
Proxy Re-encryption from Lattices

Elena Kirshanova

Horst Görtz Institute for IT-Security
Faculty of Mathematics

Ruhr University Bochum, Germany
elena.kirshanova@rub.de

Abstract. We propose a new unidirectional proxy re-encryption scheme
based on the hardness of the LWE problem. Our construction is collusion-
safe and does not require any trusted authority for the re-encryption key
generation. We extend a recent trapdoor definition for a lattice of Mic-
ciancio and Peikert. Our proxy re-encryption scheme is provably CCA-1
secure in the selective model under the LWE assumption.
Keywords. Proxy re-encryption, lattices, learning with errors.

1 Introduction

There are a number of applications (distributed file system of [3], email forward-
ing) which require that some data encrypted for Alice has to be re-encrypted to
Bob. A naive way Alice can accomplish this task is to decrypt the data with her
secret key and then encrypt the resulting plaintext under Bob’s public key. But
this approach requires Alice to actively participate to perform the procedures.
Moreover, she needs to repeat the encryption for any further user she wants to
resend the message to. In a proxy re-encryption (PRE) scheme, a proxy is given
a special information (a re-encryption key) that allows it to translate a cipher-
text intended for Alice into a ciphertext of the same message encrypted under
Bob’s key. In this setting we will call Alice the delegator and Bob the delegatee.
The proxy cannot, however, learn either the underlying plaintext or the secret
key of either Alice or Bob.

In 1998, Blaze et al. ([6]) proposed the first proxy re-encryption scheme. Their
construction is based on the ElGamal encryption scheme ([8]): for a group G of
prime order p and g a generator of the group, Alice and Bob choose their key pair
(a, ga) and (b, gb), a, b← Z∗p. The encryption of a message m intended for Alice
then has the form c = (c1, c2) = (mgr, (ga)r) for a randomly chosen r ← Z∗p. The
re-encryption key from Alice to Bob is rk(Alice→Bob) = b/a, and the proxy trans-

lates the ciphertext c to Bob by computing c′ = (c1, c
b/a
2) = (mgr, (gb)r).The

scheme is CPA secure under the Decisional Diffie-Hellman assumption in G.
From the re-encryption key the proxy can easily compute a/b, that allows it to
convert the ciphertexts in the inverse direction. Such PRE schemes are called
bidirectional. More desirable in practice are unidirectional schemes, in which a
re-encryption key works only in one direction.

In the above PRE scheme if the proxy and one of the parties collude, they

2 Elena Kirshanova

can recover the secret key of another party. The second issue is that a proxy
knowing rkA→B = b/a and rkB→C = c/b can compute rkA→C = c/a. Ateniese et
al. in [3] listed desired properties for PRE schemes; among them are:

– Non-interactivity : rk(Alice→Bob) can be generated by Alice alone using Bob’s
public key; no trusted authority is needed.

– Proxy transparency : neither the delegator nor the delegatees are aware of the
presence of a proxy, i.e. a recipient of a ciphertext cannot distinguish whether
the ciphertext is the original encryption or whether it was re-encrypted. The
property is achieved in [6].

– Key optimality : the size of Bob’s secret key remains constant, regardless of
how many delegations he accepts.

– Collusion resilience (also called master key security in [3] and [4]): it is hard
for the coalition of the proxy and Bob to compute Alice’s secret key.

– Non-transitivity : it should be hard for the proxy to re-delegate the decryption
right, namely to compute rkA→C from rkA→B , rkB→C .

1.1 Related work

Bidirectional proxy re-enryption scheme was proposed by Blaze et al. in [6],
while a unidirectional construction firstly appeared as a building block of a
secure distributed file system in [3], [4]. The formal definition of CCA security
for PRE with a bidirectional scheme is present in [7]. CCA security is achieved
for the unidirectional setting in [12]. Both schemes use bilinear pairings.

The possibility of using lattice-based assumptions for PRE constructions was
shown by Xagawa in [18], but the scheme lacks a complete security analysis. Like
Blaze et al. the scheme modifies the ElGamal encryption scheme adding the re-
encryption key of the form rkA→B = b/a, where a and b are discrete logarithms
of the public keys of Alice and Bob, the scheme of Xagawa and Tanaka is an
analogous modification of Regev’s encryption scheme ([16]). And, as its ElGamal
counterpart, it is bidirectional, it does not provide collusion safeness, neither it
is non-interactive: a trusted party is needed to generate the re-encryption keys.

1.2 Our contribution

The main contribution of this paper is a unidirectional single-hop proxy re-
encryption scheme based on the hardness of lattice-based problems. Prior to
[10] there was no known construction that is both unidirectional and multi-hop.
But even in [10] this combination comes at the cost of allowing the ciphertext
to grow linearly with respect to the number of re-encryptions. Although Gen-
try in [9] mentions that a fully-homomorphic scheme can achieve multi-use and
unidirectionality simultaneously, the constructions of FHE are far from prac-
tical. We achieve CCA-1 security in the selective model ([4]). Our scheme is
the first lattice-based construction that achieves collusion resilience and non-
interactivity. We apply the trapdoor delegation technique proposed in [15]. How-
ever, we have to extend the definition of a lattice trapdoor of [15]. The general-
ization might prove useful for functionalities other than proxy re-encryption as
well.

PRE Scheme Based from Lattices 3

2 Definitions

This section recalls the definition of unidirectional proxy re-encryption and the
game-based definition of security, where we follow the selective model of Ateniese
et al. ([3]), but in the chosen-ciphertext security setting, which was formalized
in [7]. We are interested in the unidirectional case (i.e. a re-encryption key from
pk to pk′ should not provide the ability to re-encrypt from pk′ to pk).

Definition 1 (Unidirectional PRE) A unidirectional, proxy re-encryption
scheme is a tuple of algorithms (KeyGen, ReKeyGen, Enc, ReEnc, Dec):

– (pk, sk)← KeyGen(1n). On input the security parameter 1n, the key genera-
tion algorithm KeyGen outputs a key pair (pk, sk).

– rkpk→pk′ ← ReKeyGen(pk, sk, pk′). On input a private key sk of a delegator
and a public key of a delegatee pk′, algorithm ReKeyGen outputs a unidirec-
tional re-encryption key rkpk→pk′ .

– c← Enc(pk,m). On input a public key pk and a message m, algorithm Enc
outputs a ciphertext c.

– c′ ← ReEnc(rkpk→pk′ , c). On input a re-encryption key rkpk→pk′ and a cipher-
text c′, algorithm ReEnc outputs a ciphertext c′ decryptable under the secret
key sk′.

– m← Dec(sk, pk, c). On input a secret key sk, a public key pk and a ciphertext
c′, algorithm Dec outputs a message m or the error symbol ⊥.

Definition 2 (Multi/Single-hop PRE) A proxy re-encryption scheme is
called multi-hop if a proxy can apply further re-encryptions to already re-encryp-
ted ciphertext. In a single-hop setting a ciphertext can be re-encrypted only once.

The requirements for correctness of decryption depend on whether the scheme
is multi-hop or single-hop. Informally, the decryption algorithm should output
the correct plaintext, no matter whether the ciphertext is “freshly” encrypted
or re-encrypted.

Definition 3 (Single-hop PRE Correctness) A proxy re-encryption
scheme (KeyGen, KeyGen, ReKeyGen, Enc, ReEnc, Dec) correctly decrypts for
the plaintext space M if:

– For all (pk, sk) output by KeyGen and for all m ∈ M, it holds that
Dec(sk,Enc(pk,m)) = m.

– For any re-encryption key rkpk→pk′ output by ReKeyGen(sk, pk, pk′) and any
c = Enc(pk,m) it holds that Dec = (sk′,ReEnc(rkpk→pk′c)) = m.

We give the game-based definition of security for PRE schemes. A discussion
follows the definition.

Definition 4 (Unidirectional PRE-CCA1 Game) Let 1n be the
security parameter, A be any ppt adversary. Consider the following experiment
for a PRE scheme Π = (KeyGen,ReKeyGen, Enc,ReEnc,Dec) with a plaintext
space M, a key space K and a ciphertext space C (the arrows represent interac-
tion between the adversary and the scheme Π):

4 Elena Kirshanova

PRECCA1
A,Π (n) A

1.(pk∗, sk∗)← KeyGen(1n)
Add (pk∗, sk∗) to H 1n, pk∗

2.(pkH , skH)← KeyGen(1n) Add an honest user
(pkH , skH) ∈ H pkH

3.(pkC , skC)← KeyGen(1n) Add a corrupted user
(pkC , skC) ∈ C (pkC , skC)

4. If (pk, sk) ∈ H c, pk c ∈ C

m = Dec(c, sk) m

(pk, pk′) (pk, pk′) ∈ K ×K
5. If pk, pk′ ∈ H or pk, pk′ ∈ C
rkpk→pk′ = ReKeyGen(pk, pk′) rkpk→pk′

· · ·
Repeat steps 2-5 poly(n) times· · ·

m0,m1 m0,m1 ∈M
6. b→ {0, 1}

c∗ = Enc(pk∗,mb) c∗

· · ·
Repeat steps 2,3,5 poly(n) times· · ·

If b = b′ output 1 b′ b′ ∈ {0, 1}
else output 0

An adversary A wins the game with advantage ε if the probability, taken over
the random choices of A and of the oracles, that the experiment PRECCA1

A,Π (n)
outputs 1, is at least 1/2 + ε.

To describe the security model we first classify all of the users into honest
(H) and corrupted (C). In the honest case an adversary knows only a public key,
whereas for a corrupted user the adversary has both secret and public keys.

We start by choosing a target user (pk∗, sk∗) and label it as honest. While an
adversary queries for the keys, we disallow any adaptive corruption: the adver-
sary cannot be given a decryption key for any user from H during the game. The
adversary can ask for a decryption of a ciphertext c for any user. The adversary
is given access to a re-encryption key from pk to pk′ forbidding the case when
pk ∈ H and pk′ ∈ C, which is equivalent to an adaptive corruption of pk. Note
that the generation of a re-encryption key from a corrupted to a honest party
can be accomplished by the adversary himself, since he knows the secret key of
a delegator. As long as he can query for the re-encryption key, the adversary can
also perform a re-enryption at any time.

After the challenge ciphertext c∗ has been produced, we still allow the ad-
versary to query for the re-encryption keys, so he can also re-encrypt c∗.

Definition 5 (PRE-CCA1 Security) A unidirectional proxy re-encryption
scheme is CCA-1 secure, if any ppt adversary wins the Unidirectional PRE-
CCA1 Game only with negligible advantage.

PRE Scheme Based from Lattices 5

3 Lattices

We denote column-vectors by lower-case bold letters, so row-vectors are rep-
resented via transposition (e.g., bt). Matrices are denoted by upper-case bold
letters, an additive subgroup of m × n matrices over R is denoted by Mm,n.
For any B ∈ Mm,n we denote σi(B) as decreasingly ordered sequence of singu-
lar values of B. A symmetric matrix Σ ∈ Mn,n is semidefinite, if xtΣx ≥ 0
for all nonzero x ∈ Rn. For any B ∈ Mn,n, the unique matrix B+ is the
Moore-Penrose pseudoinverse, if BB+B = B,B+BB+ = B+ and BB+,B+B
are symmetric. For any matrix B the symmetric matrix Σ = BBt is positive
definite. We denote then B =

√
Σ. A function f : N → R is called negligible,

denoted f(n) = negl(n), if for every c ∈ N there is an integer nc such that
f(n) ≤ nc, ∀n ≥ nc. Throughout the paper the parameter r = w(

√
log n) repre-

sents a fixed function r ≈
√

ln(2/ε)/π that arises from the randomized-rounding
operation from R to Z and corresponds to the so-called smoothing parameter for
Zn (the definition of the smoothing parameter follows).

3.1 Lattice definition

Let B = {b1, . . . ,bn} ⊂ Rm be a set of n linearly independent vectors. The
lattice Λ of rank n generated by the basis B is the set of vectors

Λ = L(B) = {Bc : c ∈ Zn}.

We will work with full-rank integer lattices, i.e. Λ ⊂ Zm with m = n. The dual
lattice Λ∗ is the set is the set of all vectors y ∈ Rm satisfying 〈x,y〉 ∈ Z for all
vectors x ∈ Λ. If B is a basis of an arbitrary lattice Λ, then B∗ = B(BtB)−1 is a

basis for Λ∗. For a full-rank lattice, B∗ = B−t. We refer to B̃ as a Gram-Schmidt
orthogonalization of B.

So-called q-ary integer lattices are of particular interest in cryptography.
These lattices satisfy the relation qZm ⊆ Λ ⊆ Zm for some integer q. For a
matrix A ∈ Zn×mq , integers q,m, n, we define two full-rank m-dimensional q-ary
lattices:

Λ(At) = {y ∈ Zm : ∃s ∈ Znq s.t. y ≡ Ats mod q}

Λ⊥(A) = {y ∈ Zm : Ay ≡ 0 mod q}.

3.2 Gaussians on Lattices

We define the n-dimensional Gaussian function on Rn centered at 0:

ρ(x) = exp(−π · ‖x‖2).

For any matrix B we define a density function of a Gaussian distribution for
x ∈ span(B) and for Σ = BBt ≥ 0:

ρ√Σ = ρ(B+x) = exp(−π · xtΣ+c).

6 Elena Kirshanova

Normalizing the above expression by its total measure over span(Σ), we
obtain a probability density function of the continuous Gaussian distribution
D√Σ . The covariance matrix of this distribution is Σ

2π , we ignore the 1
2π factor

and refer to Σ as the covariance matrix of D√Σ .
The continuous Gaussian distribution D√Σ can be discretized to a lattice

(or to the “shift” of the lattice) as follows: for Λ ⊂ Rn, c ∈ Rn and positive
semidefinite Σ > 0 such that (Λ + c) ∩ span(Σ) is nonempty, the discrete
Gaussian distribution is

DΛ+c,
√
Σ =

ρ√Σ(x)

ρ√Σ(Λ+ x)
,∀x ∈ Λ+ c,

where the denominator is merely a normalization factor.
In the definition of the so-called smoothing parameter ηε (originally defined

in [13]) we follow the notion of [15].

Definition 6 For a positive semidefinite matrix Σ and a lattice Λ ⊂ span(Σ),
we say that

√
Σ > ηε(Λ) if ρ√

Σ+(Λ∗) ≤ 1 + ε.

We will also use the following tail bound on discrete Gaussians.

Lemma 7 ([5], Lemma 1.5) Let Λ ⊂ Rn be a lattice and r ≤ ηε(Λ) for some
ε ∈ (0, 1). For any c ∈ span(Λ), we have

Pr[‖DΛ+c,r‖ ≥ r
√
n] ≤ 2−n · 1 + ε

1− ε
.

If c = 0 then the inequality holds for any r > 0, with ε = 0.

3.3 Useful Tools

Here we recall some useful facts about subgaussian random variable and the
singular value of a matrix. A detailed overview on subgaussian probability dis-
tribution is given in [17]. As the name suggests, subgaussian random variable
generalizes the notion of Gaussian random variable in the sense that it has the
property of a super-exponential tail decay.

Definition 8 A random variable X is subgaussian with parameter s, if ∃C such
that ∀t ≥ 0

Pr[|X| > t] ≤ C exp(−πt2/s2).

In [17] it is proved that the above definition is equivalent to the inequality for
the moment-generating function: E[exp(tX)] ≤ exp(1

2Cs
2t2), ∀t ∈ R. Since we

deal with discrete Gaussians, we will use a more loose definition of the so-called
δ-subgaussian variable due to [15]:

Definition 9 For δ > 0 a random variable X is δ-subgaussian with parameter
s > 0 if for all t ∈ R, the (scaled) moment-generating function satisfies

E[2πtX] ≤ exp(δ) · exp(πs2t2).

PRE Scheme Based from Lattices 7

Other than the Gaussian distribution itself, Bernoulli distributed and any
bounded random variable are classical examples for subgaussians. Note that
if we concatenate independent δi-subgaussian random variable with common
parameter s into a vector, we obtain a (Σδi) subgaussian vector with parameter
s. It is easy to see that for a finite number of independent Gaussian random
variables Xi with zero mean, their sum ΣiXi is a Gaussian random variable
with parameter s =

√
Σis2

i . This property is called rotation invariance in [17]
and also transfers to the subgaussians. In the security proof of our proxy re-
encryption scheme we will use the following fact.

Fact 10 Let X1, X2, . . . , Xn be independent, zero-mean subgaussian random
variables with parameter s and a = (a1, a2, . . . , an) ∈ Rn. Then Σk(akXk) is
a subgaussian random variable with parameter s‖a‖.

One can view the addition and subtraction of the subgaussians as the inner pro-
duct of a subgaussian vector and a {0,−1, 1}-vector. In our security proof we use
this fact to show that the result of a product of a δ-subgaussian matrix (treated
as a concatenation of δ-subgaussian columns) by a matrix with {0,−1, 1} entries
is a δ-subgaussian matrix with a slightly larger parameter s.

Here we recall two facts about the singular values of a random matrix. The
first lemma from [17] shows an upper bound on the singular value of the matrix
with Gaussian entries adapted to the 0-subgaussian case. The second result ([11])
bounds the singular value of the product of two matrices.

Lemma 11 Let A ∈ Rn×m be a δ-subgaussian random matrix with parameter
s. There exist a universal constant C > 0 such that for any t ≥ 0 we have
σ1(A) ≤ C ·s · (

√
m+
√
n+ t) except with probability at most 2 exp(δ) exp(−πt2).

Lemma 12 (Theorem 3.3.16 in [11]) Let A ∈ Mm,n,B ∈ Mn,m and ` =
min{m,n}. The following inequalities hold for the decreasingly ordered singular
values of AB:

σi(AB) ≤ σi(A)σ1(B) for i = 1, . . . , `.

3.4 Hard problems

There are two lattice-based one-way functions associated with matrix A ∈ Zn×mq

for m = poly(n):

– fA(x) = Ax mod q,x ∈ Zm;
– gA(e, s) = stA + et mod q for s ∈ Znq and a Gaussian e ∈ Zm.

Given a vector u, finding a short preimage x′ such that fA(x′) = u is an instan-
tiation of the SIS problem, which is at least as hard as solving the of Shortest
Independent Vector Problem (SIVP) on n-dimensional lattices ([1], [13]). The
problem to invert gA(e, s), where e← Dαq, is known as LWEq,α problem and is as
hard as quantumly solving SIVP on n-dimensional lattices ([16]). The decisional-
LWE problem asks to distinguish the output of gA from uniform.

8 Elena Kirshanova

4 G-trapdoor and Algorithms

In this section we briefly describe the main results of [15]: the definition of a
so-called G-trapdoor and the algorithms InvertO and SampleO for the LWE and
SIS problems.

4.1 Trapdoor generation

In short, a G-trapdoor is a transformation (represented by a matrix R) from
a public matrix A to a special matrix G. G has such a structured form that
solving SIS and LWE problems for this matrix (i.e. inverting gG and fG) can
be done efficiently, while for a uniform A these problems are believed to be
hard. As an example of a matrix G Micciancio and Peikert in [15] consider
G = In ⊗ gt ∈ Zn×nkq , where

gt = [1 2 4 . . . 2k−1] ∈ Z1×k
q , q = 2k.

They also give efficient algorithms for inverting gg(s, e) = s ·gt + et mod q and
Gaussian sampling from preimages of fg(x) = 〈g,x〉 mod q. By executing these
algorithms n times, one solves the same problems for G.

In order to embed this structured matrix into a (uniformly looking) matrix
A together with a transformation R, one should start with a uniform matrix
A0 and a matrix R and construct A = [A0| −A0R + G]. For an appropriate
choice of dimensions (A,AR) is negl(n)-far from uniform by the Leftover Hash
Lemma. Using R one can transform:

[A0| −A0R + G]
[R

I

]
= G

and, therefore, invert one-way functions gA, fA.
In [15] an invertible matrix H is used as: A = [A0|−A0R+HG] to construct

a CCA-secure encryption scheme. In this case the knowledge of both R and H
is needed to perform the transformation. Note, that if H is a zero-matrix, then

[A0| −A0R]
[R

I

]
= 0, and solving LWE (or SIS) for A does not longer reduce

to solving the same problems for G. This fact is used to construct a challenge
ciphertext.

To achieve CCA-security for re-encryption, we need to have a pair of trans-
formations (R1, R2) for A: R1 to generate re-encryption keys (i.e. to solve SIS)
and R2 to decrypt (i.e. to solve LWE). Let us define the generalized definition of
a G-trapdoor:

Definition 13 Let A = [A0|A1| . . . |Ak−1] ∈ Zn×mq for k ≥ 2, and A0 ∈
Zn×m̄q , A1, . . . ,Ak−1 ∈ Zn×wq with m̄ ≥ w ≥ n and m = m̄ + (k − 1) · w
(typically, w = ndlog qe). A G-trapdoor for A is a sequence of matrices R =
[R1|R2| . . . |Rk−1] ∈ Zm̄×(k−1)w such that:

PRE Scheme Based from Lattices 9

[A0|A1| . . . |Ak−1]

R1 R2 · · · Rk−1

I 0 · · · 0
...

...
. . .

...
0 0 · · · I

 = [H1G|H2G| · · · |Hk−1G]

for invertible matrices Hi ∈ Zn×nq and a fixed G ∈ Zn×wq .
To generate a pseudorandom matrix A ∈ Zn×mq with a G-trapdoor R ∈

Zm̄×(k−1)w
q one should iteratively execute the algorithm GenTrapD of [15] but

for k − 1 invertible Hi’s and for Gaussian Ri ← Dm̄×w
s for some s ≥ ηε(Z).

4.2 Algorithms

Here we show how to use a generalized trapdoor for the inversion of the function
gA(s, e) = stA + et mod q and preimage sampling for fA(x) = Ax mod q,
where A ∈ Zn×mq has a trapdoor R ∈ Z(m−w)×w that satisfies Def. 13. The

algorithms below generalize the algorithms InvertO and SampleO of [15].
LWE Inversion. We start by showing how to use the extended notion of

a G-trapdoor to invert an LWE sample bt = stA + et mod q. We refer to this
procedure as InvertO(R,A,b,Hi) and emphasize in the input that Hi is an
invertible matrix, while the other Hj , j 6= i can be zero. So for A = [A0|H1G−
R1A0|...|HiG−RiA0|...]:

1. Compute b̂
t

= b

R1 R2 · · · Rk−1

I 0 · · · 0
...

...
. . .

...
0 0 · · · I

 = [H1G|...|HiG|...Hk−1G] ∈ Z(k−1)w
q ;

2. Set b̂
t

1 = b̂
t
[w · (i− 1)...w · i];

3. Obtain (ŝ, ê) by inverting b̂
t

1 for G. So (ŝ, ê) satisfies b̂
t

1 = ŝG + ê mod q.
4. Compute s = H−ti ŝ ∈ Znq and e = b−Ats ∈ Zmq . Output (s, e).

The algorithm produces a correct output, if the error vector e is “short enough”:
‖e‖ < q/(2‖B‖s) where B is a basis for Λ⊥(G) and s =

√
σ1(Ri)2 + 1. For the

detailed proof of correctness see theorem 5.4 in [15].
Gaussian Sampling. We show below how to sample a Gaussian vector

x ∈ Zmq for a matrix A = [A0| . . . |Ak−1] ∈ Zn×mq with the generalized trapdoor

R ∈ Zm̄×(k−1)w
q and k − 1 invertible Hi’s given a coset u ∈ Znq .

The intuition behind the algorithm SampleO of [15] is the following: for two
distributions X and Y with covariance matrices ΣX and ΣY , the covariance
of their sum is ΣX + ΣY . A spherical Gaussian distribution with a standard
deviation s has covariance matrix s2I. Therefore, having ΣX and a parameter
s as inputs, we can “adjust” ΣY such that X + Y is a spherical Gaussian with
standard deviation s.

So having as input a coset u, a matrix A with a trapdoor R, an invertible
H and a parameter for the output distribution s, we first sample a vector z for

10 Elena Kirshanova

the matrix G with fixed parameter r
√
ΣG (for the construction from section

4.1
√
ΣG = 2). Then we multiply x′ =

[
R
I

]
z. The resulting vector x′ satisfies

Ax′ = u, but has covariance matrix Σx′ = [R|I]T (rΣG)[Rt|I]. In order to
output a vector x as spherical Gaussian with parameter s we add a vector p
with covariance Σp = s2I− [R|I]T (rΣG)[Rt|I].

1. Choose p ← DZm,r
√

Σp
. View it as pt = [p1|p2| . . . |pk], where p1 ∈ Zm̄,

p2, . . . ,pk ∈ Zw.
2. Compute w1 = A0(p1 −R1p2), wi = −A0Ripi+1 for i = 2, . . . , (k − 1);
3. Compute wi = Gpi+1 for i = 1, . . . , (k − 1);

4. Let v1 = H−1
1 (u−w1)−w1, vi = −H−1

i wi −wi for i = 2, . . . , (k − 1);
5. For each i = 1, . . . , (k − 1) choose zi ← DΛ⊥vi

(G),r
√
ΣG

. Concatenate the

obtained vectors to get zt = [z1| . . . |zk−1] ∈ Z(k−1)w;

6. Output x = p +

R1 R2 · · · Rk−1

I 0 · · · 0
...

...
. . .

...
0 0 · · · I

 · z ∈ Zm.

5 Chosen Ciphertext Secure Proxy Re-Encryption

In this section we present our main result: the proxy re-encryption scheme that
employs a G-trapdoor with the associated algorithms from the previous section.
Before giving the formal description of the scheme we provide an intuition behind
the generation of the re-encryption keys. The ability to sample short vectors for
any coset can be extended to performing the sampling algorithm for any n×m
matrix in a column-wise fashion, that is for each column (coset) we can output
a Gaussian column-vector and after m samplings concatenate the result into a
matrix. This idea was used in a trapdoor delegation algorithm in [15]. If the in-
put matrix is some public key matrix A′, then the result of sampling (a matrix
X) is a transformation A ·X = A′ between two public keys.

In order to accomplish both tasks: re-encyption key generation and decryp-
tion, we propose to use the generalized definition of a G-trapdoor (Def. 13).
Thus, we achieve a re-encryption functionality: we sample small matrices with
one G-trapdoor (R1), and at the same time we perform the decryption operation
using another G-trapdoor (R2).

5.1 Construction of the single-hop PRE

Let 1n be the security parameter and let r refer to a fixed function w(
√

log n).

– The modulus q is defined as a large enough prime power q = pe = poly(n)
and k = O(log q) = O(log n). We define m̄ = O(nk) and the total dimension
of the public key as m = m̄+ 2nk.

PRE Scheme Based from Lattices 11

– G ∈ Zn×nkq is a matrix of a special structure (see section 4.2 for an example),
so there are efficient algorithms to invert gG and to sample for fG.

– the trapdoors Ri’s are sampled from the Gaussian D = Dm̄×nk
Z,w(

√
logn)

, so that

(A0,A0R1,A0R2) is negl(n)-far from uniformly chosen matrices (U1,U2,
U3) ∈ Zn×m̄q × Zn×nkq × Zn×nkq for A0 ← Zn×m̄q and for any R1,R2 ← D.

– All the invertible matrices H ∈ Zn×nq that are used in the scheme, are chosen
from a set with the “unit differences” property (see [15] for an example): for
any two H′,H′′ their difference H′ −H′′ is also invertible.

– the LWE error rate α for single-hop PRE should satisfy 1/α = O((nk)3) · r3.

We encode the message space {0, 1}nk to the cosets of Λ/2Λ for the lattice
Λ = Λ(Gt) using any basis B ∈ Znk of Λ, namely for a message m ∈ {0, 1}nk we
define the encoding function as enc(m) = Bm ∈ Znk. Notice that this mapping
can be efficiently inverted.

– KeyGen(1n): choose A0 ← Zn×m̄q , R1,R2 ← D and an invertible matrix

H ← Znk×nkq . Compose the matrix A = [A0|A1|A2] = [A0| − A0R1| −
A0R2] ∈ Zn×mq and set the public key as pk = (A,H). The secret key is the

matrix sk = [R1|R2] ∈ Zm̄×2nk with small entries. Notice that

[
A0|A1|A2

] R1 R2

I 0
0 I

 =
[
0|0
]
∈ Zn×2nk

q .

– Enc(pk = ([A0|A1|A2], H),m ∈ {0, 1}nk): choose a non-zero invertible
matrix Hu, and a vector s ← Znq . Set Au = [A0|A1 + HG|A2 + HuG].

Sample three error vectors e0 ← Dm̄
Z,αq, e1, e2 ← Dnk

Z,s, where s2 = (‖e0‖2 +

m̄(αq)2) · r2. The composed error vector is a concatenation of the chosen
vectors e = (e0, e1, e2) ∈ Zm. Compute

bt = 2(st[A0|A1 + HG|A2 + HuG] mod q) + et + (0,0, enc(m))t mod 2q,

where the first zero vector has dimension m̄, the second has dimension nk.
Output the ciphertext c = (Hu,b) ∈ Zn×nq × Zm2q.

– Dec(pk = ([A0|A1|A2], H), sk = [R1|R2], c = (Hu,b)): Using matrix Hu

compute Au = [A0|A1 + HG|A2 + HuG].

1. If c has invalid form or Hu = 0, output ⊥.
2. With the secret key call an algorithm InvertO([R1|R2], Au,b,Hu). On

this input the algorithm (section 4.2) computes the product:

[
A0|A1 + HG| −A2 + HuG

] R1 R2

I 0
0 I

 =
[
HG|HuG

]
∈ Zn×2nk

q .

As output we receive two vectors z ∈ Znq and e = (e0, e1, e2) ∈ Zm̄q ×
Znkq × Znkq that satisfy bt = ztAu + et mod q.

12 Elena Kirshanova

3. Check the lengths of the obtained vectors, namely, if ‖e0‖ ≥ αq
√
m̄ or

‖ej‖ ≥ αq
√

2m̄nk · w(
√

log n) for j = 1, 2, output ⊥.
4. Parse v = b − e mod 2q as v = (v0,v1,v2) ∈ Zm̄2q × Znk2q × Znk2q . If

v0 /∈ 2Λ(At
0), output ⊥. Otherwise, compute

vt

R1 R2

I 0
0 I

 mod 2q ∈ Znk2q

and apply enc−1 to the last nk coordinates.

– ReKeyGen(pk = ([A0|A1|A2], H), sk = [R1|R2], pk′ = ([A′0|A
′
1|A

′
2], H′)):

1. Using the first part of a secret key - the Gaussian matrix R1 - and the
invertible H ∈ Zn×nq from the public key, execute SampleO (section 4.2)

to sample from the cosets of the A′0. Specifically, we sample column-wise
so that for each column of the A′0 we obtain an m̄ + nk-dimensional
column of the re-encryption key. After sampling m̄ times we receive an
(m̄ + nk) × m̄ matrix and parse it as two matrices X00 ∈ Zm̄×m̄ and
X10 ∈ Znk×m̄ matrices with Gaussian entries of parameter s.[

A0| −A0R1 + HG
] [X00

X10

]
=
[
A′0
]
.

2. Continue sampling for the cosets obtained from the columns of the ma-
trix [A′1 + H′G] of pk′. But this time we increase (as explained in the
Gaussian sampling algorithms in section 4.2), the Gaussian parameter
of the resulting sampled matrix up to s

√
m̄/2

[
A0| −A0R1 + HG

] [X01

X11

]
=
[
A′1 + H′G

]
.

To achieve a correct re-encryption for the last sampling change the cosets
by adding −A2 = A0R2:[

A0| −A0R1 + HG
] [X02

X12

]
=
[
A′2 + A0R2

]
,

where X01,X02 ∈ Zm̄×nk, X11,X12 ∈ Znk×nk with entries distributed
as Gaussian with parameter s

√
m̄.

3. The re-encryption key is a matrix with Gaussian entries:

rk =

X00 X01 X02

X10 X11 X12

0 0 I

 ∈ Zm×m.

For any matrix B ∈ Zn×nk the re-encryption key satisfies:

[A0|A1 + HG|A2 + B] ·

X00 X01 X02

X10 X11 X12

0 0 I

 = [A′0|A
′
1 + H′G|A′2 + B] (1)

PRE Scheme Based from Lattices 13

– ReEnc(rk, c = (Hu,b)): to change the underlying public key in the ciphertext
component b compute b′t =

bt · rk = st[A′0|A
′
1 + H′G|A′2 + HuG] + ẽt + (0,0, enc(m))t mod2q, (2)

where ẽ = (ẽ0, ẽ1, ẽ2) and ẽ0 = e0X00 + e1X10, ẽ1 = e0X01 + e1X11, ẽ2 =
e0X02 + e1X12 + e2. Finally, output c′ = (Hu,b

′).

Remark 14 Instead of mapping a message m ∈ {0, 1}nk to the lattice cosets,
one can use a more common encoding for lattice-based schemes: enc(m) = mb q2c.
In this case one should add an extra syndrome A3 ∈ Zn×nkq to the public key
and sample one more error vector e3 ∈← Dm̄

Z,αq for the encryption, so a ci-

phertext is of the form bt = st[A0|A1 +HG|A2 +HuG|A3] + (e0, e1, e2, e3)t +
(0,0,0, enc(m))t mod q. For the re-encryption key generation one more sam-

pling is needed:
[
A0| −A0R1 + HG

] [X03

X13

]
=
[
A′3 −A3

]
, which results in an

extended (columns

[
X03

X13

]
are added) re-encryption key. All the arguments below

on correctness and security can be easily adapted for this case.

5.2 Correctness

In the re-encrypted ciphertext the error terms are larger than in the original
ciphertext (that is the ones that have not been re-encrypted). In the following
lemma we show that with the appropriate choice of the LWE parameters α and
q the decryption algorithm can tolerate the noise growth.

Lemma 15 Our PRE scheme with message space M = {0, 1}nk decrypts cor-
rectly.

Proof. Recall that by Definition 3 we have to show that the decryption algo-
rithm outputs a correct plaintext both for the original and for the re-encrypted
ciphertext. So first of all we describe an original encryption under a public key
pk and then proceed with its re-encryption to another public key pk′.

Let pk = ([A0|A1|A2],H), pk′ = ([A′0|A
′
1|A

′
2],H′) be the public keys output

by KeyGen(1n) together with two trapdoors sk = [R1|R2], sk′ = [R′1|R
′
2], so the

first pair (pk, sk) will be the delegator’s keys, the second (pk′, sk′) will be for the
delegatee. We run the ReKeyGen(pk, sk, pk′) algorithm to obtain

rkpk→pk′ =

X00 X01 X02

X10 X11 X12

0 0 I

 .
As we apply this re-encryption key to a ciphertext b that encrypts a message

m ∈ {0, 1}nk under the delegator’s public key pk = [A0|A1|A2],H with the
invertible matrix Hu and e = (e0, e1, e2), we have bt · rkpk→pk′ =

(2st[A0|A1 + HG|A2 + HuG] + et + (0,0, enc(m)t) · rkpk→pk′

14 Elena Kirshanova

= st[A0X00 + (A1 + HG)X10|A0X01 + A1X11|A0X02 + A1X12 + A2 + HuG]+

(e0X00 + e1X10, e0X02 + e1X11, e0X02 + e1X12 + e2)t + (0,0, enc(m))t =

= st[A′0|A
′
1H
′G|A′2 + HuG] + (ẽ0, ẽ1, ẽ2)t + (0,0, enc(m))t,

where the last equation follows from Eq.(1) of the re-encryption key rkpk→pk′ .
Now we estimate how the re-encryption algorithm affects the noise and justify

the correctness of the decryption for a re-encrypted ciphertext. The arguments
for the original ciphertexts are essentially the same as in [Lemma 6.2] of [15].

In the decryption procedure we multiply a (re-encrypted) ciphertext (and
thus its error term) by sk′ = [R′1|R

′
2] padded with the identity matrix. So in order

to obtain a correct output, we require that in the Eq.(2) both terms ẽ0R
′
1 + ẽ1

and ẽ0R
′
2+ẽ2 satisfy the length condition of the decryption algorithm: ẽ0R

′
1+ẽ1,

ẽ0R
′
2 + ẽ2 ∈ P1/2(q ·B−t). The terms expand under the multiplication as

ẽ0R
′
1 + ẽ1 = e0X00R

′
1 + e1X10R

′
1 + e0X01 + e1X11, (3a)

ẽ0R
′
2 + ẽ2 = e0X00R

′
2 + e1X10R

′
2 + e0X02 + e1X12 + e2, (3b)

where (e0, e1, e2) ∈ Zm is the error vector of the original ciphertext b.
Since we are interested in upper bounds for the length of (3a) and (3b), we

should estimate how the length of the Gaussian vectors e0, e1, e2 is affected by
the matrix multiplication. We analyze each term of Eq.(3b) separately (the same
arguments hold for the terms of (3a)).

According to the sampling algorithm, the parameter s for each column of
the X00 (and of X10) is as small as

√
σ1(R1)2 + 1 ·

√
σ1(ΣG) + 2 · r, where R1

is the trapdoor that was used in the re-encryption key generation. Combining
Lemmas 11 and 12 and the fact that for the G matrix σ1(ΣG) = 4, we obtain

σ1(X00R
′
2) ≤ σ1(X00) · σ1(R′2) ≤ C · 4

√
6m̄ ·

√
σ1(R1)2 + 1 · r2,

where C ≈ 1/2π. By Lemma 7, we have ‖e0‖ < αq
√
m̄ and therefore

‖e0X00R
′
2‖ < αq

2
√

6

π
m̄3/2

√
σ1(R1)2 + 1 · r.

Both e1, e2 are sampled from the Gaussian distribution with parameter s,
where s2 = (‖e0‖2 + m̄(αq)2) · r2, so their lengths are bounded as ‖e1‖, ‖e2‖ <
αq
√

2m̄nk · r. Hence, for the second term of Eq. (3b) it holds that

‖e1X10R
′
2‖ < αq

3
√

6

π
m̄
√

2m̄nk ·
√
σ1(R1)2 + 1 · r3.

Now we analyze the singular value for matrix X02 that was sampled with pa-
rameter s

√
m̄/2 (the same holds for X01,X12,X11):

σ1(X02) ≤ 2
√

3m̄ ·
√
σ1(R1)2 + 1 · r,

PRE Scheme Based from Lattices 15

which implies ‖e0 X02‖ ≤ 2
√

3αqm̄ ·
√
σ1(R1)2 + 1 · r and ‖e1X12‖ ≤

√
2αqm̄·√

2m̄nk ·
√
σ1(R1)2 + 1 · r2. By inspecting the remaining term and taking into

account the fact that m̄ = O(nk) and σ1(R1) ≤ O(
√
nk) · r, finally we have

‖ẽ0R
′
2 + ẽ2‖ < αq ·O(nk)3 · r3.

By taking 1/α = O(nk)3 · r3 we have the desired property for both error
terms, ẽ0R

′
1 + ẽ1, ẽ0R

′
2 + ẽ2 ∈ P1/2(q ·B−t).

The security proof for our PRE scheme is essentially an adapted version
of [15] [Theorem 6.3] to the proxy re-encryption model with a generalized G-
trapdoor. As discussed in section 4.2, in order to solve LWE for any matrix A
it is necessary to know both a transformation R and at least one invertible H
embedded into A. So we construct a simulator in a way that as long as there is
a nonzero matrix H in a ciphertext, we are able to transform it to a G-matrix
and decrypt, but once H equals to the zero matrix, no R-transformation can be
applied to a ciphertext to reduce it to a G-matrix and recover a message. So
when no invertible H is involved, we embed our LWE samples into a ciphertext
and hence, decryption of the challenge helps us in deciding LWE.

Theorem 16 The above scheme is PRE-CCA1-secure assuming the hardness of
decision-LWEq,α′ for α′ = α/3 ≥ 2

√
n/q.

Proof. First, by [[14], Theorem 3.1] we transform the samples from LWE distribu-
tion As,α′ of the form (a, b = 〈s,a〉/q+e mod 1) ∈ Znq×T to the form (a, 2(〈s,a〉
mod q) + e′ mod 2q) with e′ → DZ,αq via mapping b 7→ 2qb + DZ−2qb,s, where
s2 = (αq)2 − (2α′q)2 ≥ 4n ≥ ηε(Z)2. The transformation maps the uniform
distribution over Znq × T to the discretized uniform distribution over Znq × Z2q.

Once the LWE samples are of the desired form, we construct column-wise
a matrix A∗0 out of these samples and a vector b∗ out of the corresponding
components b’s. A target’s user public key is generated as follows: choose two
invertible matrices H∗1,H

∗
2 ∈ Zn×nq , the secret R∗1,R

∗
2 ← D and output pk∗ =

([A∗0| −A∗0R∗1 −H∗1G| −A∗0R∗2 −H∗2G], H∗1). Since the target user belongs to
the set of honest users (we do not reveal his secret key), the matrix H∗2 remains
statistically hidden from the adversary.

To generate the public key of an honest user we choose two matrices X00 ∈
Zm̄×m̄q , X01 ∈ Znk×m̄q from a Gaussian distribution with parameter s and set

A′0 =
[
A∗0| −A∗R∗1

] [X00

X10

]
.

Next we choose R′1,R
′
2 ∈ Zm̄×nkq from a distribution B defined over Z that

outputs 0 with probability 1/2 and ±1 with probability 1/4 each. We calculate
the rest of the public key as

A′0R
′
1 =

[
A∗0| −A∗R∗1

] [X00

X10

]
·R′1, A′0R

′
2 =

[
A∗0| −A∗R∗1

] [X00

X10

]
·R′2.

16 Elena Kirshanova

So the whole public key of a honest user is pk′ = ([A′0| − A′0R
′
1| − A′0R

′
2 −

H∗2G], H′) for some randomly chosen invertible H′ ∈ Zn×nq . We add −H∗2G

to each honest key. If we choose m̄ ≥ n lgq + 2nkδ for a small δ, then by ([2]),
A′0R

′
1 is negl(n)-far from uniform, then again −H∗2 is hidden from the adversary.

We denote

[
X01

X11

]
=

[
X00

X10

]
· R′1 and

[
X02

X12

]
=

[
X00

X10

]
· R′2. Each entry of the

resulting matrices X01,X11,X02,X12 is the inner product of a Gaussian m̄-
dimensional row-vector (of either X00 or X10) and a {0,−1, 1}-vector with half
of the coordinates equal zero, which is equivalent to m̄/2 additions of Gaussians

with parameter s. Since in the scheme we sample

[
X01

X11

]
,

[
X02

X12

]
with parameter

s
√
m̄/2, the simulated re-encryption key

rkpk∗→pk′ =

X00 X01 X02

X10 X11 X12

0 0 I

 (4)

has the same distribution as a re-encryption key in the scheme. We generate the
public keys and secret keys for corrupted users in the same way as in the scheme.

To generate a re-encryption key rkpk′→pk′′ for any two pk′ 6= pk∗, pk′′ with
invertible matrices H′,H′′ as corresponding second components, where either

both public keys are corrupted or honest, we sample with H′ a matrix

[
X′00

X′10

]
for

a fixed parameter s and

[
X′01

X′11

]
,

[
X′02

X′12

]
with fixed s

√
m̄/2 as in the scheme. Note

that by fixing the output standard deviation we achieve the same distribution of
the re-encryption keys between two honest and two corrupted users, while the
trapdoor matrices in these two cases have different parameters: r for a Gaussian
R in the corrupted case, and

√
2π for B-distributed R of an honest user.

To answer the decryption queries for a ciphertext c = (bt,Hu), where

bt = st[A′0| −A′0R
′
1 + H′G| −A′0R

′
2 − (H∗2 −Hu)G] + et + (0,0, enc(m))t

under the honest public key pk′ = [A′0| − A′0R
′
1| − A′0R

′
2 − H∗2G], H′) we

first check that Hu is invertible. Then we use the fact that H∗2 −Hu ∈ Zn×nq

is an invertible matrix. So for the second step of our decryption algorithm we
call InvertO on inputs ([R′1|R

′
2],Au = [A′0| − A′0R

′
1 + H′G| − A′0R

′
2 − (H∗2 −

Hu)G],bt, (H∗2−Hu)) and receive z ∈ Znq and e ∈ Zmq such that bt = ztAu+et

mod q. If the length of e is short enough (step 3) and for v = b−e = (v0,v1,v2)
it holds that v0 ∈ Zm̄q and v0 ∈ 2Λ(At

0) (step 4), then v can be expressed as

vt = 2(stAu mod q) + (0,0, enc(m)t mod 2q.

To proceed with the decryption we multiply

vt

R1 R2

I 0
0 I

 = 2(st[H′G|(H∗2 −Hu)G] mod q) + (0, enc(m)) mod 2q.

PRE Scheme Based from Lattices 17

Applying enc−1 to the last nk coordinates we are able to decrypt with the
message m. To answer the re-encryption query from pk′ = [A′0| − A′0R

′
1| −

A′0R
′
2 −H∗2G] with H′ ∈ Zn×nq to pk′′ = [A′′0 | −A′′0R′′1 | −A′′0R′′2 −H∗2G] with

H′′ ∈ Zn×nq we apply rkpk′→pk′′ =

X′00 X′01 X′02

X′10 X′11 X′12

0 0 I

 generated as in the original.

The re-encryption transforms

bt = st[A′0| −A′0R
′
1 + H′G| −A′0R

′
2 − (H∗2 −Hu)G] + et + (0,0, enc(m))t

to b′t = st[A′′0 | −A′′0R′′1 + H′′G| −A′′0R′′2 − (H∗2−Hu)G] + ẽt + (0,0, enc(m))t,
decryptable under sk′′ = [R′′1 |R

′′
2].

To answer the decryption query we proceed in the same way as for any honest
user; note that in this case the ciphertext is of the form bt =

2(st[A∗0| −A∗0R∗1| −A∗0R∗2 − (H∗2 −Hu)G] modq) + et + (0,0, enc(m))t mod2q.

To summarize, we can answer the decryption queries of a ciphertext c =
(bt,Hu) for any honest user as long as Hu 6= H∗2, which is the case with over-
whelming probability. If Hu = H∗2 we answer the decryption query with ⊥.

Finally, for the challenge ciphertext that encrypts the message m ∈ {0, 1}nk
under pk∗, we choose Hu = H∗2, in which case the encryption is of the form

bt = 2(st[A∗0| −A∗0R∗1| −A∗0R∗2] mod q) + et + (0,0, enc(m))t mod 2q

for some s ∈ Znq and small e. But instead of calculating this vector b, we take
the vector b∗ prepared at the beginning of the game. Notice that if the simulator
receives the LWE distribution, then b∗t = 2(stA∗0 mod q) + êt0 mod q, where
s ← Znq , ê0 ← DZ,αq. We set the first nk coordinates of bt to b∗t. We set the
last 2nk coordinates of b to

bt1 = bt0R
∗
1 + êt1 mod 2q ∈ Znk2q , (5)

bt2 = bt0R
∗
2 + êt2 + enc(m) mod 2q ∈ Znk2q , (6)

where ê1, ê2 ← Dnk
αq
√
m·r. Then the challenge ciphertext is (b = (bt0,b

t
1,b

t
2),H∗2),

which has the same distribution as any ciphertext in the scheme, since êt0R1 + êt1
– the resulting noise terms in bt1 – is according to [[16] Corollary 3.10] within
negl(n)-distance from DZ,s, where s2 = (‖ê0‖2 + m̄(αq)2) · r2 – the parameter
for vectors e1, e2 in the scheme. The same applies for the noise terms in bt2.

Note that (A∗0,b
∗,A∗0R∗1,A

∗
0R∗2,−b∗R∗1,−b∗R∗2) is negl(n)-uniform for

R∗1 ← D, R∗2 ← D by the leftover hash lemma. So the simulated challenge
ciphertext has the same distribution as any encrypted message.

6 Conclusions

We presented a unidirectional proxy re-encryption scheme based on hard prob-
lems on lattices. It can be seen from the security proof that our generalized G-
trapdoor definition leads to a CCA-1 secure construction, but we cannot achieve

18 Elena Kirshanova

CCA-2 security. Another limitation of our construction is that its security is
proved in the selective model only. We leave it as an open problem to construct
a CCA-2 secure lattice-based construction in the adaptive setting.

Acknowledgements. I thank Alex May for careful reading and valuable
comments, Chris Peikert for fruitful discussions and S. Aleshnikov for suggesting
the topic.

References

1. M. Ajtai. Generating hard instances of lattice problems. In Proceedings of STOC,
pages 99–108, 1996.

2. J. Alwen and C. Peikert. Generating shorter bases for hard random lattices. Theory
of Computing Systems, 48(3):535–553, Apr. 2011.

3. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. In NDSS, pages 29–43,
2005.

4. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. In ACM TISSEC, pages
29–43, 2006.

5. W. Banaszczyk. New bounds in some transference theorems in the geometry of
numbers. In Mathematische Annalen, Volume 296, Issue 1, pages 625–635, 1993.

6. M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy
cryptography. In EUROCRYPT, pages 127–144. Springer-Verlag, 1998.

7. R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-encryption. In
Proc. of ACM-CCS007, pages 185–194. ACM Press, 2007.

8. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In Proceedings of CRYPTO 84, pages 10–18, 1985.

9. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009.

10. M. Green and G. Ateniese. Identity-based proxy re-encryption. In Proceedings of
the 5th international conference on Applied Cryptography and Network Security,
ACNS ’07, pages 288–306, 2007.

11. R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University
Press, 1994.

12. B. Libert and D. Vergnaud. Unidirectional chosen-ciphertext secure proxy re-
encryption. In PKC08, LNCS, 2008.

13. D. Micciancio and O. Regev. Worst-case to average-case reductions based on
gaussian measures. In SIAM J. on Computing, pages 372–381, 2004.

14. C. Peikert. An efficient and parallel gaussian sampler for lattices. In CRYPTO,
pages 145–166, 2006.

15. C. Peikert and D. Micciancio. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT, pages 700–718, 2011.

16. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84–93. ACM Press, 2005.

17. R. Vershynin. Introduction to the non-asymptotic analysis of random matri-
ces, 2011. Available from: http://www-personal.umich.edu/~romanv/papers/

non-asymptotic-rmt-plain.pdf.
18. K. Xagawa. Cryptography with Lattices. PhD thesis, Tokyo Institute of Technology,

2010. Available from: http://xagawa.net/pdf/2010Thesis.pdf.

