [6]). A function ensembleH = {Hl}l from {0, 1}t(l) to {0, 1}l is
an ECRH if:

Collision-resistance For any poly-size adversary A:

Pr
h←Hl

[
x, x′ ← A(1l, h) s.t. h(x) = h(x′) ∧ x 6= x′

]
≤ ν(l) .

Extractability For any poly-size adversary A, there exists poly-size extractor E s.t.:

Pr
h←Hl

[
y ← A(1l, h);x′ ← E(1l, h)

s.t. ∃x : h(x) = y ∧ h(x′) 6= y

]
≤ ν(l) .

An ECRH construction from q-PKE. We next provide an ECRH construction from
the q-PKE assumption defined above. In [6] the authors suggest that an ECRH can be
constructed directly from q-PKE (without explicitly providing the construction). Here
we present the detailed construction and a proof of the required properties with respect
to q-PKE for extractability and q-SBDH for collision-resistance.

– To sample from Hl, choose q ∈ O(poly(l)), run algorithm GenBilinear(1l) to
generate bilinear pairing parameters pub = (p,G,GT , e, g) and sample a, s ←R

Z∗p × Z∗p s.t. a 6= s. Output public key pk = (pub, gs, ..., gs
q

, ga, gas, ..., gas
q

) and
trapdoor information sk = (s, a). It should be noted that the pk fully describes the
chosen function h. Trapdoor sk can be used for a more efficient computation of
hash values, by the party initializing the ECRH .

– To compute a hash value on x = (x1, ..., xq), output h(x) =(∏
i∈[q] g

xis
i

,
∏
i∈[q] g

axis
i
)

.

Lemma 1. If the q-SBDH and q-PKE assumptions hold, the above is a (q · l, 4l)-
compressing ECRH.

Proof. Extractability follows directly from the q-PKE assumption. To argue about
collision-resistance, assume there exists adversary A outputting with probability ε,
(x,y) such that there exists i ∈ [q] with xi 6= yi and h(x) = h(y). We denote
with P (r) the q-degree polynomial from Zp[r],

∑
i∈[q](xi − yi)r

i. From the above,
it follows that

∑
i∈[q] xis

i =
∑
i∈[q] yis

i. Hence, while P (r) is not the 0-polynomial,
the evaluation of P (r) at point s is P (s) = 0 and s is a root of P (r). By applying
a randomized polynomial factorization algorithm as in [5], one can extract the (up to
q) roots of P (r) with overwhelming probability, thus computing s. By choosing a to
compute the second part of the public key to runA and then randomly selecting c ∈ Z∗p

Verifiable Set Operations over Outsourced Databases 7

and computing β = g1/(c+s) one can output (c, e(g, β)), breaking the q-SBDH with
probability ε(1 − ε′) where ε′ is the negligible probability of error in the polynomial
factoring algorithm. Therefore any poly-sizeA can find a collision only with negligible
probability. The 4l factor follows from the representation cost of elliptic curve points as
a pair of p-bit coefficients. ut
One natural application for the above ECRH construction would be the compact
computational representation of polynomials from Zp[r] of degree ≤ q. A polyno-
mial P (r) with coefficients p1, ..., pq can be succinctly represented by the hash value

h(P) = (f, f ′) =
(∏

i∈[q] g
pis

i

,
∏
i∈[q] g

apis
i
)

.

Authenticated data structure scheme. Such schemes, originally defined in [26],
model verifiable computations over outsourced data structures. LetD be any data struc-
ture supporting queries and updates. We denote with auth(D) some authenticated in-
formation onD and with d the digest ofD, i.e., a succinct secure computational descrip-
tion of D. An authenticated data structure scheme ADS is a collection of six algorithms
shown in Figure 1. Let {accept, reject} = check(q, a(q), Dh) be a method that decides

1. {sk, pk} ← genkey(1k). Outputs secret and public keys, given the security parameter l.
2. {auth(D0), d0} ← setup(D0, sk, pk): Computes the authenticated data structure
auth(D0) and its respective digest, d0, given data structure D0, the secret key sk and
the public key pk.

3. {auth(Dh+1), dh+1, upd} ← update(u, auth(Dh), dh, sk, pk): On input update u on
data structure Dh, the authenticated data structure auth(Dh) and the digest dh, it out-
puts the updated data structure Dh+1 along with auth(Dh+1), the updated digest dh+1

and some relative information upd. It requires the secret key for execution.
4. {Dh+1, auth(Dh+1), dh+1} ← refresh(u,Dh, auth(Dh), dh, upd, pk): On input up-

date u on data structure Dh, the authenticated data structure auth(Dh), the digest dh
and relative information upd output by update, it outputs the updated data structure
Dh+1 along with auth(Dh+1) and the updated digest dh+1, without access to sk.

5. {a(q), Π(q)} ← query(q,Dh, auth(Dh), pk): On input query q on data structure Dh
and auth(Dh) it returns the answer to the query a(q), along with a proof Π(q).

6. {accept, reject} ← verify(q, a(q), Π(q), dh, pk): On input query q, an answer a(q), a
proof Π(q), a digest dh and pk, it outputs either “accept” or “reject”.

Fig. 1. Authenticated data structure

whether a(q) is a correct answer for query q on data structure Dh (this method is not
part of the scheme but only introduced for ease of notation.) Then an authenticated data
structure scheme ADS should satisfy the following:
Correctness. We say that ADS is correct if, for all l ∈ N, for all (sk, pk) output by
algorithm genkey, for all (Dh, auth(Dh), dh) output by one invocation of setup fol-
lowed by polynomially-many invocations of refresh, where h ≥ 0, for all queries q and
for all a(q), Π(q) output by query(q,Dh, auth(Dh), pk), with all but negligible prob-
ability, whenever check(q, a(q), Dh) accepts, so does verify(q, a(q), Π(q), dh, pk).
Security. Let l ∈ N be a security parameter and (sk, pk) ← genkey(1l) and A be
a poly-size adversary that is only given pk and has oracle access to all algorithms of
the ADS. The adversary picks an initial state of the data structure D0 and computes

8 R. Canetti, O. Paneth, D. Papadopoulos, N. Triandopoulos

D0, auth(D0), d0 through oracle access to algorithm setup. Then, for i = 0, ..., h =
poly(l), A issues an update ui for the data structure Di and outputs Di+1, auth(Di+1)
and di+1 through oracle access to algorithm update. At any point during these update
queries, he can make polynomially many oracle calls to algorithms prove and verify.
Finally the adversary picks an index 0 ≤ t ≤ h + 1, a query q, an answer a(q) and a
proofΠ(q). We say that an ADS is secure if for all large enough k ∈ N, for all poly-size
adversaries A it holds that:

Pr

[
(q, a(q), Π(q), t)← A s.t

accept ← verify(q, a(q), Π(q), dt, pk) ∧ reject ← check(q, a(q), Dt)]

]
≤ ν(l)

where the probability is taken over the randomness of genkey and the coins of A. The
above security definition maps the mode of operation of an outsourced computation
protocol where the database used is originally “finger-printed” by a trusted party that is
also solely responsible for dynamically changing it. Clients can trust that the answers
they get are “as-good-as” computed by the trusted party.
Set representation with polynomials. Sets can be represented with polynomials, us-
ing the notion of characteristic polynomial, e.g., as introduced in [18, 24, 26]. Given
a set X = {x1, .., xm}, the polynomial CX(r) =

∏m
i=1(xi + r) from Zp[r], where r

is a formal variable, is called the characteristic polynomial of X (when possible we
will denote this polynomial simply by CX). Characteristic polynomials constitute rep-
resentations of sets by polynomials that have the additive inverses of their set elements
as roots. What is of particular importance to us is that characteristic polynomials en-
joy a number of homomorphic properties w.r.t. set operations. For example, given sets
A,B with A ⊆ B, it must hold that CB |CA and given sets X,Y with I = X ∩ Y ,
CI = gcd(CX , CY).

The following lemma characterizes the efficiency of computing the characteristic
polynomial of a set.

Lemma 2 ([28]). Given setX = x1, ..., xn with elements from Zp, characteristic poly-
nomial CX(r) :=

∑n
i=0 cir

i ∈ Zp[r] can be computed with O(n log n) operations with
FFT interpolation.

Note that, while the notion of a unique characteristic polynomial for a given set is well-
defined, from elementary algebra it is known that there exist many distinct polynomials
having as roots the additive inverses of the elements in this set. For instance, recall that
multiplication of a polynomial in Zp[r] with an invertible unit in Z∗p leaves the roots of
the resulting polynomial unaltered. We define the following:

Definition 2. Given polynomials P (r), Q(r) ∈ Zp[r] with degree n, we say that they
are associate (denoted as P (r) ≈a Q(r)) iff P (r)|Q(r) and Q(r)|P (r).

Thus, associativity can be equivalently expressed by requesting that P (r) = λQ(r) for
some λ ∈ Z∗p.

Note that although polynomial-based set representation provides a way to verify the
correctness of set operations by employing corresponding properties of the character-
istic polynomials, it does not provide any computational speedup for this verification

Verifiable Set Operations over Outsourced Databases 9

process. Intuitively, verifying operations over sets of cardinality n, involves dealing
with polynomials of degree n with associated cost that is proportional to performing
operations directly over the sets themselves. We overcome this obstacle, by applying
our ECRH construction (which can be naturally defined over univariate polynomials
with coefficients in Zp, as already discussed) to the characteristic polynomial CX : Set
X will be succinctly represented by hash value h(CX) =

(
gCX(s), gaCX(s)

)
(parameter

q is an upper bound on the cardinality of sets that can hashed), and a operation of setsX
and Y will be optimally verified by computing only on hash values h(CX) and h(CY).

Observe that, while every set has a uniquely defined characteristic polynomial, not
every polynomial is a characteristic polynomial of some set. Hence extractability of sets
from hash values is not guaranteed. For our ADS construction, we will combine the use
of the ECRH construction for sets, with an authentication mechanism deployed by the
source in a pre-processing phase over the hash values of the original m sets.

3 Setup and Update Algorithms

An authenticated data structure (ADS) is a protocol for secure data outsourcing in-
volving the owner of a dataset (referred to as source), an untrusted server and multiple
clients that issue computational queries over the dataset. The protocol consists of a pre-
processing phase where the source uses a secret key to compute some authentication
information over the dataset D, outsources D along with this information to the server
and publishes some public digest d related to the current state of D. Subsequently,
the source can issue update queries for D (which depend on the data type of D), in
which case, the source updates the digest and both the source and the server update the
authentication information to correspond consistently with the updated dataset state.
Moreover, multiple clients (including the source itself), issue computational queries q
addressed to the server, which responds with appropriate answer α and proof of correct-
ness Π . Responses can be verified both for integrity of computation of q and integrity
of data used (i.e., that the correct query was run on the correct dataset D) with access
only to public key and digest d.

Here we present an ADS supporting hierarchical set operations. We assume a data
structure D consisting of m sorted sets S1, ..., Sm, consisting of elements from Zp,1

where sets can change under element insertions and deletions; here, p is a l-bit prime
number and l is a security parameter. IfM =

∑m
i=1 |Si|, then the total space complexity

needed to store D is O(m +M). The supported class of queries is any set-operation
formula over a subset of the sets Si, consisting of unions and intersections.

In this section we present the scheme algorithms for original setup and updates. The
basic idea is to use the ECRH construction from Section 2 to represent sets Si by the
hash values h(CSi) of their characteristic polynomials. For the rest of the paper, we will
refer to value h(CSi) as hi, implying the hash value of the characteristic polynomial of
the i-th set of D or the i-th set involved in a query, when obvious from the context.
Recall that a hash value h consists of two group elements, h = (f, f ′). We will refer

1 Actually elements must come from Z \ {s, 1, ...,m}, because s is the secret key in our con-
struction and the m smallest integers modulo p will be used for numbering the sets.

10 R. Canetti, O. Paneth, D. Papadopoulos, N. Triandopoulos

to the first element of hi as fi, i.e., for a set Si = (x1, ..., xn), fi = g
∏n
j=1(xj+s) and

likewise for f ′i .
During the setup phase, the source computes the m hash values h(CSi) of sets Si

and then deploys an authentication mechanism over them, that will provide proofs of
integrity for these values under some public digest that corresponds to the current state
of D. This mechanism should be able to provide proofs for statements of the form “hi
is hash of the i-th set of the current version of D.”

While there exist multiple such mechanisms in the literature (e.g., digital signatures,
Merkle trees), here we will be using accumulation trees, introduced in [25] (and specif-
ically in the bilinear group setting in [26]) as an alternative to Merkle trees that yields
constant time updates and constant size proofs. In our construction, we use the accumu-
lation tree to verify the correctness of hash values for the sets involved in a particular
query. On a high level, the public tree digest guarantees the integrity of the hash values
and in turn the hash values validate the elements of the sets.

An accumulation treeAT is a tree with d1/εe levels, where 0 < ε < 1 is a parameter
chosen upon setup, and m leaves. Each internal node of T has degree O(mε) and T has
constant height for a fixed ε. Intuitively, it can be seen as a “flat” version of Merkle
trees. Each leaf node contains the (first half of the) hash value of a set Si and each
internal node contains the (first half of the) hash of the values of its children. Since,
under our ECRH construction, hash values are elements in G we will need to map these
bilinear group elements to values in Z∗p at each level of the tree before they can be
used as inputs for the computation of hash values of higher level nodes. This can be
achieved by a function φ that outputs a bit level description of hash values under some
canonical representation of G (see below). The setup and update algorithms of our ADS
construction can be seen in Figure 2:

The runtime of setup is O(m + M) as computation of the hash values using the
secret key takes O(M) and the tree construction has access complexity O(m) for post-
order traversal of the tree as it has constant height and it hasm leaves. Similarly, update
and refresh have access complexity of O(1).

Remark 1. Observe that the only algorithms that make explicit use of the trapdoor s are
update and setup when updating hash value efficiently. Both algorithm can be executed
without s (given only the public key) in time Õ(D).

4 Query Responding and Verification

As mentioned before, we wish to achieve two verification properties: integrity-of-data
and integrity-of-computation. We begin with our algorithms for achieving the first prop-
erty, and then present two protocols for achieving the second one, i.e., for validating the
correctness of a single set operation (union or intersection). These algorithms will be
used as subroutines by our final query responding and verification processes.
Authenticity of hash values. We present two algorithms that make use of the accumu-
lation tree deployed over the hash values of Si in order to prove and verify that the sets
used for answering are the ones specified by the query description.

2 The restriction that φ is injective is in fact too strong; it suffices that it is collision-resistant. A
good candidate for φ is a CRHF that hash the bit-level description of an element of G to Z∗p.

Verifiable Set Operations over Outsourced Databases 11

Algorithm {sk, pk} ←genkey(1l). The owner of D runs the sampling algorithm for our
ECRH, chooses an injective2 function φ : G \ {1G} → Z∗p, and outputs {φ, pk, sk}.
Algorithm {auth(D0), d0} ← setup(D0, sk, pk). The owner of D computes values fi =
g
∏
x∈Si

(xi+s) for sets Si. Following that, he constructs an accumulation tree AT over values
fi. A parameter 0 < ε < 1 is chosen. For each node v of the tree, its value d(v) is computed
as follows. If v is a leaf corresponding to fi then d(v) = f

(i+s)
i where the number i is used to

denote that this is the i-th set inD (recall that, by definition, sets Si contain elements in [m+
1, ..., p−1]). Otherwise, ifN(v) is the set of children of v, then d(v) = g

∏
u∈N(v)(φ(d(u)+s)

(note that the exponent is the characteristic polynomial of the set containing the elements
φ(d(u)) for all u ∈ N(v)). Finally, the owner outputs {auth(D0) = f1, ..., ft, d(v) ∀v ∈
AT , d0 = d(r)} where r is the root of AT .

Algorithm{auth(Dh+1), dh+1, upd} ← update(u, auth(Dh), dh, sk, pk). For the case of
insertion of element x in the i-th set, the owner computes x + s and η = fx+si . For dele-

tion of element x from Si, the owner computes (x + s)−1 and η = f
(x+s)−1

i . Let v0
be the leaf of AT that corresponds to the i -th set and v1, ..., vd1/εe the node path from
v0 to r. Then, the owner sets d′(v0) = η and for j = 1, ..., d1/εe he sets d′(vj) =

d(vj)
(φ(d′(vj−1))+s)(φ(d(vj−1))+s)

−1

. He replaces node values in auth(Dh) with the corre-
sponding computed ones to produce auth(Dh+1). He then sets upd = d(v0), ..., d(r), x, i, b
where b is a bit denoting the type of operation and sends upd to server. Finally, he publishes
updated digest dh+1 = d′(r).

Algorithm {Dh+1, auth(Dh+1), dh+1} ← refresh(u,Dh, auth(Dh), dh, upd, pk). The
server replaces values in auth(Dh) with the corresponding ones in upd, dh with dh+1 and
updates set Si accordingly.

Fig. 2. Setup and update operations

Algorithm π ← QueryTree(pk, d, i, auth(D)) The algorithm computes proof of mem-
bership for value xi validating that it is the i-th leaf of the accumulation tree. Let v0 be
the i-th node of the tree an v1, ..., vd1/εe be the node path from v0 to the root r. For j =

1, ..., d1/εe let γj = g
∏
u∈N(vj)\{vj−1}

(φ(d(u))+s) (note that the exponent is the charac-
teristic polynomial of the set containing the elements φ(d(u)) for all u ∈ N(v) except
for node vj−1). The algorithm outputs π := (d(v0), γ1), ..., (d(vd1/εe−1), γd1/εe).
Algorithm {0, 1} ← VerifyTree(pk, d, i, x, π). The algorithm verifies membership of
x as the i-th leaf of the tree by checking the equalities: (i) e(d(v1), g) = e(x, gigs);
(ii) for j = 1, ..., d1/εe − 1, e(d(vj), g) = e(γj , g

φ(d(vj−1))gs); (iii) e(d, g) =
e(γd1/εe, g

φ(d(vd1/εe−1))gs). If none of them fails, it outputs accept.
The above algorithms make use of the property that for any two polynomials

A(r), B(r) with C(r) := A(r) · B(r), for our ECRH construction it must be that
e(f(C), g) = e(f(A), f(B)). In particular for sets, this allows the construction of a
single-element proof for set membership (or subset more generally). For example, for
element x1 ∈ X = {x1, ..., xn) this witness is the value g

∏n
i=2(xi+s). Intuitively, for

the integrity of a hash value, the proof consists of such set membership proofs starting
from the desired hash value all the way to the root of the tree, using the sets of children
of each node. The following lemma (stated in [26], for an accumulation tree based on
bilinear accumulators; it extends naturally to our ECRH) holds for these algorithms:

12 R. Canetti, O. Paneth, D. Papadopoulos, N. Triandopoulos

Lemma 3 ([26]). Under the q-SBDH assumption, for any adversarially chosen proof π
with (j, x∗, π) s.t. VerifyTree(pk, d, j, x∗, π)→ 1, it must be that x∗ is the j-th element
of the tree except for negligible probability. Algorithm QueryTree has access complexity
O(mε logm) and outputs a proof of O(1) group elements and algorithm VerifyTree has
access complexity O(1).

Algorithms for the single operation case. The algorithms presented here are used to
verify that a set operation was performed correctly, by checking a number of relations
between the hash values of the input and output hash values, that are related to the type
of set operation. The authenticity of these hash values is not necessarily established.
Since these algorithms will be called as sub-routines by the general proof construction
and verification algorithms, this property should be handled at that level.
Intersection. Let I = S1 ∩ ... ∩ St be the wanted operation. Set I is uniquely identified
by the following two properties: (Subset) I ⊆ Si for all Si and (Complement Dis-
jointness) ∩ti=1(Si \ I) = ∅. The first captures that all elements of I appear in all of Si
and the second that no elements are left out.

Regarding the subset property, we argue as follows. Let X,S be sets s.t. S ⊆ X
and |X| = n. Observe that CS |CX , i.e. CX can be written as CX = CS(r)Q(r) where
Q(r) ∈ Zp[r] is CX\S . The above can be verified by checking the equality: e(fS ,W) =

e(fX , g) where W = gQ(s). If we denote with Wi the values gCSi\I(s), the subset
property can be verified by checking the above relation for I w.r.t each of Si.

For the second property, we make use of the fact that CSi\I(r) are disjoint for i =
1, ..., t if and only if there exist polynomials qi(r) s.t.

∑t
i=1 CSi\I(r)qi(r) = 1, i.e. the

gcd of the characteristic polynomials of the the complements of I w.r.t Si should be
1. Based on the above, we propose the algorithms in Figure 3 for the case of a single
intersection:

Algorithm{Π, fI} ← proveIntersection(S1, ..., St, I, h1, ..., ht, hI , pk).
1. Compute values Wi = gCSi\I (s).
2. Compute polynomials qi(r) s.t.

∑t
i=1 CSi\I(r)qi(r) = 1 and values Fi = gqi(s).

3. Let Π = {(W1, F1), ..., (Wt, Ft)} and output {Π, fI}.

Algorithm{accept,reject} ← verifyIntersection(f1, ..., ft, Π, fI , pk).
1. Check the following equalities. If any of them fails output reject, otherwise accept:

– e(fI ,Wi) = e(fi, g) ∀i = 1, ..., t
–

∏t
i=1 e(Wi, Fi) = e(g, g).

Fig. 3. Intersection proof construction and verification

Union. Now we want to provide a similar method for proving the validity of a union
operation of some sets. Again we denote set U = S1 ∪ ... ∪ St and let hi be the cor-
responding hash values as above. The union set U is uniquely characterized by the
following two properties: (Superset) Si ⊆ U for all Si and (Membership) For each
element xi ∈ U , ∃j ∈ [t] s.t. xi ∈ Sj . These properties can be verified, with val-
ues Wi, wj for i = 1, ...t and j = 1, ..., |U | defined as above checking the following

Verifiable Set Operations over Outsourced Databases 13

equalities (assuming hU is the hash value of U):

e(fi,Wi) = e(fU , g) ∀i = 1, ..., t

e(gxjgs, wj) = e(fU , g) ∀j = 1, ..., |U | .

The problem with this approach is that the number of equalities to be checked for the
union case is linear to the number of elements in the output set. Such an approach would
lead to an inefficient scheme for general operations (each intermediate union operation
the verification procedure would be at least as costly as computing that intermediate
result). Therefore, we are interested in restricting the number of necessary checks. In
the following we provide a union argument that achieves this.

Our approach stems from the fundamental inclusion-exclusion principle of set the-
ory. Namely for set U = A ∪B it holds that U = (A+B) \ (A ∩B) where A+B is
a simple concatenation of elements from sets A,B (allowing for multisets), or equiva-
lently, A+B = U ∪ (A∩B). Given the hash values hA, hB the above can be checked
by the bilinear equality e(fA, fB) = e(fU , fA∩B). Thus one can verify the correctness
of hU by checking a number of equalities independent of the size of U by checking
that the above equality holds. In practice, our protocol for the union of two sets, con-
sists of a proof for their intersection, followed by a check for this relation. Due to the
extractability property of our ECRH, the fact that hI is included in the proof acts as a
proof-of-knowledge by the prover for the set I , hence we can remove the necessity to
explicitly include I in the answer.

There is another issue to be dealt with. Namely that this approach does not scale well
with the number of input sets for the union operation. To this end we will recursively
apply our construction for two sets in pairs of sets until finally we have a single union
output. Let us describe the semantics of a set union operation over t sets. For the rest of
the section, without loss of generality, we assume ∃k ∈ N s.t. 2k = t, i.e., t is a power
of 2. Let us define as U (1)

1 , ..., U
(1)
t/2 the sets (S1∪S2), ..., (St−1∪St). For set U is holds

that U = U1 ∪ ... ∪ Ut/2 due to the commutativity of the union operation.
All intermediate results U (j)

i will be represented by their hash values h
U

(j)
i

yield-
ing a proof that is of size independent of their cardinality. One can use the intuition
explained above, based on the inclusion-exclusion principle, in order to prove the cor-
rectness of (candidate) hash values h

U
(1)
i

corresponding to sets Ui and, following that,
apply repeatedly pairwise union operations and provide corresponding arguments, until
set U is reached. Semantically this corresponds to a binary tree T of height k with the
original sets Si at the t leafs (level 0), sets U (1)

i as defined above at level 1, and so on,
with set U at the root at level k. Each internal node of the tree corresponds to a set
resulting from the union operation over the sets of its two children nodes. In general
we denote by U (j)

1 , ..., U
(j)
t/2j the sets appearing at level j. We propose the algorithms in

Figure 4 for proof construction and verification for a single union.
Analysis of the algorithms. Let N =

∑t
i=1 |Si| and δ = |I| or |F | respectively,

depending on the type of operations. For both cases, the runtimes of the algorithms are
O(N log2N log logN log t) for proof construction and O(t + δ) for verification and
the proofs contain O(t) bilinear group elements. A proof of the complexity analysis for
these algorithms can be found in the full version of our paper [13].

14 R. Canetti, O. Paneth, D. Papadopoulos, N. Triandopoulos

We denote by A,B the two sets corresponding to the children nodes of each non-leaf node of
T , by U, I their union and intersection respectively and by F the final union output.
Algorithm{Π, fF } ←proveUnion(S1, ..., St, U, h1, ..., ht, hU , pk).

1. Initialize Π = ∅.
2. For each U (j)

i of level j = 1, ..., k, corresponding to sets U, I as defined above, compute
U, I and values hU , hI . Append values hU , hI to Π .

3. For each U (j)
i of level j = 1, ..., k, run algorithm proveIntersection(A,B, hA, hB , pk)

to receive (ΠI , fI) and append ΠI to Π . Observe that sets A,B and their hash values
have been computed in the previous step.

4. Output {Π, fF }. (hF has already been computed at step (2) but is provided explicitly
for ease of notation).

Algorithm{accept,reject} ← verifyUnion(f1, ..., ft, Π, fF , pk).
1. For each intersection argument {ΠI , fI} ∈ Π run verifyIntersec-

tion(fA, fB , ΠI , fI , pk). If for any of them it outputs reject, output reject.
2. For each node of T check the equality e(fA, fB) = e(fU , fI). If any check fails, reject.
3. For each hash value hU ∈ Π check e(fU , ga) = e(f ′U , g) and likewise for values hI . If

any check fails output reject, otherwise accept.

Fig. 4. Union proof construction and verification

It can be shown that these algorithms, along with appropriately selected proofs-
of-validity for their input hash values can be used to form a complete ADS scheme
for the case of a single set operation. Here however, these algorithms will be executed
as subroutines of the general proof construction and verification process for our ADS
construction for more general queries, presented in the next section. In [13], we present
similar algorithms for the set difference operation.
Hierarchical set-operation queries. We now use the algorithms we presented in
the previous subsection to define appropriate algorithms query, verify for our ADS
scheme. A hierarchical set-operations computation can be abstracted as a tree, the nodes
of which contain sets of elements. For a query q over t sets S1, ..., St, corresponding to
such a computation, each leaf of the tree T contains an input set for q and each internal
node is related to a set operation (union or intersection) and contains the set that results
to applying this set operation on its children nodes. Finally the root of the tree contains
the output set of q. In order to maintain the semantics of a tree, we assume that each
input is treated as a distinct set, i.e., t is not the number of different sets that appear in q,
but the total number of involved sets counting multiples. Another way to see the above,
would be to interpret t as the length of the set-operations formula corresponding to q.3

Without loss of generality, assume q is defined over the t first sets of D. For reasons
of simplicity we describe the mode of operation of our algorithms for the case where
all sets Si are at the same level of the computation, i.e., all leafs of T are at the same
level. The necessary modifications in order to explicitly cover the case where original
sets occur higher in T , are implied in a straight-forward manner from the following
analysis, since any set Si encountered at an advanced stage of the process can be treated

3 More generally q can be seen as a DAG. Here, for simplicity of presentation we assume that
all sets Si participate only once in q hence it corresponds to a tree.

Verifiable Set Operations over Outsourced Databases 15

in the exact same manner as the sets residing at the tree leafs. The algorithms for query
processing and verification of our ADS scheme are described in Figure 5.

D is the most recent version of the data structure and let auth(D), d be the corresponding
authenticated values and public digest. Let q be a set-operation formula with nested unions
and intersections and T be the corresponding semantics tree. For each internal node v ∈ T
let R1, ..., Rtv denote the sets corresponding to its children nodes and O be the set that is
produced by executing the operation in v (union or intersection) over Ri. Finally, denote by
α = x1, ..., xδ the output set of the root of T .

Algorithm {α,Π} ← query(q,D, auth(D), pk).
1. Initialize Π = ∅.
2. Compute proof-of-membership πi for value fi by running Query-

Tree(pk, d, i, auth(D)) for i ∈ [t] and append πi, fi to Π .
3. For each internal node v ∈ T (as parsed with a DFS traversal):

– Compute set O and its hash value hO = h(CO).
– If v corresponds to a set intersection, obtain Πv by running proveIntersec-

tion(R1, ..., Rt, h1, ..., ht, O, hO, pk). For each subset witness Wi ∈ Π corre-
sponding to polynomial CRi\O , compute values W̃i = gaCRi\O(s). Let Wv =
{W1, ...,Wtv}. Append Πv,Wv, hO to Π .

– If v corresponds to a set union, obtain Πv by running proveU-
nion(R1, ..., Rt, h1, ..., ht, O, hO, pk). Append Πv, hO to Π .

4. Append toΠ the coefficients (c0, ..., cδ) of the polynomial Cα (already computed at step
3) and output {α,Π}.

Algorithm {accept,reject} ← verify(q, α,Π, d, pk). For internal node v ∈ T , let
η1, ..., ηtv denote the hash values of its children node sets ∈ Π (for internal nodes at level 1,
the values ηi are the values fi).

1. Parse each hash value h ∈ Π as h = (f, f ′).
2. Verify the validity of values fi. For each value fi ∈ Π run VerifyTree(pk, d, i, fi, πi). If

it outputs reject for any of them, output reject and halt.
3. For each internal node v ∈ T (as parsed with a DFS traversal):

– Check the equality e(fO, ga) = e(g, f ′O). If it does not hold, reject and halt.
– If v corresponds to a set intersection:

(a) Run verifyIntersection(η1, ..., ηtv , Πv, fO, pk), If it rejects, reject and halt.
(b) For each pair Wi, W̃i ∈ Πv , check the equality e(Wi, g

a) = e(W̃i, g). If any
of the checks fails, output reject and halt.

– If v corresponds to a set union, run verifyUnion(η1, ..., ηtv , Πv, fO, pk). If it out-
puts reject, output reject and halt.

4. Validate the correctness of coefficients c. Choose z ←R Z∗p and compare the values
δ∑
i=0

ciz
i and

δ∏
i=1

(xi + z). If they are not equivalent, output reject and halt.

5. Check the equality e(
δ∏
i=0

gcis
i

, g) = e(fα, g). If it holds output accept, otherwise reject.

Fig. 5. General set-operations proof construction and verification

Each answer from the server is accompanied by a proof that includes a number of
hash values for all sets computed during answer computation, the exact structure of

16 R. Canetti, O. Paneth, D. Papadopoulos, N. Triandopoulos

which depends on the type of operations. The verification process is essentially split in
two parts. First, the client verifies the validity of the hash values of the sets used as input
(i.e., the validity of sets specified in q) and subsequently, that the hash values included
in the proof respect the relations corresponding to the operations in q, all the way from
the input hash values to the hash value of the returned answer α.

Intuitively, with the algorithms from the previous section a verifier can, by checking
a small number of bilinear equations, gain trust on the hash value of a set computed by
a single set operation. The proof for q is constructed by putting together smaller proofs
for all the internal nodes in T . Let Π be a concatenation of single union and single
intersection proofs that respect q, i.e., each node in T corresponds to an appropriate
type of proof in Π . The hash value of each intermediate result will also be included in
the proof and these values at level i will serve as inputs for the verification process at
level i+1. The reason the above strategy will yield a secure scheme is that the presence
of the hash values serves as proof by a cheating adversary that he has “knowledge”
of the sets corresponding to these partial results. If one of these sets is not honestly
computed, the extractability property allows an adversary to either attack the collision-
resistance of the ECRH or break the q-SBDH assumption directly, depending on the
format of the polynomial used to cheat.

Observe that the size of the proof Π is O(t+ δ). This follows from the fact that the
t proofs πi consist of a constant number of group elements and Π is of size O(t) since
each of the O(|T |) = O(t) nodes participates in a single operation. Also, there are δ
coefficients bi therefore the total size of Π is O(t+ δ). The runtime of the verification
algorithm is O(t + δ) as steps 2,3 takes O(t) operations and steps 4,5 take O(δ). A
proof of the complexity analysis for these algorithms can be found in the full version
of our paper. We can now state the following theorem that is our main result (full proof
in [13]).

Theorem 1. The scheme AHSO = {genkey, setup, query, verify, update, refresh}
is a dynamic ADS scheme for queries q from the class of hierarchical set-operations
formulas involving unions, intersections and set difference operations. Assuming a data
structure D consisting of m sets S1, ..., Sm, and a hierarchical set-operations query
q involving t of them, computable with asymptotic complexity O(N) with answer size
δ, AHSO has the following properties: (i) correct and secure under the q-SBDH and
the q-PKE assumptions; (ii) the complexity of algorithm genkey is O(|D|); (iii) that of
setup is O(m+ |D|) (iv) that of query is O(N log2N log logN log t+ tmε logm) for
0 < ε ≤ 1 and it yields proofs ofO(t+δ) group elements; (v) that of verify isO(t+δ);
(vi) and those of update and refresh are O(1); (vii) the authenticated data structure
consists of O(m) group elements; (viii) the public digest d is a single group element.

Corollary 1. If the server maintains a list of m fresh proofs π1, ..., πm for the validity
of values fi, refresh has complexity O(m2ε logm), in order to update the mε proofs πi
affected by an update, and query has complexity O(N log2N log logN log t+ t).

Corollary 2. In a two-party setting, where only the source issues queries, proofs con-
sist of O(t) elements.

Proof sketch. Due to the interactive nature of the security game, extracting directly
from a successful cheating adversary A is not possible. Recall however, that all algo-

Verifiable Set Operations over Outsourced Databases 17

rithms of AHSO can be efficiently run with access to pk only. Hence the existence of
A implies the existence of (non-interactive) A′ that upon input pk, runs A internally
providing perfect simulation of the security game and finally outputs the cheating tu-
ple ofA. The proof accompanying this cheating answer consists of polynomially many
hash values of our ECRH, therefore there exists corresponding extractor E ′ that upon
the same input outputs the correct pre-image polynomials with overwhelming probabil-
ity. We then proceed to show that each of these polynomials must be an associate of the
characteristic polynomial of the correctly computed set at that point of the computation
(or the q-SBDH can be broken). From this, it immediately follows that this holds also
for set α∗ hence, if it is not the correctly computed set corresponding to query q, the
characteristic polynomial of the correctly computed set α and the characteristic poly-
nomial of α∗ form a collision for the ECRH. ut

References

[1] M. J. Atallah, Y. Cho, and A. Kundu. Efficient data authentication in an environ-
ment of untrusted third-party distributors. In ICDE, pages 696–704, 2008.

[2] G. Ateniese, E. D. Cristofaro, and G. Tsudik. (if) size matters: Size-hiding private
set intersection. In PKC, pages 156–173, 2011.

[3] M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation
on outsourced data. Cryptology ePrint Archive, Report 2013/469, 2013.

[4] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. Snarks for c:
Verifying program executions succinctly and in zero knowledge. In CRYPTO (2),
pages 90–108, 2013.

[5] E. R. Berlekamp. Factoring polynomials over large finite fields*. In Proceedings
of the second ACM symposium on Symbolic and algebraic manipulation, SYM-
SAC ’71, page 223, New York, NY, USA, 1971. ACM.

[6] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In
ITCS, pages 326–349, 2012.

[7] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. Indistinguishability obfusca-
tion vs. auxiliary-input extractable functions: One must fall. Cryptology ePrint
Archive, Report 2013/641, 2013.

[8] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the cor-
rectness of memories. Algorithmica, 12(2/3):225–244, 1994.

[9] D. Boneh and X. Boyen. Short signatures without random oracles. In EURO-
CRYPT, pages 56–73, 2004.

[10] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC, pages 535–554, 2007.

[11] E. Boyle and R. Pass. Limits of extractability assumptions with distributional
auxiliary input. Cryptology ePrint Archive, Report 2013/703, 2013.

[12] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In CRYPTO, pages 61–76, 2002.

18 R. Canetti, O. Paneth, D. Papadopoulos, N. Triandopoulos

[13] R. Canetti, O. Paneth, D. Papadopoulos, and N. Triandopoulos. Verifiable set op-
erations over outsourced databases. Cryptology ePrint Archive, Report 2013/724.

[14] S. Chatterjee and A. Menezes. On cryptographic protocols employing asymmetric
pairings - the role of psi revisited. Discrete Applied Mathematics, 159(13):1311–
1322, 2011.

[15] K.-M. Chung, Y. T. Kalai, F.-H. Liu, and R. Raz. Memory delegation. In CRYPTO,
pages 151–168, 2011.

[16] I. Damgård. Towards practical public key systems secure against chosen cipher-
text attacks. In CRYPTO, pages 445–456, 1991.

[17] C. Dwork, M. Naor, G. N. Rothblum, and V. Vaikuntanathan. How efficient can
memory checking be? In TCC, pages 503–520, 2009.

[18] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In EUROCRYPT, pages 1–19, 2004.

[19] M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Efficient authenticated data
structures for graph connectivity and geometric search problems. Algorithmica,
60(3):505–552, 2011.

[20] J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT, pages 321–340, 2010.

[21] L. Kissner and D. X. Song. Privacy-preserving set operations. In CRYPTO, pages
241–257, 2005.

[22] C. U. Martel, G. Nuckolls, P. T. Devanbu, M. Gertz, A. Kwong, and S. G.
Stubblebine. A general model for authenticated data structures. Algorithmica,
39(1):21–41, 2004.

[23] M. Naor and K. Nissim. Certificate revocation and certificate update. IEEE Jour-
nal on Selected Areas in Communications, 18(4):561–570, 2000.

[24] L. Nguyen. Accumulators from bilinear pairings and applications. In CT-RSA,
pages 275–292, 2005.

[25] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated hash tables.
In ACM CCS, pages 437–448, 2008.

[26] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal verification of
operations on dynamic sets. In CRYPTO, pages 91–110, 2011.

[27] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical
verifiable computation. In IEEE SP Symposium, pages 238–252, 2013.

[28] F. Preparata, D. Sarwate, and I. U. A. U.-C. C. S. LAB. Computational Complexity
of Fourier Transforms Over Finite Fields. DTIC, 1976.

[29] R. Tamassia. Authenticated data structures. In ESA, pages 2–5, 2003.
[30] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis. Authenticated join process-

ing in outsourced databases. In SIGMOD Conference, pages 5–18, 2009.
[31] M. L. Yiu, Y. Lin, and K. Mouratidis. Efficient verification of shortest path search

via authenticated hints. In ICDE, pages 237–248, 2010.
[32] Q. Zheng, S. Xu, and G. Ateniese. Efficient query integrity for outsourced dy-

namic databases. IACR Cryptology ePrint Archive, 2012:493, 2012.

