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Abstract. In this paper, we propose new non-monotonic attribute-based
encryption schemes with compact parameters. The first three schemes are
key-policy attribute-based encryption (KP-ABE) and the fourth scheme
is ciphertext-policy attribute-based encryption (CP-ABE) scheme.

— Our first scheme achieves the shortest ciphertext overhead in the lit-
erature. Compared to the scheme by Attrapadung et al. (PKC2011),
which is the best scheme in terms of the ciphertext overhead, our
scheme shortens ciphertext overhead by 33%. The scheme also re-
duces the size of the master public key to about half.

— Our second scheme is proven secure under the decisional bilinear
Diffie-Hellman (DBDH) assumption, which is one of the most stan-
dard assumptions in bilinear groups. Compared to the non-monotonic
KP-ABE scheme from the same assumption by Ostrovsky et al.
(ACM-CCS’07), our scheme reduces the size of the master public
key and the ciphertext to about half.

— Our third scheme is the first non-monotonic KP-ABE scheme that
can deal with unbounded size of set and access policies. That is,
there is no restriction on the size of attribute sets and the number of
allowed repetition of the same attributes which appear in an access
policy. The master public key of our scheme consists of only constant
number of group elements.

— Our fourth scheme is the first non-monotonic CP-ABE scheme that
can deal with unbounded size of set and access policies. The master
public key of the scheme consists of only constant number of group
elements.

We construct our KP-ABE schemes in a modular manner. We first
introduce special type of predicate encryption that we call two-mode
identity based broadcast encryption (TIBBE). Then, we show that any
TIBBE scheme that satisfies certain condition can be generically con-
verted into non-monotonic KP-ABE scheme. Finally, we construct effi-
cient TIBBE schemes and apply this conversion to obtain the above new
non-monotonic KP-ABE schemes.
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1 Introduction

In many systems, a server monitors access to sensitive data so that only certain
users can access it. If the server is not fully trusted, the data must be encrypted.
However, a standard public key encryption scheme is not appropriate, because
it severely limits the users who can access the contents.

To solve this problem, Sahai and Waters [31] were the first to study attribute-
based encryption (ABE). In ABE, one can encrypt data for a set of receivers that
satisfy certain condition. In Sahai and Waters’ scheme, a ciphertext and a private
key are associated with a set of attributes, and the key can decrypt the ciphertext
if and only if these sets overlap more than certain threshold. Goyal, Pandey,
Sahai, and Waters [16] further extended their result and proposed schemes that
support finer-grained access control. In their scheme, a ciphertext is associated
with a set of attributes, and a private key is associated with an access structure
that is specified by a Boolean formula. Decryption is possible when the set
satisfies this Boolean formula. Their schemes are called key-policy ABE (KP-
ABE), because the key specifies the access structure. Ciphertext-policy ABE
(CP-ABE) is complementary form to KP-ABE in the sense that a ciphertext
specifies an access structure while a key is associated with a set of attributes.
The first studies of CP-ABE appear in [5,12].

The above schemes can express a wide class of access structures, but they
are still limited because they only support a monotonic access structure. In
particular, they cannot deal with an access structure that is associated with a
Boolean formula that includes the negation of attributes. This is not convenient
for real world applications. One possible solution to this problem is to explicitly
include attributes that express absence of attributes in the attribute space, as
suggested in [16]. For example, in the CP-ABE case, to generate a key for an
attribute x1, one should generate the key for a set that includes x; and attributes
“Not z;” for all attribute x; such that x; # x1, using the underlying monotonic
CP-ABE system. Then, a ciphertext for “Not x3” can be decrypted by the key
as desired, because “Not z3” € {z1, “Not z3”, “Not z3”, ..., }. This solution
works well in the settings where attribute space is small, but does not work if
the attribute space is exponentially large.

Ostrovsky, Sahai, and Waters [28] addressed this problem and constructed
the first KP-ABE scheme that supports a non-monotonic access structure by
using an idea from the Naor-Pinkas revocation scheme [25]. Following their work,
several non-monotonic KP/CP-ABE schemes have been proposed [21, 26, 3, 27].

Our Contributions. In this paper, we propose new non-monotonic ABE schemes.
Our new schemes either improve efficiency or achieve a new functionality that
was previously not possible. We propose the following four schemes. The first
three schemes are KP-ABE schemes and the last one is CP-ABE scheme.

— The first scheme has very compact ciphertexts. The ciphertext overhead of
our scheme consists of only two group elements, which is even shorter than
the currently shortest scheme of [3]. Furthermore, the scheme also reduces
the size of master public key to about half while the private key size is
slightly larger.



— The second scheme is proven secure under the decisional bilinear Diffie-
Hellman (DBDH) assumption, which is one of the weakest number theoretic
assumptions in bilinear groups. The public key and the ciphertext size of our
scheme are about half the size of the scheme in [28], which is secure under
the same assumption. The encryption algorithm of our scheme is at least
two times faster than the existing scheme, but our decryption algorithm is
somewhat slower.

— The third scheme is the first non-monotonic KP-ABE scheme in the standard
model that supports fully unbounded attribute sets and access policies. That
is, there is no restriction on the size of the attribute set, or on the number of
times the same attributes can appear in an access policy. The master public
key of the scheme is very compact: it consists of only constant number of
group elements. Such a construction has previously only been possible in the
random oracle model [21].

— The fourth scheme is the first non-monotonic CP-ABE scheme that supports
fully unbounded size of attribute sets and access policies. The master public
key of our scheme consists of only constant number of group elements.

We construct the above KP-ABE schemes in a modular way. First, we define a
new predicate encryption that we call two mode identity based broadcast en-
cryption (TIBBE). In TIBBE, a ciphertext is associated with a set of identities.
A private key is associated with an identity and certain “type”. There are two
types of keys in the system. First type keys can decrypt the ciphertext iff the
identity is included in the set, while the second type keys can iff the identity
is not included. The notion of TIBBE is an extension of identity based broad-
cast encryption (IBBE) and identity based revocation (IBR). We show that
any TIBBE scheme with a certain property can be generically converted into a
non-monotonic KP-ABE scheme. This can be seen as an extension of the pre-
vious result in [3] that converts any IBBE scheme with certain properties into
a (monotonic) KP-ABE scheme. Finally, we construct efficient TIBBE schemes.
By applying our conversion to these schemes, we obtain our new non-monotonic
KP-ABE schemes.

While we construct KP-ABE schemes in a modular way, our construction of
the above non-monotonic CP-ABE scheme is more direct. Our construction is
based on the (monotonic) CP-ABE scheme recently proposed by [30]. We extend
their scheme to support a non-monotonic access structure by applying an idea
from the IBR scheme in [21] to the CP-ABE setting.

Finally, we remark that all our schemes are selectively secure. Constructing
adaptively secure schemes with similar property is left open for future research.

Other Related Works. After the work of Sahai and Waters [31], many CP/KP-
ABE schemes have been proposed [16,15,32,17]. The first adaptively secure
ABE schemes were proposed in [20] using composite order groups. Later, schemes
on prime order groups were proposed [26, 27,19, 24]. The settings with multiple-
authorities are investigated in several works [10, 1,11, 22]. To construct a scheme
with even more general access structure is an important direction of research.
Recently, there are significant progress toward this direction [33, 13, 14].



2 Preliminaries

2.1 Notation

We will treat a vector as a row vector, unless stated otherwise. For any vector

a=(ay,...,an) € Zy, g* = (g*,...,9%"). For a,z € Zy, we denote their inner
product as (a,z) = a-z' = . a;z;. We denote by e; the i-th unit vector: its i-
th component is one, all others are zero. We also denote by [n] aset {1,...,n} for
an integer n > 0 and [ny,...,ny] = [n1] X -+ - X [ny] for integers ny, ..., ny, > 0.

For a set U, we define 2V = {S|S C U} and (<Uk) = {S|S C U,|S| < k} for
k<|U|.

2.2 Definition of Predicate Encryption

Here, we define the syntax of predicate encryption. We emphasize that we do
not consider attribute hiding in this paper.3

SYNTAX. Let R = {Ry : Ay x By — {0,1} | N € N°} be a relation family
where Ay and By denote “key attribute” and “ciphertext attribute” spaces
and ¢ is some fixed constant. The index N = (n1,na,...,n.) of Ry denotes the
numbers of bounds for corresponding parameters. If an index IV is not required,
we say that R is an unbounded relation. A predicate encryption (PE) scheme
for R consists of the following algorithms:

Setup(\, N) — (mpk, msk): The setup algorithm takes as input a security pa-
rameter A and a index N of the relation Ry and outputs a master public
key mpk and a master secret key msk.

KeyGen(msk, mpk, X) — skx: The key generation algorithm takes as input the
master secret key msk, the master public key mpk, and a key attribute X €
Ap. It outputs a private key skx. We assume X is included in skx implicitly.

Encrypt(mpk,M,Y) — C: The encryption algorithm takes as input a master
public key mpk, the message M, and a ciphertext attribute ¥ € By. It
will output a ciphertext C.

Decrypt(mpk, C,Y,skx) = M or L: We assume that the decryption algorithm is
deterministic. The decryption algorithm takes as input the public parameters
mpk, a ciphertext C, ciphertext attribute Y € By and a private key skx. It
outputs the message M or | which represents that the ciphertext is not in
a valid form.

We require correctness of decryption: that is, for all A\, N, all (mpk, msk) pro-
duced by Setup(A,N), all X € Ay,Y € By such that R(X,Y) =1, and all skx
returned by KeyGen(msk, mpk, X), Decrypt(mpk, Encrypt(mpk,M,Y"), Y skx) =
M holds.

SECURITY. We now define the security for an PE scheme IT. This security notion

is defined by the following game between a challenger and an attacker A.

At first, the challenger runs the setup algorithm and gives mpk to A. Then A
may adaptively make key-extraction queries. We denote this phase Phasel. In

3 This is called “public-index” predicate encryption, categorized in [9].



this phase, if A submits X to the challenger, the challenger returns sky <
KeyGen(msk, mpk, X). At some point, A outputs two equal length messages
Mo and M; and challenge ciphertext attribute Y* € Bpy. Y* cannot satisfy
R(X,Y™) =1 for any attribute X such that A already queried private key for X.
Then the challenger flips a random coin 8 € {0, 1}, runs Encrypt(mpk, Mg, Y™*) —
C™* and gives challenge ciphertext C* to A. In Phase2, A may adaptively make
queries as in Phasel with following added restriction: A cannot make a key-
extraction query for X such that R(X,Y™) = 1. At last, A outputs a guess ' for
B. We say that A succeeds if 3’ = 8 and denote the probability of this event by
Pri%. The advantage of an attacker A is defined as Adviﬁy = | PrﬁfEH —3|. We

say that IT is fully secure if Advi% is negligible for all probabilistic polynomial
time (PPT) adversary A.

A weaker notion called selective security can be defined as in the above game
with the exception that the adversary A has to choose the challenge ciphertext
index Y* before the setup phase but private key queries X1, ..., X, can still be
adaptive. All schemes proposed in this paper are selectively secure.

2.3 Linear Secret Sharing Scheme and Attribute-Based Encryption

Here, we first define linear secret sharing scheme (LSSS) following [4] and then
define key/ciphertext-policy atrribute based encryption scheme as an instance
of PE.

Definition 1 (Access Structure). Let P = {P1,...,Pn} be a set of parties.
A collection A C 2% is said to be monotone if, for all B,C, if B € A and B C C,
then C' € A holds. An access structure (resp., monotonic access structure) is a
collection (resp., monotone collection) A C 2P\{(0}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

Definition 2 (Linear Secret Sharing Scheme). Let P be a set of parties.
Let L be an £ x m matriz. Let w : {1,...,£} — P be a function that maps a
row to a party for labeling. A secret sharing scheme mw for access structure A
over a set of parties P is a linear secret-sharing scheme (LSSS) in Z, and is
represented by (L, ) if it consists of two efficient algorithms:

Sharey, . There exists an efficient algorithm which takes as input s € Z, which
is to be shared. It chooses s, ..., Sm < Zy and let s = (s,82,...,5m). It
outputs L-s as the vector of £ shares. The share \; = (L;,s) belongs to party
m(i), where L; denotes the i-th row of L.

Recony, . The algorithm takes as input an access set S € A. Let I = {i|m(i) € S}.
It outputs a set of constants {(i, p;)}icr which has a linear reconstruction

property: Y . op i Ai = 5.

TERMINOLOGY FOR NON-MONOTONIC ACCESS STRUCTURE. We recall a tech-
nique by Ostrovsky Sahai, and Waters [28] to move from monotonic access struc-
tures to non-monotonic access structure. They assume a family {74 }acas of lin-
ear secret sharing schemes for a set of monotonic access structures A. For each



such access structure A € AS, the set P of underlying parties has the following
properties: The names of the parties in P may be of two types: either the name
is normal (like z) or it is primed (like z’), and if z € P then 2’ € P and vice
versa. Conceptually, prime attributes are associated with negation of unprimed
attributes.

A family AS of non-monotone access structures can be defined as follows.
For each access structure A € AS over a set of parties P, one defines a possibly
non-monotonic access structure NM(A) over the set P of all unprimed parties
in P. For every set S C P, N(S) is defined as N(S) = SU {2'|z € P\S}. Then,
NM(A) is defined by saying that S is authorized in NM (A) if and only if N(S)
is authorized in A. For each access set X € NM(A), there is a set in A containing
the elements in X and primed elements for each party not in X.

KEY-(CIPHERTEXT) POLICY ATTRIBUTE-BASED ENCRYPION. Let U = {0,1}*
be an attribute space and N = (n,¢) specify the corresponding bounds (the
maximum numbers) on the size of attribute sets, the number of allowed repetition
of same attributes which appear in a policy, respectively. Let AS, be a collection
of access structures over U such that every access structure in AS,, is specified
by an access formula in which same attributes do not appear more than ¢ times.
A bounded key (resp. ciphertext)-policy attribute-based encryption for AS,, is
a predicate encryption for RE‘;W) P AS, % (i’{n) — {0,1} (resp. R(CHP,SD) : (<un) X
AS, — {0,1}) defined by R(Y ) (A,w) =1 (resp. R} ) (w,A) = 1) iff w € A
(for w C U such that |w| < n and A € AS,). Let AS be a collection of access
structure over U. An unbounded key (resp., ciphertext)-policy attribute-based
encryption scheme is a predicate encryption for RXP : AS x 24 — {0,1} (resp.,
RP . 2¥ x AS — {0,1}) defined by RXP(A,w) = 1 (resp. RP(w,A) = 1) iff
w € A (for w CU and A € AS).

We note that the scheme of [27] (which was called unbounded ABE) can
achieve the unbounded attribute set size, but it is still limited to the number of
allowed repetition. Currently, only few KP-ABE schemes that are unbounded in
full sence are known [21, 23, 30]. Note that the scheme in [21] uses random oracle
model. In the CP-ABE setting, only scheme that is unbounded in full sense is
recently proposed [30].

2.4 Number Theoretic Assumptions

We use groups (G, Gr) of prime order p with an efficiently computable mapping
e:G xG — Gr st. e(g%, h?) = e(g,h)® for any (g,h) € G x G, a,b € Z and
e(g,h) # lg, whenever g, h # 1.

Decisional Bilinear Diffie-Hellman (DBDH) Assumption. We say that an
adversary A breaks the DBDH assumption on (G, Gr) if A runs in polynomial
time and 3| Pr[A(g, 9% ¢°, %, ¢(g,9)"**) — 0] — Pr[A(g,9% ¢".¢°,T) — 0] is
negligible where g & G, T & Gy, a,b, s & L.

n-Decisional Bilinear Diffie-Hellman Exponent (n--DBDHE) Assump-
tion [7]. We say that an adversary A breaks the n-DBDHE assumption on



(G, Gr) if A runs in polynomial time and %| Pr[A(g, {gai}ie[gn]\{wrl},gs,
e(g,9)%° — 0] — %\ Pr[A(g, {gai}ie[Qn]\{n+1}, 9°,T) — 0] is negligible where
g& G, TEGy, a,s(in.

n+1)

3 Linear Two-Mode Identity Based Broadcast Encryption
and Conversion to Non-monotonic KP-ABE

In this section, we first introduce the two mode inner product encryption scheme
(TIPE) and two mode identity based broadcast encryption schemes (TIBBE)
and explain how the latter can be derived from the former. Then, we propose
a general transformation that transforms any TIBBE scheme that satisfies a
certain condition into a non-monotonic KP-ABE scheme. Our transformation is
an extension of the generic transformation proposed in [3], which converts any
IBBE scheme with certain conditions into (monotonic) KP-ABE scheme.

3.1 Definition of TIPE and TIBBE

In a TIPE scheme, a ciphertext is associated with a vector y. A private key
is associated with type € {ZIPE,NIPE} and a vector x. Decryption is possible
iff type = ZIPE and (x,y) = 0, or type = NIPE and (x,y) # 0. In a TIBBE
scheme, a ciphertext is associated with a set of identities S. A private key is
associated with type € {IBBE, IBR} and an identity ID. Decryption is possible iff
type = IBBE and ID € S, or type =IBR and ID ¢ S.

Here, we formally define TIPE and TIBBE as instances of PE as follows.

Two-MODE INNER PRODUCT ENCRYPTION SCHEME. TIPE is a predicate en-
cryption for R(TE;!E) 2 (Zyx{ZIPE,NIPE})xZy — {0, 1} defined by R(Tr'li';:)((x, type),
y) = 1iff ((x,y) = 0 Atype = ZIPE) V ({(x,y) # 0 A type = NIPE).

Two-MODE IDENTITY BASED BROADCAST ENCRYPTION SCHEME. TIBBE is a
predicate encryption for R]'®BE : (Z x {IBBE, IBR}) x (<In) — {0,1} defined by

RTBBE((ID, type), S) = 1 iff (ID € S A type = IBBE) v (ID & S A type = IBR).

In later sections, we construct TIPE schemes instead of TIBBE schemes when
it is simpler to describe. TIBBE scheme can be derived from TIPE scheme by the
following technique due to [18]. The setup algorithm of the TIBBE scheme is the
same as TIPE scheme. To generate a private key for (1D, IBBE) (resp. (ID, IBR)),
one runs key generation algorithm of TIPE scheme to obtain a private key for
(x, ZIPE) (resp. (x,NIPE)) where x = (1,ID,...,ID"!). To encrypt a message

M for a set S = (IDy,...,IDg), one defines y = (y1,...,yn) as a coefficient
vector from Pg[Z] = Y. Fy, zi-1 = [lip,es(Z —1D;) where, if k + 1 < n, the
coordinates ygt1,...,Yyn are all set to 0. Then, one runs encryption algorithm

of TIPE scheme to encrypt M for a vector y. To decrypt a ciphertext, one
first defines x and y as above and runs the decryption algorithm of the TIPE
scheme. Since ID € S & Ps(ID) = 0 & (x,y) = 0, the correctness of the
resulting TIBBE scheme follows from the correctness of the underlying TIPE



scheme. Furthermore, by the embedding lemma [8], the resulting TIBBE scheme
is selectively secure if the underlying TIPE scheme is selectively secure.

3.2 Linear Two-Mode Identity Based Broadcast Encryption
Template

We define a template for two-mode IBBE schemes that ensures that they give
rise to selective secure non-monotonic KP-ABE schemes. We call this a linear
TIBBE template. Let G, Gt be underlying bilinear groups of order p. The iden-
tity space of the scheme is 7 = Z,. A linear TIBBE scheme is determined by
parameters n,ni,no, 1, € N, a distribution G on vectors of functions, and func-
tions D'BBE. DIBRG’s output is tuple of functions (f]BBE, fIBBE fIBR fIBR )
where fIBBE : T — G,fBBE . 7 — G, fIBR . T — G,fBR : T — G™ F :
(Z)s"=! x Z, — G="2. Here, we allow F to be probabilistic whereas all other
functions are assumed to be deterministic. D'®BE and D'BR are functions such
that D'BBE : Gt xTx G2 x () = G, DBR : G XTI x G x (1)) — Gr.
Setup(\,n) : Given a security parameter A € N and a bound n € Z on the
number of identities per ciphertext, the algorithm selects bilinear groups
(G,Gr) of prime order p > 2* and a generator g < G. It computes e(g, g)®
for a random av < Z,, and chooses functions ( f{BBE, fIBBE fIBR | fIBR 1) & G
The master secret key consists of msk = « while the master public key is
mpk = (g, e(g,9)%, {f;ype ;ype}typee{lBBE,lBRLFananlan2aﬁ1)-
KeyGen(msk, mpk, (ID, type)) : To generate a private key for ID of type type €
{IBBE, IBR}, it chooses r & Z,. Then, it computes the private key as

SKpype) = (dr,d2) = (g - 1P(ID)", 5*(1D)").

Encrypt(mpk, M, .S) : To encrypt M € G for a set of identities S = (IDq, ..., IDy)
where k < n, it chooses s < Z,, and computes the ciphertext as

C=(CyC1)=(M-e(g,9)*,F(IDy,...,IDg,s)).

Decrypt(mpk, C, S, sk(p,type)) : It parses sk(p ypey = (d1,dz2) and C = (Co, C1)

then runs

Dtype((dh d?)a IDa 017 S) — 6(9, g)a‘s,

and obtains M = Cy/e(g, g)*.
We also require that for all (f]BBE, fiBBE fIBR #IBR Iy & G the following prop-
erty must hold. 4
Correctness. For all a, r, s € Z,,, randomness for F', (ID, type) € Zx{IBBE, IBR},
S ={IDy,...,ID;} € (<In) such that (type = IBBEAID € S)V (type = IBRAID ¢
S) and randomness for F', we have

DtyPE((ga : f{ype(lD)T,f;yF’eaD)T),|D,F(|Dl,...,|Dk,s),s) = e(g, 9)*"°.

4 In [3], the authors also assume a property called linearity. However, we do not need
this property.



3.3 Generic Conversion from Linear TIBBE to Non-monotonic
KP-ABE

Let ITTigee = (Setup’, Keygen’, Encrypt’, Decrypt’) be a linear TIBBE system. We
construct a non-monotonic KP-ABE scheme from ITtggg as follows.
Setup(\,n) : It simply outputs Setup’(\,n) — (mpk, msk).

KeyGen(msk, mpk, A) : The input to the algorithm is the master secret key msk,
the master public key mpk, and a non-monotonic access structure A such
that we have A = NM(A) for some monotonic access structure A over a set
P of attributes and associated with a linear secret sharing scheme (L, 7). Let
L be an ¢ x m matrix. First, it generates shares of  with (L, 7). Namely, it
chooses a vector s = (s1,...,5,,) such that s; = o and sa,...,5, & Z, and
calculates \; = (L, s) for each i = 1,...,¢. The party corresponds to share
A; is w(i) = &;, where z; is underlying attribute, and can be primed (i.e.,
negated) or unprimed (non-negated). Then for each i = 1,...,¢, it picks

r, & Z,, and sets D; for each ¢ = 1,..., ¢ as follows.
(diq =g - (P58 (@)™, dip = 220 (@a)") it (i) = o
Di = d . — oM. fIBR T g fIBR( (i) = o
( i1 — 9 ()", 1,2 2 (i) ) if m(i) = ;.

It then outputs the private key as sk; = {D;}_,

Encrypt(mpk, M, w) : It simply outputs Encrypt’(mpk, M, w).

Decrypt(mpk, C,w,sk;) : Assume first that the policy A is satisfied by the at-
tribute set w, so that decryption is possible. Since A = NM (A) for some
access structure A associated with a linear secret sharing scheme (L, ),
we have w’ = N(w) € A and we let I = {i|n(i) € w'}. Since v’ is au-
thorized in A, the receiver can efficiently compute reconstruction coefficients
{(4, i) }ier = Reconp, (w') such that ), ; p; i = a. It parses C' = (Co, C1),
sk; = {D;}i_, where D; = (d; ;,d; ;) and computes e(g, g)*** for each i € I
as follows. (The correctness is shown later.)

D'BBE((dgyl,d;Q),xi, Chw) —e(g,g)*™  if w(i) = a (1a)
D'BR((d;l,dgg),xi, Cl,w) — e(g,g)* if (i) = .

Finally, it recovers message by Cy - Hiel(e(g7g)5"\i)_m =M.
CORRECTNESS. We now verify that equations (1a) and (1b) are correct. (1a) and
(1b) follow from the correctness of the underlying TIBBE scheme by seeing D;
as a private key for (ID = z;,type € {IBBE, IBR}) that is derived from msk = \;
using randomness r;.

The security of the resulting scheme is established by the following Theorem.
The proof is similar to that of Theorem 1 in [3] and can be found in full version
of this paper.

Theorem 1. If the underlying TIBBE scheme is selectively secure, then the
resulting KP-ABE system above is also selectively secure.
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REMARK. We have described the conversion for TIBBE scheme with a restriction
that the number of identities per ciphertext is bounded by n. However, the
same conversion also applies to a TIBBE scheme without such a restriction. In
particular, we can apply the above conversion to our TIBBE scheme in Sec. 6.

4 TIPE Scheme with Compact Ciphertexts

In this section, we propose a TIPE scheme with compact ciphertext size. As we
explained in Sec. 3.1, we can obtain a TIBBE scheme from the TIPE scheme.
By applying the conversion in Sec. 3 to this TIBBE scheme, we obtain a new
non-monotonic KP-ABE scheme with very short ciphertexts. The ciphertext
overhead is 33% shorter than the non-monotonic KP-ABE ciphertext in [3] (the
shortest in the literature). It also reduces the number of pairing operations in
the decryption algorithm from 3 to 2. The public key size of our scheme is about
half that of the existing scheme, but the private key of our scheme is slightly
longer.

Setup(\,n) : It chooses bilinear groups (G,Gz) of prime order p > 2* with
g & G. It also picks v, o & Zp and u = (ug,...,u,) < Zy. Then it sets
V=g¢g"and U = (Uy,...,U,) = g". It finally outputs the master public key
mpk = (g,U1,...,Uy, V,e(g,9)%) and the master secret key msk = a.

KeyGen(msk, mpk, (x,type)) : To generate a private key for (x =(x1#£0,...,2p)
€ Zy X Z;‘*l,type € {ZIPE, NIPE}), it chooses r & Z,, and computes

D1 — gavr, D2 — gr,
sk(x,zIPE) = < e if type = ZIPE
{K; = (U, "U)"Hy

DlzgaU{7 D2:gr7 D3:V7na
sk(x,NIPE) = =z if type = NIPE.
{Ki= (U, "Ui)" ey
Encrypt(mpk, M, y) : To encrypt M € Gr for the vector y = (y1,...,yn) € Zy,
it picks s & Z, and computes the ciphertext as

C = (Co =M-e(g,9)°,C1 = ¢°,Co = (VU ~--U}{”)_s).

Decrypt(mpk, C,y, sk(xtype)): It computes
e(C1, D1 - [[ K¥%) - e(Ca, D) = e(g,9)°° if type = ZIPE
=2

n _zy
e(Cr, 1) - (e(Cr, Ds [[ K2 - e(Ca, D2)) % = e(g,9)  if type = NIPE

=2

and recovers the message by Co/e(g,9)** = M.
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We construct the above scheme by combining the IPE scheme derived from
the spatial encryption scheme in [8, 2] and a variant of the NIPE scheme proposed
in [3] so that they share the master public key and the ciphertext. The non-
monotonic KP-ABE scheme derived from the above TIPE scheme has compact
parameters, because of this share of parameters. The main technical challenge in
the proof of the security of the scheme is to simulate the key generation oracle for
two different types (i.e., ZIPE and NIPE) of keys simultaneously. To achieve this,
we use a significantly different strategy to simulate NIPE keys than the security
proof in [3]. The following theorem addresses the security of the scheme.

Theorem 2. The above TIPE scheme is selectively secure under the n-DBDHE
assumption.

Before proving the theorem, we recall following lemma that is implicit in [8].

Lemma 1. ([8]) Let G be a multiplicative group with prime order p and g be
its generator. Let n,m be some integer bounded by polynomial of X\, a be a =
(a,a0?,...,a") € Z7, &, {w;}7~y be elements in Ly, {2:}%y be vectors in L. We
also assume that h = (hy, ..., h,) € Zy satisfies (h,zo) # 0 and (h,z;) = 0 for
i € [m]. Then, there exists an PPT BHSim which takes (&,{z:}%q, {wi}", h,
{gal}ie[Qn]\{nqu}) as input and outputs (ga"Jrl-1-61.(g(zo,a)-ﬁ-wo)7'7 {(g(zma)-l-wi)r}?;l)
where r < L.

Proof. (of Theorem 2.) We construct B that decides if 7' = e(guq)awrls given
(9, {gal}ie[zn]\{n_;_l}?gs,T) € G2t x G¢ by using the selective adversary A

against our scheme. We denote by a a vector (a,a?,...,a").

Setup of master public key. At the outset of the game, the adversary A
declares the challenge vector y* = (yi,...,u;) € Z2. B picks &, < Zp, 0 =
(1, ..., 1) & Zy and sets mpk as

mpk = (9= g,e(g,9)* = e(g®,9*" ) - e(g,9)%, U = g* - g°, V = g~ @¥) . %),

and gives it to A. Here, we implicitly set o = & + a"*!, u = a + 1, and
v=—(a,y*) + 0.
Phasel and 2. When A queries private key for (x = (z1,...,2,),type) €
Zy x L~ x {ZIPE,NIPE}, B answers as follows.
— If type = ZIPE, we have (x,y*) # 0. In this case, B first sets zg = —y*,z; =
0,z; = —Te1+e fori=2,...,n,wo=0,w =1, and w; = - + 1, for
i =2,...,n. Then B runs BHSim(&, {z; }7"_,, {w: }}'_y, X, {g“t}ie[gn]\{nﬂ}) —
(Zo, {Zl};nzl) and returns (D17D2, {KZ}ZL:2) = (Zo, Zl7 {Zl};n:2) We claim
that (D, Da, {K;}?,) is distributed the same as real private key. At first,
we check that the input to BHSim is in a valid form. To see this, it suffices
to check that (x,z¢) = (x,—y*) # 0, (x,21) = (x,0) = 0, and (x,z;) =
(x,—%el +e) = —x1- %1 4+ x; = 0 for i = 2,...,n. Since the input to
BHSim is in a valid form, D, = Z, = ¢&ta"" (g~ @¥") . o) = goyr,
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Dy =7y = (¢{%*+1)" = g7, and

zj

Ki — Zi — (g<*%81+9i,a>*%’ﬁ1+ﬂi)r _ (g*%(a*Fﬁl) .gai—i-ﬁi)’” _ (Ul T Ui)r

for i € {2,...,n} where r & Z,, as desired.

— If type = NIPE, we have (x,y*) = 0. In this case, B first sets zg = e1,21 =
O,Zi = 7%91 +e¢ fOI‘ 7, = 27...,71, Zn+1 = 7y*, Wwo = ﬂl,wl = 17 w; =
—Zi4iy + 1, for i = 2,...,n, and wy 1 = ¥. Then B runs BHSim(a, {z;};7y,

{wi}?:-‘rol’ X, {gal }ie[Qn]\{n+1}) — (ZO7 {Zl};’z—ll) and returns (l)l7 DQ, l)37
{Kl}?:2) = (ZQ, Zl, Zn+17 {Zz}?ZQ) We claim that (Dl,DQ, D3, {Kv}:L:Q) is
distributed the same as real private key. At first, we check that the input
to BHSim is in a valid form. To see this, it suffices to check that (x,z¢) =
(x,e1) = 21 # 0, (x,21) = (x,0) =0, (x,2;) = (x,—Tte; + ;) = 0 for
i=2,...,n, and (X,2,41) = (x,—y*) = 0 . Since the input to BHSim is in
a valid form, we have

Dy = Zg = go+"" (g gty = g (g = gouy

where 7 & Z,. We can also check that Dy = g and {K;}I", = {(U, ** -

U;)"}7_5 by exactly the same computation as in the case of type = ZIPE.

Finally, we have that D3 = 7,11 = (g*<a7Y*>+ﬁ)T = V7" as desired.
Challenge. At some point in the game, .4 submits a pair of ciphertexts (Mg, M1)
to B. B flips a random coin 3 & {0, 1} and returns (Cp, C1, Co) = (Mg-e(g*, g%)-
T, g% (g°)~ (" 0+9)) to A. Since

(g°)~ (W) — (gl-ay)+T gty )y=s _ (VU{’T LUy

+lg

and e(g°,g%) - e(g,9)*" * = e(g,9)*, the ciphertext is in a valid form if T =
e(g,9)*"".

Guess. Finally, A outputs its guess 8’ for 8. If 3/ = 3, A outputs 1 for its guess.
Otherwise, it outputs 0. If T' = e(g,g)‘mnﬂ, the above simulation is perfect and
thus A has non-negligible advantage. On the other hand, If T is a random element
in G, A’s advantage is 0. Therefore, if A breaks our scheme with non-negligible

advantage, BB has a non-negligible advantage against the n-DBDHE assumption.

5 TIPE Scheme from the DBDH assumption

In this section, we propose a TIPE scheme from the DBDH assumption, which is
one of the weakest assumptions in bilinear groups. By sequentially applying the
conversions from TIPE to TIBBE in Sec. 3.1 and from TIBBE to non-monotonic
KP-ABE in Sec. 3 to the scheme, we obtain a new non-monotonic KP-ABE
scheme from the DBDH assumption. Compared to the Non-monotonic KP-ABE
scheme from the same assumption in [28], the public key and ciphertext size of
our scheme are approximately half the size of theirs, and the private key size is
comparable.
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Setup(\,n) : It chooses bilinear groups (G,Gr) of prime order p > 2* with
g & G. Tt also picks u,a & Z, and v = (v1,...,0p) & Z,. Then it sets
U=g"and V = (V1,...,V,) = ¢¥. It finally outputs the master public key
mpk = (g,U, V1, ..., Va,e(g,9)%) and the master secret key msk = a.

Encrypt(mpk, M, y) : To encrypt M € Gr for the vector y = (y1,...,yn) € Zp,

it picks s & Z,, and computes the ciphertext as
C= (Co =M-e(g,9)%,C1 =g° {E; = (in‘/i)_s}izl,‘..n)'

KeyGen(msk, mpk, (x,type)) : To generate a private key for (x = (x1,...,x,) €
7y, type € {ZIPE, NIPE}), it chooses r & 7, and computes

sKix.ziPE) = (D1 = g% (V& V)T Dy = gr) if type = ZIPE
sk(x,NIPE) = (Dl =g°U", Dy = (Vi - Vi)', D3 = gr) if type = NIPE.

Decrypt(mpk, C, y, sk(x,type)): It computes

n

e(Cy, D) - e([[ Ef*, D2) = e(g,9)™ if type = ZIPE
=1
n _1
e(Cy,Dy) - (e(H E}*, D) - e(Cl,Dz)) " =e(g,9)" if type = NIPE
i=1

and recovers the message by Cy/e(g, g)*® = M.
The following theorem addresses the security of the scheme. The proof will be
found in the full version of this paper.

Theorem 3. The above TIPE scheme is selectively secure under the DBDH
assumption.

6 Unbounded TIBBE Scheme

In the TIBBE schemes derived from the TIPE schemes in Sec. 4 and 5, the
number of identities per ciphertext is bounded by a parameter n. In this section,
we propose a TIBBE scheme without such a restriction. The structure of the
construction can be seen as a combination of the IBBE scheme implicit in KP-
ABE scheme in [30] and the IBR scheme in [21]. By applying the conversion in
Sec. 3 to the scheme, we obtain the first non-monotonic KP-ABE scheme in the
standard model that does not restrict the number of attributes per ciphertext
or the number of times the same attribute can be used in an access formula
associated with a private key.

Setup(\) : Tt chooses bilinear groups (G, G7) of prime order p > 2* with g & G.
It also picks H,U,V,W & G and b, o & Z,. Then it sets B = ¢, B' =
gb2 , V' = V. It finally outputs the master public key mpk = (g, H,U, W, B, B’
LV, V' e(g,9)%) and the master secret key msk = .
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Encrypt(mpk, M, S) : To encrypt M € G for the set of identities S = (ID4,...,
IDx) C Z,, it chooses s,t1,...,tk & Z, and random si,...,S; € Z, such
that s; 4+ ...+ s = s and computes the ciphertext as C' =

as s Cz 1= WﬁS(UlDi )7“ Cl 2= gti
Co=M-e(g,9)*,Cr =g { iy si
=BV, =B iclk]

KeyGen(msk, mpk, (ID, type)) : To generate a private key for ID € Z,, it chooses
r & Z, and computes the private key as

sk(p,IBBE) = (Dl =g* - W",Dy=(UPH)" D3 = gr) if type = IBBE
sk(ip,iBr) = <D1 =g*-(B')",Dy = (B®V)", D5 = QT) if type = IBR.

Decrypt(mpk, C, S, sk(p type)): We assume that in the case of type = IBBE, ID
is contained in ID € S = {IDy,...,IDx}, so that decryption is possible.
Therefore, there is an 7 € [k] such that ID = ID,. It computes

e(C1, D1) - e(Cr1, D3) - e(Cr2, D2) = e(g,9)™ if type = IBBE

k
1
e(Cr, D1) - [[(e(Ci1, Ds) - €(Ci 2, D2)) ™= = e(g,g)**  if type = IBR
=1

and recovers the message by Cy/e(g,9)°* = M.

We can prove selective security of the scheme under the new assumption
that we call n-(A) assumption which is secure in the generic group model. The
definition of the assumption and the proof will appear in the full version of this

paper.

7 Unbounded Non-monotonic CP-ABE Scheme

In this section, we propose the first non-monotonic CP-ABE scheme that does
not restrict the size of the attributes set or the number of times the same at-
tribute can be used in an access formula. Our starting point for the construction
of the scheme is the unbounded (monotonic) CP-ABE scheme in [30]. To sup-
port the non-monotonic access structure, we first construct a suitable revocation
mechanism, which can be seen as a ciphertext-policy version of the IBR scheme
n [21]. Then, we combine this with the CP-ABE scheme in [30] to obtain our
new scheme. Because some parameters are shared between the two schemes,
the public key of our scheme is only one group element longer than that of the
scheme in [30], while our scheme supports a more general access structure.

Setup(\) : Tt chooses bilinear groups (G, Gr) of prime order p > 2* with g & G.
It also picks b,a & Z, and H, U, V,W & G. Then it sets V! = U and
outputs the master public key mpk = (g, H,U,V, V', W,e(g,g)*) and the
master secret key msk = (a, b).
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KeyGen(msk, mpk,w) : To generate a private key for a set of attributes w =
{wi,...wr} C Z,, it chooses 7,71,...,71, & Z, and random 7}, ..., 7, € Z,
such that r{ + ...+ r}, = r. It then outputs the private key as

Ki1 =V "(UH)", K;s=g"
sky = | D1 =g"W", Dy =g",
1€ K]

Kz(71 = (UbwiHb)T;” K;,2 = gbd

Encrypt(mpk, M, A) : The input to the algorithm is the master public key mpk,
the message M € Gp and a non-monotonic access structure A such that
we have A = NM (A) for some monotonic access structure A over a set P
of attributes and associated with a linear secret sharing scheme (L, ). Let
L be an £ x m matrix. First, it picks random s = (s,52,...,8,) <& Z"
and computes share of s for 7(i) by A\; = (L; - s) for i = 1,...,¢. It then
computes Cp = M - e(g,9)**, C; = ¢°. It also computes (C; 1,C;2,C;3) for
every i = 1,..., /¢ as follows.

Cin =WV Cpo=(U"H)™", Ciz=g" if w(i) = x;
Cin =W (Vi Cio=(U"H)™", Ciz=g" ifr(i)=a]

where t; (i Zp. The final Output isC = (Co, Cl, {01'71, Ci72, Ci,g}ie[g]).

Decrypt(mpk, C,w,sky) : Assume first that the policy A is satisfied by the at-
tribute set w, so that decryption is possible. Since A = NM(A) for some
access structure A associated with a linear secret sharing scheme (L, ),
we have w’ = N(w) € A and we let I = {i|7(i) € w'}. Since ' is au-
thorized in A, the receiver can efficiently compute reconstruction coeffi-
cients {(4, ;) }icr = Reconp (w’) such that >, p;Ai = s. It parses C' =
(Co,C1,{Ci1,Ci2,Cis}icin), skw = (D1, D2, {Ki1, Ki2, K 1, K] 5 }icpy) and
computes e(g, g)" ™ for each i € I as

6(01‘,1, DQ) . 6(0»;72, Kq—g) . 6(C¢73, K-,—71) — e(g, W)TM if TF(Z) =x;
1
e(Ci1, D2) - H (e(Ci’g, K;,l) -e(Ciz, Kg/',2)) niTe =e(g, W)Mi if w(i) = a;
JELK]

where 7 is the index such that w, = x;. Such 7 exists if ¢ € I and 7 (i) is
non-negated attribute. Next, it computes e(C1, D1) - [,/ (e(g, W)™) ™" =
e(g®, g%)e(g, W) e(g, W)~ " Xiecr #iXi = ¢(g, g)**. Finally, it recovers the

message by Cy/e(g, g)** = M.

We can prove selective security of the scheme under the new assumption
that we call n-(B) assumption which is secure in the generic group model. The
definition of the assumption and the proof will appear in the full version of this
paper.

8 Comparisons

Here, we compare our schemes with existing schemes. In Table 1, we compare
non-monotonic KP-ABE schemes with compact ciphertexts. In Table 2, we com-
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pare non-monotonic KP-ABE schemes from the DBDH assumption. In Table 3
(resp., 4), we compare the KP (resp., CP)-ABE schemes which allow unbounded
size for set of attributes associated with ciphertext (resp., private key). In these
tables, 7 = |attribute set| = |w]|, n is the maximum bound of 7 (i.e., |w| < n),
@ is the number of allowed repetition of the same attributes which appear in
a policy, and ¢; and ¢y are the number of non-negated and negated attributes
that apper in an access policy. We also let ¢ = ¢; + t5. The terms “reg-exp.”
and “mult-exp.” refer to regular and multi-exponentiation in G and Gp. The
Pippenger algorithm [29] can efficiently compute the latter. The term “pair”
refers to pairing computation. The columun “unbounded set” in Table 3 (resp.,
4) states whether unbounded attribute set size is allowed for ciphertext (resp.,
for key) or not. The columun “unbounded multi-use” states whether unboudned
reuse of the same policy for a key (resp., ciphertext) is allowed or not.

In Table 2, we only highlight the encryption cost. As for the efficiency of
the decryption algorithm, our scheme in Sec. 5 is somewhat slower than [28],
because of the additional exponentiations. Note that the schemes in [27] achieve
adaptive security, whereas all the other schemes achieve only selective security.

Table 1. Comparison of non-monotonic KP-ABE with compact ciphertexts

Schemes Master public Ciphertext Private Computational cost for Assumption
key size overhead key size encryption decryption
(1G], 1Gr]) |G| |G| (reg,mult)-exp (pair,mult-exp)
ALP [3] (2n +2,1) 3 (n+ 1)t (2,2) (3,3%) n-DBDHE
Ours in Sec. 4. (n+2,1) 2 (n+ 1)t + to (2,1) (2,2™) n-DBDHE

* These multi-exponentiation is heavier than that needed in the encryption algorithm.

Table 2. Comparison of non-monotonic KP-ABE schemes from the DBDH

Schemes Master public key size Ciphertext overhead Private key size Encryption cost
(|G, |Gr]) |G| |G| reg-exp. mult-exp.

OSW [28] (2n + 2,0) 2n —1 2t1 + 3ty 2 2nt

Ours in Sec. 5 (n+2,1) n+1 2t1 + 3to 2 n

T For simplicity, we compare these schemes in a most basic form. However, we can modify the
schemes so that the ciphertext size only depends on 7 instead of n, which might be preferable
in many case, by the technique in [28]. As a result, master public key and the private key
becomes larger, whereas it makes ciphertext size smaller and encryption/decryption cost
lower.

¥ These multi-exponentiations are heavier than that of our scheme in Sec. 5.

Table 3. Comparison of KP-ABE schemes with unbounded attribute set size

Schemes Access Ciphertext Private key Assumption

structure overhead (|G|) unbounded size(G) unbot'lnded

set multi-use

LSW/[21] non-monotone 3n+1 Yes 2t + to Yes RO+n-MEBDH
OT[27] non-monotone  14np + 5 Yes 14t + 5 No DLIN
RW([30] monotone 2n+ 1 Yes 3ty Yes n-lassumption
LWI[23] monotone 3n+1 Yes 4t Yes assumption 1-4
Ours in Sec. 6 non-monotone 4n+1 Yes 3t Yes n-(A) assumption

§ LW scheme [23] is constructed in composite order group.
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Table 4. Comparison of CP-ABE schemes with unbounded attribute set size

Schemes Access Ciphertext Private key Assumption
structure overhead (|G|) unbot.lndcd size(G) unbounded
multi-use set
OT[27] non-monotone 14t 4+ 5 No l4np + 5 Yes DLIN
RW([30] monotone 3t + 1 Yes 27n + 2 Yes n-2 assumption
Ours in Sec. 7 non-monotone 3t+1 Yes 4n + 2 Yes n—(B) assumption
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