
Policy-Based Signatures

Mihir Bellare1 and Georg Fuchsbauer2

1 Department of Computer Science and Engineering, University of California San
Diego, USA

2 Institute of Science and Technology Austria

Abstract. We introduce policy-based signatures (PBS), where a signer
can only sign messages conforming to some authority-specified policy.
The main requirements are unforgeability and privacy, the latter mean-
ing that signatures not reveal the policy. PBS offers value along two
fronts: (1) On the practical side, they allow a corporation to control
what messages its employees can sign under the corporate key. (2) On
the theoretical side, they unify existing work, capturing other forms of
signatures as special cases or allowing them to be easily built. Our work
focuses on definitions of PBS, proofs that this challenging primitive is re-
alizable for arbitrary policies, efficient constructions for specific policies,
and a few representative applications.

1 Introduction

PBS. In a standard digital signature scheme [25, 29], a signer who has established
a public verification key vk and a matching secret signing key sk can sign any
message that it wants. We introduce policy-based signatures (PBS), where a
signer’s secret key skp is associated to a policy p ∈ {0, 1}∗ that allows the signer
to produce a valid signature σ of a message m only if the message satisfies
the policy, meaning (p,m) belongs to a policy language L ⊆ {0, 1}∗ × {0, 1}∗
associated to the scheme.

This cannot be achieved if the signer creates her keys in a standalone way.
In our model, a signer is issued a signing key skp for a particular policy p by
an authority, as a function of a master secret key msk held by the authority.
Verification that σ is a valid signature of m is then done with respect to the
authority’s public parameters pp.

Within this framework, we consider a number of security goals. The most
basic are unforgeability and privacy. Unforgeability says that producing a valid
signature for message m is infeasible unless one has a secret key skp for some
policy p such that (p,m) ∈ L. (You can only sign messages that you are allowed
to sign.) Privacy requires that signatures not reveal the policy under which they
were created. We will propose and explore different formalizations of these goals.

A trivial way to achieving PBS is via certificates. In more detail, to issue a
secret key skp for policy p, the authority generates a fresh key pair (sk,pk) for an
ordinary signature scheme, creates a certificate cert consisting of a signature of
(p,pk) under the authority’s signing key msk, and returns skp = (sk,pk, p, cert)



to the signer. The latter’s signature on m is now an ordinary signature of m
under sk together with (pk, p, cert), and verification is possible given the public
verifying key pp of the authority. However, while this will provide unforgeability,
it does not provide privacy, because the policy must be revealed in the signature
to allow for verification. Similarly, privacy in the absence of unforgeability is
also trivial. The combination of the two requirements, however, results in a non-
trivial goal.

PBS may be viewed as an authentication analogue of functional encryp-
tion [15]. We can view the latter as allowing decryption to be policy-restricted
rather than total, an authority issuing decryption keys in a way that enforces
the policy. Correspondingly, in PBS the signing capability is policy-restricted,
an authority issuing signing keys in a way that enforces the policy.

Why PBS? Given that there already exist many forms of signatures, one might
ask why another. PBS offers value along two fronts, practical and theoretical.
On the practical side, the setup of PBS is natural in a corporate or other hierar-
chical environment. For example, a corporation may want to allow employees to
sign under the company public key pp, but may want to restrict the signing ca-
pability of different employees based on their positions and privileges. However,
the company policies underlying the restrictions need to be kept private. On
the theoretical side, PBS decreases rather than increases complexity in the area
because it serves as an umbrella notion unifying existing notions by capturing
some as special cases and allowing others to be derived in simple and natural
ways. In particular, this is true for a significant body of work on signatures that
have privacy features, including group signatures [22, 10], proxy signatures [35],
ring signatures [38, 14], mesh signatures [17], anonymous proxy signatures [28],
attribute-based signatures [34] and anonymous credentials [19, 6].

Policy languages. We wish to allow policies as expressive and general as
possible. We accordingly allow the policy language to be any language in P,
which captures most typical applications, where one can test in polynomial time
whether a given policy allows a given message. At first this may seem as general
as one can get, but we go further, allowing the policy language to be any language
in NP. This means that the policies that can be expressed and enforced are
restricted neither in form nor type, the only condition being that, given a witness,
one can test in polynomial time whether a policy allows a given message. We
will see applications where it is important that policy languages can be in NP
rather than merely in P.

Definitions and relations. We first provide an unforgeability definition and
an indistinguishability-based privacy definition. Unforgeability says that an ad-
versary cannot create a valid signature of a message m without having a key for
some policy p such that (p,m) ∈ L, even when it can obtain keys for other poli-
cies, and signatures for other messages under the target policy. Indistinguisha-
bility says that the verifier cannot tell under which of two keys a signature was
created assuming both policies associated to the keys permit the corresponding
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message. Our definition also implies that the verifier cannot decide whether two
signatures were created using the same key.

However, indistinguishability may not always provide privacy. For example,
if for each message m there is only one policy pm such that (pm,m) ∈ L then
even a scheme where a signature of m reveals pm satisfies indistinguishability. We
provide a stronger, simulatability-based privacy notion that says that real signa-
tures look like ones a simulator could generate without knowledge of the policy
or any key. This strong notion of privacy is not subject to the above-discussed
weaknesses of indistinguishability. The situation parallels that for functional en-
cryption (FE), where an indistinguishability-based requirement was shown to
not always suffice [15, 37] and stronger simulatability requirements have been
defined and considered [15, 37, 11, 23, 2, 5, 36]. However, for FE, impossibility re-
sults show that the strongest and most desirable simulation-based definitions are
not achievable [15, 11, 23, 2, 36]. In contrast, for PBS we show that our simulata-
bility notion is achievable in the standard model under standard assumptions.

We also strengthen unforgeability to provide an extractability notion for
PBS. We show that simulatability implies indistinguishability, and simulatabil-
ity+extractability implies unforgeability. Simulatability+extractability emerges
as a powerful security notion that enables a wide range of applications.

Constructions. PBS for arbitrary NP policy languages achieving simulata-
bility+extractability is an ambitious target. The first question that emerges is
whether this can be achieved, even in principle, let alone efficiently. We answer in
the affirmative via two generic constructions based on standard primitives. The
first uses ordinary signatures, IND-CPA encryption and standard non-interactive
zero-knowledge (NIZK) proofs. The second uses only ordinary signatures and
simulation(-sound) extractable NIZK proofs [30].

While our generic constructions prove the theoretical feasibility of PBS, their
use of general NIZKs makes them inefficient. We ask whether more efficient solu-
tions may be given without resorting to the random-oracle model [12]. Combining
Groth-Sahai proofs [31] and structure-preserving signatures [1], we design effi-
cient PBS schemes for policy languages expressible via equations over a bilinear
group. This construction requires a twist over usual applications of Groth-Sahai
proofs; namely, in order to hide the policy, we swap the roles of constants and
variables. This provides a tool that, like structure-preserving signatures, is useful
in cryptographic applications where policies may be about group elements.

Applications and implications. We illustrate applicability by showing how
to derive a variety of other primitives from PBS in simple and natural ways. This
shows how PBS can function as a unifying framework for signatures and beyond.
In Section 5 we show that PBS implies group signatures meeting the strong CCA
version of the definition of [10]. In the full version [7] we also show that PBS
implies attribute-based signatures [34] and signatures of knowledge [21]. These
applications are illustrative rather than exhaustive, many more being possible.

Our generic constructions discussed above show which primitives are suffi-
cient to build PBS. A natural question is which primitives are necessary, namely,
which fundamental primitives are implied by PBS? In [7], we address this and
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show that PBS implies seemingly unrelated primitives like IND-CPA encryption
and simulation-extractable NIZK proofs [30]. By [39] this means PBS implies
IND-CCA encryption. In particular, this means the assumptions we make for
our generic constructions are not only sufficient but necessary.

Delegatable PBS. In Section 6 we extend the PBS framework to allow dele-
gation. This means that an entity receiving from the authority a key skp1 for a
policy p1 can then issue to another entity a key skp1‖p2 that allows the signing of
messages m which satisfy both policies p1 and p2. The holder of skp1‖p2 can fur-
ther delegate a key skp1‖p2‖p3 , and so on. This is useful in a hierarchical setting,
where a company president can delegate to vice presidents, who can then dele-
gate to managers, and so on. We provide definitions which extend and strengthen
those for the basic PBS setting; in particular, privacy must hold even when the
adversary chooses the user keys. We then show how to achieve delegatable PBS
for policy chains of arbitrary polynomial length. For simplicity, we base our con-
struction, achieving sim+ext security, on append-only signatures [33], which can
however be easily constructed from ordinary signatures.

Discussion. In the world of digital signatures, extensions of functionality typ-
ically involve some form of delegation of signing rights: group signatures allow
members to sign on behalf of a whole group, in attribute-based signatures (ABS)
and types of anonymous credentials, keys are also issued by an authority, and
(anonymous) proxy signatures model delegation and re-delegation explicitly. For
most of these primitives, anonymity or privacy notions have been considered. A
group signature, for example, should not reveal which group member produced
a signature on behalf of the group (while an authority can trace group signa-
tures to their signer). In ABS, users hold keys corresponding to their attributes
and can sign messages with respect to a policy, which is a predicate over at-
tributes. Users should only be able make signatures for policies satisfied by their
attributes. Privacy for ABS means that a signature should reveal nothing about
the attributes of the key under which it was produced, other than the fact that
it satisfies the policy.

In the models of primitives such as ABS or mesh signatures, the policy itself
is always public, as is the warrant specifying the policy in (even anonymous)
proxy signatures. With PBS, we ask whether this is a natural limitation of
privacy notions, and whether it is inherently unavoidable that objects like the
policy (which specify why the message could be signed) need to be public.

Consider the example of a company implementing a scheme where each em-
ployee gets a signing key and there is one public key which is used by outsiders to
verify signatures in the name of the company. A group-signature scheme would
allow every employee holding a key to sign on behalf of the company, but there is
no fine-grained control over who is allowed to sign which documents. This can be
achieved using attribute-based signatures, where each user is assigned attributes,
and a message is signed with respect to a policy like (CEO or (board member
and general manager)). However, it is questionable whether a verifier needs to
know the company-internal policy used to sign a specific message, and there is
no apparent reason he should know; all he needs to be assured of is that the
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message was signed by someone entitled to, but not who this person is, what she
is entitled to sign, nor whether two messages were signed by the same person.
This is what PBS provides.

Another issue is that when using ABS we have to assume that the verifier
can tell which messages can be signed under which policies. An attribute-based
signature which is valid under the policy (CEO or intern) tells a verifier that it
could have been produced by an intern, but it does not provide any guarantees
as to whether an intern would have been entitled to sign the message. We ask
whether it is possible to avoid having these types of public policies at all. PBS
answers this in the affirmative.

Related work. The use of NIZKs for signatures begins with [8], who built an
ordinary signature scheme from a NIZK, a pseudorandom function (PRF) and
a commitment scheme. Encryption and ordinary signatures were combined with
NIZKs to create group signatures in [10]. Our first generic construction builds
on these ideas. Our second generic construction, inspired by [26, 9], exploits the
power of simulation-extractable NIZKs to give a conceptually simpler scheme
that, in addition to the NIZK, uses only an ordinary signature scheme.

In independent and concurrent work, Boyle, Goldwasser and Ivan (BGI) [18]
introduce functional signatures, where an authority can provide a key for a
function f that allows the signing of any message in the range of f . This can
be captured as a special case of PBS in which the policy is f and the policy
language is the set of all (f,m) such that m is in the range of f , a witness
for membership being a pre-image of m under f . BGI define unforgeability and
an indistinguishability-based privacy requirement, but not the stronger simu-
latability or extractability conditions that we define and achieve. BGI have a
succinctness condition which we do not have.

A related primitive is malleable signatures, introduced by Chase, Kohlweiss,
Lysyanskaya and Meiklejohn [20]. They are defined with respect to a set of
functions F , so that given a signature of m, anyone can derive a signature of
f(m) for f ∈ F . Concurrently to our work, Backes, Meiser and Schröder [3]
introduced delegatable functional signatures, but in their model delegatees have
public keys and signatures are verified under the authority’s and the delegatee’s
keys. Privacy means that signatures from delegatees are indistinguishable from
signatures from the authority.

Three recent works independently and concurrently introduce PRFs where
one may issue a key to evaluate the PRF on a subset of the points of the do-
main [16, 18, 32]. These can be viewed as PRF analogues of policy-based signa-
tures in which a policy corresponds to a set of inputs and a key allows compu-
tation of the PRF on the inputs in the set. Boneh and Waters [16] also provide
a policy-based key-distribution scheme.

In their treatment of policy-based cryptography, Bagga and Molva [4] men-
tion both policy-based encryption and policy-based signatures. However they do
not consider privacy, without which, as noted above, the problem is easy. More-
over, they have no formal definitions of security requirements or proofs that their
bilinear-map-based schemes achieve any well-defined security goal.
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2 Preliminaries

Notations and conventions. If S is a finite set then |S| denotes its size and
s←$ S denotes picking an element uniformly from S and assigning it to s. For i ∈
N we let [i] = {1, . . . , i}. We denote by λ ∈ N the security parameter and by 1λ

its unary representation. Algorithms are randomized unless otherwise indicated
and “PT” stands for “polynomial-time”. By y ← A(x1, . . . ;R), we denote the
operation of running algorithm A on inputs x1, . . . and coins R and letting y
denote the output. By y←$A(x1, . . .), we denote letting y ← A(x1, . . . ;R) with
R chosen at random. We denote by [A(x1, . . .)] the set of points that have positive
probability of being output by A on inputs x1, . . . .

A map R : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is said to be an NP-relation if it is
computable in time polynomial in the length of its first input. For x ∈ {0, 1}∗
we let WSR(x) = {w : R(x,w) = 1} be the witness set of x. We let L(R) = {x :
WSR(x) 6= ∅} be the language associated to R. The fact that R is an NP-relation
means that L(R) ∈ NP.

Game-playing framework. For our security definitions and proofs we use the
code-based game-playing framework of [13]. A game Exp (Figure 1, for example)
consists of a finite number of procedures. We execute a game with an adversary
A and security parameter λ ∈ N as follows. The adversary gets 1λ as input.
It can then query game procedures. Its first query must be to Initialize with
argument 1λ, and its last to Finalize, and these must be the only queries to
these oracles. The output of the execution, denoted ExpA(λ) is the output of
Finalize. The running time of the adversary A is a function of λ in which oracle
calls are assumed to take unit time.

3 Policy-Based Signatures

Policy languages. A policy checker is an NP-relation PC : {0, 1}∗×{0, 1}∗ →
{0, 1}. The first input is a pair (p,m) representing a policy p ∈ {0, 1}∗ and a mes-
sage m ∈ {0, 1}∗, while the second input is a witness w ∈ {0, 1}∗. The associated
language L(PC) = {(p,m) : WSPC((p,m)) 6= ∅} is called the policy language as-
sociated to PC. That (p,m) ∈ L(PC) means that signing m is permitted under
policy p. We say that (p,m,w) is PC-valid if PC((p,m), w) = 1.

PBS schemes. A policy-based signature scheme PBS = (Setup,KeyGen,Sign,
Verify) is a 4-tupe of PT algorithms:

1. Setup: On input the unary-encoded security parameter 1λ, setup algorithm
Setup returns public parameters pp and a master secret key msk.

2. KeyGen: On input msk and p, where p ∈ {0, 1}∗ is a policy, key-generation
algorithm KeyGen outputs a signing key sk for p.

3. Sign: On input sk, m and w, where m ∈ {0, 1}∗ is a message and w ∈ {0, 1}∗
is a witness, signing algorithm Sign outputs a signature σ.

4. Verify: On input pp, m and σ, verification algorithm Verify outputs a bit.
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proc Initialize ExpUF
PBS

(pp,msk)← Setup(1λ) ; j ← 0
Return pp

proc MakeSK(p)

j ← j + 1 ; Q[j][1]← p
Q[j][2]←$ KeyGen(pp,msk, p) ; Q[j][3]← ∅
proc RevealSK(i)

If i 6∈ [j] then return ⊥
sk← Q[i][2] ; Q[i][2]← ⊥ ; Return sk

proc Sign(i,m,w)

If i 6∈ [j] or Q[i][2] = ⊥ then return ⊥
Q[i][3]← Q[i][3] ∪ {m}
Return Sign(pp, Q[i][2],m,w)

proc Finalize(m,σ)

If Verify(pp,m, σ) = 0 then return false
For i = 1, . . . , j do

If (Q[i][1],m) ∈ L(PC) then
If Q[i][2] = ⊥ or m ∈ Q[i][3]

then return false
Return true

ExpIND
PBS

proc Initialize

(pp,msk)← Setup(1λ)
b←$ {0, 1}
Return (pp,msk)

proc LR(p0, p1,m,w0, w1)

If PC((p0,m), w0) = 0
or PC((p1,m), w1) = 0

then return ⊥
sk0 ← KeyGen(msk, p0)
sk1 ← KeyGen(msk, p1)
σb ← Sign(skb,m,wb)
Return (σb, sk0, sk1)

proc Finalize(b′)

Return (b = b′)

Fig. 1. Games defining unforgeability and indistinguishability for PBS.

We say that the scheme is correct relative to policy checker PC if for all λ ∈ N, all
PC-valid (p,m,w), all (pp,msk) ∈ [Setup(1λ)] and all σ ∈ [Sign(KeyGen(msk, p),
m,w)] we have Verify(pp,m, σ) = 1.

Unforgeability. Our basic unforgeability requirement is that it be hard to
create a valid signature of m without holding a key for some policy p such that
(p,m) ∈ L(PC). The formalization is based on game ExpUF

PBS in Figure 1. For
λ ∈ N we let AdvUF

PBS,A(λ) = Pr[ExpUF
PBS,A ⇒ true]. We say that PBS is

unforgeable, or UF-secure, if AdvUF
PBS,A(·) is negligible for every PT A. Via a

MakeSK query, the adversary can have the game create a key for a policy p.
Then, via Sign, it can obtain a signature under this key for any message of its
choice. (This models a chosen-message attack.) It may also, via its RevealSK
oracle, obtain the key itself. (This models corruption of users or the formation of
collusions of users who pool their keys.) These queries naturally give the adver-
sary the capability of creating signatures for certain messages, namely messages
m such that for some p with (p,m) ∈ L(PC), it either obtained a key for p or
obtained a signature for m. Unforgeability asks that it cannot sign any other
messages. Note that we did not explicitly specify how Sign behaves when run
on a key for p, and m,w with PC((p,m), w) = 0. However, if it outputs a valid
signature, this can be used to break UF-security.
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Indistinguishability. Privacy for policy-based signatures requires that a sig-
nature not reveal the policy associated to the key and neither the witness that
was used to create the signature. A first idea would be the following formaliza-
tion: an adversary outputs a message m, two policies p0, p1, and two witnesses
w0, w1, such that (p0,m,w0) and (p1,m,w1) are PC-valid. For either p0 or p1 the
experiment computes a secret key and uses it to produce a signature on m, from
which the adversary has to determine which policy was used. It turns out that
this notion is too weak, as it does not guarantee that two signatures produced
under the same secret key do not link, as seen as follows. Consider a scheme
satisfying the security notion just sketched and modify it by attaching to each
secret key a random string during key generation and alter Sign to append to the
signature the random string contained in the secret key. Clearly, two signatures
under the same key are linkable, but yet the scheme satisfies the definition. We
therefore give the adversary both secret keys in addition to the signature.

Let ExpIND
PBS,A be the game defined in Figure 1. We say that PBS has

indistinguishability if for all PT adversaries A we have that AdvIND
PBS,A(λ) =

Pr[ExpIND
PBS,A(λ)⇒ true]− 1

2 is negligible in λ. We assume that either all policy
descriptions p are of equal length, or that A outputs p0 and p1 with |p0| = |p1|.

Unlinkability could be formalized via a game where an adversary is given
two signatures and must decide whether they were created using the same key.
Indistinguishability implies unlinkability, as an adversary against the latter could
be used to build another one against indistinguishability, who can simulate the
unlinkability game by using the received signing keys to produce signatures.

Discussion. The unforgeability and indistinguishability notions we have defined
above are basic, intuitive, and suffice for many applications. However, they have
some weaknesses, and some applications call for stronger requirements.

First, we claim that indistinguishability does not always provide the privacy
we may expect. To see this, consider a policy checker PC such that for every
message m there is only one p with (p,m) ∈ L(PC). (See our construction of
group signatures in Section 5 for an example of such a PC.) Now consider a
scheme which satisfies indistinguishability, and modify it so that the key contains
the policy and the signing algorithm appends the policy to the signature. This
scheme clearly does not hide the policy, yet still satisfies indistinguishability.
Indeed, in ExpIND

PBS , in order to satisfy PC((p0,m), w0) = 1 = PC((p1,m), w1),
the adversary must return p0 = p1. If the signatures in the original scheme have
not revealed the bit b then attaching the same policy to both will not do so either.
The notion of simulatability we provide below will fill the gap. It asks that there
is a simulator which can create simulated signatures without having access to
any signing key or witness, and that these signatures are indistinguishable from
real signatures.

With regard to unforgeability, one issue is that in general it cannot be effi-
ciently verified whether an adversary has won the game, as this involves checking
whether (p,m) ∈ L(PC) for all p queried to MakeSK and m from the adver-
sary’s final output, and membership in L(R) may not be efficiently decidable.
(This is the case for L(R) defined in (4) in Section 5.) Although not a problem
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ExpSIM
PBS

proc Initialize

b←$ {0, 1} ; j ← 0

(pp0,msk0, tr)←$ SimSetup(1λ)

(pp1,msk1)←$ Setup(1λ)
Return (ppb,mskb)

proc Key(p)

j ← j + 1 ; sk0←$ SKeyGen(tr, p)
sk1←$ KeyGen(msk1, p)
Q[j][1]← p ; Q[j][2]← sk1

Return skb

proc Signature(i,m,w)

If i 6∈ [j] then return ⊥
If PC((Q[i][1],m), w) = 1

then σ0←$ SimSign(tr,m)
Else σ0 ← ⊥
σ1←$ Sign(Q[i][2],m,w) ; Return σb

proc Finalize(b′)

Return (b = b′)

ExpEXT
PBS

proc Initialize

(pp,msk, tr)←$ SimSetup(1λ)
QK ← ∅ ; QS ← ∅ ; Return pp

proc SKeyGen(p)

sk←$ SKeyGen(tr, p)
QK ← QK ∪ {p} ; Return sk

proc SimSign(m)

σ←$ SimSign(tr,m)
QS ← QS ∪ {(m,σ)} ; Return σ

proc Finalize(m,σ)

If Verify(pp,m, σ) = 0
then return false

If (m,σ) ∈ QS then return false
(p, w)← Extr(tr,m, σ)
If p /∈ QK or PC((p,m), w) = 0

then return true
Return false

Fig. 2. Games defining simulatability and extractability for PBS

in itself, it can become one, for example when using the notion in a proof by
game hopping, as a distinguisher between two games must efficiently determine
whether an adversary has won the game. (See [7] for such a proof.) The ex-
tractability notion we will provide below will fill this gap as well as be more
useful in applications. It requires that from a valid signature, using a trapdoor
one can extract a policy and a valid witness. To satisfy this notion, a signature
must contain information on the policy and can thus not hide its length. For
simplicity, we assume from now on that all policies are of the same length.

Simulatability. We formalize simulatability by requiring that there exist the
following algorithms: SimSetup, which outputs parameters and a master key that
are indistinguishable from those output by Setup, as well as a trapdoor; SKeyGen,
which outputs keys indistinguishable from those output by KeyGen; and SimSign,
which on input the trapdoor and a message (but no signing key nor witness)
produces signatures that are indistinguishable from regular signatures.

Let ExpSIM
PBS be the game defined in Figure 2. We require that for every PT

adversary A we have AdvSIM
PBS,A(λ) = Pr[ExpSIM

PBS,A(λ)⇒ true]− 1
2 is negligible

in λ. Note that in all our constructions, tr contains msk and SKeyGen is defined
as KeyGen. We included SKeyGen to make the definition more general.

Extractability. We define our notion in the spirit of “sim-ext” security for
signatures of knowledge [21]. Let AdvEXT

PBS,A(λ) = Pr[ExpEXT
PBS,A(λ)⇒ true] with
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ExpEXT
PBS defined in Figure 2. We say that PBS has extractability if there exists

an algorithm Extr which taking a trapdoor, a message and a signature outputs
a pair (p, w) ∈ {0, 1}∗, such that AdvEXT

PBS,A(·) is negligible for every PT A.
Although the definition might not seem completely intuitive at first, it implies

that, as long as the adversary outputs a valid message/signature pair and does
not simply copy a SimSign query/response pair, the only signed messages it
can output are those that satisfy the policy of one of the queried keys: assume
A outputs (m∗, σ∗) such that (∗) for all p ∈ QK : (p,m∗) /∈ L(PC). Then let
(p∗, w∗) ← Extr(tr,m, σ). If PC((p∗,m∗), w∗) = 0, the adversary wins ExpEXT

PBS .
On the other hand, if PC((p∗,m∗), w∗) = 1 then (p∗,m∗) ∈ L(PC), thus by (∗)
we have p∗ /∈ QK and it wins too. Note that this notion corresponds to strong
unforgeability for signature schemes.

Sim-ext security implies IND and UF. In [7] we show that our two latter
security notions are indeed strengthenings of the former two:

Theorem 1. Any policy-based signature scheme which satisfies simulatability
satisfies indistinguishability. Any PBS scheme which satisfies simulatability and
extractability satisfies unforgeability.

4 Constructions of Policy-Based Signature Schemes

We first show that PBS satisfying SIM+EXT can be achieved for any language
in NP. Then we develop more efficient schemes for specific policy languages.

4.1 Generic Constructions

We now show how to construct policy-based signatures satisfying simulatability
and extractability (and, by Theorem 1, IND and UF) for any NP-relation PC.
In [7] we show that the assumptions we make are not only sufficient but necessary.

An first approach could be the following, similar to the generic construction
of group signatures in [10]: The issuer creates a signature key pair (mvk,msk)
and publishes mvk as pp. When a user is issued a key for a policy p, the issuer
creates a key pair (vkU , skU ), signs p‖vkU and sends this certificate to the user
together with (p, vkU , skU ). To sign a message m, the user first signs it under
skU , thereby establishing a chain mvk → vkU → m via the certificate and the
signature. The actual signature is a (zero-knowledge) proof of knowledge of such
a chain and the fact that the message satisfies the policy signed in the certificate.

While this approach yields a scheme satisfying IND and UF, it would fail
to achieve extractability. We thus choose a different approach: The user’s key
is simply a signature from the issuer on the policy. Now to sign a message, the
user first picks a key pair (ovk, osk) for a strongly unforgeable one-time signature
scheme3 and makes a zero-knowledge proof π that he knows either (I) an issuer

3 In such a scheme it must be infeasible for an adversary, after receiving a verification
key ovk and after obtaining a signature σ on one message m of his choice, to output
a signature σ∗ on a message m∗, such that (m,σ) 6= (m∗, σ∗).
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Setup(1λ)

crs←$ Setupnizk(1λ)

(pk, dk)←$ KeyGenpke(1
λ)

(mvk,msk)←$ KeyGensig(1λ)
Return pp← (crs, pk,mvk) and msk

KeyGen(msk, p)

s←$ Signsig(msk, 1‖p)
Return skp ← (pp, p, s)

Sign(skp,m,w)

Parse ((crs, pk,mvk), p, s)← skp
If PC((p,m), w) = 0 then return ⊥
(ovk, osk)←$ KeyGenots(1

λ)

ρp, ρs, ρw←$ {0, 1}λ; Cp ← Enc(pk, p; ρp)
Cs ← Enc(pk, s; ρs); Cw ← Enc(pk, w; ρw)
π←$ Prove(crs, (pk,mvk, Cp, Cs, Cw,

ovk,m), (p, s, w, ρp, ρs, ρw))
τ ←$ Signots(osk, (m,Cp, Cs, Cw, π))
Return σ ← (ovk, Cp, Cs, Cw, π, τ)

Verify(pp,m, σ)

Parse (crs,pk,mvk)← pp
Parse (ovk, Cp, Cs, Cw, π, τ)← σ
Return 1 iff

Verifynizk(crs, (pk,mvk, Cp, Cs, Cw,
ovk,m), π) = 1 and

Verifyots(ovk, (m,Cp, Cs, Cw, π), τ) = 1

SimSetup(1λ)

crs←$ Setupnizk(1λ)

(pk, dk)←$ KeyGenpke(1
λ)

(mvk,msk)←$ KeyGensig(1λ)
Return pp← (crs, pk,mvk), msk

and tr← (msk,dk)

SKeyGen((msk,dk), p)

s←$ Signsig(msk, 1‖p)
Return skp ← (pp, p, s)

SimSign((msk, dk),m)

(ovk, osk)←$ KeyGenots(1
λ)

s←$ Signsig(msk, 0‖ovk)

ρp, ρs, ρw←$ {0, 1}λ
Cp ← Enc(pk, 0; ρp)
Cs ← Enc(pk, s; ρs)
Cw ← Enc(pk, 0; ρw)
π←$ Prove(crs, (pk,mvk, Cp, Cs,

Cw, ovk,m), (0, s, 0, ρp, ρs, ρw))
τ ←$ Signots(osk, (m,Cp, Cs, Cw, π))
Return σ ← (ovk, Cp, Cs, Cw, π, τ)

Extr((msk, dk),m, σ)

Parse (ovk, Cp, Cs, Cw, π, τ)← σ
p← Dec(dk, Cp) ; w ← Dec(dk, Cw)
Return (p, w)

Fig. 3. Generic construction of PBS

signature on a policy p such that (p,m) ∈ L(PC) or (II) an issuer signature on
ovk. Finally, he adds a signature under ovk of both the message and the proof.
As we will see, this construction satisfies both SIM (where the simulator can
make a signature on ovk and use clause (II) for the proof) and EXT (as π is a
proof of knowledge).

We formalize the above: Let Sig = (KeyGensig,Signsig,Verifysig) be a sig-
nature scheme which is unforgeable under chosen-message attacks (UF-CMA),
OtSig = (KeyGenots,Signots,Verifyots) a strongly unforgeable one-time signature
scheme and let PKE = (KeyGenpke,Enc,Dec) be an IND-CPA-secure public-key
encryption scheme. For a policy checker PC we define the following NP-relation:(

(pk,mvk, Cp, Cs, Cw, ovk,m), (p, s, w, ρp, ρs, ρw)
)
∈ RNP

⇐⇒ Cp = Enc(pk, p; ρp) ∧ Cs = Enc(pk, s; ρs) ∧ Cw = Enc(pk, w; ρw)

∧
[(
Verifysig(mvk, 1‖p, s) = 1 ∧ PC((p,m), w) = 1

)
(1)

∨ Verifysig(mvk, 0‖ovk, s) = 1
]
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Setup(1λ)

crs←$ Setupnizk(1λ)

(mvk,msk)←$ KeyGensig(1λ)
Return pp← (crs,mvk), msk

KeyGen(msk, p)

c←$ Signsig(msk, p)
Return sk← (pp, p, c)

Sign(sk = ((crs,mvk), p, c),m,w)

σ←$ Prove(crs, (mvk,m), (p, c, w))
Return σ

Verify(pp = (crs,mvk),m, σ)

Return Verifynizk(crs, (mvk,m), σ)

SimSetup(1λ)

(crs, tr)←$ SimSetupnizk(1λ)

(mvk,msk)←$ KeyGensig(1λ)
Return pp← (crs,mvk), msk,

trpbs ← (pp,msk, tr)

SKeyGen((pp,msk, tr), p)

c←$ Signsig(msk, p) ; Return sk← (pp, p, c)

SimSign(((crs,mvk),msk, tr),m)

Return σ←$ SimProve(crs, tr, (mvk,m))

Extr(((crs,mvk),msk, tr),m, σ)

(p, c, w)← Extrnizk(tr, (mvk,m), σ)
Return (p, w)

Fig. 4. PBS based on SE-NIZKs.

Let NIZK = (Setupnizk,Prove,Verifynizk) be a non-interactive zero-knowledge
(NIZK) proof system for L(RNP). Our construction PBS for a policy checker
PC is detailed in Figure 3, and in [7] we prove the following:

Theorem 2. If PKE satisfies IND-CPA, Sig is UF-CMA , OtSig is a strongly
unforgeable one-time signature scheme and NIZK is a NIZK proof system for
L(RNP) then PBS, defined in Figure 3, satisfies simulatability and extractability.

We now present a much simpler construction of PBS by relying on a more ad-
vanced cryptographic primitive: simulation-extractable (SE) NIZK proofs [30]
(see [7] for the definition). Let Sig = (KeyGensig,Signsig,Verifysig) be a signature
scheme and for a policy checker PC let NIZK = (Setupnizk,Prove,Verifynizk,
SimSetupnizk,SimProve,Extrnizk) be a SE-NIZK for the following NP-relation,
whose statements are of the form X = (vk,m) with witnesses W = (p, c, w) and

((vk,m), (p, c, w)) ∈ RNP ⇐⇒ Verifysig(vk, p, c) = 1 ∧ ((p,m), w) ∈ PC

Then the scheme in Figure 4 is a PBS for PC which satisfies SIM+EXT. In [7]
we prove this for a more general scheme allowing delegation.

4.2 Efficient Construction via Groth-Sahai Proofs

Our efficient construction of PBS will be defined over a bilinear group. This is a
tuple (p,G,H,T, G,H), where G, H and T are groups of prime order p, generated
by G and H, respectively, and e : G×H→ T is a bilinear map such that e(G,H)
generates T. We denote the group operation multiplicatively and let 1G, 1H and
1T denote the neutral elements of G, H and T. Groth-Sahai proofs [31] let us prove
that there exists a set of elements (X,Y ) = (X1, . . . , Xn, Y1, . . . , Y`) ∈ Gn ×H`
which satisfy equations E(X,Y ) of the form
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k∏
i=1

e(Pi, Qi)
∏̀
j=1

e(Aj , Yj)

n∏
i=1

e(Xi, Bi)

n∏
i=1

∏̀
j=1

e(Xi, Yj)
γij = 1T (2)

Such an equation E is called a pairing-product equation4 (PPE) and is uniquely
defined by its constants P ,Q,A,B and Γ := (γij)i∈[n],j∈[`]. These equations
have already found many uses in cryptography, of which the following two are
relevant here: they can define the verification predicate of a digital signature
(see [1]), or witness the fact that a ciphertext encrypts a certain value (see [7]).
Our aim is to construct policy-based signatures where policies define (sets of)
PPEs, which must be satisfied by the message and the witness.

Groth and Sahai define a setup algorithm which on input a bilinear group
outputs a common reference string crs and an extraction key xk. On input crs, an
equation E and a satisfying witness (X,Y ), algorithm Provegs outputs a proof π.
Proofs are verified by Verifygs(crs,E(·, ·), π). Under the SXDH assumption (see
[31]), proofs are witness-indistinguishable [27], that is, proofs for an equation
using different witnesses are computationally indistinguishable. Moreover, they
are extractable and thus proofs of knowledge [24]: From every valid proof π,
Extrgs(xk,E(·, ·), π) extracts a witness (X,Y ) such that E(X,Y ) = 1.

In our Groth-Sahai-based construction of PBS, messages and witnesses will
be group elements and a policy defines a set of equations as in (2) that have to
be satisfied. The policy checker is thus defined as follows: the policy p defines
a set of equations (E1, . . . ,En) and PC((p,m), w) = 1 iff Ei(m,w) = 1 for all
i ∈ [n], where m ∈ Gnm ×H`m and w ∈ Gnw ×H`w .

GS proofs only allow us to extract group elements; however, an equation—
and thus a policy—is defined by a set of group elements and exponents γij . In
order to hide a policy, we need to swap the roles of constants and variables in
an equation, as this will enable us to hide the policy defined by the constants.
We first transform equations as in (2) into a set of equivalent equations without

exponents. To do so, we introduce auxiliary variables Ŷij , add i · j new equations
and define the set E(no-exp) as follows:∏

e(Pi, Qi)
∏

e(Aj , Yj)
∏

e(Xi, Bi)
∏∏

e(Xi, Ŷij) = 1T

∧
∧

i,j
e(G, Ŷij) = e(Gγij , Yj) (3)

A witness (X,Y ) satisfies E in (2) iff (X,Y , (Ŷij := Y
γij
j )i,j) satisfies the set

of equations E(no-exp) in (3). Now we can show that a (clear) message (M ,N)
satisfies a “hidden” policy defined by equation E, witnessed by elements (V ,W ),
since we can express policies as sets of group elements.

Our second building block are structure-preserving signatures [1], which were
designed to be combined with GS proofs: their keys, messages and signatures
consist of elements from G and H and signatures are verified by evaluating

4 This is a simulatable pairing-product equation, that is, one for which Groth-Sahai
proofs can be made zero-knowledge.
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PPEs. GS proofs let us prove knowledge of keys, messages, and/or signatures
which satisfy verification, without revealing anything beyond this fact.

Our construction now follows the blueprint of the generic scheme in Figure 3.
The setup creates a CRS for GS proofs and a key pair (mvk,msk) for a structure-
preserving scheme Sigsp. (Note that here we need not encrypt any witnesses like
in the generic construction, since GS proofs are extractable.) We transform every
PPE E contained in a policy to a set of equations E(no-exp) without exponents.
The policies can thus be expressed as sets of group elements describing the
equations E(no-exp), which can be signed by Sigsp.

A signing key is a signature on the policy under msk and signing is done by
choosing a one-time signature key pair (ovk, osk), proving a statement analogous
to (1) and signing the proof and the message with osk. A further technical
obstacle is that we need to express the disjunction in the statement to be proven
as (a conjunction of) sets of PPEs. We achieve this by following Groth’s approach
in [30]. The details of the construction can be found in [7].

A simple use case. Messages that are elements of bilinear groups and policies
demanding that they satisfy PPEs will prove useful to construct other crypto-
graphic schemes like group signatures. Yet, our pairing-based construction might
seem too abstract for deploying PBS to manage signing rights in a company—one
of the motivations given in the introduction.

However, consider the following simple example: A company issues keys to
their employees which should allow them to sign only messages h‖m that start
with a particular header h. (E.g. h could be “Contract with company X”, so
employees are limited to signing contracts with X.) This can be implemented by
mapping messages h‖m to (F (h), F (m)) via a collision-resistant hash function
F : {0, 1}∗ → G. (E.g. first hash to Zp via some f and then set F (x) = Gf(x).)
The policy p∗ requiring messages to start with h∗ can then be expressed as
PC((p∗, h‖m)) = 1⇔ e(F (h∗), H) e(F (h), H−1) = 1.

Another option would be to additionally demand that an employee hold a
credential (verified via PPEs), which she must use as a witness when signing.

5 Applications and Implications

Here we illustrate how PBS can provide a unifying framework for work on ad-
vanced forms of signatures and beyond, capturing some primitives as special
cases and allowing others to be derived in simple and natural ways. Here we
show how PBS allows one to easily obtain group signatures [10]. In [7] we show
that they imply signatures of knowledge [21] and attribute-based signatures [34].
These applications are illustrative rather than exhaustive.

Section 4.1 shows which primitives are sufficient for policy-based signatures.
We now ask the converse question, namely which primitives are necessary, that
is, which fundamental cryptographic primitives are implied by PBS? In [7] we
show that PBSs imply simulation-extractable NIZKs and IND-CPA encryption.
By a result [39] they thus imply IND-CCA public-key encryption. The sufficient
assumptions we make in our constructions of Section 4.1 are thus also necessary.
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CCA-Secure Group Signatures from PBS. Group signatures [22] let mem-
bers sign anonymously on behalf of a group. To deter misuse, the group manager
holds a secret key which can open signatures, that is, reveal the member that
made the signature. As defined in [10], a group-signature scheme GS is a 4-tuple
of PT algorithms. On input 1λ and the group size 1n, key generation algorithm
GKg returns the group public key gpk, the manager’s secret key gmsk and a
vector of member secret keys gsk. On input gsk[i] and a message m ∈ {0, 1}∗,
signing algorithm GSig returns a group signature γ by member i on m. On input
gpk,m and γ, verification algorithm GVf outputs a bit. On input gmsk,m and γ,
the opening algorithm Open returns an identity i ∈ [n] or ⊥.

Full anonymity requires that an adversary cannot decide which of two group
members of its choice produced a group signature, even when given an oracle
that opens any other signature. Traceability means that an adversary, which is
allowed to corrupt users, cannot produce a group signature which opens to a
user that was not corrupted. (We give a formal definition in [7].)

We now construct group signatures from CCA-secure public-key encryption
and PBS. Since the former can be constructed from PBS (as we show in [7]),
this means that PBS implies group signatures. The main idea is to define a
group signature as a ciphertext plus a PBS. When making a group signature
on a message m, a member is required to encrypt her identity as c and then
sign (c,m). This is enforced by issuing to the member a PBS key whose policy
ensures that c must be an encryption of the member’s identity. Let PKE =
(KeyGenpke,Enc,Dec) be a public-key encryption scheme satisfying IND-CCA
and let PBS = (Setup,KeyGenpbs,Sign,Verify) be a PBS for the following NP-
relation:

PC
(
((ek, i), (c,m)), r

)
⇐⇒ c = Enc(ek, i; r) . (4)

(See [7] for an encryption scheme such that (4) lies in the language of our efficient
PBS from Section 4.2.) In [7] we sow that the following group-signature scheme
satisfies full anonymity and traceability as formalized by [10].

GKg(1λ, 1n)

(pp,msk)←$ Setup(1λ)

(ek,dk)←$ KeyGenpke(1
λ)

For i = 1, . . . , n do
ski←$ KeyGenpbs(msk, (ek, i))
gsk[i]← (pp, ek, i, ski)

Return (gpk← (pp, ek), gmsk← dk,gsk)

GVf((pp, ek),m, (c, σ))

Return Verify(pp, (c,m), σ)

GSig((pp, ek, i, ski),m)

r←$ {0, 1}λ
c← Enc(ek, i; r)
σ←$ Sign(ski, (c,m), r)
Return (c, σ)

Open(gmsk,m, (c, σ))

If Verify(pp, (c,m), σ) = 0
Then return ⊥

Return Dec(gmsk, c)

6 Delegatable Policy-Based Signatures

In an organization, policies may be hierarchical, reflecting the organization struc-
ture. Thus, a president may declare a high-level policy to vice presidents and
issue keys to them. Each of the vice presidents augments the policy with their
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own sub-policies for managers below them, and so on. To support this, we extend
PBS to allow delegation. We define and achieve delegatable policy-based signa-
tures, where a user holding a key for some policy can delegate her key to another
user and possibly restrict the associated policy. We formalize this by associating
keys to vectors of policies and require that keys can (only) sign messages which
are allowed under all policies associated to the key. In order to restrict the policy
at delegation, users can add policies to the associated vector.

Consider the following simple use case: A company issues a key to a manager
Alice which enables her to sign contracts with companies X,Y and Z. Now Bob
is negotiating a contract with Z on behalf of Alice, so she gives Bob a key that
only lets him sign contracts with Z.

In [7] we provide a syntax and definitions of UF and IND, as well as SIM and
EXT, which are straightforward generalizations of those for PBS. However, we
strengthen IND by letting the adversary (who obtains msk) construct the keys
under one of which the experiment makes a signature. This ensures that when
Alice delegates different keys to Bob and Carol, she will not be able to tell by
whom a message was signed. Analogously, we let the adversary choose the key
in SIM.

With regard to a construction, we note that in the PBS schemes in Figures 3
and 4, a signing key skp is simply a signature from the authority on the associated
policy p. We add delegation to PBS by replacing the signature with an append-
only signature [33]. These signatures allow anyone holding a signature on a
message p to create a signature on p‖p′ for any p′. One can thus append a new
part to a signed message, but this is the only transformation allowed. Append-
only signatures can be constructed from any signature scheme. Holding a key,
which is a signature on a vector of policies p, a user can delegate the key after
(possibly) appending a new policy.

Due to space constraints, the definitions as well as the constructions are
deferred to the full version [7].
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