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Abstract. In this work we define multiple relaxations to the definition of
correctness in secure obfuscation. While still remaining meaningful, these
relaxations provide ways to obfuscate many primitives in a more direct and
efficient way. In particular, we first show how to construct a secure obfuscator for
the re-encryption primitive from the Decisional Learning with Errors (DLWE)
assumption, without going through fully homomorphic encryption. This can be
viewed as a meaningful way to trade correctness for efficiency.
Next, we show how our tools can be used to construct secure obfuscators for the
functional re-encryption and multi-hop unidirectional re-encryption primitives.
In the former case, we improve upon the efficiency of the only previously known
construction that satisfies the stronger notion of collusion-resistant obfuscation
(due to Chandran et al. - TCC 2012) and obtain a construction with input
ciphertexts of constant length. In the latter case, we provide the first known
obfuscation-based definition and construction; additionally, our scheme is the
first scheme where the size of the ciphertexts does not grow with every hop.

1 Introduction

Program obfuscation. Informally, an obfuscator [6] is an algorithm that converts
a program into another program that has the same behavior but is “completely
unintelligible", in that it reveals no information besides what can be learned
from observing the input/output behavior. Most previous works have focused
on impossibility results or constructions for extremely simple programs. In one
of the first works on obfuscating more complex cryptographic functionalities,
Hohenberger et al. [25] showed how to securely obfuscate the re-encryption
functionality. The re-encryption functionality (introduced by [7] and more for-
mally defined in [5]) is parameterized by two public keys for an encryption
scheme. It takes as input a ciphertext of message m under the first public key,
? This work was done while the author was an intern at Microsoft Research.



and outputs a ciphertext of the same messagem under the second public key. Re-
encryption has many applications, ranging from secure distributed file servers,
to outsourced filtering of encrypted spam, to the iTunes DRM system.
Why secure obfuscation for re-encryption? The use of obfuscation-based defini-
tions for re-encryption is particularly appealing for many reasons. First, secure
obfuscation results in a definition of security for re-encryption that is much
stronger than several previous definitions. It simultaneously captures many
game-based properties defined in earlier formalizations of re-encryption and
guarantees that the proxy cannot learn anything beyond what is revealed by
the input-output behavior of the re-encryption functionality (which it must in-
herently learn). Second, note that if we have a protocol that is secure when mak-
ing use of an “ideal" re-encryption functionality, then the security of the system
will be preserved when the untrusted proxy is given a program that is a secure
obfuscation of the same functionality. Finally, the secure obfuscation definition
for re-encryption is clean and easy to use, which is particularly relevant for a
primitive such as re-encryption for which multiple variants of security defini-
tions have been studied. Additionally, it also makes it easier to define security
for the more complex functionalities that we consider, such as multi-hop and
functional re-encryption. In light of these advantages, and given the widespread
applications of proxy re-encryption, obtaining efficient constructions that satisfy
the definition of secure obfuscation is very important from both a theoretical and
a practical perspective.
Why re-encryption? Beyond the direct applications mentioned above, studying
re-encryption may help advance the more general study of obfuscation. One of
the few areas in obfuscation which has seen positive results is the case where the
output of the program is encrypted [22, 13]. Since re-encryption is one of the
simplest such functionalities, it makes a good starting place for further study.
Constructing re-encryption schemes. Hohenberger et al. [25] (and also indepen-
dently Hofheinz et al. [24]) introduced the notion of average-case secure ob-
fuscation, which has been the standard definition of obfuscation in these works;
it captures the idea that the obfuscated program reveals nothing to an adversary
when the associated encryption key is chosen at random and unknown to the ad-
versary. The work of Hohenberger et al. [25] showed how to securely obfuscate
the re-encryption functionality under this definition assuming a bilinear pairing.
In the interest of basing primitives on a variety of assumptions, it is natural to
ask: can we construct a secure obfuscator for the re-encryption functionality
based on other types of assumptions? In addition, their scheme has the limita-
tion that the input and output encryption schemes are different, in other words,
the program takes as input ciphertexts under one encryption scheme and outputs
ciphertexts under not just a different key but a different scheme. While this may
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be alright in certain scenarios, many applications (e.g. multi-hop re-encryption)
require input and output schemes to have the same structure to allow for cascad-
ing, i.e. taking a re-encrypted ciphertext and re-encrypting it again.

As noted in [15] the re-encryption functionality can be securely real-
ized given any fully homomorphic encryption (FHE) scheme [28, 15]; the re-
encryption key is simply K

pk→p̂k
= Enc

p̂k
(sk) and the re-encryption program,

on input c = Encpk(m), computes Enc
p̂k

(c) and then Evalevk(f, c,Kpk→p̂k
),

where f is the decryption circuit, to obtain Enc
p̂k

(m). (This can be generalized
to achieve essentially any functionality with encrypted output.) We know con-
structions of FHE based on a variety of lattice-based assumptions [15, 16, 11,
10, 17, 9, 8], so this might give lattice-based constructions for re-encryption.

There are however two issues with this approach: First, FHE is a very strong
primitive, and despite significant progress, it is still very expensive; ideally
constructing a simple functionality like re-encryption should not require such
heavyweight tools. More importantly, by the definition of correctness of pro-
gram obfuscation, a secure obfuscator for the re-encryption functionality must
output ciphertexts that have a distribution that is statistically close to the distri-
bution output by the ideal re-encryption circuit for all inputs. In particular, this
statistical closeness must hold even for invalid ciphertexts. The only way we
know to achieve such a distribution is through bootstrapping [15], which is the
most computationally expensive part of the FHE constructions (and not included
the more efficient somewhat homomorphic encryption (SHE) schemes).

Challenges in lattice based constructions. Thus one might ask, what about
simpler lattice-based constructions? More concretely, can we achieve an
obfuscation-based notion of re-encryption without bootstrapping? Under previ-
ous obfuscation definitions, this seems very challenging, and, interestingly, the
challenge arises not from the security requirements (VBB obfuscation), but from
the correctness property (referred to as preserving functionality). Intuitively, the
issue is as follows: a well-formed ciphertext is formed by encoding the message
and then adding a small amount of random noise; this is what would be produced
by the unobfuscated program, and an obfuscation which preserves functional-
ity would have to produce ciphertexts that are similarly distributed. This means
that no matter what ciphertext the adversary chooses as input (even an invalid
ciphertext formed by adding a lot of noise), the obfuscated program must either
recognize that the ciphertext is invalid, or output ciphertexts with small, inde-
pendently generated noise. The only way we know to do this is to use bootstrap-
ping, which essentially runs the decryption algorithm under a layer of encryp-
tion and thus can detect poorly formed ciphertexts or remove the noise from the
input ciphertext and produce an output ciphertext with fresh small noise. How-
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ever, as mentioned above, bootstrapping is very expensive, thus we would like
to consider meaningful notions that can be achieved with simpler techniques.

Our contributions. Definitionally, our first contribution is to examine different
weaker notions of correctness. We propose two new definitions, which are re-
laxations of the standard notion of preserving functionality. We then evaluate
the implications of these definitions, focusing for concreteness on re-encryption
primitives. Next, we consider how to construct schemes satisfying these weaker
definitions. We define two tools, which we call blurring and key-switching, es-
sentially formalizing a number of techniques that were used in various FHE
constructions. While these techniques are not new, we provide general defini-
tions, independent of any specific instantiation, thus allowing them to be used
abstractly as tools in general constructions. Finally, we consider two additional
re-encryption primitives, functional re-encryption and multi-hop re-encryption,
and use our new tools and definitions to solve several previously open problems.

1.1 Our results and techniques

Relaxing correctness in secure obfuscation. We define two relaxations of cor-
rectness for the definition of secure obfuscation that allow more efficient con-
structions of re-encryption (and other) schemes. The first relaxation, informally,
guarantees only that the output distribution of the obfuscated program and the
ideal functionality are statistically close on so called “well-formed" inputs (i.e.
a subset of all the inputs to the functionality). The security property (average
case VBB) is still the standard notion (and is guaranteed on all inputs); such
a relaxation of the correctness can be viewed as a form of “correctness in the
semi-honest setting", in that correctness is guaranteed whenever the adversary
selects inputs to the obfuscated program honestly. The next relaxation guar-
antees that the output of the obfuscator on well-formed inputs is correct with
respect to some algorithm. (For example, they might both decrypt to the same
value in case of a decryption algorithm.) Finally, we consider a correctness guar-
antee that says that the output distribution of the obfuscated program is compu-
tationally indistinguishable from that of the ideal functionality. (We might for
example consider an obfuscator which satisfies this computational correctness
over all inputs, and additionally satisfies one of the above notions on the set of
well formed inputs.) We view these three relaxations to correctness of the se-
cure obfuscation definition as important contributions of this work and believe
they maybe applicable to other functionalties beyond re-encryption. Finally, we
emphasize that these are relaxations only to the correctness of the scheme. We
still maintain the guarantee that the obfuscated program reveals no more than
what can be computed given black box access to the functionality.
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Abstractions for two lattice-based techniques. Our next contribution is to ab-
stract out two mechanisms that we need for re-encryption from the previous
works of [15, 10], and implement these mechanisms with several instantiations.
In particular, we provide abstractions for (1) key-switching and (2) blurring.
These two mechanisms are designed to be used together: the key-switching
mechanism is used to transform a ciphertext Encpk(m) into another ciphertext
Enc

p̂k
(m). However the output distribution of this mechanism might be different

from a fresh ciphertext of message m under public key p̂k; the blurring mech-
anism is used to smooth out this difference. We define two variants: a strong
blurring and a weak blurring mechanism. At a high level, using strong blurring
helps us achieve the first relaxation of correctness; weak blurring enables us to
achieve the second and third relaxations.

We then proceed to show how to implement the key switching mechanism as
well as the strong and weak blurring mechanisms using: a) Regev’s encryption
scheme [27], and b) the dual Regev encryption scheme [19].

We remark here that while the notions of key switching and blurring are not
new, we provide a formal definition of the properties that we require from these
two notions. To the best of our knowledge, this is the first such definition of these
notions and we hope it will help these techniques to find other applications.
Contribution to lattice-based schemes and secure obfuscation. The problems we
encounter in satisfying the obfuscation-based definitions of security seem to be
fundamental to most lattice-based schemes; we hope that our relaxations will
also help lead to lattice-based obfuscations for other functionalities.
1.2 Applications of our results

We apply our tools to construct schemes for re-encryption and two useful vari-
ants: functional re-encryption, and multi-hop unidirectional re-encryption.
Re-encryption. We first show that using any fully homomorphic encryption
scheme with a strong blurring mechanism, one can obtain a secure obfuscation
of a re-encryption scheme that satisfies the standard definition of correctness
(i.e., the output is statistically close to the ideal functionality on all inputs).

Given that FHE is overkill, we provide direct, more efficient, constructions
based on the Decisional Learning with Errors (DLWE) assumption [27] via the
realizations of key switching and blurring mentioned above. With strong blur-
ring, the correctness of this scheme is guaranteed on all well-formed inputs (i.e.,
the output of our re-encryption program is statistically close to Enc

p̂k
(m) for all

honestly generated ciphertexts c = Encpk(m)). With weak blurring, we obtain
a secure obfuscation whose output distribution (on all ciphertexts) is computa-
tionally indistinguishable from that of the re-encryption functionality. (More-
over, re-encryptions of honestly generated ciphertexts still decrypt correctly.)
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All the above constructions provide a tradeoff between using (less efficient
but powerful) FHE to achieve the strongest definition of correctness and using
efficient specific lattice-based schemes to achieve slightly weaker notions of
correctness. Again, all these constructions satisfy a strong obfuscation-based
notion of security (average case VBB [25] and collusion resistance [13]).

Functional re-encryption and collusion-resistant obfuscation. Once we con-
struct the basic re-encryption schemes, we turn our attention towards a more
complex primitive, known as functional re-encryption, which incorporates ac-
cess control into the re-encryption functionality. The work of Chandran, Chase,
and Vaikuntanathan [13] introduced this primitive and showed an obfuscation-
based result. Informally, a program implementing functional re-encryption is
parameterized by an input public key pk, n output public keys p̂k1, · · · , p̂kn,
and an access policy F : [D] → [n]. The program takes as input a ciphertext
of message m with tag i ∈ [D] under input public key pk and outputs a ci-
phertext of the same message m under p̂kF (i). Functional re-encryption can be
used to implement a server that forwards a user Alice’s email to other recipi-
ents, depending on the tag (or the content) of the email, but at the same time
hides the message and the access policy from the server. Chandran et al. also
introduced the notion of collusion-resistant obfuscation in the context of func-
tional re-encryption, which, informally, guarantees that the obfuscated program
remains secure even when the server can collude with some of the recipients.
They gave a pairing-based construction of functional re-encryption (for access
policies with poly-size domain) satisfying collusion-resistant obfuscation.

Using our framework, we obtain constructions with varied levels of cor-
rectness and efficiency, similar to the tradeoffs in our constructions of the basic
re-encryption primitive. All of our constructions satisfy the strong security defi-
nition of the collusion-resistant obfuscation. We remark that in our schemes the
size of the input ciphertext is constant (as opposed to the construction of [13],
in which the size of the input ciphertext isO(D)). Our output ciphertext, on the
other hand is of sizeO(n) (as opposed to constant in [13]); however, each of the
n recipients still only needs to receive a constant size block of that ciphertext.

Multi-hop unidirectional proxy re-encryption. Traditionally, most re-encryption
schemes are single-hop, in the sense that the ciphertext produced by the re-
encryption process is of a different form and cannot be re-encrypted again. The
exception are a few schemes beginning with [7] which are multi-hop, but bi-
directional, which means that any re-encryption key which allows re-encryption
from Alice to Bob also allows re-encryption from Bob to Alice (and thus both
secret keys are necessary to generate the re-encryption key). In many settings
however, this is not desirable - intuitively, Bob should not need to trust Alice in
order for Alice to be able to forward her mail to Bob. Thus, it seems desirable
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to have a scheme which allows the output of the re-encryption process to be
re-encrypted again, but which does not require this kind of trust. That is the
problem we consider here (referred to from here on as multi-hop re-encryption).

In this work, we present the first obfuscation based definitions and construc-
tions for multi-hop unidirectional proxy re-encryption schemes. We remark that
the problem of constructing multi-hop re-encryption schemes was first posed in
[5]; a major drawback of previous schemes [21, 14] is that the ciphertext size
grows linearly with the number of re-encryptions. Here we construct L-hop re-
encryption schemes (where a ciphertexts can be re-encrypted up to L times) in
which ciphertexts do not grow with re-encryption.4

Our results also translate to the ideal lattice setting based on the ring-LWE
assumption [26]. For simplicity, we focus here on the general lattice setting.

2 Definitions for Obfuscation

In this section, we present our relaxed definitions of correctness in average-case
secure obfuscation. We first recall the definition of average-case secure obfus-
cation with collusion as defined by Chandran et al. [13] and present the relaxed
definitions of correctness with respect to this definition. As the Chandran et al
definition is a generalization of the average case obfuscation definition by Ho-
henberger et al [25], similar relaxations can also be applied in that setting.

Informally, average-case obfuscation guarantees that obfuscation hides the
program as long as it is chosen at random from a given family; resistance against
collusion addresses the case where we would like these obfuscation guarantees
to hold even when some types of information about the program being obfus-
cated may be available to the adversary. (This for example captures the case
where the adversary in a re-encryption scheme holds both the obfuscated re-
encryption program and some of the decryption keys.)

More formally, we consider families {Cλ} that have the following form.
Any CK ∈ Cλ is parameterized by a set of “secret" keys K = {k1, k2, · · · , k`}
(potentially in addition to any other parameters) that are chosen at random from
some specified distribution. Now, define a (non-adaptively chosen) subset of
keys represented through a set of indices T ⊆ [`], where [`] denotes the set
{1, 2, · · · , `}. We would like to construct an obfuscation of the circuit, denoted
by Obf(CK), so that Obf(CK) is a “secure obfuscation" of CK (in the sense of
[25]) even against an adversary that knows the set of keys {ki}i∈T . More pre-
cisely, in addition to their usual inputs and oracles, [13] give both the adversary

4 L-hop re-encryption does not follow from i-hop encryption [18]: the latter allow users to
evaluate multiple functions sequentially and homomorphically only under one public key.

7



and the simulator access to a (non-adaptively chosen) subset {ki}i∈T ⊆ K of
the keys. This can be seen as auxiliary information about the circuit CK ← Cλ.

Finally, we modify the definition to allow some parts of the circuit to be hid-
den in a worst case sense. This was addressed in [13] for the case of functional
re-encryption by adding an additional definition saying that an obfuscation is se-
cure with respect to a class of functions F if there exists a simulator Sim which
satisfies the collusion resistant average-case black box property for all f ∈ F. It
seems more natural and more general to incorporate this directly into the defini-
tion of secure obfuscation, so that is the approach we will take here. The formal
definition of collusion-resistant secure obfuscation is as follows.

Definition 2.1 (Average-case Obfuscation with Collusion). Let {Cλ} be a
family of circuits CK,w indexed by values from the sets K(λ) and W(λ), where
eachK ∈ K is of the form (k1, . . . , k`). A PPT algorithm Obf that takes as input
a (probabilistic) circuit and outputs a new (probabilistic) circuit is a collusion-
resistant secure obfuscator for the family {Cλ} in the average-case over K and
in the worst case over W, if it satisfies the following properties:
Preserving functionality: There exists a negligible function ngl(·) such that for
any input length λ and any C ∈ Cλ:

Pr[∃x ∈ {0, 1}λ : C ′ ← Obf(C);∆(C ′(x), C(x)) ≥ ngl(λ)] < ngl(λ),
where ∆(·, ·) denotes statistical distance, and the probability is taken over the
random coins of Obf.
Polynomial slowdown: There exists a polynomial p(λ) such that for sufficiently
large λ, for any C ∈ Cλ, |Obf(C)| ≤ p(|C|).
Average case virtual black-boxness (ACVBB) against collusion with worst-case
hiding over W: For any w ∈ W(λ), let Cλ,w be the set of circuits CK,w ∈ Cλ.
(When w is fixed, we specify a circuit in Cλ,w by CK.) There exists a PPT sim-
ulator Sim and a negligible function ngl(·) such that for all PPT distinguishers
D, all sufficiently long input lengths λ, all w ∈W(λ), and all subsets T ∈ [`]:∣∣∣∣Pr[CK ← Cλ,w : DCK(Obf(CK), {ki}i∈T ) = 1]

−Pr[CK ← Cλ,w : DCK(SimCK(1λ, {ki}i∈T ), {ki}i∈T ) = 1]

∣∣∣∣ < ngl(λ).

The probability is over the selection of a random circuit of CK from Cλ,w,
and the coins of the distinguisher, the simulator, the oracle and the obfuscator.

Note that in the case where we do not wish to consider collusion-resistance,
one can simply use the same definition as above where T is the empty set and
` = 1. Our relaxations of correctness in secure obfuscation, which we will
discuss below, apply to the non-collusion case as well.
Relaxed correctness in secure obfuscation. We next proceed to show how we
can relax the “preserving functionality" notion defined above. This will enable
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us to obtain more efficient constructions for various functionalities related to re-
encryption. We shall relax this notion in three different ways: the first relaxation
informally guarantees that the output distribution of the obfuscated program and
the ideal functionality are statistically close only on a subset of all the inputs to
the functionality; the second relaxation informally guarantees that on a subset
of all the inputs to the functionality, and for some algorithm Dec (this algorithm
would typically be a decryption algorithm), the output of Dec applied to the out-
put of the program and the output of Dec applied to the output of the ideal func-
tionality results in the same value; the third relaxation informally guarantees
that the output of the program and the output of the functionality, on a subset of
all the inputs, are computationally indistinguishable to all PPT adversaries (typ-
ically, this subset is parameterized by the set of corrupted parties in the system
and this captures the idea that on inputs where the ideal functionality produces
encryptions under honest parties’ keys, the adversary shouldn’t be able to dis-
tinguish the output of the obfuscated program from the ideal program). Note
that, in most cases, this third property only makes sense in combination with
one of previous two relaxations, because we do want some guarantee that the
obfuscated program works as expected; in our re-encryption case, for example,
we can combine this with the second relaxed correctness, to ensure that the pro-
gram’s output is indistinguishable from random encryptions, and at the same
time honestly generated and re-encrypted ciphertexts decrypt correctly.

Definition 2.2 (Relaxed Average-case Obfuscation with Collusion). For an
obfuscation algorithm Obf which satisfies the polynomial slowdown and
average-case collusion resistant virtual black-boxness properties as in Defini-
tion 2.1, we define the following relaxations of the correctness property:
Preserving functionality with respect to Π: Let Π be a set of pairs (K, x)
where K is an index for the circuit and x is an input. The obfuscated cir-
cuit is guaranteed to agree with the original circuit only on input pairs in
the subset Π . That is, there exists a negligible function ngl(·) such that for
any input length λ and any CK ∈ Cλ, and every x such that (K, x) ∈ Π:
Pr[C ′K ← Obf(CK);∆(C ′K(x), CK(x)) ≥ ngl(λ)] < ngl(λ), where the prob-
ability is over the random coins of Obf. For inputs outside Π , there is no guar-
antee for the output of C ′K(x). When Π is the set of all possible inputs, this cor-
responds to the standard notion of “preserving functionality" (Definition 2.1).
Preserving Dec correctness with respect to Π: Let Π be a set of pairs (K, x)
where K is an index for the circuit and x is an input, and Dec(·, ·) be some
algorithm. The obfuscated circuit is guaranteed to agree with the original circuit
only on input pairs in the subset Π , under the algorithm Dec. That is, for all
(K, x) ∈ Π , for all C ′K ← Obf(CK), we require that Pr[y ← CK(x), y′ ←
C ′K(x) : Dec(K, y) = Dec(K, y′)] = 1− ngl(λ) for some negligible ngl.
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Computationally preserving functionality with respect to ΠT̄ : Let T̄ be a set in
[`] (usually the set T = [`] \ T̄ ), and let ΠT̄ be a subset (potentially dependent
on T ) of pairs (K, x) where K = (k1, . . . , k`) is an index for circuit and x is an
input. For any pair of circuits C,C ′, denote by OK,C,C′(·) the program that on
input x, outputs C ′(x) if (K, x) ∈ ΠT̄ and C(x) otherwise. Then for all PPT
adversaries A, we require that:∣∣∣∣∣Pr

[
CK ← Cλ, C

′
K ← Obf(CK) : A

OK,CK,C′K
(·)

({ki}i∈T ) = 1
]

− Pr
[
CK ← Cλ : ACK(·)({ki}i∈T ) = 1

] ∣∣∣∣∣ < ngl(λ).

3 Our Framework and Instantiations

In this section, we define and construct several new tools which will be useful for
our applications. First we present two abstract properties, and argue that we can
implement them trivially with FHE. Then we show they can be achieved much
more efficiently for the Regev [27] and dual Regev [19] encryption schemes.

3.1 Notions of Key-Switching and Blurring

Key switching. Let Σ = (Gen,Enc,Dec) be a semantically secure encryp-
tion scheme. The first property we consider is the existence of a key-switching
mechanism. Here we formalize a property based on an idea from Brakerski and
Vaikuntanathan [10]: briefly, a key-switching mechanism allows one to directly
convert ciphertexts encrypted under one public key to ciphertexts encrypted un-
der a second public key. More formally our definition is as follows:

Definition 3.1 (Key-Switching Mechanism). A key-switching mechanism for
an encryption scheme Σ = (Gen,Enc,Dec) consists of two algorithms:

−SwGen(pk, sk, p̂k): Let (pk, sk) be a pair of “source” keys output by Gen,
and p̂k be a “target” public key ((p̂k, ·) is output by Gen). The algorithm takes
(pk, sk, p̂k) as input, and outputs a switch-key K

pk→p̂k
that can transform ci-

phertexts encrypted under pk to ciphertexts encrypted under p̂k.
−Sw(K

pk→p̂k
, c): The algorithm takes a switch-key K

pk→p̂k
and a ciphertext c

as input, and outputs a ciphertext ĉ.

The key-switching mechanism is correct if for all (pk, sk), (p̂k, ŝk) ← Gen

(1λ), for all K
pk→p̂k

← SwGen(pk, sk, p̂k), for all m ∈ {0, 1} and for all
c ← Encpk(m), c′ ← Sw(K

pk→p̂k
, c), it holds that Dec

ŝk
(c′) = m. More

generally, the key-switching mechanism is correct on set Π = {(pk, sk, c)} if
for all (p̂k, ŝk) ← Gen(1λ), for all K

pk→p̂k
← SwGen(pk, sk, p̂k), and for all

c′ ← Sw(K
pk→p̂k

, c), it holds that Dec
ŝk

(c′) = Decsk(c).

10



Remark 3.2. The idea of a key-switching mechanism was introduced by Brak-
erski and Vaikuntanathan [10] to construct fully homomorphic encryption
schemes. They used an approach where the SwGen algorithm is given pk, sk
and then samples p̂k, ŝk on its own, and outputs a switch-key that allows one to
transform ciphertexts under pk to p̂k. This suffices for the construction of fully
homomorphic encryption. However, for our applications we require the switch-
key generation algorithm to take the source keys and the target public key as
input, and to output the switch-key without knowing the secret key ŝk.

To make key-switching an interesting notion, we need some property guaran-
teeing at the very least that the switch-key does not allow the holder to decrypt
messages. We require something stronger, essentially that the switch-key reveals
nothing at all about the input public key to anyone who does not hold either of
the secret keys. We capture this with a simulation based definition:

Definition 3.3 (Security of Key-Switching Mechanism). We say the Key-
Switching Mechanism is secure if there exists a simulated key generation al-
gorithm SimSwGen(p̂k) that only takes as input the target public key (and not
the source keys) and can output a switch-key such that for any PPT adversary
the following two distributions are indistinguishable:

{(pk, sk), (p̂k, ŝk)← Gen(1λ);K
pk→p̂k

← SwGen(pk, sk, p̂k) :

(pk, p̂k,K
pk→p̂k

)}

{(pk, sk), (p̂k, ŝk)← Gen(1λ);K
pk→p̂k

← SimSwGen(p̂k) :

(pk, p̂k,K
pk→p̂k

)}

Blurring. The second property that we consider is what we call a blurring mech-
anism. At a high level, the goal is to take a ciphertext and produce a new
unrelated-looking ciphertext that encrypts the same message. This kind of re-
randomization is hard to achieve in lattice-based constructions, so we relax this
restriction somewhat and consider definitions in which guarantees only hold for
a restricted set of ciphertexts, or against computationally bounded adversaries.

Informally, weak blurring says that if we take any string c and blur it, then
this is indistinguishable from the string produced by taking a new ciphertext of
some (perhaps different) message and blurring it, even given the ciphertext c (but
not the secret key). This is true for all strings c and not just “well-formed" (or
honestly generated) ciphertexts. Furthermore, the blurred ciphertext and c will
still decrypt to the same message for the “well-formed” ciphertexts c. Strong
blurring, on the other hand, additionally says that if we take a “well-formed”
ciphertext c and blur it, then this is indistinguishable from the string produced
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by taking a new ciphertext of the same message and blurring it, even given the
secret key sk and the ciphertext c. (This follows from statistical closeness of the
two distributions). More formally, we define these properties as follows:

Definition 3.4 (Blurring). Given an encryption scheme Σ = (Gen,Enc,Dec),
we consider the following two blurring properties: Let Π be a set of public-
key, secret-key, ciphertext tuples, i.e. (pk, sk, c). Let Blur(pk, c) be an algorithm
which takes as input a public key and a ciphertext and produces a new ciphertext
c̃. Then we can consider the following two properties:

Weak Blurring: We say Blur is a weak blurring mechanism where the correct-
ness holds for Π if the following two properties hold.

(1) Hiding: for any PPT adversary A, the following are indistinguishable.
Experiment 0: pk← Gen(1λ), c← A(pk), output (pk, c,Blur(pk, c)).
Experiment 1: pk← Gen(1λ), c← A(pk), output (pk, c,Encpk(0)).

(2) Correctness: There exists negligible ngl such that, for all (pk, sk, c) ∈ Π ,
Pr[ĉ← Blur(pk, c) : Decsk(ĉ)) = Decsk(c)] = 1− ngl(λ).

Strong Blurring: We say Blur is a strong blurring mechanism with respect to
Π if it is a weak blurring mechanism where correctness holds for Π with the
following additional property: For every (pk, sk, c) ∈ Π , let m = Decsk(c);
then we require that ∆

(
(c,Blur(pk, c)), (c,Blur(pk,Encpk(m)))

)
< ngl(λ).

We note that many existing works consider similar definitions of re-
randomization5 . Strong blurring where Π is the set of all ciphertexts and valid
key pairs would be equivalent to the definition in [23]. Weak blurring where Π
is the set of all ciphertexts and valid key pairs is very similar in spirit to the
definition of semantic security for universal re-encryption presented in [20].

One direct application of such a blurring mechanism is to achieve function
privacy for any fully homomorphic encryption (FHE) scheme for which we can
blur the ciphertexts produced by the evaluation algorithm. (See the full version.)

Implementations using Function Private FHE. We note that both of these prop-
erties can be achieved easily given an appropriate FHE scheme. Given a key
private and function private FHE, we can construct a key-switching mechanism
by evaluating the decryption circuit as discussed in the introduction. We can
build strong blurring with respect to all inputs similarly. (See the full version.)

As a consequence, we can use the lattice-based FHE by Brakerski [8] (based
on Regev’s encryption) and our blurring mechanism for Regev-based schemes
(see the next section) to implement an encryption scheme that has: (1) key

5 We remark here, that our blurring technique is similar in spirit to the smudging technique
proposed by Asharov et al. [4]. However, we abstract out the technique and formally define
“blurring," independent of any specific encryption construction.
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switching, (2) strong blurring with respect to all inputs, and, (3) key privacy.
In our constructions of functional re-encryption and multi-hop re-encryption,
this approach gives the strongest obfuscation results, at the cost of efficiency.

3.2 Implementations using Regev’s Encryption Scheme

Recall that Regev’s encryption scheme has the following structure: pk = (A, b)
where A ∈ ZN×nq , b ∈ ZNq , and sk = s ∈ Znq where b = A · s + e for some
noise vector e, sampled from some distribution χN where χ is B-bounded. The
encryption has the following structure: c = (c1, c2) = r>·(A, b)+(0n,m·[q/2])
where r is a random vector in {0, 1}N . For details, see [27]. In what follows,
let Σ = (Gen,Enc,Dec) be Regev’s encryption scheme.

Key-switching mechanism. As discussed in Remark 3.2, the requirements on
key-switching in the context of re-encryption are slightly different from those in
the FHE application. Thus, the construction from [10] does not work directly.
We now show how we can modify that scheme to obtain a key-switching algo-
rithm which does satisfy our requirements. Consider the following algorithms:

SwGen(pk, sk, p̂k): Parse sk = s ∈ Znq . For i ∈ [n], τ ∈ [dlog qe], compute
Ki,τ ← Enc

p̂k
(0) + (0n, si · 2τ ), where si denotes the i-th component of the

vector s. Output K
pk→p̂k

= {Ki,τ}i∈[n],τ∈[dlog qe].

SimSwGen(p̂k): Let n, q be the parameters from p̂k. For i ∈ [n], τ ∈ [dlog qe],
compute Ki,τ ← Enc

p̂k
(0), and output K

pk→p̂k
= {Ki,τ}i∈[n],τ∈[dlog qe].

Sw(K
pk→p̂k

, c): first parse c = (c1, c2) ∈ Znq × Zq, and K
pk→p̂k

=

{Ki,τ}i∈[n],τ∈[dlog qe]. Denote by c1,i the i-th component of c1, and denote the
bit-decomposition of c1,i as {c1,i,τ}τ∈[dlog qe], i.e. c1,i =

∑
τ∈[dlog qe] c1,i,τ2τ ,

where each c1,i,τ ∈ {0, 1}. Then output ĉ = (0n, c2) +
∑

i,τ c1,i,τ ·Ki,τ

The above construction has the same structure as the one in [10], so the cor-
rectness and security follow from the DLWE assumption. (See the full version.)

Blurring mechanism. Consider the following two blurring algorithms:

SBlur(pk, c;E), where E ∈ Z is a parameter hardcoded into the algorithm
defining an appropriate error distribution (we will consider SBlur with different
values for E): Parse pk = (A, b) ∈ ZN×nq ×ZNq , sample f ← [−E,E]∩Z, and
output c+ Encpk(0) + (0n, f).

WBlur(pk, c): Output c+ Encpk(0).

Our idea for weak blurring is simple. We just add an encryption of 0 to
the ciphertext. Since the distribution of Encpk(0) is pseudo-random for Regev’s
encryption scheme, doing this computationally blurs the output. Also, Regev’s
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encryption scheme is additively homomorphic (with a small blow up of noise),
so this preserves the correctness of decryption.

For strong blurring, our idea is to blur the randomness as well. We recall
that the ciphertext c has the form (u, u> · s) + (0n,m · [q/2]) + (0n, z) where
z = r> · e is the error term and u = r> ·A. Adding an encryption of 0 will blur
our the first term (u, u> ·s) (by a leftover hash lemma argument). The additional
error e will blur out the last term z. For E · λω(1) < q/4, decryption will still
be correct. This idea also allows us to blur a subset sum of polynomially many
ciphertexts. Thus, we can blur the ciphertexts after the key switching algorithm
above. For a detailed analysis of weak and strong blurring see the full version.

3.3 Implementations using the dual Regev encryption scheme

In this section, we present another implementation of these mechanisms using
the dual Regev encryption scheme. We remark that the dual Regev scheme ap-
peared in [19], but we make a slight modification to the ciphertext and secret
key that allows us to implement a key-switching mechanism.

The dual Regev encryption scheme we use here has the following structure:
pk = (A, u) where A ∈ Zn×Nq and u ∈ Znq are uniformly random, and sk =

S ∈ ZN×Nq such that S is a short basis of Λ⊥(A). The encryption has the
following structure: c = (c1, c2) = s> · (A, u) + e> + (0N ,m · [q/2]) where
s ← χn, e ← χN+1 are noise vectors, sampled (independently) from some
B-bounded distribution χ. For details see the full version. In what follows, let
Σ = (Gen,Enc,Dec) be the dual Regev encryption scheme.

Key-switching mechanism. Consider the following algorithms:

SwGen(pk, sk, p̂k): Parse pk = (A, uA) ∈ Zn×Nq × Znq , p̂k = (B, uB) ∈
Zn′×N ′q × Zn′q , and sk = S ∈ ZN×Nq . First sample short noise matrices
V ← χn

′×n′ , X ← χn
′×(N ′+1). Let (B̃, ũB) = V · (B, uB) +X . Then sample

some short Z ∈ ZN×N ′q , z ∈ ZNq such that A · (Z, z) = (B̃, ũB − uA). This
can be done by using the sampling algorithm SampleD(S,A, ·, σz) at each col-
umn of the matrix (B̃, ũB − uA), together with the secret key S, and parameter
σz = ω(

√
n log n log q). Finally output K

pk→p̂k
= (Z, z).

SimSwGen(p̂k): Let n, q be the parameters from p̂k and σz = ω(
√
n log n log q)

be an additional parameter of the encryption. Output (Z, z) chosen by taking
N ′ + 1 independent samples from DZN ,σz (a discrete Gaussian on ZN with
parameter σz).

Sw(K
pk→p̂k

, c): first parse c = (c1, c2) ∈ ZNq × Zq, and K
pk→p̂k

= (Z, z) ∈
ZN×N ′q × ZNq . Output ĉ = (c1, c2) ·

(
Z z
0 1

)
.
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The correctness of the construction follows by a direct examination. Take
an encryption of 0 for example: let c = Enc(0) = s>(A, uA) + e>. If we apply
the switch key algorithm, we get a transformed ciphertext:

s>(A · Z,A · z + uA) + e> = s>(B̃, ũB) + e> = s>V · (B, uB) + s> ·X + e>

Since V,X and s are short, we can view s>V as another short s′>, and
s> ·X + e> as a slightly larger error e′>. Thus, this transformed ciphertext can
be decrypted correctly.

The security argument is slightly trickier. First we observe that the matrix
(B̃, ũB) is computationally indistinguishable from a uniformly random matrix.
This is because the security of DLWE holds even if the secret is sampled from
the noise distribution χn

′
as shown by Applebaum et al. [3]. Thus, the distribu-

tion (Z, z) such that A · (Z, z) = (B̃, ũB) is computationally indistinguishable
from the distribution (Z ′, z′) such thatA·(Z ′, z′) = (U, u) where (U, u) is a uni-
formly random matrix. As shown by Gentry et al. [19], (Z, z) can be sampled
(up to a negligible statistical distance) by the SampleD(A,S, ·, σz) as above,
and (Z ′, z′) is just the discrete Gaussian on ZN with parameter σz . Thus, the
security holds. For formal statements and proofs see the full version.
Blurring mechanism. Consider the following two blurring algorithms:
SBlur(pk, c;E), where E ∈ Z is a parameter hardcoded into the algorithm:
First parse pk = (A, u) ∈ Zn×Nq × Znq . Then sample p ← (E · χ)n, and
e← (E · χ)N+1, and output c+ p> · (A, u) + e>.
WBlur(pk, c): Output c+ Encpk(0).

Our idea for weak blurring is simple. We just add an encryption of 0. Since
Encpk(0) is pseudo-random, it will computationally blur the output. Also, the
dual Regev encryption scheme is additively homomorphic (with a small blow
up of noise), so it won’t hurt the correctness.

For strong blurring, we need to blur the randomness as well. Recall that the
ciphertext is of the form s> ·(A, u)+e> for s← χn, e← χN+1 where χ is aB-
bounded distribution. Suppose the distribution has the following property: (E ·
χ)N is statistically close to y + (E · χ)N for any y ∈ ZNq such that ‖y‖∞ ≤ B.
Then we can simply useE ·χ to blur the randomness. In fact, if χ is the Gaussian
distribution (as it is in our setting) and the parameters satisfy E ≥ B · λω(1),
then this property can be achieved. See the full version for details.

Remark 3.5. We also propose an alternative implementation for key-switching
in the dual Regev encryption scheme. The key observation is that the key-
switching mechanism in Regev’s encryption scheme as described in Section 3.2
can be easily adapted to the dual Regev scheme. Since the dual Regev scheme
has the same structure for the decryption algorithm, (i.e. it computes the inner
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product of a ciphertext and a secret key, as Regev’s scheme does for its decryp-
tion algorithm), a key-switching mechanism can be obtained in the same way.
On the other hand, we will keep the same the blurring mechanism as above.

Remark 3.6. The dual Regev encryption scheme can be extended to a variety
of identity-based encryption (IBE) and hierarchical identity-based encryption
(HIBE) schemes as shown in [19, 12, 1, 2]. We further observe that our construc-
tions of key switching and blurring in the dual Regev scheme can be naturally
extended to these dual Regev based (H)IBE schemes.

4 Applications of our tools

In this section, we sketch how we can use the tools developed in the previous
section to construct secure obfuscators for various re-encryption based primi-
tives. More detailed descriptions appear in the full version. For each primitive
we first define an ideal circuit family whose obfuscation would give a solution
to the problem, and then we show how to obfuscate it.

4.1 Obfuscating Re-encryption

We first construct a simple re-encryption scheme. In re-encryption a user Alice
with public key pk wants to allow an untrusted server to translate ciphertexts
encrypted under her public key into ciphertexts encrypting the same message
under the public key p̂k of another user Bob. She generates a re-encryption
program, which the server can use to perform the translation without decrypting.

The ideal re-encryption circuit family. Each circuit C
pk,sk,p̂k

is parameterized by

a source key pair (pk, sk), and a target public key p̂k. On input ciphertext c, it
decrypts using sk, encrypts the result under p̂k, and outputs the resulting ĉ.

Obfuscating re-encryption. Intuitively, if Alice could obfuscate the above cir-
cuit, then she could give the resulting program to the server. The program would
have the same functionality, so it would allow the server to correctly translate
ciphertexts from pk to p̂k. At the same time it would reveal no more information
than if the server had access to a trusted party who would compute re-encryption
for it; in particular, this means the program would not help the server at all in
decrypting messages as long as it doesn’t know Bob’s secret key. (If Bob and
the server collude, they can of course decrypt any messages encrypted for Alice,
but this is inherent in the functionality of re-encryption.)

We build on an encryption scheme with a key-switching mechanism and a
blurring mechanism. To obfuscateC

pk,sk,p̂k
, Obf (1) computes the re-encryption
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key as K
pk→p̂k

← SwGen(pk, sk, p̂k), and (2) generates the description of a re-
encryption program that has the re-encryption key K

pk→p̂k
hardcoded and on

input ciphertext c computes and outputs ĉ← Blur(p̂k,Sw(K
pk→p̂k

, c)).
Theorem (informal) The above scheme satisfies ACVBB for the re-encryption
functionality. With weak or strong blurring (resp.), it preserves functionality
with respect to Π , or computationally preserves functionality and preserves
Dec-correctness for Π , where Π is the set of honestly generated ciphertexts.
Interpreting the correctness guarantees. First, we note that in many scenarios,
a scheme which satisfies Dec-correctness on the set Π of honestly-generated
ciphertexts may be sufficient. Essentially, this says that whenever the server ap-
plies the re-encryption program to an honest ciphertext, the result will be another
ciphertext which will decrypt to the correct message.

A scheme which computationally preserves functionality with respect to the
set of all ciphertexts essentially guarantees that for any party without Bob’s
secret key, the output of the re-encryption program looks like a fresh random
encryption. In particular, any party who eavesdrops on ciphertexts sent to the
server and on the resulting ciphertexts sent to Bob will not be able to link each
re-encrypted ciphertext to the original ciphertext from which it was formed.

Statistically preserving functionality with respect to the set Π of honestly-
generated ciphertexts means that when the re-encryption program is applied to
an honest ciphertext, even Bob can’t distinguish the result from a freshly gener-
ated encryption. For example, if the server collects a set of ciphertexts, shuffles
them, and then sends them all to Bob, even if Bob saw the original ciphertexts
as they were sent to the server, he won’t be able to link them to the cipher-
texts he receives. This might be useful in privacy applications, e.g. if we want
to guarantee that Bob can’t tell who uploaded a particular message.

Finally, the standard definition of preserving functionality guarantees that
the recipient Bob can’t distinguish the output of the re-encryption from a fresh
encryption, even if the initial ciphertext was not well formed.

4.2 Obfuscating Functional re-encryption

Functional re-encryption, introduced by [13], extends the re-encryption to al-
low Alice to include an access policy when forming the re-encryption key, after
which the server (without learning the access policy), can convert any ciphertext
encrypted under Alice’s public key into a ciphertext encrypted for the appropri-
ate recipient (depending on the message and the access policy).

As in [13], we consider a message space in which each message consists of
a short tag and a potentially longer message, and specify the policy function by
defining a function F which maps tags to the appropriate recipients. For now,
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we consider the simple case where each tag is mapped to a different recipient.
(The general case results in a larger re-encryption key; see the full version.)

The ideal circuit family. Each circuit C
pk,sk,p̂k1,...p̂kn,F

is parameterized by an
input key pair, a list of n output public keys, and the function F . On input
ciphertext c, it decrypts c to obtain tag i and message m, then for each recipient
j, if F (i) = j it encrypts m under p̂kj , and otherwise it encrypts ⊥ under p̂kj .
It outputs the resulting list of ciphertexts. In our application above, the server
could then forward each ciphertext to the appropriate recipient, but only the
one for which F (i) = j will decrypt to anything meaningful. (This circuit is
somewhat different from the one in [13]; for a discussion, see the full version.)

Obfuscating functional re-encryption. Again, if we could obfuscate this func-
tionality, we would obtain a program that Alice could safely give the server that
would allow it to perform the re-encryption without learning anything about the
messages. Furthermore, if we guarantee that our obfuscation worst-case hides
the class of policy functions F then we know that the server will learn nothing
about Alice’s access policy; if the obfuscation is collusion resistant then these
guarantees hold even if the server colludes with some subset of the recipients.

We build on a key-private encryption scheme with key-switching and blur-
ring mechanisms. Roughly, Alice’s public key consists of a public key pki for
every possible i, and encryption of (m, i) for Alice computesΣ.Encpki(m). The
recipients use Σ directly. To obfuscate C

pk,sk,p̂k1,...,p̂kn,F
, Obf (1) computes a

switch-key Ki→F (i) ← SwGen(pki, p̂kF (i)) for each i (all these keys together,
sorted based on F (i), make up the re-encryption key rkF ), and (2) generates the
description of a re-encryption program that has this rkF hardcoded and, on input
ciphertext c, computes ĉj ← Blur(p̂kj ,Sw(KF−1(j)→j , c)) for each j ∈ [n] and
outputs the list of ciphertexts ĉ1, . . . , ĉn.

Theorem (informal) This scheme satisfies collusion-resistant ACVBB with
worst-case case hiding for F , and correctness depending on the blurring used.

4.3 Obfuscating multi-hop re-encryption

In multi-hop re-encryption, there are n users, each with his own key pair. Any of
these users can choose to allow their messages to be re-encrypted to other users.
We describe these choices with a directed graph, where each vertex corresponds
to a user, and an edge from i to j inGmeans user i wants to allow re-encryption
from ciphertexts under his public key (pki) to ciphertexts under pkj . L-hop re-
encryption allows each ciphertext to be re-encrypted L times. (Formally, we
also assume each ciphertext reveals how many times it has been re-encrypted.
We omit this below for simplicity; see the full version for details.)
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The ideal circuit family for G. Each circuit Cpk1,sk1,...,pkn,skn is parameterized
by n key pairs (pki, ski). On input i, j and a ciphertext c, if (i, j) ∈ G it de-
crypts c using ski, then encrypts the result under pkj , and outputs the resulting
ĉ; otherwise it outputs an encryption of ⊥ under pkj .
The Obfuscation. If we could design many separate re-encryption programs
which together form an obfuscation of the above functionality, we would ob-
tain programs that each user could safely give the server that would allow it to
perform the re-encryption without learning anything about the messages. More-
over, since this circuit distinguishes between an edge from i to j and an edge
from j to i (G is a directed graph), the obfuscation would give a unidirectional
re-encryption scheme.

We build on a key private encryption scheme with a key-switching mech-
anism and a blurring mechanism. To form a program using (pki, ski), pkj
(for (i, j) ∈ G), user i will (1) compute a re-encryption key Kpki→pkj ←
SwGen(pki, ski, pkj), and (2) generate the description of a re-encryption pro-
gram that has the re-encryption keyKpki→pkj hardcoded and on input ciphertext
c computes and outputs ĉ← Blur(pkj ,Sw(Kpki→pkj , c)).
Theorem (informal) The combined programs satisfy collusion-resistant
ACVBB, where correctness depends on the blurring algorithm used.
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