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Abstract. Several recent and high-profile incidents give cause to be-
lieve that randomness failures of various kinds are endemic in deployed
cryptographic systems. In the face of this, it behoves cryptographic re-
searchers to develop methods to immunise – to the extent that it is
possible – cryptographic schemes against such failures. This paper con-
siders the practically-motivated situation where an adversary is able to
force a public key encryption scheme to reuse random values, and func-
tions of those values, in encryption computations involving adversarially
chosen public keys and messages. It presents a security model appro-
priate to this situation, along with variants of this model. It also pro-
vides necessary conditions on the set of functions used in order to attain
this security notation, and demonstrates that these conditions are also
sufficient in the Random Oracle Model. Further standard model con-
structions achieving weaker security notions are also given, with these
constructions having interesting connections to other primitives includ-
ing: pseudo-random functions that are secure in the related key attack
setting; Correlated Input Secure hash functions; and public key encryp-
tion schemes that are secure in the auxiliary input setting (this being a
special type of leakage resilience).

1 Introduction

Modern cryptographic primitives are heavy consumers of randomness. Unfor-
tunately, random number generators (RNGs) used to provide this randomness
often fail in practice [16, 18, 20, 21, 13, 1, 15, 26]. This is due to issues including
poor algorithmic design, software bugs, insufficient or poor estimation of system
entropy, and the handling of randomness across virtual machine resets [27]. The
results of randomness failures can be catastrophic and newsworthy in practice –
DSA, ECDSA and Schnorr private signing keys can be exposed [9, 27]; plaintext
recovery for low entropy plaintext becomes possible in the the public key encryp-
tion setting; key generation processes can be severely weakened [13, 24, 22, 10];
ephemeral Diffie-Hellman keys can become predictable leading to compromise of
session keys [18]; and electronic wallet security can be compromised [11].

Evidently, randomness failures are a major problem in practice. The cryp-
tography research community has begun to address this problem only relatively
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recently [28, 29, 23, 2, 33, 27]. Accepting that randomness failures are endemic
and unlikely to be eliminated in totality, a basic approach is to try to hedge
against randomness failures, that is, to design cryptographic primitives that still
offer a degree of security in the face of randomness failures. For signatures, there
is a folklore de-randomisation technique which neatly sidesteps security issues
arising from randomness failures: simply augment the signature scheme’s private
key with a key for a pseudo-random function (PRF), and derive any random-
ness needed during signing by applying this PRF to the message to be signed;
meanwhile verification proceeds as normal. In the symmetric encryption set-
ting, previous work has considered nonce-based encryption [28], misuse-resistant
authenticated encryption (which concerns residual security when nonces are re-
peated) [29], and encryption in a chosen-randomness setting (wherein the adver-
sary is given control over the randomness used for encryption) [23]. Ristenpart
and Yilek [27] studied the use of “hedging” as a general technique for protect-
ing against broad classes of randomness failures in already-deployed systems,
and implemented and benchmarked this technique in OpenSSL. Hedging in the
sense of [27] involves replacing the random value r required in some crypto-
graphic scheme with a hash of r together with other contextual information,
such as a message, algorithm or unique operation identifier, etc. Their results,
while applying to a variety of different randomness failure types (see in particu-
lar [27, Figure 3]), all have their security analyses restricted to the ROM. Work
in the public key encryption setting can be summarised as follows:

– Bellare et al. [2] considered security under chosen distribution attack, wherein
the joint distribution of message and randomness is specified by the adver-
sary, subject to containing a reasonable amount of min entropy. The PKE
scheme designer’s challenge is to find a way of “extracting” this entropy in
a secure way. Bellare et al. gave several designs for PKE schemes achieving
this notion in the Random Oracle Model (ROM) and in the standard model.
This is a powerful and general approach, but does have its limitations: under
extreme failure conditions, the joint message-randomness distribution may
simply fail to contain sufficient entropy, at which point all security guaran-
tees may be lost; moreover, for technical reasons, the model in [2] requires
the target public key to be hidden from the adversary until all encryption
queries have been made. This is impractical in real world applications.

– Yilek [33], inspired by virtual machine reset attacks in [27], considered the
scenario where the adversary does not know the randomness (in contrast to
the chosen-randomness setting of [23]), but can instead force the reuse of
random values that are otherwise well-distributed. This is referred to in [33]
as the Reset Attack (RA) setting. To fully reflect the reality of randomness
failures in this setting, Yilek provides the adversary with the ability to en-
crypt chosen messages under adversarially generated public keys using the
unknown but repeated random values. This makes his model very power-
ful, to the extent that certain trivial attacks must be excluded by assuming
the adversary is equality-pattern respecting. In [33], Yilek also gave a general
construction in which the random coins of the encryption algorithm are used



as a key to a PRF, the input to the PRF is the public key concatenated with
the message to be encrypted, and the output of the PRF is then used as
the ‘randomness’ for the encryption algorithm. This is sufficient to achieve
security in his RA setting. Note that the RA security model is incomparable
with the CDA model of [2].

1.1 Motivation

Inspired by the challenge of preserving security under randomness failures, we
initiate the study of security for PKE in what we call the Related Randomness
Attack (RRA) setting. Our RRA setting builds on the RA setting from [33] and
brings the theory of hedging PKE against randomness failures closer to practice.
As we shall see, it also has interesting connections with related key attacks for
PRFs and PKE, as developed in [5, 3, 4, 6, 32], and leakage resilient cryptography
(and in particular, the techniques developed in [14] to provide security for PKE
in the auxiliary input setting).

In our RRA setting, the adversary can now not only force the reuse of exist-
ing random values as in the RA setting, but can also force the use of functions of
those random values. This power is analogous to the power granted to the adver-
sary in the Related Key Attack (RKA) setting, wherein an adversary is able to
tamper with private (or secret) keys used during cryptographic operations. The
RA setting arises as the special case of our RRA setting where only the identity
function is allowed. The extra adversarial power in the RRA setting allows the
modelling of reset attacks in which the adversary does not have an exact reset
capability, but where the randomness used after a reset is in some way related to
that used on previous resets. Such behaviours were observed in the experimental
work in [27]. Furthermore, our RRA setting allows modelling of situations where
the randomness used in a scheme comes from a PRNG which is not regularly
refreshed with new entropy, but which steps forward under some deterministic
state evolution function Next and output function Out; here the appropriate
functions in our RRA setting would be the compositions Out(Nexti(·)).

More generally, RRA security has a strong theoretical motivation as being
a stepping stone towards giving the adversary enhanced control over the inputs
to cryptographic algorithms – messages (in the standard PKE setting), keys
(in the RKA setting), and now randomness (in our new RRA setting). It is
an interesting direction for future research to develop this theme further, by
examining security in a combined RKA/RRA setting, where the adversary would
be able to simultaneously tamper with all the inputs to a PKE scheme.

1.2 Our contributions

RRA security model In this paper, we provide a strong model and security def-
inition for PKE in the RRA setting, which we name RRA-ATK security (where
ATK = CPA or CCA) . Our model is inspired by that of Yilek for the RA setting:
via access to an Enc oracle, we allow the adversary to get arbitrary messages



encrypted under arbitrary public keys, using functions φ of an initial set of well-
distributed but unknown random values. The public keys can even be maliciously
generated, and the adversary can of course know all the corresponding private
keys. The adversary is tasked with winning an indistinguishability-style game,
via an LR oracle which gives access to encryptions of left or right messages with
respect to an honestly generated target public key pk∗, but again where the ad-
versary can force the use of functions φ of the initial random values. When the
functions φ are limited to coming from some set Φ, we speak of a Φ-restricted
adversary.

Because the adversary may know all but one of the private keys, it can
check that its challenger is behaving correctly with respect to its encryption
queries. This also rules out the possibility of achieving RRA-ATK security for
any randomness recovering PKE scheme, like RSA-OAEP [7] and PKE schemes
based on the Fujisaki-Okamoto transformation [17]. Moreover, the encryption
queries concern public keys that are outside the control of the challenger. This
increases the technical challenge of achieving security in the RRA setting. This
facet of the RRA setting bears comparison with the RKA setting for PKE [4,
6, 32]. In the RKA setting, the tampering via related key functions only affects
the PKE scheme’s private key, and so only comes into play when simulating
decryption queries. By contrast, it is encryption queries that require special
treatment in our RRA setting.

Given the power of the adversary in the RRA setting, we have to exclude
certain sets of adversarial queries to prevent the adversary from trivially breaking
security. For example, as in the RKA setting, constant functions φ must be
disallowed for security to be achievable. See Section 2 for further discussion.

ROM construction We are able to show that, in the ROM, these necessary
conditions on the function set Φ are actually also sufficient. More specifically,
we show how to transform any IND-ATK secure PKE scheme PKE into a new
PKE scheme Hash-PKE that is RRA-ATK secure, simply by hashing the random
input together with the public key and message during encryption. In fact, this
is just an application of the hedging approach from [27], and an instance of the
randomized-encrypt-with-hash (REwH) scheme from [2]. Our result then shows
that this approach also provides security in our new RRA setting.

Standard model constructions Having dealt with the ROM, we then turn our
attention to constructions in the standard model. Reinforcing the connections
to RKA security, we are able to show that any Φ-restricted RKA-PRF can be
used to build a RRA-ATK secure PKE scheme for Φ-restricted adversaries, thus
transferring security from the RKA setting (for PRFs) to the RRA setting for
PKE. But the limited range of RKA-PRFs currently available in the literature
[25, 3] essentially restricts the obtained RRA-ATK secure PKE scheme to a
class of functions Φ consisting of linear or group-induced functions. To achieve
an RRA-ATK secure PKE scheme for richer classes of functions, we must seek
alternative methods of construction.



Unfortunately, we have not been able to achieve our full RRA-ATK security
notion for more interesting function classes using other constructions. So we must
resort to exploring alternative versions of this notion in order to make progress.
We relax RRA-ATK security along two independent dimensions: the degree of
control that the adversary enjoys over the public keys under which it can force
encryptions for related random values, and the degree of adaptivity it has in the
selection of functions φ ∈ Φ:

– We first consider the situation where the public keys are all honestly gener-
ated at the start of the security game, and the public keys and all but one
of the private keys are then given to the adversary — the honest-key, re-
lated randomness attack (HK-RRA) setting. This is a reasonable relaxation
in that, in practice, all the public keys that the adversary might be able to
induce a user to encrypt under would be properly generated by users and
then certified by a CA ahead of time. In this setting, we provide a generic
construction for a scheme achieving HK-RRA-ATK security based on com-
bining any IND-ATK secure PKE scheme with a Correlated-Input Secure
(CIS) hash function [19]. Currently known instantiations of CIS hash func-
tions allow us to obtain selective, HK-RRA-ATK security for Φ-restricted
adversaries where Φ is a large class of polynomial functions (as opposed to
the linear functions we can achieve using our RKA-PRF-based construction).
Here, selectivity refers to the adversary committing at the start of the game
to the set of functions it will use.

– We then consider the situation where there is no restriction on public keys,
but the adversary is committed up-front to a vector of functions φ =
(φ1, . . . , φq) that it will use in its attack, and where security is in the end
quantified over all choices of φ from some set Φ. This quantification is sub-
tly different from allowing the adversary a fully adaptive choice of functions
φ ∈ Φ (for a detailed discussion, see Section 2). In this situation, we refer to
the function-vector, related randomness attack (FV-RRA) model. Here, we
are able to give a direct construction for a PKE scheme that is FV-RRA-ATK
secure solely under the DDH assumption, assuming the component functions
φi of φ are simultaneously hard to invert on a random input. Our scheme is
inspired by a PKE scheme of Boneh et al. [12] that is secure in the so-called
auxiliary input setting, wherein the adversary is given a hard-to-invert func-
tion of the secret key as part of its input. By swapping the roles of secret key
and randomness in the Boneh et al. scheme, we are able to obtain security
in a setting where a hard-to-invert function of the encryption randomness is
leaked to the adversary. This leakage is then sufficient to allow us to simulate
the encryptions for adversarially chosen public keys. For technical reasons, to
obtain a construction, we must also limit our adversary to using the identity
function when accessing its LR oracle.

To summarise, in the standard model, we can achieve our full security notion,
RRA-ATK security, but only for a limited class of functions Φ (inherited from
known results on RKA-PRFs), while we can achieve alternative security notions
for richer classes Φ.



1.3 Future Directions

In this paper, we concentrate on PKE, but RRA security notions can be devel-
oped for other primitives. As previously noted, the case of signatures is quite
simple, provided one is prepared to extend a scheme’s private key. We would
expect symmetric key encryption and key exchange primitives to be more com-
plex. Also as noted above, our RRA setting is related to the RKA setting, and it
is an open problem to develop these connections further, possibly by considering
a combined RKA/RRA setting.

2 Related Randomness Security for PKE

We now formalise our notions of related randomness security for PKE. We give a
detailed treatment of our strongest notion, before sketching restricted versions.
The description of our security notions will utilise code-based games and the
associated language (see [8]).

Our strongest security notion, RRA-CCA security, is defined via the game
in Figure 1. Here, a challenge key pair (pk∗, sk∗) for a PKE scheme PKE =
(PKE.K, PKE.E, PKE.D) with randomness space Rnd is honestly generated, and the
adversary is considered successful if it wins an indistinguishability game with
respect to messages encrypted under pk∗. Extending the standard PKE setting,
the adversary is able to control which one of polynomially many random values
ri ∈ Rnd is used in responding to each encryption query for pk∗; furthermore,
the adversary is able to obtain the encryption of messages of its choice under
(possibly maliciously generated) arbitrary public keys. Extending the model of
Yilek [33], our adversary not only specifies which one of the random values ri is
to be used in each query, but also specifies, for each query he makes, a function φ
on Rnd; the value φ(ri) is used for encryption in place of ri. In the CCA setting,
the adversary also has access to a regular decryption oracle for private key sk∗.
Note that if the adversary uses only the identity function, then we recover the
Resettability Attack (RA) model of Yilek [33].

It is not difficult to see that, as in the RA setting, an adversary may trivially
win this game if no restrictions are placed on oracle queries.1 We will shortly
introduce an equality-pattern respecting definition for adversaries, designed to
prevent trivial wins of this kind. This extends the related RA definition from
[33]. However, restrictions on the functions φ will also be required. To illustrate
the issue, consider as an extreme case the constant function φC (with φC(r) = C
for all r ∈ Rnd). Suppose the adversary submits LR query (m0,m1, j, φC) for
any m0 6= m1 and any j ∈ N; the adversary receives a ciphertext c∗ and then

1 For example, if an adversary requests the encryption of m under the target public
key using coins φ(ri), PKE.E(pk∗,m;φ(ri)), and submits LR query (m,m′, i, φ), then
the adversary guesses b is 0 if the two ciphertexts match, otherwise he guesses b is 1.
This adversary wins the game with probability 1. As in the RA setting, such wins are
unavoidable in our setting since encryption essentially becomes deterministic when
the same random coins and functions φ are used.



proc. Initialise(λ):

b←$ {0, 1};
(pk∗, sk∗)←$ PKE.K(1λ);
CoinTab← ∅;
S ← ∅; Return pk∗

proc. Dec(c):

If c ∈ S, then return ⊥
Else return PKE.D(sk∗, c)

proc. LR(m0,m1, i, φ):

If CoinTab[i] =⊥
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk∗,mb;φ(ri))
S ← S ∪ {c}
Return c

proc. Enc(pk,m, i, φ):

If CoinTab[i] =⊥
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk,m;φ(ri))
Return c

proc. Finalise(b′):

If b = b′, return 1

Fig. 1. Game RRA-ATK. (Note that if ATK = CPA, then the adversary’s access to
proc. Dec is removed.)

computes c0 = PKE.E(pk∗,m0;C); the adversary outputs guess b′ = 0 if and only
if c∗ = c0. It is easy to see that this adversary wins the RRA-ATK game with
probability 1. This example is analogous to one in the related key attack setting
for PRFs in [5]. Hence, we will need to restrict the class of functions which the
adversary is allowed to access in its queries to come from some set Φ, in which
case we speak of Φ-restricted adversaries. We have already seen that constant
functions must be excluded from Φ if we are to have any hope of achieving our
related randomness security notion.

Thus we have two sets of constraints that we need to consider to prevent
trivial wins: those on messages and randomness indices (analogous to the RA
setting from [33]) and those on functions φ (analogous to the RKA setting for
PRFs from [5]). Let us deal with the first set of constraints first and define
what it means for an adversary to be equality-pattern respecting. The following
definition is adapted from [33] for our purposes.

Definition 1. Let A be a Φ-restricted adversary in Game RRA-ATK that que-
ries r different randomness indices to its LR and Enc oracles and makes qi,φ
queries to its LR oracle with index i and function φ ∈ Φ. Let Ei,φ be the set of all

messages m such that A makes Enc query (pk∗,m, i, φ). Let (mi,φ,1
0 ,mi,φ,1

1 ), . . . ,

(m
i,φ,qi,φ
0 ,m

i,φ,qi,φ
1 ) be A’s LR queries for index i ∈ [r] and φ ∈ Φ. Suppose that

for all pairs (i, φ) ∈ [r]× Φ and for all j 6= k ∈ [qi,φ], we have:

mi,φ,j
0 = mi,φ,k

0 iff mi,φ,j
1 = mi,φ,k

1

and that, for all pairs (i, φ) ∈ [r]× Φ, and for all j ∈ [qi,φ], we have:

mi,φ,j
0 /∈ Ei,φ ∧mi,φ,j

1 /∈ Ei,φ.

Then we say that A is equality-pattern respecting.

Notice that if the adversary is restricted to using only the identity function,
then this definition reduces to the equality-pattern respecting definition for the
RA setting, cf. [33, Appendix A].



Definition 2. We define the advantage of an equality-pattern respecting, RRA-
ATK adversary A against a PKE scheme PKE to be:

Advrra-atk
PKE,A (λ) := 2 · P[RRA-ATKAPKE(λ)⇒ 1]− 1.

A PKE scheme PKE is said to be Φ-RRA-ATK secure if the advantage of any
Φ-restricted, equality-pattern respecting, RRA-ATK adversary against PKE that
runs in polynomial time is negligible in the security parameter λ.

2.1 Alternative security notions

The above definition for Φ-RRA-ATK security is very powerful: it allows an
adversary to submit any public key to its encryption oracle and allows the ad-
versary to adaptively choose the functions φ, the only restriction being that they
lie in Φ. In Section 2.2 we will exhibit conditions that are both necessary and
sufficient for achieving security in this sense in the ROM (given a starting PKE
scheme that satisfies the usual definition of IND-ATK security). In the standard
model, we will give a construction that relies on RKA-PRFs. Since construc-
tions for these are currently very limited in terms of the function classes they
can handle, we will now consider alternative versions of the Φ-RRA-ATK notion.

The first alternative notion we consider is called Honest Key Related Ran-
domness (HK-RRA) security. The security game has two parameters, λ and `.
Informally, the game itself generates a polynomial number ` of key pairs and re-
turns the public keys to the adversary. The adversary then chooses which public
key he wishes to be the target key, and is given the private keys corresponding to
all the non-target public keys. Meanwhile, the adversary’s queries to its Enc or-
acle are restricted to using the public keys generated by the game. Suitable
Φ-HK-RRA-ATK security notions follow by analogy with our earlier definitions.

One may consider notions intermediate between Φ-RRA-ATK security and
Φ-HK-RRA-ATK security. For example, a registered key notion could be defined,
in which the adversary chooses and registers key pairs (pk, sk), with registration
involving a test for validity by some procedure, and all queries involve only
registered public keys. One may also consider weaker variants of these notions in
which the adversary’s choice of functions φ is non-adaptive (or selective). That
is, the adversary must submit a set of functions {φ} ⊂ Φ of polynomial size to
the game before he is allowed to see the target public key (or set of public keys, if
playing in the Honest Key setting). In this setting, we refer to Φ-sHK-RRA-ATK
security.

The final alternative notion we consider is called Function-Vector Related
Randomness (FV-RRA) security, and is based on the game in Figure 2. Here,
the adversary is parameterised by a vector of functions φ = (φ1, . . . , φq), and
is limited to using only these functions in its oracle queries. Additionally, we
restrict the adversary by demanding that the LR queries use only the identity
function. However, once again, the adversary has complete freedom over public
keys submitted to its encryption oracle. Furthermore, security will be quantified
over all choices of vector from a particular class. (Specifically, in our construction



proc. Initialise(λ):

b←$ {0, 1};
(pk∗, sk∗)←$ PKE.K(1λ);
CoinTab← ∅; S ← ∅;
return pk∗

proc. Dec(c):

If c ∈ S, then return ⊥
Else return PKE.D(sk∗, c)

proc. LR(m0,m1, i):

If CoinTab[i] =⊥,
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk∗,mb; ri)
S ← S ∪ {c}
return c

proc. Enc(pk,m, i, j):

If CoinTab[i] =⊥,
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk,m;φj(ri))
return c

proc. Finalise(b′):

If b = b′, return 1

Fig. 2. Game φ-FV-RRA-ATK, where φ = (φ1, . . . , φq). (As usual, if ATK = CPA,
then the adversary’s access to proc. Dec is removed.)

in Section 5, we will demand that security holds over all vectors φ that are
simultaneously hard to invert on a common random input r.) This quantification
actually makes our notion rather strong.

Definition 3. Let φ = (φ1, . . . , φq) be a vector of q := q(λ) functions. We define
the advantage of an equality-pattern respecting, φ-FV-RRA-ATK adversary A
against a PKE scheme PKE to be:

Adv
φ-fv-rra-atk
PKE,A (λ) := 2 · P[φ-FV-RRA-ATKAPKE(λ)⇒ 1]− 1.

If Φ is a set of vectors of functions, then a PKE scheme PKE is said to be Φ-
FV-RRA-ATK secure if, for all φ ∈ Φ, the advantage of any equality-pattern
respecting, φ-FV-RRA-ATK adversary against PKE that runs in polynomial time
is negligible in the security parameter λ.

Comparison of security notions The first alternative security notion, HK-RRA-
ATK security, is easily seen to be a strictly weaker notion than full RRA-ATK
security2. Likewise, the selective models are easily seen to be weaker then their
adaptive counterparts. However, the relation between full RRA-ATK security
and FV-RRA-ATK security is not immediately obvious. Aside from the restric-
tion on LR-queries in FV-RRA-ATK security, there is a subtle distinction be-
tween requiring security for all vectors φ of functions from a particular set Φ
and requiring security for a fully adaptive choice of functions φ ∈ Φ. In par-
ticular, the former notion will allow a security reduction to consider multiple
runs of an adversary with different random coins for a fixed choice of function
vector φ, whereas the latter notion will leave open the possibility that an ad-
versary will chose a different sequence of functions φ in each run. Also note that
FV-RRA-ATK security guarantees that there is no choice of φ for which the

2 A separation can be established by considering a scheme where public keys generated
by the key generation algorithm always have a certain bit set to 0, and where the
encryption algorithm, given a public key with this bit set to 1 (i.e. a maliciously
generated public key), will expose the randomness used for the encryption.



considered scheme is weak, even if this choice might be computationally hard
for an adaptive adversary to find. Furthermore, the relation between the notions
might also be influenced by the considered class of functions Φ. It remains future
work to fully explore and categorise the possible notions of RRA security.

It is not hard to see that our RRA security notions are incomparable with the
CDA security notions of [2]. In the RA setting, Yilek defines only an equivalent
of our full RRA-ATK notion; it is clear that RRA-ATK security is stronger than
his RA-ATK security whenever the function set Φ contains the identity function.
The same would carry over to relaxed versions of RA-ATK security.

2.2 Function restrictions

Above, we briefly alluded to the fact that the class of functions Φ used by our
RRA adversaries must be restricted in various ways. The example given showed
that constant functions must always be excluded. Here, we exhibit much stronger
necessary conditions on Φ that must be satisfied, namely output-unpredictability
and collision-resistance. These notions are closely related to notions with the
same names arising in the setting of related key security for PRFs that was
considered in [5]. Here, however, we are concerned with functions acting on the
randomness used in PKE schemes rather than on PRF keys.

Definition 4 (Output-unpredictability for Φ). Let Φ be a set of functions
from Rnd to Rnd. Let α and β be positive integers. Then the (α, β)-output-
unpredictability of Φ is defined to be:

InSecupΦ (α, β) = max
P⊆Φ,X⊆R,|P |≤α,|X|≤β

{P [r ←$ Rnd : {φ(r) : φ ∈ P} ∩X 6= ∅]} .

Definition 5 (Collision-resistance for Φ). Let Φ be a set of functions from
Rnd to Rnd. Let α be a positive integer. Then the α-collision-resistance of Φ is
defined to be:

InSeccrΦ (α) = max
P⊆Φ,|P |≤α

{P [r ←$ Rnd : |{φ(r) : φ ∈ P}| < |P |]} .

Regarding these two definitions, we have the two following results.

Theorem 1 (Necessity of output-unpredictability). Let Φ be a class of
functions from Rnd to Rnd. Suppose there are natural numbers α = poly1(λ) and
β = poly2(λ) such that InSecupΦ (α, β) = p, where p := p(λ) is non-negligible.
Then no PKE scheme can be RRA-ATK secure with respect to the class of
functions Φ.

Theorem 2 (Necessity of collision-resistance). Let Φ be a class of functions
from Rnd to Rnd. Suppose there is a natural number α = poly1(λ) such that
InSeccrΦ (α) = p, where p := p(λ) is non-negligible. Then no PKE scheme can be
RRA-ATK secure with respect to the class of functions Φ.



Alg. PRF-PKE.K(1λ):

(pk, sk)←$ PKE.K(1λ)

Alg. PRF-PKE.E(pk,m):

r ←$ Rnd

r′ ← Fr(pk||m)
c← PKE.E(pk,m; r′)
return c

Alg. PRF-PKE.D(sk, c):

m← PKE.D(sk, c)
return m

Fig. 3. Scheme PRF-PKE built from a standard PKE scheme, PKE and a PRF, F .

We note that many classes of functions that arise from practical attacks
satisfy these conditions. For example, the class of functions that flip bits at
certain positions, or the class of functions that fix the value of certain bits, are
both output-unpredictable and collision-resistant (provided at least a polynomial
number of bits are not fixed, in the latter case).

In the RO model, these conditions are sufficient to achieve security in our
strongest randomness attacks. More specifically, we can transform any IND-
ATK secure scheme into a RRA-ATK secure scheme, simply by hashing string
representations of the public key, the message, and appropriate randomness, and
then using the output as randomness for the standard encryption scheme. This is
an instance of the randomized-encrypt-with-hash (REwH) scheme from [2]. If the
class of functions Φ is sufficiently collision-resistant and output-unpredictable,
then this scheme is RRA-ATK-secure. We defer the details to the full version.

3 Related Randomness Security from RKA-PRFs

Since the RA setting of [33] is a special case of our RRA setting, an obvious
way to try to achieve RRA security is to extend the main construction from
[33]. That construction combines a PRF with an IND-ATK secure PKE scheme.
Specifically, the randomness r is used as a key to the PRF, and the input to
the PRF is the “context” pk||m; the output from the PRF is then used as the
actual randomness for encryption. This construction extends directly to our set-
ting, and security is guaranteed against Φ-restricted adversaries in our strongest
RRA-ATK models, under the assumption that the PRF is Φ-RKA-secure (i.e.
secure against related key attacks for the same class of functions Φ). Thus the
construction transfers RKA security for PRFs to RRA-ATK security for PKE.
Figure 3 formalises the construction, and Theorem 3 our security result.

Theorem 3. Suppose A is a Φ-restricted, equality-pattern respecting adversary
in the RRA-ATK game against the scheme PRF-PKE defined in Figure 3. Suppose
A makes qLR LR queries, qs Enc queries, and uses qr randomness indices. Then
there exists a Φ-restricted RKA-PRF adversary B and an IND-ATK adversary
C such that

Advrra-atk
PRF-PKE,A(λ) ≤ qLR · qr ·Advind-atk

PKE,C (λ) + 2qr ·Advrka-prf
F,B (λ).

Adversaries B and C run in approximately the same time as A. Adversary C
makes 1 LR query and the same number of Dec queries as A. Adversary B
makes at most qLR + s queries to its oracle.



Notice that our RO scheme (mentioned in Section 2) may be interpreted as
an instantiation of our scheme in Figure 3, since a random oracle can be viewed
as an (unkeyed) RKA-PRF.

The previous theorem is seductively simple, but currently of limited applica-
tion because the set of known RKA-secure PRFs is rather sparse. RKA-PRFs
were first formalised in 2003 by Bellare and Kohno [5], and some initial (though
not fully satisfactory) constructions were given in [5] and [25]. Setting these
aside, the only known constructions are due to Bellare and Cash [3]. They gave
a first construction for an RKA-PRF (based on the Naor-Reingold PRF) which
is provably secure under the DDH assumption for related key functions Φ cor-
responding to component-wise multiplication on the key-space (Z∗p)n+1. They
also provided a second construction achieving a similar result under the DLIN
assumption. A third construction for related key functions Φ corresponding to
component-wise addition on the key-space (Zp)n was recently withdrawn by the
authors of [3].

The limited nature of existing RKA-PRF families forces us to find alterna-
tive approaches to achieving security in the RRA setting. The application for
RKA-PRFs implied by Theorem 3 also provides yet more motivation for the fun-
damental problem of constructing RKA-PRFs for richer classes of related key
function.

4 Related Randomness PKE from CIS Hash Functions

To address some of the limitations encountered in the previous approach, we
show how a PKE scheme secure in the RRA setting can be constructed using
correlated-input secure (CIS) hash functions as introduced in [19]. While the
currently known instantiations of CIS hash functions only allow us to obtain
selective HK-RRA-ATK security, we are able to obtain security for a large class
of polynomial functions, as opposed to linear functions to which the previous
construction is currently restricted.

In its strongest form, a CIS hash function h (with key k) will yield output
hk(x) which is pseudorandom, even when given the hash value of multiple cor-
related input values (hk(φ1(x)), . . . , hk(φq(x))), where the correlation functions
φ1, . . . , φq are maliciously chosen. This type of CIS hash function is closely re-
lated to RKA-secure PRFs. In fact, the authors of [19] show that given a CIS
hash function h, an RKA-secure weak PRF F can be obtained simply by ex-
changing the role of the key and the input of h:

FK(x) := hx(K).

Recall that weak PRF security does not allow an adversary to choose the function
inputs, but instead, the inputs are chosen uniformly at random in the security
game.



Alg. CI-Hash-PKE.K(1λ):

(pk, sk)←$ PKE.K(1λ)

k ←$ CI-HASH.K(1λ)

(p̂k, ŝk)← (pk||k, sk)

Alg. CI-Hash-PKE.E(p̂k,m):

(pk||k)← p̂k
r ←$ Rnd

r′ ← hk(r)

r′′ ← Fr′(p̂k||m)
c← PKE.E(pk,m; r′′)
return c

Alg. CI-Hash-PKE.D(ŝk, c):

m← PKE.D(ŝk, c)
return m

Fig. 4. Scheme CI-Hash-PKE built from PKE scheme PKE, PRF F , and hash function
family H.

The authors of [19] furthermore give a concrete construction of a CIS hash
function secure for a class of correlation functions consisting of uniform-output3

polynomials of bounded degree, albeit in a restricted security model where the
adversary’s function queries are non-adaptive. This then yields a non-adaptive,
RKA-secure weak PRF.

Unfortunately, such a PRF this is not sufficient for our purposes. Surprisingly,
however, by making a relatively simple modification to the above construction
of PRFs from CIS hash functions, it is possible to obtain a primitive similar to
an RKA-secure (standard) PRF. More specifically, consider a CIS hash function
h and a standard PRF f . We introduce a public parameter c of F which will
correspond to the key for h, and then, instead of using the output of h directly,
we use h to derive a key for f . More specifically, we define

Fc,K(x) := fhc(K)(x).

Whilst not strictly an RKA-secure PRF due to the presence of the public param-
eter c, this primitive allows adaptively chosen inputs x, while remaining secure
under related key attacks. This ‘partial’ RKA-secure PRF will allow us to ob-
tain HK-RRA-ATK secure encryption schemes for the function families of the
underlying CIS hash function h. However, to achieve this, we need to extend
the definitions and theorems of [19] to the multi-key setting (reflecting the fact
that in the HK-RRA setting, our adversary can interact with multiple public
keys). The extensions of the security definitions are relatively straightforward,
and we defer definitions of a multi-key selective correlated-input pseudorandom
(MK-SCI-PR) secure family of hash functions to the full version.

Based on an ordinary PKE scheme PKE, a PRF F , and a family of hash
functions H, we construct a PKE scheme CI-Hash-PKE as shown in Figure 4.
The following theorem establishes the selective `-HK-RRA-ATK security of this
scheme based on the IND-ATK security of PKE, the multi-key selective CIS se-
curity of H, and the (regular) pseudorandomness of F .

Theorem 4. Suppose A is a Φ-restricted, equality pattern respecting adversary
in the selective `-HK-RRA-ATK game against the scheme CI-Hash-PKE in Fig-

3 A polynomial is said to be a uniform-output polynomial if its output range is equal
to its domain i.e. evaluating the polynomial on all values in the domain will again
yield the elements of the domain.



ure 4. Suppose A makes qLR LR queries, uses qr randomness indices, and uses
qφ functions in its oracle queries. Then there exists a Φ-restricted, multi-key, se-
lective correlated-input hash adversary B, a PRF adversary C and an IND-ATK
adversary D such that

Adv`-shk-rra-atkCI-Hash-PKE,A(λ) ≤ 2qφ · qr ·Adv`-mk-sci-pr
H,B (λ) + 2qφ · qr ·Advprf

F,C(λ)

+` · qLR · qr ·Advind-atk
PKE,D (λ) +

`2 · qr
|HashKeySpace|

.

Adversaries B, C and D run in approximately the same time as A. Adversary C
makes at most qLR queries, and D makes 1 LR query and as many Dec queries
as A.

It remains to show that we can instantiate a hash function satisfying the
multi-key correlated-input security notion. We achieve this by extending the
security results for the CIS hash function defined in [19]. Concretely, the CIS
hash function from [19] is defined as follows:

GenFun(1λ) : Pick a group G of prime order p, and set the keyspace to K =
G×Zp, the domain to D = Zp, and the range to R = G. Return (K,D,R, h)
where h is a description of the function defined below.

hk(x) : For k ∈ K and x ∈ D, parse k as (g, a) ∈ G× Zp and return

hk(x) = g
1

x+a ,

where 1/(m+ a) is computed modulo p

Based on the decisional q-Diffie Hellman Inversion (q-DDHI) assumption in G,
and extending the results of [19], we are able to show that the above hash
function achieves multi-key correlated-input pseudorandomness for a class of
functions consisting of uniform-output polynomials of bounded degree.

Theorem 5. Assume the decisional q-DDHI assumption holds in G, and let Φ
be a class of uniform-output polynomials over Zp. Then there exists no polyno-
mial time Φ-restricted adversary A with non-negligible advantage in the (Φ, `)-
MK-SCI-PR security game when interacting with H defined as above, provided
that ` ·d ≤ q+1, where d is an upper bound on the sum of the degrees of the poly-
nomials submitted by A. More precisely, if ` · d ≤ q+ 1, then for any polynomial
time Φ-restricted A, there exists a polynomial time algorithm B such that

Adv`-mk-sci-pr
H,A (λ) ≤ 2n` ·Advq-ddhiG,B (λ)

where n is the number of polynomials submitted by A.

Note 1. Our ‘partial’ RKA-secure PRF is only secure when an adversary’s func-
tion queries are non-adaptive, which is why we are only able to prove selective
HK-RRA-ATK security. If we had a result similar to Theorem 5 for adaptive
function queries, then we would immediately obtain a PKE scheme that is (adap-
tively) HK-RRA-ATK secure.



Note 2. The above construction is only shown to achieve HK-RRA-ATK secu-
rity, as opposed to RRA-ATK security. The technical reason for this is that
public keys include a hash key, and the CIS hash function is only assumed to be
secure for honestly generated keys. An alternative solution would be to introduce
a common reference string (CRS) containing a single hash key, and let all users
make use of this. While this requires a trusted third party to initially set up the
CRS, it would be possible to show RRA-ATK security of the above construction
in a security model appropriately extended to model the presence of a CRS.

Likewise, if we had a multi-key CIS hash function that remained secure for
maliciously chosen keys, then we would be able to obtain full RRA-ATK security
for the above construction. Unfortunately, we are currently unaware of how to
obtain such CIS hash functions.

5 Function-Vector Related Randomness Security

Our previous standard model constructions concerned functions φ that are linear
(scheme PRF-PKE analysed in Theorem 3 combined with known RKA-PRF fami-
lies), or of bounded degree and having unpredictable outputs (scheme CI-Hash-

PKE analysed in Theorem 5). We now turn our attention to alternative classes
of functions. Specifically, we will propose a construction for a PKE scheme that
is Φ-FV-RRA-ATK secure for the set Φ of vectors of functions that are hard to
invert, in a sense that we make precise next.

Definition 6. Let φ = (φ1, . . . , φq) denote a vector of functions on a set Rndλ,
where q := q(λ) is polynomial in the security parameter λ. Let δ(λ) be a function.
We say that φ is δ(λ)-hard-to-invert if, for all polynomial time algorithms A and
all sufficiently large λ, we have:

P[r ← A(φ1(r), . . . , φq(r)) : r ←$ Rndλ] ≤ δ(λ).

We say that a set of vectors of functions Φ is δ-hard-to-invert if each vector
φ ∈ Φ is δ-hard-to-invert (note that the vectors in such a set Φ need not all be of
the same dimension, but we assume they each have dimension that is polynomial
in λ).

We will now construct a PKE scheme that offers Φ-FV-RRA-CPA security,
where Φ is the set of all sufficiently hard-to-invert vectors of functions on the
scheme’s randomness space Rnd. As noted in Section 2, security in this setting
is quantified over all vectors in Φ, and the adversary is allowed to work with
any set of public keys (even maliciously generated) in its attack. This makes our
result relatively strong.

With these definitions in hand, Figure 5 defines our PKE scheme mBHHO

which offers security in the FV-RRA-CPA setting. This scheme is obtained by
modifying a PKE scheme of Boneh et al. [12] (the BHHO scheme) which Dodis
et al. [14] showed to be secure in the auxiliary input setting. To arrive at our
modified scheme mBHHO, we swap the roles of secret key and randomness in



Alg. mBHHO.K(1λ):

g1, . . . , gλ ←$ G
x←$ Zp
pk = (g1, . . . , gλ, g

x
1 . . . , g

x
λ)

sk = x

Alg. mBHHO.E(pk,m):

r ←$ {0, 1}λ

c1 =
∏λ
i=1 g

ri
i

(K, r′)← f(
∏λ
i=1(gxi )ri)

r′′ ← Fr′(pk||m)
c2 = DEM.E(K,m; r′′)
c = (c1, c2)

Alg. mBHHO.D(sk, (c1, c2)):

(K, r′)← f(cx1)
m← DEM.D(K, c2)

Fig. 5. Modified BHHO scheme mBHHO, constructed using a PRF, F , a KDF, f , and a
DEM DEM.

the original BHHO scheme. This then enables us to provide the values φi(r)
as auxiliary inputs without undermining the usual IND-CPA security of the
scheme; in turn, these values enables our security reduction to properly handle
Enc queries involving any function φi. The following theorem gives our formal
result concerning the security of this scheme.

Theorem 6. Let Φ be the set of δ-hard-to-invert vectors of functions on {0, 1}λ.
The PKE scheme mBHHO in Figure 5 is Φ-FV-RRA-CPA secure. More precisely,
consider any polynomial-size vector of functions φ ∈ Φ and any equality-pattern
respecting, φ-FV-RRA-CPA adversary A against mBHHO. Suppose A makes qLR
LR queries and uses qr randomness indices. Then there exists a DDH adversary
B, a KDF adversary D, a PRF adversary E, and an IND-CPA adversary F , all
running in polynomial time, such that:

Adv
φ-fv-rra-cpa
mBHHO,A (λ) < 2λqr ·Advddh

G,B(λ) + 2qr ·Advkdf
f,D(λ)

+2qr ·Advprf
F,E(λ) + qr ·Advind-cpa

DEM,F (λ)

+qrp
2 3
√

512λδ.

In particular, when δ is sufficiently small the advantage of A is negligible in the
security parameter λ.

The class of related randomness functions which our scheme mBHHO can tol-
erate is quite different from those in our previous constructions: linear and
bounded-degree polynomials are certainly not hard-to-invert in general. Our
proof of Theorem 6 actually shows that even if φ(r) were to completely leak to
the adversary (instead of merely being indirectly accessible via Enc queries),
the scheme mBHHO would still be secure. This would not be the case if the anal-
ogous φ(r) values were to leak in our earlier schemes PRF-PKE and CI-Hash-PKE,
since the adversary could actually reconstruct r from this leakage for the rel-
evant φ functions and win the security game. Furthermore, the functions are
not required to be collision-resistant or output-unpredictable. These restrictions
are only strictly required of the functions queried to the LR oracle. However,
since an an adversary is restricted to using only the identity function (which is
collision-resistant and output-unpredictable) in its LR queries, the functions in
Φ do not need to satisfy these conditions.
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