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Abstract. To circumvent the lack of generic constructions of identity-
based encryption (IBE), Dodis et al. (EUROCRYPT ’02) introduced the
notion of bounded-collusion IBE (BC-IBE), where attackers only learn
secret keys of an a-priori bounded number t of identities. They provided
a generic BC-IBE construction from any semantically-secure encryption
scheme which, however, suffers from a ω(t) blow-up in ciphertext size.
Goldwasser et al. (TCC 2012) recently presented a generic construc-
tion with no ciphertext-length blow-up. Their construction requires an
underlying public-key scheme with a key homomorphism, as well as a
hash-proof-style security definition that is strictly stronger than semantic
security. This latter requirement in particular reduces the applicability
of their construction to existing schemes.
In this paper, we present the first generic constructions of BC-IBE from
semantically-secure encryption schemes with no ciphertext-length blow-
up. Our constructions require different degrees of key-homomorphism
and malleability properties that are usually easy to verify. We provide
concrete instantiations based on the DDH, QR, NTRU, and LWE as-
sumptions. For all of these assumptions, our schemes present the smallest
BC-IBE ciphertext size known to date. Our NTRU-based construction
is particularly interesting, due to the lack of NTRU-based IBE construc-
tions as well as the fact that it supports fully-homomorphic evaluation.
Our results also yield new constructions of bounded CCA-secure cryp-
tosystems.

1 Introduction

Public-key encryption.One of the classic and best-studied models of secure
communication is that of public-key encryption (PKE) [12], in which each indi-
vidual independently generates a public-key / secret-key pair. Anyone possessing
the public key can encrypt a message such that only the individual with the asso-
ciated secret key can decrypt. To date, there are innumerable PKE constructions
proven secure based on a wide variety of hardness assumptions.
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However, the basic public-key model lacks a well-developed structure for pub-
lic key verification. One can encrypt messages using a public key, but the model
implies a trust that the public key belongs to a specific individual, unless an
expensive public-key infrastructure is in place. In order to make explicit these
assumptions and avoid potential difficulties with key distribution, cryptogra-
phers have explored other models of encryption.

Identity-based Encryption.The identity-based encryption (IBE) model, in-
troduced by Shamir in 1984 [30], attempts to alleviate the above concerns. In
this model, a trusted center generates a master secret key and public parameters
for the entire system. Anyone can encrypt a message to any user of the system
using only these global public parameters and the user’s identity. To decrypt, a
user must obtain the secret key for their identity from the trusted center (who
presumably authenticates the user before distributing the key).

The security model for IBE assumes that the adversary can adaptively obtain
an arbitrary number of secret keys for users in the system, and requires that
messages encrypted to any other user still be indistinguishable to the adversary.
This models the idea that an individual’s messages are still secure even if an
arbitrary number of other users of the system collude against that user.

The first constructions of IBE came in 2001, by Boneh and Franklin [5] and
Cocks [9]. Both of these constructions assumed the existence of random oracles;
however, subsequent work by Boneh and Boyen [3] and Waters [32] achieved
IBE in the standard model. There now exist a number of IBE constructions
in both the random oracle and standard models, under hardness assumptions
of problems in bilinear groups (e.g. [5, 7, 3, 32]), various forms of the Quadric
Residuosity (QR) problem (e.g. [9, 6]), and the Learning With Errors problem
(e.g. [20, 8, 1]). Some of these, and in particular all those based on the standard
QR problem, additionally require random oracles. However, no constructions of
IBE are known from generic primitives.

Bounded-collusion IBEs.As an attempt to come up with constructions un-
der a wider range of assumptions, cryptographers began looking at a variant of
IBE known as Bounded-Collusion IBE (BC-IBE). In this model, one only guar-
antees security against an adversary who obtains secret keys associated with at
most t identities, where the size of the parameters of the system are allowed
to depend on t. Falling short of achieving full security, the bounded-collusion
model can be a realistic assumption in many settings, and is in fact a necessary
restriction to achieve the more general notion of functional encryption [24]. Ad-
ditionally, it has been studied in other settings, notably broadcast encryption
and revocation (e.g. [17–19, 27, 29, 25, 13]).

The first construction of BC-IBE came in the context of key-insulated sys-
tems in [15]. This paper gave a general reduction from any semantically secure
public-key cryptosystem to a BC-IBE scheme. However, their construction suf-
fers from a large ciphertext-size blowup – the resulting ciphertext length is a fac-
tor ω(t) larger than that of the underlying encryption scheme. To mitigate this,
this work was recently followed by that of Goldwasser et al. [22]: They provide
a new construction that relies on a public-key encryption scheme which exhibits



key-homomorphic properties, i.e., secret keys and public keys are elements of
respective groups (with possibly different operations, which we denote by + and
·), and there exists a homomorphism µ such that µ(sk + sk′) = µ(sk) + µ(sk′),
where µ(sk) and µ(sk′) are valid public keys for which sk and sk′ yield cor-
rect decryption, respectively. More concretely, the GLW construction generates
multiple public-key / secret-key pairs (pk1, sk1), . . . , (pkn, skn), letting the pub-
lic parameters and the master secret key of the scheme be pp = (pk1, . . . pkn)
and msk = (sk1, . . . , skn), respectively. Then, an efficient map φ associates every
identity ID with a vector [id1, . . . , idn], and a message m is encrypted for an
identity ID as the ciphertext c = Enc(pkID,m), where pkID =

∏n
i=1 pk

idi
i . By the

existence of µ, this ciphertext can be decrypted using skID =
∑n

i=1 idi · ski, since
the homomorphism guarantees that pkID = µ(skID). The map φ is subjected
to a combinatorial requirement that disallows computing skID given skID′ for t
different ID′ 6= ID. The GLW construction preserves the ciphertext size of the
underlying encryption, but its security requires the latter to satisfy a property
which is strictly stronger than semantic security. This property is inspired by the
security of hash-proof systems [11], and in particular does not allow the homo-
morphism µ to be one-to-one. This somewhat hinders the applicability of their
framework to existing encryptions schemes not designed with this security goal
in mind.

Our contributions. In this paper, we seek for generic constructions of BC-
IBE which rely on encryption schemes that solely satisfy the standard security
notion of semantic security in addition to some syntactical, non-security-related,
properties which can be easily verified. Our constructions have the added benefit
of conceptual simplicity, and the resulting instantiations from concrete assump-
tions either outperform or abstract existing BC-IBE constructions along different
axes.

In summary, this paper makes three main contributions:

1. As our first contribution, we revisit the GLW approach in the context of
selective security. The latter security notion only demands security for at-
tackers attempting to break the confidentiality of messages encrypted for an
a-priori specified identity (in particular, independently of the parameters of
the scheme). We prove that the GLW approach is selectively secure for ev-
ery semantically secure encryption scheme with key-homomorphic properties
whenever φ satisfies a slightly stronger property that the one used in [22],
namely that of cover-freeness introduced in [16] and used in several other
works (e.g. [27, 10, 14], and others). While being strictly weaker than the
notion of full security, selective security is sufficient for some applications,
as discussed below.

2. Whenever the underlying semantically-secure scheme satisfies an additional
new property – which we call weak multi-key malleability – we prove that the
GLW construction achieves full BC-IBE security, i.e., confidentiality holds
even with respect an identity chosen adaptively after learning the parameters
of the schemes as well as secret keys for at most t other identities. Roughly,



our malleability property states that given the encryption of c = Enc(pk,m)
of an unknown message m under a known public key pk, and given an ad-
ditional public-key / secret-key pair (pk′, sk′), we can efficiently produce a
ciphertext which is indistinguishable from an encryption of m under pk ·pk′.
An example scheme with this property is ElGamal encryption – hence we
directly obtain a DDH-based BC-IBE scheme from ElGamal encryption.

3. As our third contribution, we provide a new, alternative construction that
relies on a different form of malleability (which we simply call multi-key
malleability), and does not require any explicit key-homomorphic structure.
Intuitively, our notion requires that given c = Enc(pk,m) for an unknown
message m, and another public key pk′, we can obtain a new ciphertext c
which decrypts to m under a combination of the secret keys sk and sk′ as-
sociated with pk and pk′. We provide an efficient instantiation based on
NTRU [26], exploiting it multi-key homomorphic properties recently ob-
served by Lopez-Alt et al. [28]. This is of particular interest due to the
fact that no fully-secure NTRU-based IBE scheme is known to date. More-
over, our constructions support homomorphic evaluation of ciphertexts, and
this is the only construction of identity-based fully homomorphic encryption
beyond the recent result by Gentry, Sahai, and Waters [21].

To conclude, we stress that our instantiation of the GLW approach is somewhat
orthogonal to the one by Goldwasser et al.: Our instantiation requires indeed
somewhat larger public-parameters at the cost of a weaker assumption on the
underlying encryption scheme, hence leading to wider applicability and often
smaller ciphertexts. Nonetheless, we believe that large ciphertexts are generally
a more limiting factor than large parameters, especially in settings where many
messages are encrypted with the same parameters.

A summary of our instantiations and their parameters is given in Table 1
comparing them to previously known best constructions. For LWE and NTRU,
the best previously known construction was obtained by using the construction
of [15]. We also provide a construction based on QR which does not outperform
the one of [22], even though we find it conceptually simpler.

From IBE to CCA-security.A somewhat related problem is that of building
bounded-CCA secure public-key encryption [10]: Concretely, for t-bounded CCA
security, semantic security must hold also for attackers which can decrypt up to
t ciphertexts other than the challenge ciphertext for which we attempt to break
confidentiality. We note that by re-interpreting a result of Boneh et al. [4], every
construction of a BC-IBE scheme selectively secure against t-collusions directly
yields a t-bounded CCA secure PKE. Hence, our BC-IBE constructions also
directly yield better bounded-CCA-secure constructions, in terms of ciphertext
size and/or conceptual simplicity. When applying our framework to ElGamal,
for example, we obtain a construction which is equivalent to the one proposed
in [10], for which a direct security proof was given. Moreover, our instantiation
from NTRU is indeed more efficient than the best fully CCA-secure construction
from NTRU given by Steinfeld et al. [31].



Construction Assumptions Ciphertext size PK size

DKXY02 [15] Semantically secure
PKE

Θ(t log |ID|)
PKE ciphertexts

Θ(t2 log |ID|) PKE PKs

GLW12 [22] PKE w/linear hash
proof and key homo-
morphism

Same as
underlying PKE

Θ(t log |ID|) PKE PKs

This work Semantic-secure PKE;
key homomorphism,
weak multi-key mal-
leability

Same as
underlying PKE

Θ(t2 log |ID|) PKE PKs

This work Semantic-secure PKE;
multi-key malleability

Same as
underlying PKE

Θ(t2 log |ID|) PKE PKs

DKXY02 [15] DDH 3 group elements Θ(t) group elements

GLW12 [22] DDH 3 group elements Θ(t log |ID|) group elts

This work DDH 2 group elements Θ(t2 log |ID|) group elts

GLW12 [22] QR 2 RSA group
elements

Θ(t log |ID|) group elts

This work LWE Same as
GPV [20]

Θ(t2 log |ID|) GPV PKs

This work NTRU Same as NTRU-
Encrypt [26]

Θ(t2 log |ID|) NTRU PKs

Table 1. Comparison with previous works on BC-IBE. Here t is the collusion
parameter and |ID| is the total number of identities in the system. PK and ciphertext
size implicitly include the security parameter. The upper section of the table considers
generic constructions, whereas the lower section describes existing constructions from
concrete assumptions. Note that linear hash proof property implies semantic security,
while being strictly stronger than it.

2 Preliminaries

2.1 Public-key Encryption

PKE Syntax. As usual, a public-key encryption (PKE) scheme is a triple of
efficient algorithms PKE = (Gen,Enc,Dec) where:

- Gen is the (randomized) key generation algorithm: it takes no input (other
than the security parameter 1k , which is implicit and generally omitted),
and outputs a public-key / secret-key pair (pk, sk).

- Enc and Dec are the (randomized) encryption and the (deterministic) decryp-
tion algorithms, such that for all valid public-key / secret-key pairs (pk, sk)
output by Gen, and all messages m, the probability P[Dec(sk,Enc(pk,m)) 6=
m] is negligible, where the probability is taken over the random coins of the
encryption algorithm Enc.

Often, we allow public-key encryption schemes to additionally depend on ex-
plicit public parameters pp (randomly generated in an initial phase and shared
across multiple instances of the PKE scheme) on which all of Gen, Enc, and Dec



are allowed to depend. Examples include the description of a group G with its
generator g. We will often omit them in the descriptions of generic constructions
from PKE schemes.

Security of PKE. We define security against chosen-plaintext attacks (for
short, IND-CPA security) [23, 2] for a PKE scheme PKE = (Gen,Enc,Dec) via a
security game involving an adversary A which is initially given the public key pk,
and subsequently outputs a pair of equal-length messagesm0,m1. The adversary

continues after receiving a challenge ciphertext c∗
$← Enc(pk,mb) for a random

secret bit b, and then finally outputs a guess b′ for b. We say that PKE is (τ, ε)-
ind-cpa-secure if all attackers A with time complexity at most τ guess the right
bit (i.e., b′ = b) with probability at most 1+ε

2 . Moreover, it is simply ind-cpa
secure if for all polynomials p, there exists a negligible function ν such that the
scheme is (p(k), ν(k))-ind-cpa-secure for all values of the security parameter k.
We also consider security against chosen ciphertext attacks (for short, IND-CCA
security), where the adversary is additionally able to decrypt ciphertexts under
the constraint that a decryption query for the challenge ciphertext is never asked.
We say that PKE is (τ, t, ε)-ind-cca-secure if any attacker with time complexity
τ and making at most t decryption queries guesses b with probability at most
1+ε
2 . The asymptotic notion of t-ind-cca-secure is defined accordingly.

2.2 Identity-based Encryption

Recall that an identity-based encryption (IBE) scheme for identity set ID is a
4-tuple of algorithms IBE = (IBEGen, IBEExtract, IBEEnc, IBEDec) satisfying the
following syntactical properties:

- IBEGen is the randomized parameter generator algorithm which returns a
pair (msk, pp), where msk is the so-called master secret key, and pp are the
public parameters.

- The extraction algorithm IBEExtract, on input the master secret-key msk and

a valid identity ID ∈ ID returns a secret key skID
$← IBEExtract(msk, ID)

associated with this identity.
- The encryption algorithm IBEEnc takes as inputs the public parameters pp,

an identity ID ∈ ID, and a message m, and returns a ciphertext c
$←

IBEEnc(pp, ID,m) such that for the associated deterministic algorithm IBEDec,
IBEDec(skID, IBEEnc(pp, ID,m)) = m with overwhelming probability for each
(pp,msk) output by Gen and skID output by IBEExtract(msk, ID).

The notion of IND-CPA security is extended to the setting of IBE. The adversary,
given the public parameters pp, can obtain keys skID for identities ID of its
choice (via so-called extraction queries), and outputs at some point a pair of
equal-length challenge messages m0, m1, together with a challenge identity ID∗

for which no extraction query has been issued. It then obtains an encryption
of mb for the challenge identity ID∗ and for a random bit b. The adversary is
asked to guess b, constrained on not asking a key extraction query for ID∗. We
also consider a weaker security notion, called selective IND-CPA security: Here,



the adversary is required to choose its challenge identity beforehand, and only
subsequently learns the public parameters and is given access to the IBEExtract
oracle.

In analogy to the case of conventional PKE, we say that IBE is (τ, t, ε)-cpa-
secure if all τ -time adversaries A making t extraction queries output b with
probability at most 1+ε

2 in the CPA-security game above. Similarly, we define
(τ, t, ε)-selective-cpa-secure likewise for the selective-CPA game above, as well
as the asymptotic notions of t-cpa and t-selective-cpa security.

3 Revisiting the GLW Construction

In the first part of this paper, we revisit the IBE construction for bounded-
collusion security proposed by Goldwasser, Lewko, and Wilson [22] – henceforth,
we refer to this construction as the GLW construction. We show two generic
results, the first one for selective security and the second one for full IBE security.
Then, we discuss a new instantiation of this paradigm based on DDH. Two more
instantiations based on the LWE and QR assumptions are deferred to the full
version for lack of space.

3.1 The GLW Construction

Secret-key to Public-key Homomorphisms. Throughout this section, we
(tacitly) consider only public-key cryptosystems PKE = (Gen,Enc,Dec) with
the property that secret and public keys are elements of groups G and H, re-
spectively. For convenience and ease of distinction, we will denote the group
operations on G and H as + and ·, respectively.

Definition 1 (Secret-key to public-key homomorphism). We say that
PKE admits a secret-key to public-key homomorphism if there exists a map
µ : G→ H such that:

(i) µ is a homomorphism, i.e., for all sk, sk′ ∈ G, we have µ(sk + sk′) =
µ(sk) · µ(sk′);

(ii) Every output (sk, pk) of Gen satisfies pk = µ(sk).

We stress that we are not requiring that every element sk ∈ G is a valid secret
key output by Gen. This will be important in our LWE instantiation below. In
this case, we still want to make sure that decryption is correct: In particular,
we say below that µ satisfies n-correctness if for any n′ ≤ n valid secret keys
sk1, . . . , skn′ output by Gen, the probability P[Dec(sk,Enc(µ(sk),m)) 6= m] is
negligible for all messages m, where the probability is over the coins of Enc and
where sk = sk1 + · · · + skn′ . (This property is implicitly satisfied for all n if all
elements of G are valid secret keys.)

Also note that the map µ does not need to be efficiently computable for
our applications, even though the map is often very efficient. Additionally, we
observe that in case the scheme depends on some explicit public parameter (like
a generator or a matrix, as will be the case in our examples below), µ is indeed
allowed to be parameter-dependent.



The GLW Construction. Goldwasser, Lewko, and Wilson [22] presented a
generic approach to build a bounded-collusion secure IBE from a public-key
encryption scheme admitting a secret-key to public-key homomorphism. Specif-
ically, let PKE = (Gen,Enc,Dec) be such a public-key encryption scheme with
homomorphism µ : G → H satisfying n-correctness, and let φ : ID → {0, 1}n
be a polynomial-time computable function, called the identity map. (With a
slight abuse of notation, it will be convenient to consider the output φ as a
subset of {1, . . . , n}, encoded in the canonical way as an n-bit string.) Then,
the GLW construction for PKE and φ gives rise to the following IBE scheme
IBE = (IBEGen, IBEExtract, IBEEnc, IBEDec) with identities from the set ID de-
fined as follows (where additionally IBEDec(skID, c) = Dec(skID, c))

IBEGen:

(pk, sk)
$← Genn

msk← sk
pp← pk
Return (msk, pp)

IBEExtract(sk, ID):

skID =
∑

i∈φ(ID) sk[i]
Return skID

IBEEnc(pk, ID,m):

pkID =
∏

i∈φ(ID) pk[i]

c
$← Enc(pkID,m)

Return c

The notation (pk, sk)
$← Genn denotes running Gen n times, with independent

random coins, and pk, sk are vectors such that (pk[i], sk[i]) is the output of the
i-th execution of Gen. First note that correctness of IBE follows trivially from the
correctness of PKE and the existence of a secret-key to public-key homomorphism
µ with n-correctness, since pkID = µ(skID) holds for all IDs and skID is the sum
of at most n valid secret keys. We stress that a central advantage of the above
construction is that IBE ciphertexts are ciphertexts of the underlying encryption
scheme PKE. Also, note that if PKE relies on some public parameters, these are
generated once and used across all uses of Gen, Enc, and Dec.

Instantiating the identity map.We still need to discuss how the map φ is
instantiated. In all constructions of this paper, we rely on constructions based on
cover-free sets, following previous work on bounded-collusion IBE [15], bounded-
CCA security [10], and bounded security for FDH signatures [14]. Concretely,
let 2[n] be the set of subsets of [n] := {1, . . . , n}.

Definition 2 (Cover-free sets). We say that φ : ID → 2[n] is (t, s)-cover

free if |φ(x)| = s for all x ∈ ID, and moreover φ(xt) \
⋃t−1

i=1 φ(xi) 6= ∅ for all
x1, . . . , xt ∈ ID, i.e., the set φ(xt) is not covered by the union of φ(x1), . . . , φ(xt−1).

In general, we will equivalently think of φ as a map ID → {0, 1}n, where we
output the characteristic vector of the associated set, instead of the set itself.
The following gives the currently best-known construction of cover-free sets.

Theorem 1 ([10]). For all integers t ≥ 1, there exists a polynomial-time com-
putable (t, s)-cover-free map φ : ID → {0, 1}n, where n = 16t2 log |ID| and
s = 4t log |ID|.

We note that Goldwasser, Lewko, and Wilson used a weaker requirement of
φ that only requires linear independence of the vectors φ(x1), . . . , φ(xt). In this



case, the output length n can be reduced to O(t log |ID|), or even O(t) if we
allow both identities as well as components of φ(x) to be elements of Zp for
some large prime p. However, the price they pay compared to our results below
is that the underlying encryption scheme is required to satisfy a harder to show
notion than in our results given below assuming cover-freeness, and this is often
reflected in instantiations with larger ciphertexts.

3.2 Selective Security of the GLW Construction

We start with selective security, which will be important to obtain bounded
CCA-secure cryptosystems with short ciphertexts, as we explain below in Sec-
tion 5. In the following, let PKE = (Gen,Enc,Dec) be an arbitrary public-key
encryption scheme which admits secret-key to public-key homomorphism, and
let IBE be the IBE scheme resulting from the above construction, using an un-
derlying identity map φ.

Theorem 2 (Selective ID Security of GLW). Assume that PKE is ind-
cpa-secure, and that φ is (t + 1, s)-cover free. Then, the GLW construction is
t-selective-cpa-secure.

Proof. Let A be a selective-cpa adversary for IBE which outputs b′ = b with
probability at least (1 + nε)/2, and which makes at most t extraction queries.
We construct an ind-cpa adversary B for PKE from A, guessing the bit b with
probability 1+ε

2 . Concretely, the adversary B first runs A, obtaining the challenge
identity ID∗, and chooses an index i∗ uniformly at random from the set S∗ =
{i : id∗i = 1}, where φ(ID∗) = [id∗1, ..., id

∗
n]. It then gets a public key pk∗ from the

underlying CPA game, and computes (pk[j], sk[j])
$← Gen for all j ∈ [n] \ {i∗}.

Finally, it sets pk[i∗] = pk∗ ·
(∏

j 6=i∗ pk[j]
−id∗j

)
.

The adversary B then gives pp = pk to A and runs it until it outputs a pair
(m0,m1). In particular, A’s extraction queries for ID 6= ID∗ ∈ ID are replied by
computing [id1, . . . , idn] = φ(ID) and, if idi∗ = 0, returning skID :=

∑
i idi · sk[i].

Note that if idi∗ = 1, then B cannot answer the extraction query, as it does not
know any corresponding sk[i∗]. In this case, it returns ⊥, and sets a flag bad
to true. When the adversary A outputs a pair (m0,m1) of messages of equal
length, B forwards them to the CPA, obtaining a challenge ciphertext c∗ , which
it then gives back to A, and its simulated execution is continued until it outputs
a bit b′. To conclude, B outputs the bit b′ if bad is not set to true, and returns
a random bit otherwise. Note that we have pkID∗ = pk∗ by our definition.

Since φ is (t+ 1, s)-cover-free, we know that there exists at least one i∗ such
that id∗i∗ = 1, but idi∗ = 0 for all vectors φ(ID) corresponding to the (at most t)
extraction queries ID 6= ID∗. Intuitively, such an index i∗ is hence chosen with
probability at least 1/ |S∗| = 1/s ≥ 1/n, and conditioned on this, the simulation
is easily seen to be perfect. Formally, we let WinPKE and WinIBE be the events



that B and A guess the bit in the respective security games. Then,

P [WinPKE] = P [WinPKE ∧ bad = false] + P [WinPKE ∧ bad = true]

≥ P [bad = false] · P
[
WinPKE

∣∣ bad = false
]

+ P [bad = true] · P
[
WinPKE

∣∣ bad = true
]
.

Now, clearly, P [bad = true] = 1−P [bad = false], and P
[
WinPKE

∣∣ bad = true
]
≥

1
2 , since B outputs a random bit if bad is true. Moreover, one can verify that
P [bad = false] ≥ 1

n , and, as the simulation is perfect, P
[
WinPKE

∣∣ bad = false
]
=

P [WinIBE]. Formalizing these last two argument actually requires some (stan-
dard) extra work, using the fact that all random coins are independent of the
choice of i∗, but we dispense with the details in this version. Plugging in terms
into the above concludes the proof. ut

3.3 Full Security of GLW

We note that the above proof strategy used in Theorem 2 fails when we do
not know the challenge identity ID∗ at the point in time when the reduction B
sets the public parameters pp. However, an additional syntactic requirement on
the underlying cryptosystem PKE yields full security, as we show below. This
requirement is captured by the following definition.

Definition 3 (Weak Multi-Key Malleability). We say that PKE is weakly
n-key malleable if there exists an efficient algorithm Simulate such that for all
messages m, all I ⊆ [n], and all i ∈ I, the probability distributions D0 and D1

are computationally indistinguishable, where with (pk, sk)
$← Genn, Db consists

of (pk, sk[[n] \ {i}], cb) such that

(1) c0
$← Enc(

∏
i∈I pk[i],m);

(2) c
$← Enc(pk[i],m), c1

$← Simulate(i, I, c,pk, sk[[n] \ {i}]).

In other words, given a ciphertext c encrypting with public key pk[i] (where
i is part of some set I) an arbitrary unknown message m, we can efficiently
generate a ciphertext c′ encrypting the same message m under the product of
the keys pk[j] for j ∈ I without knowing the secret key sk[i], but still possibly
using sk[j] for j 6= i. The resulting ciphertext has the right distribution in the
eyes of a computationally bounded distinguisher.

The proof of the following theorem follows a similar approach to the one of
Theorem 2, and is deferred to the full version.

Theorem 3 (Full Security of GLW). Assume that PKE is ind-cpa-secure
and weakly n-key malleable, and that φ is (t + 1, s)-cover free. Then, the GLW
construction is t-cpa-secure.



3.4 Instantiation from DDH

We present a simple instantiation of the above paradigm based on the Decisional
Diffie-Hellman (DDH) assumption and the ElGamal cryptosystem. The result-
ing scheme has smaller ciphertexts than earlier BC-IBE schemes [22, 15], both
requiring three group elements.

Concretely, let G be a group with prime order |G| = q and generator g. Recall

that the ElGamal cryptosystem has secret key sk
$← Zq and public key pk = gsk.

For a message m ∈ G, the encryption algorithm is Enc(pk,m) = (gr,m ·pkr),
where r

$← Zq , whereas Dec(sk, (c1, c2)) = c2 ·c−sk
1 . ElGamal is easily shown to be

ind-cpa-secure under the DDH assumption. Moreover, we observe the following
two properties of the ElGamal cryptosystem:

1. ElGamal admits a secret-key to public-key homomorphism µ : Zq → G where
µ(x) = gx, and n-correctness is satisfied for any n.

2. Moreover, it satisfies (perfect) weak n-key malleability: Namely, just consider
the algorithm that for all I ⊆ [n], i ∈ I, and secret- and public-key vectors
sk and pk, outputs

c∗ = Simulate(i, I,pk, sk[[n] \ {i}], (c1, c2)) = (c1, c2 · c
∑

j 6=i sk[j]

1 ) . (1)

In particular, the resulting IBE scheme with identities ID obtained by plugging
ElGamal into the GLW construction, for any (t+1, s)-cover-free map φ : ID →
{0, 1}n, is as follows, and Theorem 3 implies its t-ibe-cpa security under the
DDH assumption. (The decryption algorithm remains the same as in the original
ElGamal scheme.)

IBEGen:

g
$← G

sk
$← Zn

q , pk[i]← gsk[i]

pp← (g,pk), msk← sk
Return (pp,msk)

IBEExtract(msk = sk, ID):

[id1, . . . , idn]← φ(ID)
skID ←

∑n
i=1 idi · sk[i]

Return skID

IBEEnc(pp = (g,pk), ID,m):

[id1, . . . , idn]← φ(ID)

r
$← Zq

c← (gr,m ·
∏n

i=1 pk[i]
r·idi)

Return c

3.5 Instantiations from LWE and QR

We achieve an additional instantiation of the above paradigm starting from the
GPV cryptosystem [20]. We thus achieve BC-IBE based on the learning with
errors (LWE) assumption (with polynomial modulus for selective security and
subexponential modulus for full semantic security).

Additionally, we achieve an instantiation under the quadratic residuosity
(QR) assumption based on a simplified variant of the QR-based PKE scheme
from [22]. We defer the details of both of these constructions to the full version.



4 Construction from Multi-Key Malleability

4.1 Bounded-IBE Construction

We present a further construction of BC-IBE from PKE schemes which satisfy
a different notion of key malleability than the one given above, which we first
introduce. Our notion requires that given an encryption of a message under one
public key, we are asking for the ability to produce a new ciphertext of the same
message which decrypts under a combination of secret keys (e.g., the product)
for which we only know the corresponding public keys. Note that we are only
asking for decryptability under the combination of the secret keys. In particular,
in contrast to the above notion of weak key-malleability, the distribution of
the resulting ciphertext may not be a valid encryption under some well-defined
combination of the corresponding public keys, and moreover, we require ability
to compute this ciphertext without knowledge of any secret keys.

Definition 4 (Multi-Key Malleability). Let PKE be a public-key encryption
scheme. We say that PKE is n-key malleable if there exist algorithms Modify
and Combine such that the following properties hold:

(i) For all valid messages m, all I ⊆ [n], and all i ∈ I, the following probability
is negligible (taken over the coins of Enc):

P

[
(pk, sk)

$← Genn, c
$← Enc(pk[i],m),

c′
$← Modify(i, I,pk, c)

: Dec(Combine(I, sk), c′) 6= m

]
.

(ii) For all I ⊆ [n], Combine(I, sk) does not depend on sk[i] for i /∈ I.
(iii) For all I ⊆ [n] and all valid public-key / secret-key vectors (pk, sk), for

all i, j ∈ I, the values Modify(i, I,pk,Enc(pk[i],m)) and
Modify(j, I,pk,Enc(pk[j],m)) are equally distributed.

We note that Property (iii) above is not really necessary (a computational re-
laxation would suffice), but will make the presentation somewhat simpler and is
true in the only instantiation we give below.

The IBE construction and its security. For an identity map φ : ID →
{0, 1}n, we now propose a construction of an identity-based encryption scheme
IBE = (IBEGen, IBEExtract, IBEEnc, IBEDec) from an n-key malleable encryp-
tion scheme PKE = (Gen,Enc,Dec). The decryption algorithm is unaltered, i.e.,
IBEDec = Dec, and moreover the construction consists of the following algo-
rithms. (Note that the choice of i as min{φ(ID)} below within IBEEnc is purely
arbitrary.)

IBEGen:

(pk, sk)
$← Genn

msk← sk
pp← pk
Return (msk, pp)

IBEExtract(msk = sk, ID):

skID ← Combine(φ(ID), sk)
Return skID

IBEEnc(pp = pk, ID,m):

i← min{φ(ID)}
c′

$← Enc(pk[i],m)
c← Modify(i, φ(ID),pk, c′)
Return c



Correctness of the scheme follows by Property (i) above. The following theorem
establishes security of our new construction. The proof is deferred to the full
version.

Theorem 4. Assume that PKE is ind-cpa-secure and n-key malleable, and that
φ is (t+ 1, s)-cover free. Then, IBE is t-ibe-cpa-secure.

4.2 NTRU-Based Instantiation and Fully-Homomorphic IBE

We provide an instantiation of the above constructing using the multi-key ho-
momorphic properties of NTRU-based public-key encryption [28], which we first
review. For some parameters r, n and q (where q is a prime), consider the ring
of polynomials R = Z[x]/(xr + 1), and let χ be a B-bounded distribution on
R, i.e., with overwhelming probability, χ samples a polynomial from R whose
coefficients are all at most B in absolute value. All operations on polynomials
are to be understood as over the ring Rq = R/qR. The NTRU cryptosystem is

such that key generation Gen samples f, g
$← χ subject to the constraint that

f ≡ 1 (mod 2), and sets pk = 2g/f and sk = f . (Possibly, f needs to be resam-
pled until it admits an inverse in Rq, and χ is such that this happens with good
probability.) The message b ∈ {0, 1} is encrypted as

Enc(pk,m) = h · pk+ 2e+ b ,

where h, e
$← χ. Finally, decryption, given c, outputs Dec(sk, c) = sk · c (mod 2).

To see why decryption is correct, note that

sk · c ≡ f · (2h · g/f + 2e+ b) ≡ 2h · g + 2e · f + f · b (mod q) .

If B ≤
√
q/2/r, then all coefficients from h · g and e · f are of size at most

r2B2 < q/2. Consequently, 2hg and 2ef only have even coefficients, and are 0
modulo 2. And finally, f · b clearly always equals b modulo 2.

The scheme was proven ind-cpa-secure under a fairly ad-hoc assumption
in [28], where it was also shown to have strong homomorphic properties we
address below, and which we exploit for our construction.

The IBE Scheme. We turn now to building an IBE scheme from the above
NTRU-based PKE scheme PKE using the above generic approach. In the fol-
lowing, we assume that r is our security parameter, q = 2n

ε

for some constant
ε < 1, B = poly(r), and n = Θ(rδ) for some constant δ < 1.

We first show `-key malleability exploiting the multi-key homomorphic prop-
erties of NTRU shown in [28]. To this end, we define the algorithm Combine
which given I ⊆ [`] and sk ∈ R`

q outputs

Combine(I, sk) =
∏
i∈I

sk[i] .

Moreover, we also define the (randomized) function Modify, which given I ⊆ [`],
i ∈ I, c ∈ Rq , and pk ∈ R`

q, outputs

Modify(i, I, c,pk) = c+
∑

j∈I\{i}

hj · pk[j] ,



where hj for j ∈ I \ {i} are sampled independently from the B-bounded distri-
bution χ as above. Now, Properties (ii) and (iii) in Definition 4 are immediate
to verify. Moreover, for Property (i), fix I ⊆ [`] and i ∈ I, and pk, sk ∈ R`

q ,
each consisting of ` B-bounded polynomials as components, then define c as

c = Modify(i, I,Enc(pk[i], b),pk) =
∑
j∈I

hj · pk[j] + 2e+ b ,

and observe that

Dec(Combine(I, sk), c) =

(∏
i∈I

sk[i]

)
·

∑
j∈I

hj · pk[j] + 2e+ b

 (mod 2) .

In particular,(∏
i∈I

sk[i]

)
·

∑
j∈I

hj · pk[j] + 2e+ b

 ≡
∑
j∈I

2hj · gj ·
∏

i∈I\{j}

f` +

(
2e ·

∏
i∈I

f`

)
+ b ·

(∏
i∈I

f`

)
.

Note that in the above sum, only products of at most |I| + 1 B-bounded poly-
nomials occurs. The coefficients of the resulting products have size at most
r|I| · B|I|+1, which (given previous parameter choices) is smaller than q/2 as
long as |I| = o(nε). This yields correct decryption as no wraparound (modulo q)
occurs.

The final scheme.Overall, this yields to the following scheme, for any identity
mapping φ : ID → {0, 1}` which is (s, t+1)-cover-free for some s = o(nε), which
is t-ind-cpa secure by Theorem 4.

IBEGen:

f1, . . . , fn
$← χ

(fi ≡ 1 (mod 2), fi ∈ R∗
q)

g1, . . . , gn
$← χ

msk← (f1, . . . , fn)

pp
$← (2g1/f1, . . . 2gn/fn)

Return (msk, pp)

IBEExtract(msk = sk, ID):

skID ←
∏

i∈φ(ID) sk[i]
Return skID

IBEEnc(pp = pk, ID,m):

h1, . . . , hn, e
$← χ

c←
∑

i∈φ(ID) pk[i] · hi

+2e+m
Return c

Fully-Homomorphic IBE.The above instantiation has additionally the prop-
erty of being fully-homomorphic in the following sense:

Given encryptions IBEEnc(ID,m1), . . . , IBEEnc(ID,mt), and a function f :
{0, 1}t → {0, 1}, we can compute a ciphertext which decrypts to f(m1, . . . ,mt)
under skID using the homomorphic-evaluation procedures given in [28].

We note that in general one can provide a construction, along the lines given
above, from multi-key fully-homomorphic encryption to fully-homomorphic identity-
based encryption for bounded collusions. We defer a full discussion to the full
version of this paper, noting in passing that the above is the only instantiation
of this paradigm we are aware of.



5 Applications: Bounded CCA Security with Short
Ciphertexts

In this section, we revisit the generic transform by Boneh, Canetti, Halevi, and
Katz [4] in the context of BC-IBE, and use it to obtain constructions of bounded-
CCA2 secure encryption schemes with short ciphertexts from any semantically
secure scheme with a secret-key to public-key homomorphism.

The BCHK transform . Boneh et al [4] present a construction of an en-
cryption scheme PKE = (Gen,Enc,Dec) from a selectively-secure IBE scheme
IBE = (IBEGen, IBEExtract, IBEEnc, IBEDec) and a strong one-time signature
scheme SS = (GenSS,Sign,Verify). They then proceed to prove chosen-ciphertext
security of the resulting PKE.

Of note is that in their reduction to the selective security of IBE, the reduction
makes at most one IBEExtract query for each decryption query it receives from
the adversary, and no other parameters change. Thus, their proof carries through
exactly in the bounded-collusion case, yielding:

Theorem 5. If IBE is t-selective-ibe-cpa-secure, and if SS is strongly one-time
secure, then PKE is t-CCA secure.

Applications. Using previous results, we directly obtain bounded CCA PKE
constructions from DDH, QR, NTRU, and (standard) LWE using the construc-
tions of the previous sections. In particular, note that only standard LWE is
required as we only need selective security to instantiate the above paradigm.
Moreover, the resulting DDH construction is essentially equivalent to the one
presented in [10], and our construction thus provides an abstraction to obtain
the same construction.

As an example, we give the t-CCA PKE based on the NTRU assumption
that comes from applying Theorem 5 to the BC-IBE of Section 4.2. (Here the
parameters q, χ,R∗

q are defined as in that section.)

Gen:

f1, . . . , fn
$← χ

(fi ≡ 1 (mod 2), fi ∈ R∗
q)

g1, . . . , gn
$← χ

sk← (f1, . . . , fn)
pk← (2g1/f1, . . . , 2gn/fn)
Return (pk, sk).

Enc(pk,m):

(skSS, vkSS)
$← GenSS

h1, . . . , hn, e
$← χ

c←∑
i∈φ(vkSS)

pk[i]·hi+2e+m

σ
$← Sign(skSS, c)

Return (vkSS, c, σ).

Dec(sk, (vk, c, σ)):

If Verify(vk, c, σ) = 0
then
m← ⊥

Else
skvk ←

∏
i∈φ(vk) sk[i]

m← skvk · c (mod 2)
Return m

The ciphertext size of the CCA scheme generated by the BCHK transform is
the same as the ciphertext size of the IBE scheme (and hence of the NTRU en-
cryption scheme), plus a verification key and signature. Steinfeld et al. [31] show
a (fully) CCA-secure construction based on NTRU; their ciphertext contains k
ciphertexts of the underlying NTRUEncrypt algorithm (where k = Θ(1) is a
parameter that depends on the hardness assumption used, but is at least 4), and



additionally a verification key, a signature, and a blinded message. (Since the
NTRUEncrypt ciphertexts are polynomials in Rq, they will typically be much
larger than the other values.) Thus, we obtain a constant-factor improvement
in ciphertext size by moving to the bounded-query model, in addition to the
conceptual simplicity of the proof.
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