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Abstract. The primitive of deniable encryption was introduced by Canetti et al.
(CRYPTO, 1997). Deniable encryption is an encryption scheme with the added
feature that after transmitting a message m, both sender and receiver may pro-
duce random coins showing that the transmitted ciphertext was an encryption of
any message m′ in the message space. Deniable encryption is a key tool for con-
structing incoercible protocols, since it allows a party to send one message and
later provide apparent evidence to a coercer that a different message was sent. In
addition, deniable encryption may be used to obtain adaptively-secure multiparty
computation (MPC) protocols and is secure under selective-opening attacks. Dif-
ferent flavors such as sender-deniable and receiver-deniable encryption, where
only the sender or receiver produce fake random coins, have been considered.
Recently, over 15 years after the primitive was first introduced, Sahai and Waters
(IACR Cryptology ePrint Archive, 2013), gave the first construction of sender-
deniable encryption schemes with super-polynomial security, where an adversary
has negligible advantage in distinguishing real and fake openings. Their construc-
tion is based on the construction of an indistinguishability obfuscator for gen-
eral programs recently introduced in a breakthrough result of Garg et al. (FOCS,
2013). Although feasibility has now been demonstrated, the question of deter-
mining the minimal assumptions necessary for sender-deniable encryption with
super-polynomial security remains open.
The primitive of simulatable public key encryption (PKE), introduced by Damgård
and Nielsen (CRYPTO, 2000), is a public key encryption scheme with addi-
tional properties that allow oblivious sampling of public keys and ciphertexts.
It is one of the low-level primitives used to construct adaptively-secure MPC
protocols and was used by O’Neill et al. in their construction of bi-deniable en-
cryption in the multi-distributional model (CRYPTO, 2011). Moreover, the orig-
inal construction of sender-deniable encryption with polynomial security given
by Canetti et al. can be instantiated with simulatable PKE. Thus, a natural ques-
tion to ask is whether it is possible to construct sender-deniable encryption with
super-polynomial security from simulatable PKE.
In this work, we investigate the possibility of constructing sender-deniable pub-
lic key encryption from simulatable PKE in a black-box manner. We show that
there is no black-box construction of sender-deniable public key encryption with
super-polynomial security from simulatable PKE. This indicates that improving
on the original construction of Canetti et al. requires the use of non-black-box
techniques, stronger assumptions, or interaction, thus giving some evidence that
strong assumptions such as those used by Sahai and Waters are necessary.
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1 Introduction

Deniable encryption was first introduced by Canetti et al. [3]. In its strongest form,
called bi-deniable encryption, this primitive allows a sender and receiver to commu-
nicate via a public key encryption scheme (sending some message m) and then later
allows both parties to produce apparent evidence (i.e. secret key and random coins) that
the ciphertext sent/received was actually an encryption of any message m′ in the mes-
sage space. Deniable encryption is useful for designing protocols that resist coercion
(c.f. [5]) as well as for designing adaptively-secure protocols. Moreover, deniable en-
cryption is is secure under selective-opening attacks. As a concrete example, consider a
voting scheme where parties encrypt their votes using the voting authority’s public key
and send the ciphertext to the voting authority over a public channel. The voting author-
ity is then trusted to decrypt and tally the votes1. In the voting scheme described, voters
can carry away a receipt, the ciphertext sent to the authority along with the random
coins used to encrypt, which can later be used to prove to a third party that a particu-
lar vote was cast. Although obtaining a receipt may seem desirable, it also means that
voters or the voting authority can later be coerced by some third party to reveal the
vote cast by a particular ciphertext. Thus, such a voting scheme is highly susceptible to
coercion. However, using a bi-deniable encryption scheme instead of a regular public
key encryption scheme allows both the voters and the authority to claim that a spe-
cific ciphertext corresponds to a vote for a particular candidate regardless of the actual
effective vote. One may also consider weaker versions of bi-deniable encryption such
as sender-deniable encryption and receiver-deniable encryption, where only the sender
(resp. receiver) can produce fake coins.

Constructing deniable encryption schemes seems difficult due to two conflicting
goals: Parties must be able to communicate effectively with each other, but if coerced,
both parties must be able to produce seemingly correctly distributed randomness and/or
secret keys consistent with any message m in the message space. Now it seems that
surely deniability must interfere with effective communication since the receiver cannot
tell which message m was the intended message and the sender cannot be assured that
his intended messagemwas received. Indeed, it was shown by [2] that (non-interactive)
receiver-deniable encryption (with negligible distinguishing advantage), and thus (non-
interactive) bi-deniable encryption is impossible to achieve.

The case of sender-deniable encryption, however, is more optimistic. Indeed, very
recently, Sahai and Waters [27], gave the first construction of sender-deniable encryp-
tion schemes with super-polynomial security, where an adversary has negligible advan-
tage in distinguishing real and fake openings. Their construction is based on the con-
struction of an indistinguishability obfuscator for general programs recently introduced
in a breakthrough result of Garg et al. [12], and thus inherits the same non-standard
hardness assumptions.

Prior to the result of [27], there were known constructions of deniable encryption
(c.f. [3]) with non-negligible distinguishing advantage, where an adversary may distin-
guish real and fake openings of ciphertexts with probability 1/ poly for some polyno-

1 Alternatively, the voting authority may be required to give a zero-knowledge proof that the
final tally is consistent with the transmitted ciphertexts.
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mial. We say that such schemes have polynomial security. As discussed in more detail
below, the construction of [3] can be based on the existence of simulatable public key
encryption, which can in turn be based on standard assumptions such as DDH and RSA.

This leaves open the following important question:

What are the minimal assumptions required for sender-deniable public-key en-
cryption with super-polynomial security?

Relationship to Adaptive Security and Simulatable Public Key Encryption

There is a strong link between deniable encryption and another primitive known as
non-committing encryption [4]. The main difference between the two is that a Non-
Committing Encryption scheme consists of two sets of Key Generation and Encryption
algorithms–one for honest players and one for the simulator. Moreover, only honest
parties need to communicate effectively, while only the simulator needs to equivo-
cate ciphertexts. Both deniable encryption and non-committing encryption can be used
to achieve adaptively secure multiparty computation and both are secure under se-
lective opening attacks. One of the standard low-level assumptions used to construct
non-committing encryption is a primitive known as simulatable public key encryption
(PKE) introduced by Damgård and Nielsen[9]2. Loosely speaking, a simulatable public
key encryption scheme is an encryption scheme with special algorithms for obliviously
sampling public keys and random ciphertexts without learning the corresponding secret
keys and plaintexts; in addition, both of these oblivious sampling algorithms should be
eficiently invertible. Simulatable public key encryption schemes can be based on the
assumptions of DDH and RSA3.

Simulatable public key encryption has been a useful tool for constructing variants
of deniable encryption. O’Neill et al. showed how to use simulatable PKE to construct
bi-deniable encryption in the multi-distributional model [24]. Moreover, it is not hard to
see that the original construction of sender-deniable public key encryption given by [3]
can be instantiated with simulatable PKE instead of trapdoor permutations, although in
their paper they do not explicitly use simulatable PKE.

Thus, a natural and imperative direction to explore is whether it is possible to
construct sender-deniable encryption with super-polynomial security from simulatable
PKE.

Our Results

We consider the possibility of constructing non-interactive sender-deniable encryption,
known as sender-deniable public key encryption, with super-polynomial security in a
black-box manner from simulatable PKE. We provide a negative answer to the above
question by showing the following:

2 In fact, an even weaker primitive called trapdoor-simulatable PKE [6] is sufficient for non-
committing encryption.

3 Trapdoor-simulatable PKE can be constructed from these assumptions as well as hardness of
factoring
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Theorem 1 (Main Theorem, Informal). There is no (fully) black-box reduction of
sender-deniable public key encryption with super-polynomial security to simulatable
PKE.

In particular, we show that every black-box construction of a sender-deniable public
key encryption scheme from simulatable PKE which makes m = m(n) queries to the
simulatable PKE scheme cannot achieve security better than O(m4(n)). Our results in-
dicate that improving upon the original scheme of [3] requires the use of non-black-box
techniques, stronger underlying assumptions or interaction thus giving some evidence
that strong assumptions such as those used by Sahai and Waters [27] are necessary.

Black-Box Separations

Impagliazzo and Rudich [19] were the first to develop a technique to rule out the exis-
tence of an important class of reductions between primitives known as black-box reduc-
tions. Indeed, most known reductions between cryptographic primitives are black-box
(see the works of [28, 16, 26, 17, 15, 20, 18, 23, 22] for a small sampling). Intuitively,
black-box reductions are reductions where the primitive is treated as an oracle or a
“black-box”. There are actually several flavors of black-box reductions (fully black-box,
semi black-box and weakly black-box [25]). In our work, we only deal with fully black-
box reductions, and so we will focus on this notion here. Informally, a fully black-box
reduction from a primitiveQ to a primitive P is a pair of oracle PPT Turing machines
(G,S) such that the following two properties hold:

Correctness: For every implementation f of primitive P , g = Gf implements Q.

Security: For every implementation f of primitive P , and every adversary A, if A
breaks Gf (as an implementation of Q) then SA,f breaks f . (Thus, if f is “secure”,
then so is Gf .)

We remark that an implementation of a primitive is any specific scheme that meets
the requirements of that primitive (e.g., an implementation of a public-key encryption
scheme provides samplability of key pairs, encryption with the public-key, and decryp-
tion with the private key). Correctness thus states that when G is given oracle access to
any valid implementation of P , the result is a valid implementation of Q. Furthermore,
security states that any adversary breaking Gf yields an adversary breaking f . The re-
duction here is fully black-box in the sense that the adversary S breaking f uses A in a
black-box manner.

Our Techniques

Following the paradigm introduced by [19], we define an oracle O and consider con-
structions of simulatable PKE and sender-deniable public key encryption relative to this
oracle. The oracle O that we use is similar to the by now standard oracle first introduced
by [13]. This oracle implements an ideal trapdoor function with the important property
that it is difficult to obliviously sample from the range of the function. Namely, it is hard
to find an image in the range of the function without first sampling the corresponding
preimage.

Relative to the oracle O, we show the following:
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– There exists a simulatable PKE scheme, ESim secure against all (computationally
unbounded) adversaries A making at most polynomial number of queries.

– For every implementation E of a sender-deniable public key encryption scheme
relative to O, there exists an adversary A making at most polynomial number of
queries such that A breaks E .

The above is sufficient to imply that there is no fully black-box construction of sender-
deniable public key encryption from simulatable PKE.

Now, recall that a sender-deniable public key encryption scheme is a public key
encryption scheme with an additional algorithm, Fake, which takes an honestly gen-
erated sender’s view ViewS0

encrypting a bit b and returns a fake view, ViewS1
=

Fake(ViewS0), encrypting the bit 1− b. A simple but key observation is the following:
If the distributions over the corresponding views, ViewS0 and ViewS1 are indistinguish-
able, then one should be able to now compute ViewS2

= Fake(ViewS1
) obtaining a

fake view encrypting the bit b and such that the distributions over the views, ViewS1

and ViewS2
are again indistinguishable. We note that somewhat similar arguments were

used in [2]. In general, in any sender-deniable public key encryption scheme with negli-
gible distinguishing advantage, one must be able to run Fake iteratively on the output of
the previous Fake invocation for any (unbounded) polynomial number of times. Other-
wise, if there is a fixed polynomial upper bound p(n) on the number of times that Fake
can be applied to a fresh ciphertext (before failure), then we can distinguish ViewS0

from ViewSp(n) = ⊥ = Fakep(n)(ViewS0
) (where by Fakep(n) we denote the com-

position of Fake, p(n) times). So by a hybrid argument there must be some i such that
Fakei(ViewS0

), Fakei+1(ViewS0
) can be distinguished with probability 1/p(n). Finally,

this means that real and fake openings ViewS0 and ViewS1 can be distinguished, con-
tradicting the security of the sender-deniable public key encryption scheme4. Thus, in
order to prove the lower bound it is sufficient to show that relative to our oracle, Fake
can be repeatedly applied only a fixed polynomial number of times before failure.

To gain some intuition for why this is the case, it is instructive to recall the construc-
tion of [3]5. Let {Fpk} be a family of trapdoor functions with pseudorandom range such
that given the secret key sk of Fpk, one can distinguish between elements y in the range
of Fpk and random elements, but given only pk, random elements in the range of Fpk
are indistinguishable from random strings. In [3], the secret key of the sender-deniable
public key encryption scheme is the secret key sk of the trapdoor function F . The pub-
lic key pk is the public key of F . Each ciphertext consists of m number of strings
s1, . . . , sm. To encrypt a 1, choose an a set of indeces I ⊆ [m] of odd cardinality; oth-
erwise choose a set I ⊆ [m] of even cardinality. Compute m strings in the following
way: For the i-th string, if i ∈ I , choose a random xi and compute yi = f(xi). If
i /∈ I , choose yi to be a random string. The sender sends these m strings to the receiver.
The receiver then checks which of the m strings y1, . . . , ym are valid images. If an odd
number of strings are valid, output 1. Otherwise, output 0. It is not hard to see that the
Fake algorithm works by having the sender claim that a pseudorandom string is really
random (but note that the sender cannot claim the reverse).

4 Simply run Fake iteratively i number of times on ViewS0 and then use the distinguisher above.
5 We simplify their construction here somewhat.
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Clearly, the Fake algorithm described above can be run iteratively at most m times
for a given ciphertext, since the sender claims to have made one less query each time
Fake is run and there are at most m queries total. Unfortunately, our analysis is more
complicated since we must also consider candidate schemes where the Fake algorithm
might add queries to the outputted view. It may seem at first glance that it is impossible
for Fake to add new queries to the sender’s view that were not in the original view since
it would seem to require inverting a random image y without access to the correspond-
ing secret key. However, this is not necessarily the case (see the full version [7] for a
toy example where this occurs).

Thus, we must show that even for candidate schemes whose Fake algorithms may
both remove and add queries, Fake can be repeatedly applied only a fixed polynomial
number of times before failure. Intuitively, the reason we can handle such schemes is
that it is infeasible to add an unbounded number of new queries to the fake view, since
many queries must be removed from the previous view for each new query that is added.
In order to show that this intuition indeed holds, we leverage the fact that in our oracle,
with overwhelming probability, random strings are not valid images of the trapdoor
function. Much of the technical part of the proof is in showing that the above intuition
holds for all possible constructions of sender-deniable public key encryption schemes
relative to our oracle.

Technical Overview of Proof. The high-level approach of the proof will be to consider
the distribution D10m2(n)

Fake , where m(n) is the maximum number of queries made by

sender and receiver, and a draw from D10m2(n)
Fake is obtained in the following way:

– Draw an oracle O and original views, ViewS0 ,ViewR, for sender and receiver from
the correct distributions.

– For 1 ≤ i ≤ 10m2(n), set ViewSi
= FakeO(ViewSi−1

).
– Output O,ViewR,ViewS0

, . . . ,ViewS10m2(n)

In our analysis, we will look at the properties of sequences of fake openings ViewS0 ,
. . . , ViewS10m2(n)

drawn from this distribution. Note that for any sender-deniable public
key encryption scheme it should (at the very least) be the case that w.v.h.p. for every
consecutive i, i + 1, ViewSi

and ViewSi+1
are valid encryptions of bits bi and bi+1 =

1−bi, respectively. Furthermore, we show that if a public key encryption scheme has the
deniability property then with high probability a sequence drawn from D10m2(n)

Fake will
have several additional properties. However, we will also argue that it is impossible for
a sequence of fake openings of length 10m2(n) to satisfy all of the required properties
simultaneously. Thus, a sequence drawn from D10m2(n)

Fake will with high probability not
satisfy at least one of the required properties. This leads to contradiction and so we
conclude that the encryption scheme is not sender-deniable.

In what follows, we give a slightly innacurate but intuitive overview of what these
properties are and the techniques we use to prove that with high probability a sequence
of fake openings will possess these properties.

First, note that a fake opening is simply a view ViewSi
of the sender which consists

of a transcript, W (i.e. a public key, PK, and ciphertext c), and a set of queries Q(Si)
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made by the sender. We also consider the setQ(E)i which, intuitively, is a set of queries
that includes all queries the honest sender (with view ViewSi

) believes may have been
made by both him and the receiver. The set of queries inQ(E)i can be found by running
an algorithm that is very similar to the Eve algorithm of [1], which finds intersection
queries based only on the transcript (and does not depend on the sender’s view, as in our
case). During the execution of the Eve algorithm, Eve finds pairs (pk∗, y∗) such that it
is likely the sender queried F (pk∗, x) = y∗ for some x. If Eve identifies a such a pair
(pk∗, y∗) and, indeed, a corresponding F (pk∗, x∗) = y∗ is found in ViewSi

, then the
query is “added” and placed inQmade

i . If Eve identifies a such a pair (pk∗, y∗), however,
and no corresponding F (pk∗, x∗) = y∗ is found in ViewSi , then the query is “removed”
and placed in Qskipped

i .
Now for each fake opening ViewSi

we consider two types of queries “A” type
queries and “B” type queries. Intuitively, “A” type queries are those queries that were
originally in ViewS0 and have either not been removed in some Qskipped

j set (for j ≤ i),
or were removed and then added again in some Qmade

k set (for j < k ≤ i). “B” type
queries are new queries that do not appear in the original view ViewS0

, were added in
some Qmade

j set (for j ≤ i) and have not been subsequently removed in a Qskipped
k set

(for j < k ≤ i). Thus, each view ViewSi
is associated with a set,Ai, of “A” type queries

and a set, Bi, of “B” type queries.
We will show that with high probability a draw of fake openings ViewS0 , . . . ,

ViewS10m2(n)
and corresponding sequence (A0, B0), . . . , (A10m2(n), B10m2(n)) must

satisfy the following properties:

– (ViewS0
,ViewS1

, . . . ,ViewS10m2(n)
) are valid openings.

– Ai ⊆ Ai−1 for 1 ≤ i ≤ 10m2(n)
– (Ai−1, Bi−1) 6= (Ai, Bi) for 1 ≤ i ≤ 10m2(n)
– If the same set A∗ appears consecutively β times within the sequence above, and

all corresponding consecutive B sets are different, then β ≤ 10m(n).

Much of the technical portion of this work is dedicated to showing that these prop-
erties hold (see Claim 2, Lemma 4 and Lemma 5). Then, we will show that it is, in
fact, impossible to realize all of the above properties simultaneously (see the end of
Section 5).

Related Work

In their seminal paper, Canetti et al. [3] introduce the primitive of deniable encryption
and present constructions. However, for the strongest form of deniable encryption which
assumes that the same key generation and encryption algorithms are always used, [3]
achieve only sender-deniable and receiver-deniable schemes with polynomial security.
[3] also rule out the existence of a specific type of sender-deniable encryption scheme
with negligible distinguishing advantage (or super-polynomial security) called separa-
ble schemes (which, roughly speaking, are a generalization of the scheme of [3]). Our
impossibility result is incomparable to theirs since ours rules out a larger class of re-
ductions (black-box reductions), but only rules out reductions to the specific primitive
of simulatable PKE.
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O’Neill et al. [24] recently constructed a bi-deniable encryption scheme in the multi-
distributional model, in which the parties run alternative key-generation and encryption
algorithms for equivocable communication, but claim under coercion to have run the
prescribed algorithms. This weaker model was also initially considered by [3]. Al-
though useful in some settings, the multi-distributional model does not achieve the
strongest form of deniability which we consider in this work. We note that it is es-
sential for our impossibility result that the same encryption algorithm is run for both
real and equivocable communication, which is why our result does not contradict the
work of [24].

Recently, Dürmuth and Freeman announced a fully-deniable (receiver/sender)-deniable
interactive cryptosystem with negligible security [10]. However their result was later
showed to be incorrect by Peikert and Waters (see [11] for details). The protocol con-
structed by [10] was both interactive and utilized the fact that for the trapdoor function
used, a random element in the range could be sampled obliviously. We note that in our
analysis it is essential both that the schemes we consider are non-interactive and that
the trapdoor function implemented by our oracle does not allow oblivious sampling of
the range. Thus, an interesting open question is whether removing these two restrictions
can help achieve fully-deniable encryption schemes.

Subsequently, [2] showed, using an information-theoretic argument, that (non-interactive)
receiver-deniable encryption with negligible distinguishing advantage do not exist, un-
conditionally. We note, however, that the work of [2] does not address the case of
sender-deniable encryption and it does not seem that their techniques may be applied to
our case.

Recently, Sahai and Waters [27] showed how to construct sender-deniable encryp-
tion from indistinguishability ofuscation. In a breakthrough result, a candidate construc-
tion of an indistinguishability obfuscator for general programs was put forward by Garg
et al. [12]. In their followup paper, [27] show that indistinguishability obfuscation can
be used to achieve sender-deniable encryption6 We note that the candidate construction
of [12] is based on newly introduced hardness assumptions such as “multilinear jigsaw
puzzles”. Thus, the construction of [27] also requires these non-standard assumptions.

Organization

In Section 2 we formally define sender-deniable public key encryption and simulatable
PKE as well as the notion of a black-box construction of sender-deniable public key
encryption from simulatable PKE. In Section 3 we define our oracle and in Section 4
we define some additional useful notations, algorithms and corresponding properties
which will be used in the main result. Finally, in Section 5 we prove our main theorem,
with some technical parts deferred to the Appendix.

2 Definitions

Definition 1 (Sender-Deniable Public Key Encryption). A sender-deniable (bit) pub-
lic key encryption scheme is a tuple of algorithms (Gen,Enc,Dec,Fake) defined as
follows:

6 Simply called “deniable encryption” in their work.



9

– The key-generation, encryption and decryption algorithms Gen,Enc,Dec are de-
fined as usual for public-key encryption.

– The sender faking algorithm Fake(PK, rS , b), given a public key PK, original coins
rS and bit b of Enc, outputs faked random coins r∗S for Enc and the bit 1− b.

We require the following properties:

Correctness. (Gen,Enc,Dec) forms a correct public-key encryption scheme7.
Deniability. For b ∈ {0, 1}, we require that the following two probability ensembles

are computationally indistinguishable:
– {(PK, c, rS)|PK ← Gen(1n; rG), c← Enc(PK, b; rS)}n
– {(PK, c, r∗S)|PK ← Gen(1n; rG), c← Enc(PK, 1−b; rS), r∗s ← Fake(PK, rS , b)}n

It follows from the definition that a sender-deniable public key encryption scheme
is also semantically secure.

Remark 1. In this work, we also consider constructions of deniable public key encryp-
tion schemes that do not achieve negligible distinguishing advantage. We say that a
deniable encryption scheme has security p(n) for some polynomial p(·) if correctness
holds and every probabilistic polynomial time adversary A distinguishes the following
two probability ensembles with advantage at most 1/p(n):

– {(PK, c, rS)|PK ← Gen(1n; rG), c← Enc(PK, b; rS)}n
– {(PK, c, r∗S)|PK ← Gen(1n; rG), c← Enc(PK, 1− b; rS), r∗s ← Fake(PK, rS , b)}n.

We note that in this case semantic security does not follow from deniability and is an
additional requirement.

Definition 2 (Simulatable PKE). A `-bit simulatable encryption scheme consists of an
encryption scheme (Gen,Enc,Dec) augmented with (oGen, oRndEnc, rGen, rRndEnc).
Here, oGen and oRndEnc are the oblivious sampling algorithms for public keys and
ciphertexts, and rGen and rRndEnc are the respective inverting algorithms, rGen (resp.
rRndEnc) takes rG (resp. (PK, rE,m)) as the trapdoor information. We require that,
for all messages m ∈ {0, 1}`, the following distributions are computationally indistin-
guishable:

{rGen(rG), rRndEnc(PK, rE,m), PK, c | (PK, SK) = Gen(1k; rG), c = EncPK(m; rE)}
and {r̂G, r̂E, P̂K, ĉ | (P̂K,⊥) = oGen(1k; r̂G), ĉ = oRndEncP̂K(1

k; r̂E)}

It follows from the definition that a simulatable encryption scheme is also semantically
secure.

Definition 3 (Sender-Deniable Public Key Encryption from Simulatable PKE). For
oracle algorithms (Gen,Enc,Dec,Fake) we call E = (Gen,Enc,Dec,Fake) a black-
box construction of sender-deniable public key encryption based on simulatable PKE if
the following properties hold:

7 Note that perfect correctness is not possible.
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– Implementation: The algorithms (Gen,Enc,Dec,Fake) get oracle access to sim-
ulatable PKE scheme ESim and E is an implementation of sender-deniable public
key encryption.

– Security: There is a polynomial-time oracle algorithm S with the following prop-
erty. For any simulatable PKE ESim = (Gen,Enc,Dec, oGen, oRndEnc, rGen, rRndEnc),
given as oracle, if A breaks the security of E then SESim,A breaks the security of
ESim.

3 Oracle
The oracle O consists of three functions G,F, F−1 defined below for every security
parameter n.

– G : {0, 1}n → {0, 1}3n is an injective function taking inputs sk of length n bits to
outputs pk of length 3n bits.

– F : {0, 1}4n → {0, 1}12n is an injective function taking inputs pk, x of length 4n
bits to outputs y of length 12n bits.

– F−1 : {0, 1}13n → {0, 1}n takes inputs of the form sk, y where sk ∈ {0, 1}n and
y ∈ {0, 1}12n. F−1 returns x ∈ {0, 1}n if G(sk) = pk and F (pk, x) = y and ⊥
otherwise.

Note that the oracle above behaves like a trapdoor function, where G is the key
generation functionality, F evaluates the trapdoor function and F−1 is the inversion
function. Additionally, note that we may easily construct a simulatable PKE scheme
relative to this oracle.

We denote by Υ the uniform distribution over all possible oracles O.

Lemma 1. There is a construction of a simulatable PKE scheme ESim relative to oracle
O, such that for every unbounded adversaryA, making a polynomial number of queries
to O:

Pr
O∼Υ

[AO breaks EOSim] ≤ neg(n).

The proof of the Lemma above is by now standard (c.f. [13, 14]) and so we omit it.

4 Preliminaries
In this section we introduce some useful notation, algorithms and properties of sender-
deniable public key encryption schemes.

Given a deniable public key encryption scheme E = (Gen,Enc,Dec,Fake), we will
consider the natural two-message protocol 〈S,R〉 between a Receiver, R (who sends a
public key in the first message) and a Sender, S (who sends a ciphertext in the second
message).

The view of the Receiver (resp. Sender) consists of the transcript W , random tape,
rR (resp. rS) and queries made to the oracle along with the responses. The view of the
Receiver, denoted by ViewR = (ViewG,ViewD), consists of two parts where ViewG
includes queries and responses made during Gen and ViewD includes queries and re-
sponses made during Dec. The view of the Sender, denoted by ViewS includes queries
and responses made during Enc. We denote the queries to O in ViewR by Q(R) =
Q(G) ∪Q(D). We denote the queries to O in ViewS by Q(S).

We assume without loss of generality that:
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– No queries to F−1 are made during Gen. This is WLOG since with overwhelming
probability either the corresponding query to F was already made, or F−1 returns
⊥.

– Each party queries G(sk) = pk before querying F−1(sk, y).
– Either Fake returns a valid opening or returns ⊥ and Fake(⊥) = ⊥.

Additionally, relative to our oracle O, we assume WLOG that Fake takes ViewS and
returns another ViewS with the same public key and ciphertext but different randomness
and input bit (i.e. ViewSi+1 = FakeO(ViewSi)). By FakeO,i we denote composing Fake
with itself i times.

4.1 Useful Distributions

Distribution D: D is a distribution over tuples (ViewS,ViewR) resulting from an exe-
cution of 〈S,R〉. A draw from D is obtained as follows:

– Draw O ∼ Υ , b ← {0, 1}, rR, rS ← {0, 1}p(n), for some polynomial p(·) and
execute 〈S,R〉 with O, rR, rS and input bit b.

– Output: The views (ViewS,ViewR) resulting from the execution of 〈S,R〉 above.

Distribution Di: Di is a distribution over tuples (ViewSi
,ViewR) as before, but here

we begin to use the Fake algorithm. A draw from Di is obtained as follows:

– Draw O ∼ Υ , b ← {0, 1}, rR, rS ← {0, 1}p(n). and execute 〈S,R〉 with O, rR, rS
and input bit b.

– Let ViewS0 = ViewS,ViewR containing PK, c, b, rS be the resulting views from the
execution of 〈S,R〉. Compute ViewSi

= FakeO,i(ViewS).
– Output: O and the views (ViewSi

,ViewR).

For every fixed polynomial p(·), we additionally define the following distribution:

DistributionDp(n)Fake : Dp(n)Fake is a distribution over tuples (O,ViewS,ViewS1 , . . . ,ViewSp(n)
).

A draw from Dp(n)Fake is obtained as follows:

– Draw O ∼ Υ , b ← {0, 1}, rR, rS ← {0, 1}p(n). and execute 〈S,R〉 with O, rR, rS
and input bit b.

– Let ViewS0 = ViewS,ViewR containing PK, c, b, rS be the resulting views from the
execution of 〈S,R〉.

– Output: (O,ViewR,ViewS0
= ViewS,ViewS1

= FakeO(ViewS),ViewS2
= FakeO(ViewS1

),
. . . , ViewSp(n)

= FakeO(ViewSp(n)−1
)).

4.2 Algorithms for Finding Likely Queries

As in [19, 1, 8, 13, 21], we will be concerned with finding intersection queries, or com-
mon information about the oracle shared by S and R. We note that in our setting there
are two ways to get an intersection query:
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– One party makes a query of the form G(sk) = pk, F (pk, x) = y, or F−1(sk, y)
and the other party makes the same query.

– One of the parties queries both G(sk), F−1(sk, y) = x and the other party queries
F (pk, x) = y.

We now (informally) define the Eve algorithm: For a more formal specification, see
the full version [7]. Eve runs the following algorithm, using threshold ε = ε1 = 1/m16

during the first pass (before S sends its message) and using threshold ε = ε2 = 1/m6

during the second pass (after S sends its message).

(0) Eve queries F on all possible inputs up to length 4n̂ = 4 log(10m34) and adds all
queries and responses to E.

(1) As long as there exists a query q of the form G(sk), F (pk, x), or F−1(sk, y) that
was previously made by S or R with probability at least ε (conditioned on Eve’s
current knowledge, E), then ask q from the oracle and add q paired with its answer
to E.

(2) As long as there exists a pair (pk∗, y∗) such thatG(sk) = pk∗ ∈ Q(E),F (pk∗, x) =
y∗ /∈ Q(E) and with probability at least ε, R made a query of the form F (pk∗, x) =
y∗ for some x (conditioned on Eve’s current knowledge, E), then query the oracle
on F−1(sk, y∗). If F−1(sk, y∗) returns some value x, then add F (pk∗, x) = y∗ to
E. If F−1(sk, y∗) returns ⊥ then add F−1(sk, y∗) = ⊥ to E.

(3) As long as there exists a pair (pk∗, y∗) such that F (pk∗, x) = y∗ /∈ Q(E) and
with probability at least ε, S made a query of the form F (pk∗, x) = y∗ for some x
(conditioned on Eve’s current knowledge, E), then if F (pk∗, x) = y∗ ∈ Q(S), add
q paired with its answer toE and add (pk∗, y∗) toQmade. Otherwise, add (pk∗, y∗)
to Qskipped.

We denote by Q(E)G the Eve queries made after the first message is sent from R to
S and denote by Q(E)S the Eve queries made after the second message is sent from S
to R. Thus Q(E) = Q(E)G ∪Q(E)S.

The following Lemma appeared in [8], but there was proven with respect to a ran-
dom oracle.

Lemma 2. Let 〈S,R〉 be a protocol as specified above in which the Sender and Receiver
ask at most 2m queries each from the oracle O. Then there is a universal constant c such
that on input parameter ε:

– (cm/ε)-Efficiency: Eve is deterministic and, over the randomness of the oracle
and S and R’s private randomness, the expected number of Eve queries from the
oracle O is at most cm/ε1.

– (c
√
mε)-Security: Let W be the transcript of messages sent between R and S so

far, and let E be the additional information that Eve has learned till the end of the
i’th round. We denote by Q(E) the oracle query/answer pairs that Eve has asked.
Let D(W,E) be the joint distribution over the views (ViewS,ViewR) of S and R
only conditioned on (W,E). By DR(·, ·) and DS(·, ·) we refer to the projections of
D(W,E) over its first or second components.
With probability at least 1 − c

√
mε over the randomness of S, R, and the ran-

dom oracle O the following holds at all moments during the protocol when Eve is
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done with her learning phase in that round: There are independent distributions
S(W,E),R(W,E) such that:
1. The statistical distance between S(W,E)×R(W,E) and D(W,E) is at most
∆(S(W,E)×R(W,E),D(W,E)) ≤ c

√
mε.

2. For every oracle query q /∈ Q(E) it holds that Pr(ViewS∼S(W,E),ViewR∼R(W,E)[q ∈
Q(S) ∪Q(R)] ≤ ε.

– Robustness. The learning algorithm is robust to the input parameter ε in the fol-
lowing sense. If the parameter ε changes in the interval ε ∈ [ε1, ε2] arbitrarily
during the learner’s execution (even inside a learning phase of a specific round), it
still preserves O(cm/ε1)-efficiency and (c

√
mε2)-security.

See the full version [7] for the proof of Lemma 2 which is based on the proofs found
in [1, 8, 21].

Remark 2. Note that the Eve algorithm as described above requires knowledge of ViewS

but not of ViewR. Thus, Eve can only be simulated by a party who has knowledge of
ViewS. This is a key difference between our results and the results of [13]. Note that
we can actually implement oblivious transfer relative to our oracle, since although it
is hard to sample valid public keys without knowing the corresponding secret key, a
party can call F (pk, ·) with any string pk and receive a value y indistinguishable from
a “valid” image. In contrast, [13] show that oblivious transfer does not exist relative to
their oracle. The fact that only S can simulate Eve but not R is the reason that our results
do not contradict those of [13].

Remark 3. Note that since the expected number of Eve queries is at most cm/ε, we may
consider a modified algorithm Eve′ which simulates Eve but aborts if Eve makes more
than cm/ε2 number of queries. By Markov’s inequality, this occurs with probability at
most O(ε) and so executions of Eve and Eve′ are identical with probability 1 − O(ε).
Thus, all properties stated above for Eve hold also for Eve′. In the following, we assume
that we run Eve′, making at most N = O(m33) = poly(n) number of queries, to
generate the sets E,Q(E). We additionally assume that N ≤ 2n̂/1600m2.

4.3 Properties of Fake openings

Definition 4 (Iterative Indistinguishability). Let E = (Gen,Enc,Dec,Fake) be an
implementation of a sender-deniable public key encryption scheme relative to oracle O.
We say that E is iteratively indistinguishable up to p(n), where p(·) is some polynomial,
if for every i where 1 ≤ i ≤ p(n), and every adversary A making at most a polynomial
number of oracle queries we have:

Pr
ViewS∼DS

[AO(ViewS) outputs 1]− Pr
ViewSi

∼Di
S

[AO(ViewSi
) outputs 1] ≤ i/80p(n).

In what follows, we split the queries found in a given view ViewSi
into two types:

“A” type queries and “B” type queries. Informally, “A” type queries are queries that
were also made in the original ViewS0

= ViewS. “B” type queries are new queries that
were added which do not appear in ViewS0 . Details follow.
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For a given draw (O,ViewR,ViewS0
,ViewS1

, . . . ,ViewSp(n)
) ∼ Dp(n)Fake , we consider

a run of the Eve′ algorithm with (O,ViewR,ViewS0
) yielding setsQ(E), Qmade, Qskipped

and a run of the Eve′ algorithm with (O,ViewR,ViewSi
) for each 1 ≤ i ≤ p(n) yielding

sets Q(E)i, Q
made
i , Qskipped

i .
We define the sets A0, B0 corresponding to (ViewR,ViewS0) as follows: A0 =

Q(S0), B0 = ∅. For i ≥ 1, we define the sets Ai, Bi corresponding to (ViewR,ViewSi
)

as follows 8:

Ai =
(
Ai−1 \Qskipped

i

)
∪
(
Qmade
i ∩Q(S0)

)
, Bi =

(
Bi−1 \Qskipped

i

)
∪
(
Qmade
i \Q(S0)

)
.

Note that every draw (O,ViewR,ViewS0
,ViewS1

, . . . ,ViewSp(n)
) ∼ Dp(n)Fake , is associ-

ated with a unique sequence (A0, B0), (A1, B1), . . . , (Ap(n), Bp(n)).

Definition 5 (Well-formed Sequences). Let E = (Gen,Enc,Dec,Fake) be an imple-
mentation of a sender-deniable public key encryption scheme relative to oracle O.
We say that an opening (O,ViewR,ViewS0 ,ViewS1 , . . . , ViewSp(n)

) ∼ Dp(n)Fake is well-
formed if it has the following properties:

(1) (ViewS0
,ViewS1

, . . . ,ViewSp(n)
) are valid openings.

(2)
(
Q(G) ∩

⋃p(n)
i=1 Q(Si)

)
\Q(E)G = ∅.

(3) Ai ⊆ Ai−1 for 1 ≤ i ≤ p(n).
(4) For every query of the form F (pk, x) = y that appears in Q(E)i for some 1 ≤
i ≤ p(n), the pair (pk, y) does not appear in Qskipped

j for all 1 ≤ j ≤ i.

Claim 2 Let E = (Gen,Enc,Dec,Fake) be an implementation of a sender-deniable
public key encryption scheme relative to oracle O and let m = m(n) be the maxi-
mum number of queries made by (Gen,Enc,Dec,Fake). If E is iteratively indistinguish-

able up to 10m2(n) then (O,ViewR,ViewS0 ,ViewS1 , . . . ,ViewS10m2(n)
) ∼ D10m2(n)

Fake is
well-formed with probability 9/10.

We defer the proof to the full version [7].

5 Analysis

In this section, we prove our main theorem:

Theorem 3 (Main Theorem, Formal). Let E = (Gen,Enc,Dec,Fake) be a black-box
construction of sender-deniable public key encryption from simulatable PKE and let
m = m(n) be the maximum number of queries made by (Gen,Enc,Dec,Fake). Then E
has security at most O(m4).

We first present the following Lemma, which will be our main technical Lemma:

8 By the notation below, we mean to remove from Ai−1 all queries of the form F (pk, x) = y
such that the pair (pk, y) ∈ Qskipped. The same holds for the following definitions.
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Lemma 3. Let E = (Gen,Enc,Dec,Fake) be an implementation of a sender-deniable
public key encryption scheme relative to oracle O and let m = m(n) be the maximum
number of queries made by (Gen,Enc,Dec,Fake). Then E is not iteratively indistin-
guishable up to 10m2 = 10m2(n).

We present the following corollary and use it to prove our main theorem:

Corollary 1. Let E = (Gen,Enc,Dec,Fake) be an implementation of a sender-deniable
public key encryption scheme relative to oracle O and let m = m(n) be the maximum
number of queries made by (Gen,Enc,Dec,Fake). Then there exists an adversary A
making a polynomial number of oracle queries such that

Pr
ViewS∼D

[AO(ViewS) outputs 1]− Pr
ViewS1

∼D1
[AO(ViewS1

) outputs 1] ≥ 1/8000m4.

Lemma 1 and Corollary 1 imply our main theorem:
Proof (Proof of Main Theorem using Lemma 1 and Corollary 1.). Assume towards con-
tradiction that there is some fully black-box reduction (E , S) of sender-deniable public
key encryption with distinguishing advantage o(1/m4) to simulatable PKE, where S
is a probabilitic polynomial time reduction. Then, since there exists a construction of
simulatable PKE relative to oracle O, we have that E is also a sender-deniable public
key encryption scheme relative to O. Now, Corollary 1 implies that with probability
at least 1/16000m4(n) over O ∼ Υ , there exists an adversary A making at most a
polynomial number of oracle queries such thatA distinguishes with probability at least
1/16000m4(n). Thus, with probability at least 1/16000m4(n) over O ∼ Υ , A breaks
E . However, since S makes at most a polynomial number of calls to A, SA also makes
at most polynomial number of queries and so Lemma 1 implies that with probability
1− neg(n) over O ∼ Υ , SA does not break ESim. Thus, there must exist some fixed O
such thatA breaks E with distinguishing advantage Ω(1/m4), but SO,A does not break
ESim, which means that the reduction (E , S) fails and so we arrive at contradiction.

We now turn to proving Lemma 3. We define two events and prove they occur with
small probability.

Event ErSets: ErSets is the event that a draw (O,ViewS0
,ViewS1

, . . . ,ViewS10m2(n)
) ∼

D10m2(n)
Fake has the property that (Ai, Bi) = (Ai+1, Bi+1) for some 0 ≤ i ≤ 10m2(n)−

1.

Event ErA: ErA is the event that a draw (O,ViewS0
,ViewS1

, . . . ,ViewS10m2(n)
) ∼

D10m2(n)
Fake has the property that for some A∗ there are β > 10m(n) number of con-

secutive pairs of the form (A∗, Bj), . . . , (A∗, Bj+β−1) such that Bj+i 6= Bj+i+1 for
0 ≤ i ≤ β − 2.
Lemma 4. Let E = (Gen,Enc,Dec,Fake) be an implementation of a sender-deniable
public key encryption scheme relative to O and let m = m(n) be the maximum number
of queries made by (Gen,Enc,Dec,Fake). Let E be iteratively indistinguishable up to
10m2(n). The probability that upon a draw (O, ViewS0 , ViewS1 , . . . , ViewS10m2(n)

) ∼

D10m2(n)
Fake Event ErSets occurs is at most 1/2.

Next, we give some intuition for the proof of Lemma 4.
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Proof Intuition for Lemma 4. We show that if for two consectutive views ViewSi
,ViewSi+1

,
we have that (Ai, Bi) = (Ai+1, Bi+1), then the set of “intersection queries” Q(E)
found by the Eve′ algorithm when it is run on ViewSi and ViewSi+1 are the same.

Now, intuitively, Lemma 2 tells us that conditioned on the transcript W and inter-
section queries Q(E), the views of S and R are independent. Since both the transcript
(which cannot be changed by the Fake algorithm) and the intersection queries Q(E)
are the same for the i-th and i+ 1-th opening, this means that the views of the receiver
conditioned on ViewSi and ViewSi+1 should be distributed nearly identically. But note
that ViewSi is supposed to be an encryption of a bit b, while ViewSi is supposed to be an
encryption of the bit 1−b. Thus, by the correctness of the encryption scheme, the views
of the receiver should be statistically far when conditioning on ViewSi

and ViewSi+1
.

This leads to a contradiction.
Lemma 5. Let E = (Gen,Enc,Dec,Fake) be an implementation of a sender-deniable
public key encryption scheme relative to O and let m = m(n) be the maximum number
of queries made by (Gen,Enc,Dec,Fake). Let E be iteratively indistinguishable up to
10m2(n). The probability that upon a draw (O, ViewS0

, ViewS1
, . . . , ViewS10m2(n)

) ∼

D10m2(n)
Fake Event ErA occurs is at most 1/5.

Next, we give some intuition for the proof of Lemma 5.

Proof Intuition for Lemma 5. We show that given ViewS0
,ViewR, oracle O, the setA∗ ⊆

Q(S0) plus some additional small amount of information we can reconstruct the entire
sequence (A∗, Bj), . . . , (A∗, Bj+β−1). The following is an imprecise description of
the reconstruction algorithm:

1. Execute the two-message protocol 〈S,R〉 with Receiver’s view ViewR and Sender’s
view ViewS0 .

2. Use the transcript W generated above and begin running the Eve′ algorithm to
reconstruct set Bj+β−1. The only additional information necessary to reconstruct
Bj+β−1 is upon encountering a pair (pk, y) whether to return F−1(sk, y) = x and
add the query to Bj+β−1 or whether to add this query to Qskipped

j+β−1.
3. Continue to construct sets Bj+β−2 through Bj in the same way as above.

The additional information needed to reconstruct (A∗, Bj), . . . , (A∗, Bj+β−1) can
be encoded by a list of α elements. More specifically, when encountering the pair
(pk, y) as the `-th query in the run of the Eve′ algorithm reconstructing the setBj+i, the
algorithm checks whether the index ` appears on the list. If it does, the reconstruction
algorithm adds F−1(sk, y) = x to Bj+i. Otherwise, it adds (pk, y) to Qskipped

j+i .
Now, since the Eve′ algorithm is efficient and makesN queries (whereN ≤ 2n̂/1600m2)

to reconstruct each B set, we only need logN bits to encode each of the α elements of
the list above. Thus, we need “additional information” of length at most α · logN .

We use properties (2) and (4) of well-formed sequences (see Definition 5) to show
that for almost all sequences, when a pair (pk, y) is encountered when running the
Eve′ algorithm to reconstruct set Bj+i, if the corresponding query (F−1(sk, y) or
F (pk, x) = y) has already been made by the reconstruction algorithm, then (pk, y)
is always added to Bj+i. Thus, we do not need to include such pairs in the list at all.
This implies that since Bj+i 6= Bj+i+1 for all i, we must have α ≥ β. Moreover,
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the above implies that at the point when a pair (pk, y) is encountered as the `-th Eve′

query and the index ` appears on the list then it must be that the corresponding query
F (pk, x) = y has not yet been made by the reconstruction algorithm.

This means that at the point where we encounter each of these α queries on the list,
the probability that an oracle O chosen conditioned on the view of the reconstruction
algorithm thus far has the string y in its image is at most 1/2n̂. Thus, the probability that
an O chosen conditioned only on ViewS,ViewR has each of the α-many encountered
strings y1, . . . , yα in its image is at most (1/2n̂)α.

Finally, taking a union bound over all sets A∗ ⊆ Q(S) and all sequences S we
show that the probability that an oracle O chosen conditioned only on ViewS0 ,ViewR is
consistent with any well-formed sequence corresponding to some set A∗ ⊆ Q(S0) and
some and sequence S of length α ≥ β is small.

We complete the proof of Lemma 3 using the above lemmas. We defer the proofs
of Lemmas 4 and 5 to the full version [7].
Proof (Proof of Lemma 3 using Lemmas 4 and 5). Assume towards contradiction that
there is some implementation of a sender-deniable public key encryption scheme, E =
(Gen,Enc,Dec), relative to oracle O that is iteratively indistinguishable up to 10m2 =
10m2(n). By Claim 2, we may assume that, with probability at least 9/10, a draw
(O,ViewR,ViewS0

,ViewS1
, . . . ,ViewS10m2(n)

) ∼ D10m2(n)
Fake is well-formed. In particu-

lar, this implies that with probability at least 9/10 over draws, Property (1) and (3) hold
so we have that with probability 9/10 the openings (ViewS1

, . . . ,ViewS10m2(n)
) are all

valid andAi+1 ⊆ Ai for every 0 ≤ i ≤ 10m2(n)−1. This implies that with probability
9/10 over draws there must be some set A∗ that appears at least 10m = 10m(n) times.
Moreover, since Lemma 4 guarantees that event ErSets occurs with probability at most
1/2, we have that with probability at least 9/10− 1/2 = 2/5, there is some set A∗ that
appears at least 10m times consecutively and for this A∗, for all 0 ≤ i ≤ 10m − 2,
Bj+i 6= Bj+i+1. Now, by definition of Event ErA, this means that with probability at
least 2/5 over draws (O,ViewR,ViewS0

,ViewS1
, . . . ,ViewS10m2(n)

) ∼ D10m2(n)
Fake , we

have that Event ErA occurs. But by Lemma 5 we have that event ErA occurs with prob-
ability at most 1/5. Thus, we have arrived at contradiction and so the Lemma is proved.
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