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Abstract. Consider the setting of two mutually distrustful parties Alice
and Bob communicating over the Internet, who want to securely evalu-
ate desired functions on their private inputs. In this setting all known
protocols for securely evaluating general functions either require hon-
est parties to trust an external party or provide only weaker notions of
security. Thus, the question of minimizing or removing trusted set-up
assumptions remains open. In this work, we introduce the cross-domain
model (CD) for secure computation as a means to reducing the level of
required trust. In this model, each domain consists of a set of mutually
trusting parties along with a key-registration authority, where we would
like parties from distinct domains to be able to perform multiple secure
computation tasks concurrently. In this setting, we show the followings:
- Positive Construction for 2 domains: We give a multiparty-party

protocol that concurrently and securely evaluates any function in
the CD model with two domains, using only a constant number of
rounds and relying only on standard assumptions.

- Impossibility Results for 3 or more domains: Consider a deter-
ministic function (e.g., 1-out-of-2 bit OT) that Alice and Bob in the
standalone setting cannot evaluate trivially and which allows only
Bob to receive the output. In this setting if besides Alice and Bob
there is a third party (such that all three are from distinct domains)
then they cannot securely compute any such function in the CD
model in concurrent setting even when their inputs are pre-specified.

These results extend to the setting of multiple parties as well. In par-
ticular, there exists an n-party concurrently secure protocol in the CD
model of n domains if and only if there are exactly n domains in the
system.
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1 Introduction

Consider the following scenario: Amazon and Walmart are two giant wholesale
stores. Each store has a distributed set of servers to handle client requests. In
order to establish best prices, Amazon and Walmart often need to collaborate
on a real-time basis. In other words they need to compute functions of their
confidential data which itself is distributed across the different servers. Neither
do they trust each other nor are they willing to trust a third-party setup.

The well-studied notion of secure computation [40, 18] allows them to do so,
however only in the stand-alone setting where security holds only if a single
protocol session is executed in isolation. However, the requirement of free col-
laborations between Amazon and Walmart in the above requires security to hold
even when multiple sessions are executed concurrently as in the Internet. What
if Amazon in parallel wants to collaborate with another wholesale store Costco
while protecting its confidential data even if Walmart and Costco collude with
each other?
Background: Concurrent Security. In the past few years a lot of effort has
been made in obtaining secure computation protocols in the demanding network
setting where there might be multiple concurrent protocol executions. A large
number of secure protocols (in fact under an even stronger notion of security
called Universal Composability (UC)) based on various trusted third-party setup
assumptions [8, 7, 2, 11, 24, 12, 30, 22, 21, 15] have been proposed. One of main
aims to this line of work has been to reduce the level of trust that honest parties
need to place in the trusted third-party setup. For example, Katz [24] considered
the hardware token model. In his model, honest parties program tokens and send
them to other parties. Since honest parties can program their own tokens, they
only need to trust their hardware token manufacturer. Groth and Ostrovsky
[22] initiated the study of constructing UC secure protocols without relying on
a single trusted external entity. In other words, one of the main goals in this line
of works is to achieve those notions of security in a setting which is as close to
the “plain model” as possible (also see [21, 15] for subsequent works).
The Dark Side of Concurrency. Unfortunately, very strong impossibility results
have been proved ruling out the existence of secure protocols in the concurrent
setting. UC secure protocols for most functionalities of interest have been ruled
out by [8, 6]. Concurrent self-composability4 for a large class of interesting func-
tionalities (i.e., bit transmitting functionalities) was first ruled out [31] only in
a setting in which the honest parties choose their inputs adaptively (i.e., “on
the fly”). Subsequently, a series of works [3, 19, 1, 17] show that it is impossible
to achieve concurrent self-composition even in the very natural setting of static
(pre-specified) inputs. In summary, these results have firmly established that for
obtaining the most general result some setup is needed unless we are willing to
consider more constrained models. Finally even in a setting with bounded num-
ber of players [23], an impossibility result has been established. However, this

4 Concurrent self-composition requires that a protocol remain secure even when mul-
tiple copies of the same protocol are executed concurrently.



is for the more demanding setting in which honest parties choose their inputs
adaptively.

1.1 Overview of our setting and results

We introduce a new set-up model, called the Cross-Domain(CD) model. A do-
main consists of a set of mutually trusting parties along with a key-registration
authority. We prove the following for the setting of n-domain multi-party pro-
tocols:

Positive result if n = 2. We give a multi-party protocol that concurrently and
securely evaluates any function in the CD model of two fixed domains where
each domain may contain arbitrarily many parties. Our protocol has a con-
stant round complexity, a black-box proof of security and relies only on stan-
dard assumptions.

Impossibility results when n ≥ 3. We show that there does not exist a two-
party protocol such that parties from three distinct domain can concurrently
and securely realizes any complete asymmetric (only one party gets the out-
put) deterministic functionality5 in the stand-alone setting [25, 26, 29, 5, 27].
Our impossibility results hold even in the very restricted setting of static
inputs (inputs of honest parties are pre-specified) and fixed roles (i.e, the
adversary can corrupt only two parties who play the same role across all
executions).

This answers the motivating question we started with. We can equip Amazon
and Walmart to collaborate freely but this can not be done if collaborations with
Costco are also desired.

Our results directly extend to the setting of n-domain protocols. In particular
an n-party protocol for concurrently and securely computing any function on the
joint inputs of n parties form distinct domains exists, if and only if there are
exactly n domains in the system.
Relation with Bare-Public Key (BPK) model. The CD model is a generaliza-
tion of the BPK introduced by Canetti et al. [9] model that has been studied
extensively in the literature. Recall that in the BPK model each party sets up
its own public-key and private-key pair. On the other hand in our model each
domain has a key-registration authority that roughly generates a public-key and
a private-key pair which is then used by all parties of the domain. We stress that
even in the BPK model prior to our work no results for the setting of secure
computation were known and our results fully characterize what is possible in
the BPK setting. We elaborate on the details of this relation in Section 6.

1.2 Previous results with weaker notions of security

To address the problem of concurrent security for general secure computation in
the plain model, a few candidate definitions have been proposed, including input-
indistinguishable security [33, 16] and super-polynomial simulation [34, 38, 4, 30,

5 A functionality is complete if it can be used to securely realize any other functionality.



10]. Both of these notions, although very useful in specialized settings, do not
suffice in general. Additionally, other models that limit the level of concurrency
have also been considered [35, 19] or allow simulation using additional outputs
from the ideal functionality [20]. Among these models the model of m-bounded
concurrency [36, 35] which allows for m different protocol executions to be inter-
leaved has received a lot of attention in the literature [36, 35, 31, 32]. Unbounded
concurrent oblivious transfer in the restricted model where all the inputs in all
the executions are assumed to be independent has been constructed in [14]. Fi-
nally the only known positive results for concurrently secure composition in the
plain model are for the zero-knowledge functionality [13, 39, 28, 37, 3].

1.3 Technical Overview

Impossibility Result. We start by giving the intuition behind the impossi-
bility result for constructing a protocol that concurrently securely realizes the
Oblivious Transfer(OT) functionality in the setting of three parties. The exten-
sion to general asymmetric two party functionalities follows using a Theorem
from [1]. In the following, we consider the simplest setting where three domains
exist and where each domain contains a single party.

Our impossibility result builds on the top of ideas developed by [1, 17] for
the setting of plain model. Even though their result holds for the two party
setting, we recall their technique for the setting of three parties. Consider a
scenario with three parties Alice, Bob and Charlie. Now, consider an adversary
that corrupts Bob and Charlie who (as receivers of the OT protocol) are allowed
to participate in an arbitrary polynomial number of executions of the protocol
with honest Alice (who plays as the sender). In this setting, we can construct a
real-world adversary acting as Bob that interacts with Alice in an execution of
the protocol, referred to as the main execution, that cannot be simulated in the
ideal world.

The key idea is that the adversary has secure computation at its disposal
and it can use it to its advantage. The adversary on behalf of Charlie may
interact with Alice in multiple additional executions of the secure computation
protocol and use these executions to generate messages that it needs to send in
the main execution on behalf of Bob. More specifically, the adversary securely
realizes Bob by using garbled circuits such that the adversary needs to evaluate
the garble circuit in order to generate the messages it sends on behalf of Bob.
However, the adversary does not have the OT keys necessary for evaluation of
the garbled circuit. Instead, the OT keys are given to the honest Alice from
which the adversary obtains the desired OT keys by the (additional) concurrent
executions of the OT protocol as Charlie. Finally, the existence of a simulator
simulating such an adversary that is securely implementing Bob contradicts the
stand-alone security of the OT protocol. The pictorial description of our real-
world adversary is provided in Figure 1.

In the CD model, each domain containing Alice, Bob and Charlie generates a
certificate associated with their public-keys. The key insight in our impossibility
result is to use the setting described above and to enable the garbled circuit
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Fig. 1. Our real-world adversary A corrupting two receivers where R1 is Bob (replaced
with the garbled circuit of its next message generator) and R2 is Charlie.

securely evaluating Bob to generate Bob’s public key as well. The adversary
however will generate Charlie’s public key and secret key by himself, which
enables the adversary to interact freely on Charlie’s behalf. In particular, this
allows the adversary to still obtain the OT keys for the garbled circuit from
Alice as in the plain model. Finally, the existence of a simulator simulating such
an adversary that is securely implementing Bob (along with its key registration)
contradict the stand-alone security of the OT protocol in the CD model.
Positive result for two domains. The intuition behind the impossibility
result above makes it abundantly clear that the adversary must be able to do
secure computation with honest Alice if it wants to securely simulate Bob. How-
ever, if we restrict ourselves to the setting of two domains then the adversary
essentially loses this ability, which eventually allows us to give a positive result.

Our protocol can roughly be partitioned into two phases– the preamble phase
and the post-preamble phase. In the preamble phase, a party needs to demon-
strate the knowledge of the secret key corresponding to its public and the cer-
tificate issued by its KCA. Subsequently in the post-preamble phase the actual
secure computation happens. In the simulation for the proof of security, obtaining
the knowledge of the adversary’s secret key suffices for straight-line simulation.

Our protocol proceeds to the post-preamble phase only after the adversary
has demonstrated knowledge of its secret key in the preamble phase. The ad-
versary can interleave sessions arbitrarily and among these interleaved sessions
consider the first session in which the protocol reaches the post-preamble phase.
Let’s call this session as the target session. Now note that since the target ses-
sion was the first session in which the the post-preamble phase was reached,
we can expect the same thing to happen with some probability on appropriate
re-windings as well. We formalize this appropriately using swapping argument in-
troduced in [37]. Now note that throughout this process of re-windings we never
execute the post-preamble phase for any session. This allows us to avoid the



technical difficulties that generally arise when constructing concurrently secure
two-party computation protocols. Our protocol with this limited re-windings is
able to extract the secret key of the adversary and this allows our simulator to
subsequently simulate all the sessions in straight-line. For our construction and
the proof we build on the techniques developed in [3, 20, 16].
Organization: In Section 2, we first introduce the CD model. In Section 3, we
present our impossibility result for static input concurrently secure two-domain
two-party computation in the CD model in a setting with at least three domains
and three parties. In Section 4, we provide the formal construction of concur-
rently secure two-domain two-party computation protocol in the CD model (in
the setting of 2 parties) and for the proof of its security, we give the construc-
tion of a black-box simulator for the protocol in Section 5. We elaborate on the
details of the relation with the bare-public key model in Section 6.

2 The Cross-Domain (CD) model

In this section we sketch the details of the CD model. In the CD model, we
have multiple domains each consisting of a set of mutually trusting parties and
a Key Certification Authority (KCA). Each party in a domain trusts its KCA.
Intuitively, whenever a party in one domain wants to jointly compute a function
with a party in another domain, each party registers its public key to its own
KCA and obtains a certificate on the public key. No party communicates with
the KCAs of other domains. Instead, only KCAs communicate with each other
to obtain the verification information for the certificates of other parties within
other KCAs. Then, every KCA delivers the obtained verification information to
the parties in the own domain. The parties use the verification information of
other parties received from the trusted KCA throughout the subsequent inter-
action. We formalize this as an interaction between multiple parties and KCA
functionalities as follows. We denote a set of KCA functionalities by FKCA =
{F1

KCA, F2
KCA, . . . , FN

KCA} where N is the number of domains.

– A party in the i-th domain registers their public key with Fi
KCA. Then, func-

tionality Fi
KCA generates a pair of signing key and verification key, signs the

public key, and returns the verification key and the signature to the party.
If Fi

KCA has already generated a pair of signing key and verification key for
the other parties in the domain, then it will use the same signing key and
verification key to certify the public key of the current requesting party.

– If an adversary corrupts a party in a domain, then we assume that all other
parties in the domain are corrupted as well.6

We emphasize that our main aim of the above definition is to protect the
privacy of inputs of parties in domains in which no corrupted party exists from

6 This is because all the parties in a domain trust each other. This captures the toy
scenario for Amazon and Walmart described in the introduction. Servers of Amazon
and Walmart are seen as the parties in our system.



interacting with corrupted parties in the other domains. The formal definition
of the CD model appears in the full version.

3 Impossibility of Concurrent Security in the CD Model

In this section, we provide strong impossibility results ruling out constructions
for secure MPC protocols in the CD model. We heavily rely on the recent works
of [1, 17] in proving these results. In fact, we show the impossibility result in the
simplest case of the CD model: We show that there does not exist a concurrently
secure protocol in the CD model of two domains when three domains and three
parties exist in the system. Since each party belongs to the distinct domains in
the following discussion, we discuss the impossibility result simply focusing on
the parties without considering the KCA functionalities.

We start by showing that string OT functionality can not be concurrently
and securely realized even in the setting of static inputs in the bare-public key
model in the setting of three parties even against adversaries that corrupt two
parties playing the same role, i.e. of the sender or the receiver. Next we gen-
eralize this impossibility to essentially all functionalities of interest. Finally we
extend our impossibility result to the setting of larger number of parties. In par-
ticular we show that no n-party protocol in the CD model (for a large class of
functionalities, discussed later) can be concurrently secure in the setting of n+1
parties. We use the notation used by [17] and some of the texts here have been
taken verbatim from [17].

3.1 The Case of String OT

String OT is a two-party functionality between a sender S, with input (m0,m1)
and a receiver R with input b which allows R to learn mb without learning
anything about m1−b. At the same time the sender S learns nothing about b.
More formally string OT functionality FOT : ({0, 1}p(k) × {0, 1}p(k))× {0, 1} →
{0, 1}p(k) is defined as, FOT ((m0,m1), b) = mb, where p(·) is any polynomial
and only R gets the output.

Note that string OT is a two-party functionality, however, the protocol re-
alizing the string OT functionality can be executed among multiple parties. We
consider the setting of three parties and each of the parties registers exactly one
key. We show that for some polynomial p(·) (to be fixed later), there does not ex-
ist a protocol π that concurrently securely realizes the FOT functionality among
these three parties. More specifically we show that there exists an adversary A
who corrupts 2 parties, registers keys on their behalf, starts a polynomial number
of sessions (say `(k)) of the protocol π with the honest (with pre-specified in-
puts drawn from a particular distribution D) such that no ideal-world adversary
whose output is computationally indistinguishable from the output of real-world
adversary A exists. We stress that the parties corrupted by the adversary (we
construct) corrupts two parties playing the same role – either the sender S or
the receiver R in all the `(k) sessions.



Theorem 1 (impossibility of static input concurrent-secure string OT in CD
model) Let π be any protocol which implements7 the FOT functionality for a
particular (to be determined later) polynomial p in the CD model. Then, in the
setting of 3 parties (assuming one-way functions exist) there exists a polynomial
` and a distribution D over `-tuple vectors of inputs and an adversarial strat-
egy A, that corrupts 2 parties, such that for every probabilistic polynomial-time
simulation strategy S, (see full-version for formal definition) cannot be satisfied
when the inputs of the parties are drawn from D.

Implications for bounded concurrency. Observe that the attack described
in the above proof (in the unboundend concurrent setting) has natural implica-
tions in the bounded setting as well. In particular, the number of sessions that
our adversary executes, or the “extent” of concurrency used by the adversary
in the proof above in order to arrive at a contradiction is bounded by the com-
munication complexity of the protocol. More specifically the adversary needs to
make one additional OT call for every bit that the Sender sends in the protocol.

3.2 Extending to all asymmetric functionalities

The goal of this section is to generalize the impossibility result for string OT pro-
vided in the previous section to all finite deterministic “non-trivial” asymmetric
functionalities F . Consider a two-party functionality Fasym between a sender S,
with input x and a receiver R with input y which allows R to learn f(x, y) and
at the same time S should not learn anything. More formally, let f : X×Y → Z
be any finite function8 then an asymmetric functionality Fasym is defined as,
Fasym(x, y) = (⊥, f(x, y)) where S gets no output and R gets f(x, y). We show
that there does not exist a protocol π that concurrently securely realizes any
complete Fasym functionality as defined below.
Fasym is said to be complete [26]9 in the setting of stand-alone two-party

computation in the presence of malicious adversaries iff ∀b0,∃b1, a0, a1 such that

f(a0, b0) = f(a1, b0) ∧ f(a0, b1) 6= f(a1, b1).

Lemma 1 (Theorems 1 and 3, [1]). Given any protocol ρ that concurrently
securely realizes a non-trivial asymmetric functionality F secure under concur-
rent self-composition in the static-input, fixed-role setting we have that there
exists a protocol Π that securely realizes the FOT functionality secure under
concurrent self-composition in the static-input, fixed-role setting.

The proof of [1] is for the setting of plain model but extends to the setting
of the CD model in a direct manner.

7 We say that a protocol implements a functionality if the protocol allows two parties
to evaluate the desired function. This protocol however may not be secure.

8 Recall that a function is said to be finite if both the domain and the range are of
finite size.

9 Recall that a functionality is said to be complete if it can be used to securely realize
any other functionality.



Now any hypothetical protocol for any non-trivial asymmetric functionality
F (using Lemma 1), we will obtain a protocol for FOT , contradicting Theorem 1.
This gives our impossibility result for the setting of two parties:

Theorem 2 (impossibility of static input concurrent security for asymmetric
complete functionalities) Let π be any protocol which implements any Fasym

functionality that is complete in the stand-alone setting in the CD model. Then,
in the setting of 3 parties (assuming one-way functions exist) there exists a
polynomial ` and a distribution D over `-tuple vectors of inputs and an ad-
versarial strategy A, that corrupts two parties, such that for every probabilistic
polynomial-time simulation strategy S, (see full-version for formal definition)
cannot be satisfied when the inputs of the parties are drawn from D.

Extending to n-party protocols So far we have only considered the setting of
3-parties only. We now explain how these results can be extended to the setting
of n+1 parties executing an n party protocol. Consider an n-party functionality
f(x1, x2 . . . xn) with x1, x2 . . . xn as input. Let S and S be disjoint partitions of
the n parties such that only a subset of the parties in S get the outputs. Let g
be a two-argument function obtained by viewing f as a function of {xi}i∈S and
{xi}i∈S . For any f , if there exist such partitions S and S such that g is a complete
two-party asymmetric functionality,10 then we can use our impossibility result
for concurrently securely realizing g in the CD model in the setting of 3 parties
to argue that f can not be concurrently securely realized in CD model in the
setting of n+ 1 parties. The proof follows in a very similar manner and we omit
the details.

4 Possibility of Concurrent Security in the CD model

In this section, we present the positive side of our result by constructing a
constant-round concurrently secure MPC protocol in the CD model with black-
box simulation. Our protocol, the ingredients needed and the proof build upon
the construction of [16] (and its full version) and parts of the texts have been
taken verbatim from there without explicitly mentioning again and again. Let
F be a well-formed functionality where such a functionality admits a constant-
round two-party computation protocol in the semi-honest setting.11 In fact, for
simplicity, we present a constant-round concurrently secure two-party computa-
tion protocol in the CD model, denoted by Π, where a party belongs to either
of the two domains.

We emphasize that this two-party protocol easily extends to a concurrently
secure protocol for any polynomially many parties in CD model of two fixed
domains where a party is under either of two domains. Subsequently, our proto-
col easily extends to a concurrently secure protocol for any polynomially many

10 Note here this implies that at least one party in S and at least one party in S has
an input.

11 See [7] for the notion of well-formed functionality.



parties in CD model of N fixed domains where each party belongs to one of the
N domains.

4.1 Building Blocks and Notations

Due to the space restrictions, see the full version for the details of the building
blocks. Let g : {0, 1}n → {0, 1}3n be a length tripling pseudo-random generator.
Let PBcom(·) denote a non-interactive perfectly binding commitment scheme,
and let 〈C,R〉 denote an one-slot extractable commitment scheme . Furthermore,
we will denote a constant round strong WI proof system by 〈P, V 〉 and a special
constant-round NMWI argument of knowledge protocol by 〈P ′, V ′〉 . Finally we
denote a constant-round SWI argument by 〈Pswi, Vswi〉, and a constant-round
semi-honest two-party computation protocol by 〈P sh

1 , P
sh
2 〉 which securely com-

putes F as per the standard simulation-based definition of secure computation.

4.2 Construction of our protocol

We now provide the formal construction of concurrently secure two-party com-
putation protocol in the CD model. Some notations and the protocol description
closely resemble those of [16]. Let FKCA = {F1

KCA,F
2
KCA} be the key certification

authority(KCA) functionality with two domains in the CD model, which is a
special case of FKCA where N = 2. See the formal description in full-version.

Let n be the security parameter. Let P1 and P2 be two parties with private
inputs x1 and x2 respectively. Without loss of generality, let P1 and P2 be in the
domains F1

KCA and F2
KCA respectively. Also, P1 and P2 have unique identifiers id1

and id2 respectively. Protocol Π = 〈P1, P2〉 proceeds as follows. We omit session
identifiers for the succinct specification.
I. Key Registration Phase.

1. P1 samples random strings sk01 and sk11 and sets pk01 := g(sk01) and pk11 :=
g(sk11).

2. P1 registers both public keys pk01 and pk11 by sending (register, id1, pk01) and
(register, id1, pk11) to functionality F1

KCA.12

3. P1 obtains (σpk01 ,mvk1) and (σpk11 ,mvk1) from F1
KCA where σpk01 and σpk11

are signatures on pk01 and pk11 respectively where mvk1 is the respective
verification key.

4. P1 chooses a random bit b1 ∈ {0, 1} and sets pk1 = pkb11 and sk1 = skb11 . We
now denote the corresponding signature by σpkpo.

5. P2 acts analogously, registers pk02 and pk12 with F2
KCA, and obtains (σpk02 ,mvk2)

and (σpk1 ,mvk2). It sets pk2 = pkb22 and sk2 = skb22 where b2 is a random bit.
Finally, σpkpt is the corresponding signature.

12 The registration request is not required to be two distinct requests to the function-
ality. Registering pk01 and pk11 can be viewed as a registering one public key which is
a concatenation of two public keys and the functionality simply decomposes it into
two strings, signs both and returns them to the party.



II. Trapdoor Creation Phase. LetR1 be a NP-relation where the NP theorem is a
string mvk and the witness is a tuple (p̃k, s̃k, σ̃, c̃) such that (mvk, p̃k, s̃k, σ̃, c̃) ∈
R1 if and only if c̃ is the commitment to p̃k||sk||σ̃ with respect to protocol 〈C,R〉,
p̃k = g(sk), and Ver(p̃k, σ̃,mvk) = 1. For convenience, we let (mvk, t, c̃) ∈ R1 if
t = p̃k||sk||σ̃ and (mvk, p̃k, s̃k, σ̃, c̃) ∈ R1. In addition, let R2 be a NP-relation
where the NP theorem is a string mvk and the witness is a tuple (p̃k, s̃k, σ̃) such
that (mvk, p̃k, s̃k, σ̃) ∈ R2 if and only if p̃k = g(sk) and Ver(p̃k, σ̃,mvk) = 1.
Similarly, we denote we let (mvk, t) ∈ R2 if t = p̃k||sk||σ̃ and (mvk, p̃k, s̃k, σ̃) ∈
R2. The trapdoor creation phase proceeds as follows.

1. P1 ⇒ P2 : P1 sends a request (retrieval, id2) to F1
KCA and obtains mvk2, a

verification key from F1
KCA. Recall that F1

KCA obtains mvk2 by interacting
with F2

KCA. P2 analogously obtains mvk1 from F2
KCA.

2. P1 ⇒ P2 : P1 executes 〈C,R〉 with P2, where P1 commits to trap1 =
pk1||sk1||σpk1 . We denote this execution by 〈C,R〉trap11→2 and the commitment
by c̃1. Next P1 proves to P2 by using strong WI proof system 〈P, V 〉 with
common input mvk1, the following NP-statement: there exists (pk1, sk1, σpk1)

where (mvk1, pk1, sk1, σpk1) ∈ R1. If the verifier V in 〈P, V 〉sk11→2 aborts, then

P2 aborts. We denote this execution by 〈P, V 〉trap11→2 .
3. P2 ⇒ P1 : P2 acts analogously in Step 2 by first committing to trap2 =

pk2||sk2||σpk2 using 〈C,R〉 and then giving a proof using 〈P, V 〉. We denote

this execution by 〈C,R〉trap22→1 and 〈P, V 〉trap22→1 .
4. P1 ⇒ P2 : P1 commits to bit 0 as com1 = PBcom(0) and sends com1 to
P2. Next P1 and P2 executes constant-round NMWI argument of knowledge
〈P ′, V ′〉 in which P1 and P2 respectively play as P ′ and V ′. The common
inputs for this execution of 〈P ′, V ′〉 are com1 and mvk2. In this execution, P1

proves to P2 that com1 is a commitment to 0 or there exists a string t such
that (mvk2, t) ∈ R2. Honest party P1’s private input is the de-commitment
information of com1.13 That is, by the execution of 〈P ′, V ′〉, P1 proves to P2

that com1 is a commitment to bit 0.
5. P2 ⇒ P1 : P2 proceeds symmetrically as does P1 above. In summary, it

generates a commitment com2 to bit 0 and then proves the same using
〈P ′, V ′〉.

III. Input Commitment Phase.
Let Encpk(·) denote the encryption algorithm of an dense encryption scheme

with pseudo-random public keys with public-keys of length `.

1. P1 ⇔ P2 : P1 samples a random string α1 ∈ {0, 1}` and sends c′1 =
PBcom(α1) to P2. Upon receiving c′1, P2 responds with a random string
β1 ∈ {0, 1}`. At this point, P1 reveals the value α1 to P2 and proves the
following NP-statement to P2 by executing 〈Pswi, Vswi〉:
(a) either there exists randomness such that c′1 is a commitment to the string

α1,

13 Looking ahead the secret key corresponding to the public key pk2 will allow the
simulator to cheat in the simulation.



(b) or com1 is a commitment to 1.
Both parties set pk1c = α1⊕β1 (public key generated using the coin flipping).

2. P2 ⇔ P1 : P2 and P1 proceed symmetrically as above to generate the public
key pk2c = α2 ⊕ β2.

3. P1 ⇒ P2 : P1 samples a random string r1 of appropriate length which is
to be used as randomness to execute semi-honest two-party computation
〈P sh

1 , P
sh
2 〉. P1 computes y1 = Encpk2c (x1||r1). Then, it sends y1 to P2.

4. P2 ⇒ P1 : P2 proceeds symmetrically as does P1 above. Let x2 and r2 be
the input and the random string chosen by P2 to be used in the execution
of 〈P sh

1 , P
sh
2 〉. Let y2 = Encpk1c (x2||r2) be the cipher-text generated.

IV. Secure Computation Phase. In the secure computation phase, parties P1

and P2 jointly evaluate the desired functionality F based on a constant-round
semi-honest two-party computation protocol 〈P sh

1 , P
sh
2 〉. Party P1 plays P sh

1 while
party P2 plays P sh

2 . Note that 〈P sh
1 , P

sh
2 〉 is secure against semi-honest adversaries.

Thus, we require that the coins of participating parties are indeed uniform.
Moreover, we require each party to prove the validity of every message it sends
to the other party. That is, whenever a party generates and sends a message to
the other party, it is required to prove by using 〈Pswi, Vswi〉 that the message is
honestly generated with respect to its input, random coins and the instructions
of 〈P sh

1 , P
sh
2 〉. In the following, let t be the round complexity of 〈P sh

1 , P
sh
2 〉 where

each round consists of two messages: w.l.o.g. a message from P1 followed by a
message from P2. We denote the next message generators of 〈P sh

1 , P
sh
2 〉 simply

by P sh
1 and P sh

1 . We define transcript T1,i (resp., T2,i) by the set (or vector)
of all the messages (belonging to 〈P sh

1 , P
sh
2 〉) which are exchanged between P1

and P2 before P1 (resp., P2) needs to send the i-th round message of 〈P sh
1 , P

sh
2 〉

for i ∈ [t]. In particular, P1 obtains the i-th round message, denoted by β1,i,
of 〈P sh

1 , P
sh
2 〉 as it computes β1,i = P sh

1 (T1,i, x1, r
′′
1 ). The P2’s i-th message is

symmetrically defined as β2,i = P sh
1 (T2,i, x2, r

′′
2 ). The formal definition of the

secure computation phase is provided as follows.

1. P1 ⇒ P2 : P1 samples a random string r′2 of appropriate length and sends it
to P2.

2. P1 ⇐ P2 : P2 similarly samples a random string r′1 of appropriate length and
sends it to P1.

3. P1 computes r′′1 = r1 ⊕ r′1 and P2 computes r′′2 = r2 ⊕ r′2. Then, r′′1 and r′′2
are the random coins to be used respectively by P1 and P2 in the execution
of 〈P sh

1 , P
sh
2 〉.

4. For i ∈ [t], parties P1 and P2 repeats the following procedure.

(a) P1 ⇒ P2 : P1 computes β1,i = P sh
1 (T1,i, x1, r

′′
1 ) and send it to P2.

(b) P1 ⇒ P2 : P1 proves to P2 by using 〈Pswi, Vswi〉, the NP-statement which
is a disjunction of the following NP-statements:

i. There exist values x̂1, r̂1 such that
A. there exists randomness such that y1 = Encpk2c (x̂1||r̂1)

B. and β1,i = P sh
1 (T1,i, x̂1, r̂1 ⊕ r′1)

ii. com1 is a commitment to bit 1.



(c) P2 ⇒ P1 : P2 acts symmetrically.

This completes the formal definition of protocol Π. We claim the following.

Theorem 3 If there exist a constant-round semi-honest OT, an encryption sys-
tem with dense(pseudo-random) public keys, and a family of collision-resistant
hash functions, then there exists a constant-round concurrently secure two-party
computation protocol for every well-formed functionality F in the CD model.

5 Proof of Theorem 3 (Simulator S)

In this section, we prove Theorem 3 by constructing an Expected Probabilis-
tic Polynomial-Time (EPPT) simulator S for protocol Π. That is, the EPPT
simulator S with a black-box access to the adversary A simulates the view of
adversary which is computationally indistinguishable from the view of adversary
interacting with a honest party in the real world execution of Π. Here we will
only give a description of our simulator and refer the reader to the full version
for a formal proof of indistinguishability.

Notice that the NP-statement for an instance of SWI (in Step 4b of Secure
Computation Phase) is a disjunction of two NP-statements (Statement 4(b)i and
Statement 4(b)ii). In the rest of the work, we refer to Statement 4(b)i as real
theorem while we refer to Statement 4(b)ii as the trapdoor theorem. We call the
witness corresponding to statement 4(b)i (resp. statement 4(b)ii) as real (resp.
trapdoor) witness.
Notation. In the following, we denote the honest party and the adversary by H
and A respectively. Also, let FH

KCA be the domain to which the honest party be-
long. Similarly, we use FAKCA to denote the domain where the adversary corrupts
a party. Without loss of generality, we define our simulator in the case where
the honest party (thus, the simulator in the following) sends the first message in
the protocol. We omit the other case where the corrupted party sends the first
message. Let m = poly(n) be the running time of the PPT adversary A. And let
l be the number of public keys registered by the corrupted party. The running
time of A serves as an upper-bounds on the number of concurrent sessions and
also on the number of registered public keys. In the course of simulation, sim-
ulator S maintains two sets denoted by Database1 and Database2. Database1
contains an element of the form (pk, sk, σpk) for i ∈ [l]. Database2 contains ele-
ments of the form (sid, xsidi , r

sid
i ) where sid ∈ [m] and i ∈ [l]. Initially, Database1

and Database2 are set to be empty. We sometimes omit the session identifier sid
in order to simplify notations.

We preserve the notations for the execution of building blocks as in Sec-
tion 4.2. For example, we denote by 〈P, V 〉S→A, an instance of 〈P, V 〉 where
simulator S and corrupted party A play as the prover P and the verifier V re-
spectively in the execution of the protocol 〈P, V 〉. We demarcate the following
two special messages in the protocol Π:

– Message Σsid
1 : Σsid

1 denotes the second message of 〈C,R〉trapAA→S in session
sid. Recall that the second message of the protocol 〈C,R〉 is a random



string (challenge) from the receiver to the committer. In the execution of
〈C,R〉trapAA→S , this message is sent by the simulator (on behalf of H) to the
adversary A.

– Message Σsid
2 : Σsid

2 denotes the message of session sid when the simulator
(on behalf of the honest party H) sends the commitment to 0 using the
commitment scheme PBcom. The simulator will behave honestly until this
point and will cheat only after this point is reached.

Description of S. We provide the simulation strategy of S in each phase of Π
as follows.

I. Simulation of Key Registration Phase: In the key registration phase,
simulator S follows an honest party’s strategy. That is, S interacting with FH

KCA

registers public keys pk0S and pk1S (on behalf of the honest party H) where
(pk0S , sk0S) and (pk1S , sk1S) are obtained as in the honest setting. Finally, S com-
pletes the simulation of key registration phase by setting pkS , skS , and σpkS
following the honest strategy.

II. Simulation of Trapdoor Creation Phase: Simulator S behaves ac-
cording to the honest party strategy until it needs to send the Σsid

2 for some
session session sid ∈ [m]. At this point, S by interacting with FH

KCA obtained a
verification key mvkA of FAKCA. To successfully simulate trapdoor creation phase,
S wants to do the following:

1. For all sessions, S commits to 1 (recall that this differs from the real execution
in the fact that honest party commit to 0) by executing comS = PBcom(1)
and then sends comS in to the adversary.

2. For all sessions, S proves to A by executing 〈P ′, V ′〉S→A using a trapdoor
information trapA (stored in the database Database1) as its witness that
(mvkA, trapA) ∈ R2.

Thus, before sending the commitment to 1, S checks if Database1 contains
trapA such that (mvkA, trapA) ∈ R2. If so, then S proceeds as above. Otherwise,
S employs a rewinding strategy to extract the trapdoor information. Note that
session sid (called target session) is the session in which the simulator needs to
send the commitment to bit 1 using the commitment scheme PBcom without the
corresponding trapdoor information in Database1. We will denote this session
by sidtarget. When this point is reached, our simulator S executes the following
look-ahead thread strategy.14

1. S rewinds adversary A back to the point before S had sent Σsidtarget

1 to A.
2. In the look-ahead thread, the simulator S sends to A a fresh random chal-

lenge for the message Σsidtarget

1 and behaves honestly subsequently. If in this
look-ahead thread, the first session in which the simulator needs to send Σsid

2

is not the target session (in other words sid 6= sidtarget), then S rewinds
again and repeats this step. If the number of rewindings reaches 2n, then S
aborts completely and outputs Rewind Abort.

14 Note that the transcript generated by the execution of look-ahead threads will not
be included in the view of the main thread simulation.



3. Since S need to send Σsidtarget

2 in both the main thread and the rewound
thread, it must have obtained two distinct valid de-commitments of 〈C,R〉trapAA→S
in the target session sidtarget in both the main thread and the look-ahead
threads. At this point, using two distinct valid de-commitments, S obtains
trapA . S executes the rest of the main concurrent execution with the up-
dated Database1. Notice that a single successful extraction of trapA in one
session suffices to simulate all other sessions.

III. Simulation of Input Commitment Phase.

1. The simulator behaves honestly in the generation of the public key pkAc .
2. Now, we describe simulation strategy in generation of the public key pkSc .
S starts by generating a a fresh public key pkSc along with the secret key
skSc . It generates the commitment c′S as the commitment to the zero string.

Then, S receives βS from A. Finally S opens αS as pkSc ⊕ βS . S executes
〈Pswi, Vswi〉S→A where S uses the trapdoor witness. S possesses the trapdoor
witness since it committed to bit 1 instead of 0 during the simulation of the
trapdoor creation phase.

3. S generates yS as encryption of the zero string using the public key pkAc and
sends it to the adversary. (instead of using its actual input and random coins
needed for the semi-honest two-party computation)

4. Upon the receiving yA, the simulator S extracts the input and randomness
xsidA and rsidA of A using the secret key skSc . Now, S adds (sid, xsidA , r

sid
A ) to

Database2.

IV. Simulation of Secure Computation Phase. Let Ssh denote the simu-
lator for the semi-honest two-party protocol 〈P sh

1 , P
sh
2 〉 used in our construction.

S internally runs simulator Ssh on adversary Ash’s input xA ∈ Database2. Ssh at
some point makes a call to ideal functionality F in the ideal world with an input
string xA. Then, S makes a query (sid, xA) to F . Then, S forwards the output
returned by F to Ssh. At some point of internal simulation of 〈P sh

1 , P
sh
2 〉, Ssh fi-

nally halts and outputs a transcript βSsh,1, βAsh,1, . . . , βSsh,t, βAsh,t and associated
random coin r̂A. S proceeds with the following instructions.

1. S computes a random string r̃A such that r̃A = rA ⊕ r̂A. Then, S sends r̃A
to A.

2. For each round j ∈ [t], S sends βSsh,j to A. Then, S executes 〈Pswi, Vswi〉S→A
with A where S uses the trapdoor witness, decommitment information of
comS (commitment to 1 instead of 0). If A aborts upon βSsh,j for some
j ∈ [t], S outputs a special abort message ABORT1.

3. Upon receiving A’s next message βA,j in the protocol 〈P sh
1 , P

sh
2 〉, S plays the

honest verifier in an execution of 〈Pswi, Vswi〉A→S . For any j ∈ [t], if the jth

message βA,j sent by adversary A is not identical to βAsh,j (obtained from
the internal execution of Ssh) and if 〈Pswi, Vswi〉A→S on βA,j is accepting,
then S aborts and outputs a special abort message ABORT2.



Finally, the output of simulator S contains all messages exchanged between
the simulator and the adversary including the output of the adversary in the
communication of all sessions.

6 Relation with the Bare-Public Key (BPK) model

The CD model defined in this paper is a generalization of the BPK model in-
troduced by Canetti et al. [9]. In the BPK model each party sets up its own
public-key and private-key pair. It publishes its public-key in a public file while
keeping the private-key secret. This phase of publishing the public-keys happens
prior to any protocol executions, implicitly also placing a bound on the number
of parties in the system.

The CD model is a generalization of the BPK model, where each party cor-
responding to the BPK model is now associated with a domain of mutually
trusting entities, equipped with a key registration authority. A key registration
authority in the CD model generates a common public-key for all entities in its
domain and issues a private-key for each of these entities. Just as in the BPK
model in which the number of parties are bounded, the CD model bounds the
number of domains while putting no bound on the number of parties.

As a real-world example, consider a setting of the BPK model where one of
the parties owns multiple (physically distinct) devices and would like to use each
of these devices for various secure computation tasks. In the CD model, each one
of these devices is seen as a separate entity and the owner who generates and
distributes the keys across these devices is seen as the key registration authority.

In the BPK model, one party could coordinate between different concurrent
executions that it takes part in. For example, a party could ensure that it takes
part in all the protocol executions sequentially and hence avoid all the problems
that arise because of concurrent executions. This coordination is certainly not
desirable but might very well be acceptable in various real world applications.
On the other hand in our CD model, different entities represent possibly separate
devices, coordinating which is not possible. The key advantage of the CD model
over the BPK model is that it makes this distinction in functionality clear.

Finally, we note that our results in the CD model, directly imply positive
and negative results in the BPK model. We stress that even in the BPK model
prior to our work no results for the setting of secure computation were known
and our results fully characterize what is possible in this model. More formally,
these results are directly implied by the following lemma.

Lemma 2. There exists an n-party black-box concurrently secure protocol Π
among n-domains in the CD-model where each party is associated with distinct
domains if and only if there exists an n-party black-box concurrently secure pro-
tocol Π ′ in the BPK model with n parties.

Proof. We give a proof sketch here. We start by giving a protocol Π ′ secure
in the BPK model given a protocol Π secure in the CD-model. Each party in
protocol Π ′ that we are trying to construct executes the public setup of the



key-registration authority of protocol Π and generates the private-key assuming
only one entity in its domain. Subsequently to this setup phase, parties in Π ′

execute all concurrent execution as a party of Π using the secret key that it had
generated earlier as the key-registration authority. Security of the protocol Π ′

follows immediately. The other direction can be argued in a similar manner.

In particular, the above lemma along with our results in the CD model implies
that there exists an n-party concurrently secure protocol in the BPK model if
and only if there are exactly n parties in the system.
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