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Abstract. At Crypto 2012, Brakerski constructed a scale-invariant fully
homomorphic encryption scheme based on the LWE problem, in which
the same modulus is used throughout the evaluation process, instead of
a ladder of moduli when doing “modulus switching”. In this paper we
describe a variant of the van Dijk et al. FHE scheme over the integers
with the same scale-invariant property. Our scheme has a single secret
modulus whose size is linear in the multiplicative depth of the circuit
to be homomorphically evaluated, instead of exponential; we therefore
construct a leveled fully homomorphic encryption scheme. This scheme
can be transformed into a pure fully homomorphic encryption scheme
using bootstrapping, and its security is still based on the Approximate-
GCD problem.

We also describe an implementation of the homomorphic evaluation
of the full AES encryption circuit, and obtain significantly improved
performance compared to previous implementations: about 23 seconds
(resp. 3 minutes) per AES block at the 72-bit (resp. 80-bit) security level
on a mid-range workstation.

Finally, we prove the equivalence between the (error-free) decisional Ap-
proximate-GCD problem introduced by Cheon et al. (Eurocrypt 2013) and
the classical computational Approximate-GCD problem. This equivalence
allows to get rid of the additional noise in all the integer-based FHE
schemes described so far, and therefore to simplify their security proof.

1 Introduction

Fully Homomorphic Encryption. In 2009, Gentry constructed the first fully
homomorphic encryption scheme (FHE), i.e. a scheme allowing a worker to
evaluate any circuit on plaintext values while manipulating only ciphertexts. The
first generation of FHE schemes [Gen09,DGHV10,SV10,GH11,BV11a,BV11b]
and [CMNT11,CNT12,CCK+13] followed Gentry’s blueprint to achieve a fully
homomorphic scheme.



The first step of Gentry’s blueprint is to construct a somewhat homomorphic
encryption scheme (SWHE) capable of evaluating “low degree” polynomials ho-
momorphically. Inherent to this construction is the property that ciphertexts are
“noisy”, and noises grow slightly with homomorphic additions and substantially
with homomorphic multiplications. Thus ciphertexts need to be refreshed to
maintain a low noise level and allow subsequent homomorphic operations. To
obtain a FHE scheme, Gentry’s key-idea, referred to as bootstrapping, states that
a SWHE capable of evaluating its own decryption procedure (and an additional
multiplication) can be transformed into a FHE scheme. Bootstrapping consists
in evaluating the decryption circuit of the SWHE scheme using the decryption
key bits in encrypted form, thus resulting in a different encryption of the same
plaintext but with reduced noise. In practice, the scheme parameters are generally
determined so that the refreshed ciphertexts can handle one additional homo-
morphic multiplication [GH11,CMNT11,CNT12,CCK+13]. Unfortunately, the
downside of these settings is that one needs to call the (very costly) bootstrapping
procedure after each homomorphic multiplication.

Modulus Switching and Scale Invariance. To avoid bootstrapping a new
noise management technique, called modulus switching, was introduced by Brak-
erski, Gentry and Vaikuntanathan [BGV12]. The authors obtained a leveled
FHE scheme: i.e. a scheme in which the noise grows linearly with the multiplica-
tive depth instead of exponentially as in somewhat homomorphic encryption.
Therefore any circuit with polynomial depth can be evaluated. The technique
consists in scaling down the noise by converting a ciphertext modulo q into a
ciphertext modulo a smaller q′; the noise being reduced by roughly a factor q/q′.
By carefully calibrating the ladder of moduli, the noise growth can then be made
linear with the number of homomorphic multiplications. The technique was also
adapted to the DGHV fully homomorphic encryption scheme over the integers
[DGHV10] in [CNT12]. Unfortunately for a circuit with L layers of multiplication,
the technique requires to store the equivalent of L public-keys, yielding a huge
storage requirement.

At Crypto 2012, Brakerski introduced a new tensor product technique for
LWE-based leveled FHE [Bra12] so that the same modulus is used throughout
the evaluation process instead of a layer of moduli; the noise growth is still linear
in the number of homomorphic multiplications. This was achieved by considering
ciphertexts such that 〈c, s〉 = bq/2c·m+e mod q, instead of 〈c, s〉 = m+2e mod q,
as in Regev’s initial scheme [Reg05].

Implementations of FHE Schemes. Independently at Crypto 2012, Gentry et
al. benchmarked a LWE-based scheme by homomorphically evaluating an AES
circuit [GHS12b], yielding to the first “real-world” circuit homomorphically eval-
uated by a FHE scheme. This implementation used the modulus switching tech-
nique of [BGV12] and additionally a batching technique [SV11,BGV12,GHS12a]
that allows one to encrypt vectors of plaintexts in a single ciphertext, and to
perform any permutation on the underlying plaintext vector while manipulat-



ing only the ciphertext. They obtained a timing of about 5 minutes per AES
block homomorphically encrypted. Similar results were later obtained for the
integer-based DGHV scheme [DGHV10], extending the batching technique and
homomorphically evaluating AES on a desktop computer in about 12 minutes
per block for 72 bits of security [CCK+13,CLT13].

Our Contributions. In this paper, we describe a variant of the DGHV scheme
over the integers with the same scale-invariant property as in [Bra12]; i.e. our
scheme does not use modulus switching and the noise grows linearly with the
multiplicative depth. We obtain a DGHV variant with a single secret modulus
p whose size is linear in the multiplicative depth (instead of exponential). Our
technique is as follows.

In the original DGHV scheme, a ciphertext c of the bit message m ∈ {0, 1}
has the form

c = m+ 2r + q · p ,
where p is the secret key, q is a large random integer, and r is a small random
integer (noise). The bit message is recovered by computing m = (c mod p) mod 2.
Adding and multiplying ciphertexts over Z respectively adds and multiplies the
plaintexts modulo 2 while keeping them hidden. Unfortunately, the noise grows
exponentially with the number of homomorphic multiplications: if two ciphertexts
c1, c2 have ρ-bit noise, the noise of c3 = c1 ·c2 has ≈ 2ρ bits. Therefore to evaluate
a circuit with L sequential layers of multiplications without bootstrapping, the
bit-size η of the modulus p must satisfy η > 2Lρ.

In our new scheme, similar to [Bra12], instead of encrypting the bit m ∈ {0, 1}
in the LSB of [c mod p], we encrypt it in the MSB of [c mod p]; additionally
we work modulo p2 instead of modulo p. More precisely, the message m is now
encrypted as

c = r + (m+ 2r∗) · p− 1

2
+ q · p2 , (1)

where the ciphertext now contains two noises r and r∗. We decrypt c by computing
m = (2c mod p) mod 2. Clearly adding two ciphertexts over Z still adds the
underlying bit messages m modulo 2. However, multiplication of two ciphertexts
moves the bit message m from the MSB of [c mod p] to the MSB of [c mod p2].
Namely, a ciphertext c obtained as the multiplication of ciphertexts c1 and c2 for
the respective bit messages m1 and m2 will have the form

c = 2 · c1 · c2 = r + (m1 ·m2) · p
2 − 1

2
+ q · p2 , (2)

where r > p but still r � p2. We then describe a procedure Convert that
allows to publicly convert the result of a multiplication (i.e. a ciphertext as in
Equation (2)) into a ciphertext reusable in subsequent homomorphic operations
(i.e. a ciphertext as in Equation (1)), either keeping the same secret p (which
requires, as usual, a circular security assumption) or using a different fresh p
at each level (which requires a larger secret key). The bit length of the noise
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Fig. 1. Conversion of a ciphertext after a homomorphic multiplication

in the new ciphertext grows only by a constant additive factor with respect
to the noise in c1 and c2 (see Figure 1 for an illustration). Therefore, our
scheme is a variant of the DGHV scheme that is a leveled fully homomorphic
encryption scheme. It can be turned into a pure FHE scheme using bootstrapping
(cf. [DGHV10,CMNT11,CNT12,CCK+13]). We also show that our scheme is
semantically secure, under the Approximate-GCD assumption.

We also adapt our scale-invariant technique to the batch setting in [CCK+13]
and homomorphically evaluate an AES encryption as in [GHS12b,CCK+13]. Our
scheme offers competitive performances as it can evaluate the full AES circuit
in about 23 seconds (resp. 3 minutes) per AES block at the 72-bit (resp. 80-bit)
security level on a mid-range workstation, that is one order of magnitude faster
than [CCK+13].

Finally, we prove the equivalence between the (error-free) computational
Approximate-GCD problem [DGHV10] and the (error-free) decisional Approxi-
mate-GCD problem introduced in [CCK+13,KLYC13]. From this equivalence,
the additional noise added during encryption to drawn the noises coming from the
public key elements is no longer required. This yields automatic improvements in
the parameters of all the fully homomorphic encryption schemes over the integers.

2 The Somewhat Homomorphic DGHV Scheme

In this section we first recall the somewhat homomorphic encryption scheme
over the integers of van Dijk, Gentry, Halevi and Vaikuntanathan (DGHV)
in [DGHV10]. We denote by λ the security parameter, τ the number of elements
in the public key, γ their bit-length, η the bit-length of the secret key p and ρ
(resp. ρ′) the bit-length of the noise in the public key (resp. in a fresh ciphertext).

For a real number x, we denote by dxe, bxc and dxc the upper, lower or
nearest integer part of x. For integers z, p we denote the reduction of z modulo
p by (z mod p) or [z]p with −p/2 < [z]p 6 p/2. For a specific η-bit odd integer p,
we use the following distribution over γ-bit integers:

Dγ,ρ(p) =

{
Choose q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) :

Output x = q · p+ r

}
.



DGHV.KeyGen(1λ). Generate an η-bit random prime integer p. For 0 6 i 6 τ ,
sample xi ← Dγ,ρ(p). Relabel the xi’s so that x0 is the largest. Restart unless
x0 is odd and [x0]p is even. Let pk = (x0, x1, . . . xτ ) and sk = p.

DGHV.Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊆ {1, 2, . . . , τ} and
a random integer r in (−2ρ

′
, 2ρ
′
), and output the ciphertext:

c =

[
m+ 2r + 2

∑
i∈S

xi

]
x0

. (3)

DGHV.Evaluate(pk, C, c1, . . . , ct). Given the circuit C with t input bits and t
ciphertexts ci, apply the addition and multiplication gates of C to the
ciphertexts, performing all the additions and multiplications over the integers,
and return the resulting integer.

DGHV.Decrypt(sk, c). Output m← (c mod p) mod 2.

This completes the description of the scheme. The scheme is clearly somewhat
homomorphic, i.e. a limited number of homomorphic operations can be performed
on ciphertexts. More precisely given two ciphertexts c = q · p + 2r + m and
c′ = q′ · p + 2r′ + m′ where r and r′ are ρ′-bit integers, the ciphertext c + c′

is an encryption of m + m′ mod 2 with a (ρ′ + 1)-bit noise and the ciphertext
c · c′ is an encryption of m ·m′ with noise bit-length ' 2ρ′. Therefore the scheme
allows roughly η/ρ′ successive multiplications on ciphertexts (since the noise
must remain smaller than p for correct decryption).

As shown in [DGHV10] the scheme is semantically secure under the Approxi-
mate-GCD assumption.

Definition 1 (Approximate GCD). The (ρ, η, γ)-Approximate-GCD problem
consists, given a random η-bit odd integer p and given polynomially many samples
from Dγ,ρ(p), in outputting p.

3 Scale-Invariant DGHV Scheme

In this section we describe our variant of the DGHV scheme with the scale-
invariant property. We first explain the two main ideas of our scheme, namely
1) moving the plaintext bit from the LSB to the MSB of [c mod p] and working
modulo p2, and 2) converting the result of a ciphertext multiplication back to a
ciphertext usable in subsequent homomorphic operations. We then provide the
full description of our scheme.

3.1 Ciphertexts and Homomorphic Operations

As explained in introduction, instead of encrypting the plaintext m ∈ {0, 1} in
the LSB of [c mod p], m is now encrypted in the MSB of [c mod p] as

c = r + (m+ 2r∗) · p− 1

2
+ q · p2 , (1)



where the ciphertext has now two noises r and r∗ of respective bit-length ρ and
ρ∗. We call such ciphertext a Type-I ciphertext and we say that c has noise length
(ρ, ρ∗). To decrypt c, one computes (2c mod p) mod 2 = m.

Homomorphic additions are performed as additions over Z: namely given two
Type-I ciphertexts c1 and c2 of noise (ρ, ρ∗):

c1 = r1 + (m1 + 2r∗1) · (p− 1)/2 + q1 · p2
c2 = r2 + (m2 + 2r∗2) · (p− 1)/2 + q2 · p2

we get

c1 + c2 = r3 + (m1 +m2 + 2r∗3) · p− 1

2
+ q3 · p2 ,

for some integers r3, r
∗
3 and q3, with log2 |r3| 6 ρ+ 1 and log2 |r∗3 | 6 ρ∗ + 1.

Next, to homomorphically multiply the ciphertexts c1 and c2, one computes
c3 = 2 · c1 · c2 over Z. This gives

c3 = 2 · c1 · c2 = 2r1r2 +
(
r1(m2 + 2r∗2) + r2(m1 + 2r∗1)

)
· (p− 1) +

(m1 + 2r∗1) · (m2 + 2r∗2) · (p− 1)2

2
+ q′3 · p2

= r′3 + (m1 + 2r∗1) · (m2 + 2r∗2) · (p− 1)2

2
+ q′3 · p2

for some integers q′3 and r′3, with log2 |r′3| 6 η+ ρ+ ρ∗+ 3, where η is the bit-size
of p. We use η � ρ, ρ∗. Then, there exist integers r3 and q3 such that

c3 = r3 +m3 ·
p2 − 1

2
+ q3 · p2 , (2)

where m3 = m1 · m2. We call an integer c verifying Equation (2) a Type-II
ciphertext. The bit-length of noise r3 satisfies log2 |r3| 6 η+ ρ+ ρ∗ + 4, assuming
ρ∗ < ρ. We refer to Figure 1 for a graphical representation of the homomorphic
multiplication.

3.2 Conversion from Type-II Ciphertext to Type-I Ciphertext

We show that we can efficiently convert a Type-II ciphertext back to a Type-I
ciphertext, using only the public-key. Our procedure Convert uses essentially
the same technique as the modulus switching technique for DGHV in [CNT12].
Namely modulus switching in [CNT12] enables to convert a classical DGHV
ciphertext modulo a prime p into a new ciphertext modulo a prime p′, with
noise scaled by a factor p′/p. Similarly, our Convert procedure converts a Type-II
ciphertext modulo p2 back to a ciphertext where the noise is modulo p (therefore
the noise is scaled by a factor p/p2 = 1/p), but still somehow encrypted modulo
p2.

More precisely, we start from a Type-II ciphertext:

c = r +
p2 − 1

2
·m+ q · p2 (4)



where |r| 6 2ρ
′
. Let κ be such that |c| < 2κ. Let z be a vector of Θ rational

numbers in [0, 2η) with κ bits of precision after the binary point, and let s be a
vector of Θ bits such that

2η

p2
= 〈s, z〉+ ε mod 2η , (5)

where |ε| 6 2−κ. Here Θ is a parameter to be chosen later for security. We use
the same BitDecomp and PowersofTwo procedures as in [BGV12].

– BitDecompη(v): For v ∈ Zn, let vi ∈ {0, 1}n be such that v mod 2η =∑η−1
i=0 vi · 2i. Output the vector

(v0, . . . ,vη−1) ∈ {0, 1}n·η .

– PowersofTwoη(w): For w ∈ Zn, output the vector

(w, 2 ·w, . . . , 2η−1 ·w) ∈ Zn·η .

Given the vector s from (5), we let s′ = PowersofTwoη(s), and let

σ = q · p2 + r +
⌊
s′ · p

2η+1

⌉
(6)

be an “encryption” of the vector s′, where q ← (Z ∩ [0, 2γ/p2))η·Θ and r ←
(Z ∩ (−2ρ, 2ρ))η·Θ. We can now define the Convert algorithm:

Convert(z,σ, c). First compute c = (bc ·zie mod 2η)16i6Θ and its decomposition
c′ = BitDecompη(c). Finally, output

c′ ← 2〈σ, c′〉 .

The following Lemma shows that our procedure Convert enables one to
transform a Type-II ciphertext back to a Type-I ciphertext. We provide the proof
in the full version of the paper [CLT14].

Lemma 1. Let ρ′ be such that ρ′ > η + ρ + log2(ηΘ). The procedure Convert
above converts a Type-II ciphertext with noise size ρ′ into a Type-I ciphertext
with noise (ρ′ − η + 5, log2Θ).

Assume that initially the two ciphertexts c1, c2 are Type-I ciphertexts with
noise (ρ1, log2Θ). After computing c3 = 2 · c1 · c2 which has noise size at most
ρ′ = η + ρ1 + log2Θ + 4 (see previous section) one can convert c3 back into a
Type-I ciphertext with noise (ρ3, ρ

∗
3) with ρ3 = ρ1 + log2Θ + 9 and ρ∗3 = log2Θ,

from Lemma 1. Therefore the noise length in bits has only grown by an additive
factor log2Θ + 9. Therefore the ciphertext noise grows only linearly with the
number of homomorphic multiplications.



3.3 Description of the Public-Key Leveled Fully Homomorphic
Scheme

We are now ready to describe our scale-invariant version of the DGHV encryption
scheme. For a specific η-bit odd integer p and an integer q0 in [0, 2γ/p2), we
define the set:

Dρp,q0 = {q · p2 + r : q ∈ Z ∩ [0, q0), r ∈ Z ∩ (−2ρ, 2ρ)} .

SIDGHV.KeyGen(1λ). Generate an odd η-bit integer p and a γ-bit integer x0 =
q0 · p2 + r0 with r0 ← (−2ρ, 2ρ) ∩ Z and q0 ← [0, 2γ/p2) ∩ Z. Let xi ← Dρp,q0
for 1 6 i 6 τ . Let also y′ ← Dρp,q0 and y = y′ + (p− 1)/2.

Let z be a vector of Θ numbers with κ = 2γ + 2 bits of precision after the
binary point, and let s be a vector of Θ bits such that

2η

p2
= 〈s, z〉+ ε mod 2η,

with |ε| 6 2−κ. Now, define

σ = q · p2 + r +
⌊
PowersofTwoη(s) · p

2η+1

⌉
,

where the components of q (resp. r) are randomly chosen from [0, q0) ∩ Z
(resp. (−2ρ, 2ρ) ∩ Z).

The secret-key is sk = {p} and the public-key is pk = {x0, x1, . . . , xτ , y,σ, z}.

SIDGHV. Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊂ {1, . . . , τ} and
output

c←
[
m · y +

∑
i∈S

xi

]
x0

.

SIDGHV.Add(pk, c1, c2). Output c← c1 + c2 mod x0.

SIDGHV. Convert(pk, c). Output c′ ← 2 ·
〈
σ,BitDecompη(c)

〉
where c =

(
bc ·

zie mod 2η
)
16i6Θ

.

SIDGHV.Mult(pk, c1, c2). Output c′ ← SIDGHV. Convert(pk, 2 · c1 · c2) mod x0.

SIDGHV.Decrypt(sk, c). Output m←
(
(2c) mod p

)
mod 2.

Remark 1. This describes a leveled fully homomorphic encryption scheme, be-
cause the noise growth is only linear in the number of levels. The scheme can
be bootstrapped to obtain a (pure) fully homomorphic encryption scheme, as
in [DGHV10,CCK+13],



3.4 Constraints on the Parameters

The parameters of the scheme must meet the following constraints (where λ is
the security parameter):

• ρ = Ω(λ) to avoid brute force attack on the noise [CN12,CNT12],

• η > ρ+O(L log λ) where L is the multiplicative depth of the circuit to be
evaluated,

• γ = ω(η2 · log λ) in order to thwart lattice-based attacks (see [DGHV10] and
[CMNT11,CH12]),

• Θ2 = γ ·ω(log λ) to avoid lattice attacks on the subset sum (see [CMNT11]),

• τ > γ + 2λ in order to apply the Leftover Hash Lemma (see Section 3.5).

To satisfy the above constraints one can take ρ = 2λ, η = Õ(L + λ), γ =
Õ(L2λ+ λ2), Θ = Õ(Lλ) and τ = γ + 2λ.

3.5 Semantic Security

We show that the semantic security of our scheme can be based on the following
variant of the decisional problem introduced in [KLYC13], called the Decisional-
Approximate-GCD problem. Roughly speaking, it should be hard to distinguish
integers from Dρp,q0 from completely uniform integers modulo x0, where:

Dρp,q0 = {q · p2 + r : q ∈ Z ∩ [0, q0), r ∈ Z ∩ (−2ρ, 2ρ)} .

Definition 2 ((ρ, η, γ)-Decisional-Approximate-GCD). Let p be a random
odd integer of η bits, q0 an integer uniformly distributed in [0, 2γ/p2), r0 an
integer uniformly distributed in (−2ρ, 2ρ). Given x0 = q0 · p2 + r0, polynomially
many samples from Dρp,q0 and y ← Dρp,q0 + (p− 1)/2, determine b ∈ {0, 1} from
c = x+ b · r mod x0 where x← Dρp,q0 and r ← [0, x0) ∩ Z.

The following theorem shows that our scheme is semantically secure under
the Decisional-Approximate-GCD assumption; below we only consider a subset
of our scheme without the procedure Convert, i.e. without the public parameters
z and σ. To prove the semantic security of the full scheme it suffices to include
z and σ in the above decisional assumption.5

5 Usually in FHE we first show the semantic security of a restricted scheme, and then
a ‘circular security’ assumption is used to get the semantic security of the entire
FHE; that is we assume that the encryption scheme remains secure even when the
adversary is given encryptions of the individual bits of the private-key.

Here we first prove that the scheme is secure without the terms z and σ. If the
scheme is ‘circular secure’ (secure even with encryptions of the invariant switching,
i.e. z and σ) then it remains semantically secure. This circular security assumption
can be avoided by using the classical modulus switching technique [CNT12] instead
of our scale-invariance technique.



Theorem 1. The above scale-invariant DGHV scheme without the parameters
z, σ is semantically secure under the (ρ, η, γ)-Decisional-Approximate-GCD
assumption.

To prove the theorem, we use a preliminary Lemma from [KLYC13] stating
that the distribution of the public-key elements is indistinguishable from random
elements in [0, x0) if the Decisional-Approximate-GCD problem is hard; the proof
follows from a standard hybrid argument.

Lemma 2. For the parameters (ρ, η, γ), let pk = (x0, {xi}i, y) and sk = p be
chosen as in the KeyGen procedure. Define pk′ = (x0, {x′i}i, y) for x′i uniformly
generated in [0, x0). Then pk and pk′ are indistinguishable under the Decisional-
Approximate-GCD assumption.

Proof (of Theorem 1). Under the attack scenario the attacker first receives the
public key, and an encryption of a random bit b ∈ {0, 1}. The attacker outputs a
guess b′ and succeeds if b′ = b. We use a sequence of games and denote by Si the
event that the attacker succeeds in Gamei.

Game0: This is the attack scenario. We simulate the challenger by running
KeyGen to obtain pk and sk.

Game1: We replace the xi’s in the public key by elements uniformly drawn in
[0, x0). By Lemma 2, we have

|Pr[S1]− Pr[S0]| 6 τ · εdagcd .

Game2: By the Leftover Hash Lemma (Lemma 5 in Appendix A),
∑
i∈S xi mod

x0 is ε-statistically indistinguishable from uniform modulo x0, with ε = 2(γ−τ)/2.
Therefore we can replace the challenge ciphertext by a uniform integer modulo x0;
this no longer gives any information on b and therefore Pr[S2] = 1/2. Moreover
we have |Pr[S2]− Pr[S1]| 6 ε. This gap can be made negligible by satisfying the
constraints on the parameters from Section 3.4, which concludes the proof. ut

Remark 2. We show in Section 6 that the (Error-Free) Decisional-Approxi-
mate-GCD problem is equivalent to the computational (Error-Free) Appro-
ximate-GCD problem. Thus our scheme is automatically based on the com-
putational Approximate-GCD problem as in previous works on the DGHV
schemes [DGHV10,CMNT11,CNT12].

4 Generalization to Batch Scale-Invariant DGHV Scheme

We now describe a generalization of the previous scheme to the batch setting (as in
RLWE-based schemes [BV11a,BV11b] and integer schemes [CCK+13]). The goal
is to pack ` plaintext bits m0, . . . ,m`−1 into a single ciphertext. Homomorphic
addition and multiplication will then apply in parallel and component-wise on
the mi’s.



Our batch generalization is similar to [CCK+13]. A ciphertext encrypting a
vector m = (m0, . . . ,m`−1) has the form:

c = CRTq0,p20,...,p2`−1

(
q, . . . , ri + (2r∗i +mi) ·

pi − 1

2
, . . .

)
(7)

for a tuple of `+1 coprime integers q0, p0, . . . , p`−1, where we denote by CRTbi(ai)
the unique integer u such that 0 6 u <

∏
i bi and u mod bi = ai for all i. We call

such ciphertext a batch Type-I ciphertext. Modulo each of the pj ’s the ciphertext
c behaves as in the SIDGHV scheme in Section 3. Accordingly, the addition of
two ciphertexts yields a new ciphertext that decrypts to the componentwise sum
modulo 2 of the original plaintexts.

To homomorphically multiply two ciphertexts c1 and c2, as previously one
computes c3 = 2 · c1 · c2 in Z. As previously there exists small integers r3,j such
that

c3 ≡ r3,j +mj ·
p2j − 1

2
(mod pj) for j = 0, . . . , `− 1, (8)

where each mj is the product of the corresponding plain text components of
c1 and c2. We call c3 a batch Type-II ciphertext. Modulo each of the pj ’s, the
ciphertext c3 behaves as a Type-II ciphertext given by Equation (2); therefore
the message bit mj is the MSB of [c mod p2j ] for all j. As in Section 3, there
exists an efficient conversion procedure Convert to convert any Type-II ciphertext
to a new Type-I ciphertext. As shown below the procedure Convert is actually
the same as in Section 3, with adapted public parameters.

Namely let z be a vector of Θ rational numbers in [0, 2η) with κ bits of
precision after the binary point (where |c| < 2κ), and let (sj) be a set of ` vectors
of Θ bits such that, for all j = 0, . . . , `− 1,

2η

p2j
= 〈sj , z〉+ εj mod 2η

where |εj | 6 2−κ. Let s′j = PowersofTwoη(sj) ∈ ZηΘ. Define σ = (σ1, . . . , σηΘ)
so that, for all 1 6 i 6 ηΘ:

σi = CRTq0,p20,...,p2`−1

(
qi, r0,i +

⌊
s′0,i ·

p0
2η+1

⌉
, . . . , r`−1,i +

⌊
s′`−1,i ·

p`−1
2η+1

⌉)
is an encryption of (s′j,i)16j6`. For Convert we use the same algorithm as in
Section 3:

Convert(z,σ, c). First compute c = (bc · zie mod 2η)16i6Θ and then its decom-
position c′ = BitDecompη(c). Finally, output

c′ ← 2〈σ, c′〉 mod x0 .

The proof of the following lemma follows directly from the proof of Lemma 1
applied modulo each of the pj ’s.



Lemma 3. The procedure Convert above converts a Type-II ciphertext with noise
size ρ′ into a Type-I ciphertext with noise (ρ′ − η + 5, log2Θ), for ρ′ − η >
ρ+ log2(ηΘ).

In the full version of this paper [CLT14] we provide a full description of the
resulting batch leveled fully homomorphic scheme. We also show that the batch
scheme is semantically secure under a variant of the previous Decisional-Appro-
ximate-GCD assumption with error-free x0.

5 Practical Implementation

In this section, we provide concrete parameters and timings for a homomorphic
evaluation of AES with our batch scale-invariant DGHV scheme. For homomor-
phic AES evaluations we compare our timings with the RLWE-based leveled-FHE
scheme in [GHS12b] and with the batch (bootstrapping-based) DGHV scheme in
[CCK+13,CLT13]. We use the following existing optimizations:

1. Subset-sum: as in [CMNT11] we use β-bit integers bi instead of bits in
the subset sum, to reduce the value of τ . Namely the condition becomes
β · τ > γ + 2λ.

2. Public-key compression: the technique in [CNT12,CLT13] enables to compress
the ciphertexts in the public-key from γ to roughly ` · η bits.

3. Ciphertext expand [CNT12]: the technique consists in generating the zi’s
with a special structure instead of pseudo-random. Let δ be a parameter to
be specified later. One generates a random z with κ+ δ ·Θ ·η bits of precision
after the binary point, and one defines the zi’s for `+ 1 6 i 6 Θ as

zi =
[
z · 2i·δ·η

]
2η
,

keeping only κ bits of precision after the binary point for each zi as previously.
We fix z1, . . . , z` so that the previous equalities hold. Then the ciphertext
expansion can be computed as follows, for all `+ 1 6 i 6 Θ:

ci = bc · zie mod 2η = bc · z · 2i·δ·ηe mod 2η .

Therefore computing all the zi’s (except the first `) is now essentially a single
multiplication c · z. A lattice attack against this optimization is described in
[CNT12]; the authors show that the attack is thwarted by selecting δ such
that δ ·Θ · η > 3γ.

5.1 Optimization of Scalar Product

We describe an additional optimization for computing the scalar product c′ =
2〈σ, c′〉 computed in Convert, similar to the ciphertext expand optimization
above. The vectors σ and c′ have ηΘ elements. We first divide the vectors σ
and c′ into subvectors of Θ elements, and we compute the scalar products of the



subvectors separately. In the following for simplicity we keep the same notations
and now assume that σ and c′ have Θ elements each.

We generate the vector σ ∈ ZΘ such that:

σi =
⌊
σ · 2i·δ·η

⌉
+ vi

for small public corrections |vi| 6 2η·` for all 1 6 i 6 Θ, where the large public
random σ has δηΘ bits of precision after the binary point, and γ + δηΘ bits in
total. Then

c′ = 2〈σ, c′〉 = 2

n∑
i=1

⌊
σ · 2i·δ·η

⌉
· c′i + 2〈v, c′〉 = 2

n∑
i=1

(
σ · 2iδη + ui

)
c′i + 2〈v, c′〉

= 2σ ·
(

n∑
i=1

c′i · 2iδη
)

+ 2〈v, c′〉+ u =

⌊
2σ ·

(
n∑
i=1

c′i · 2iδη
)⌉

+ 2〈v, c′〉+ u′ ,

where |ui| 6 1/2, |u| 6 Θ, and u′ ∈ Z is such that |u′| 6 Θ + 1. Then the scalar
product becomes essentially one multiplication and another scalar product but
with much smaller entries vi’s instead of σi’s.

Therefore with vectors σ and c′ with ηΘ elements each instead of Θ, the
scalar product 2〈σ, c′〉 becomes essentially η multiplications and another scalar
product but with much smaller entries vi’s instead of σi’s. Note that the size of c′

is now γ+Θδη bits instead of γ; therefore one must increase κ by twice the same
additive factor (to support multiplications of two such converted ciphertexts).

Finally we use the following straightforward optimization: instead of using
BitDecomp and PowersofTwo with bits, we use words of size ω bits instead. This
decreases the size of the vector σ by a factor ω, at the cost of increasing the
resulting noise by roughly ω bits. In particular the scalar product 2〈σ, c′〉 then
requires essentially dη/ωe multiplications and another scalar product but with
smaller entries vi’s instead of σi’s. In our code we used ω = 64.

5.2 Concrete Parameters and AES Evaluation

In Table 1 we derive concrete parameters as in [CNT12,CCK+13], taking into
account the known attacks on the Approximate-GCD problem (see [DGHV10]
and [CMNT11,CNT12,CN12,CH12]).

AES evaluation has become a standard evaluation circuit for fully homo-
morphic encryption [GHS12b,CCK+13]. The main difference between [GHS12b]
and [CCK+13] (apart from the underlying FHE scheme) is that bootstrapping
was used in the later while in the former the parameters could be made large
enough so that no bootstrapping was required to evaluate the full-fledged AES
circuit (thanks to the linear growth of the noise). In our scheme we also chose
large enough parameters so that the entire AES evaluation could be performed
without bootstrapping.

In practice we have evaluated the AES circuit using the state-wise bitslicing
variant described in [CLT13] and we obtained the results in Table 1. In this



Table 1. Benchmarking of a C++ implementation of our scale-invariant batch DGHV
scheme with a compressed public key on an Intel Xeon E5-2690 at 2.9 GHz on the
state-wise AES implementation, using GMP [Gt13].

Instance λ ` ρ η γ × 10−6 τ,Θ pk size KeyGen Encrypt Decrypt Mult Convert

Toy 42 9 42 971 0.27 135 3.2 MB 0.5s 0.0s 0.0s 0.0s 0.1s
Small 52 35 52 976 1.1 525 45 MB 11s 0.2s 0.0s 0.0s 0.3s
Medium 62 140 62 981 4.2 2100 704 MB 5min 3s 0.2s 0.0s 2.8s
Large 72 569 72 986 15.8 8535 11 GB 2h 50min 45s 3.3s 0.1s 33s
Extra 80 1875 86 993 35.9 28125 100 GB 213h 5min 24s 0.3s 277s

Instance λ ` = # of enc. AddRoundKey SubBytes ShiftRows MixColumns Total Time/AES
in parallel Time block

Toy 42 9 0.0s 1.5s 0.0s 0.0s 15.1s 1.7s
Small 52 35 0.1s 9.9s 0.0s 0.0s 1min 40s 2.9s
Medium 62 140 0.3s 80.5s 0.0s 0.1s 13min 29s 5.8s
Large 72 569 2.1s 21min 0.0s 0.6s 3h 35min 23s
Extra 80 1875 6.9s 10h 9min 0.1s 1.6s 102h 195s

variant, the state is represented as an array of 128 ciphertexts, each ciphertext
representing one bit of the state of ` different AES blocks encrypted in parallel.
In [CCK+13,CLT13], the authors obtained a time per AES block of 12 min 46 s
on a 4-core machine at 3.4 GHz whereas we obtained 23 s on a 16-core machine
at 2.9 GHz for the same security level (72 bits of security); which is one order of
magnitude faster. For 80 bits of security, timings are competitive with [GHS12b]
(3 min vs. 5 min).

6 Equivalence between the (Error-Free) Decisional and
Computational Approximate-GCD Problems

In this section, we show the equivalence between the (error-free) decisional and
computational Approximate-GCD problems. As a consequence, it follows directly
that the additional noises in the fully homomorphic encryption schemes over the
integers [DGHV10,CMNT11,CNT12,CLT13] can be removed (as in [CCK+13,
Section 3]), simplifying both the schemes and the security proofs. In the following
for simplicity we only consider integers r ∈ [0, 2ρ) instead of (−2ρ, 2ρ). One can
always go from one distribution to another by an appropriate centering. Therefore,
for a η-bit integer p and q0 ∈ [0, 2γ/p), we consider the following distribution
over γ-bit integers:

Dρ(p, q0) = {Choose q ← [0, q0), r ← Z ∩ [0, 2ρ) : Output y = q · p+ r} .

Let us recall the definition of the computational and decisional Error-Free
Approximate-GCD problems.

Definition 3 (Error-Free (Computational) Approximate-GCD). The (ρ,
η, γ)-error-free Approximate-GCD problem is: For a random η-bit prime p, given

a γ-bit 2λ
2

-rough integer x0 = q0 · p where q0 is a random integer in [0, 2γ/p),
and polynomially many samples from Dρ(p, q0), output p.



Algorithm 1 Learn-LSB(z, pk)

Input: z = qp+ r ∈ [0, 2γ) with |r| 6 2ρ, and x0 = q0 · p.
Output: The least significant bit of q

Generate x1, . . . , xτ ← Dρ(p, q0)
for j = 1 to poly(λ/ε) do

Choose randomly and uniformly a noise rj ← [0, 2ρ
′
), a bit δ ← {0, 1} and a

random subset Sj ⊂ {1, . . . , τ}
Set yj = z + δ + 2rj + 2

∑
i∈Sj xi mod x0

Call A to get a prediction of (r mod 2)⊕ δ: aj ← A(yj)
Set bj ← aj ⊕ parity(z)⊕ δ

end for
Output the majority vote among the bj ’s

Definition 4 (Error-Free Decisional Approximate-GCD). The (ρ, η, γ)-
error-free Decisional-Approximate-GCD problem is: For a random η-bit prime p,
given a γ-bit 2λ

2

-rough integer x0 = q0 · p and polynomially many samples from
Dρ(p, q0), determine b ∈ {0, 1} from z = x+ r · b mod x0 where x← Dρ(p, q0)
and r ← Z ∩ [0, x0).

We also consider the following decisional problem.

Definition 5 (Error-Free LSB Approximate-GCD Problem). The (ρ, η,
γ)-error-free LSB Approximate-GCD problem is: For a random η-bit prime p,

given a γ-bit 2λ
2

-rough integer x0 = q0 · p and polynomially many samples from
Dρ(p, q0), determine b ∈ {0, 1} from z = q · p + 2r + b · c where q ← [0, q0),
r ← Z ∩ [0, 2ρ−1) and c← {0, 1}.

One can show that the problems from Definitions 3 and 5 are equivalent.
Indeed, we can construct a high-accuracy LSB predictor subroutine (cf. Al-
gorithm 1 below) using an adversary A having a non-negligible advantage ε
against the (ρ′, η, γ)-Error-Free LSB Approximate-GCD problem (with ρ′ >
log2(τ + 1) +ρ+λ)6, and by using it in Step 2 of the security proof of [DGHV10],
we automatically get the equivalence.

Let us show that Definitions 4 and 5 are equivalent. We consider the sequence
of distributions for ρ 6 i 6 η + λ:

D′ρ(p, q0, i) =

{
Choose q ← [0, q0), r ← Z ∩ [0, 2i) :
Output y = q · p+ 2λ+η−i · r mod x0

}
.

Note that in the distribution D′ρ(p, q0, i) above the size of the random r
is i-bit instead of ρ-bit. For i = ρ, the distribution of y is the same as the
distribution Dρ(p, q0), up to a factor 2λ+η−ρ modulo x0. One can show that for i =
η+ λ, the distribution D′ρ(p, q0, i) is 2−λ-statistically close to uniform modulo x0.
Therefore by a standard hybrid argument, if a distinguisher solves the Error-Free

6 The additional noise is use to drawn the noise due to the public key elements and z.



Decisional-Approximate-GCD problem with some non-negligible advantage, then
he must be able to distinguish between two successive distributions D′ρ(p, q0, i)
and D′ρ(p, q0, i+ 1) for some i.

Let us consider the challenge from the Error-Free LSB Approximate-GCD
problem:

z = q · p+ 2r + b · c
where r ← Z ∩ [0, 2ρ−1) and c← {0, 1}. We let:

y = 2λ+η−i−1 · (2ρ · u+ z) mod x0

where u← Z ∩ [0, 2i+1−ρ). This gives:

y = q′ · p+ 2λ+η−i−1 · (2ρ · u+ 2r + b · c) mod x0

= q′ · p+ 2λ+η−i−1 · (2r′ + b · c)

for some q′ ∈ Z, where r′ ← Z ∩ [0, 2i).
If b = 0 then we get y = q′ ·p+2λ+η−i ·r′ which corresponds to the distribution

D′ρ(p, q0, i). If b = 1 then we get y = q′ ·p+2λ+η−i−1 ·r′′ where r′′ ← Z∩ [0, 2i+1),
which corresponds to the distribution D′ρ(p, q0, i+ 1). Therefore we can use the
previous distinguisher to solve the Error-Free LSB Approximate-GCD problem.
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A Leftover Hash Lemma

We recall the classical Leftover Hash Lemma (LHL), following [DGHV10]. A
family H of hash functions from X to Y , both finite sets, is said to be pairwise-
independent if for all distinct x, x′ ∈ X, Prh←H [h(x) = h(x′)] = 1/|Y |. A
distribution D is ε-uniform if its statistical distance from the uniform distribution
is at most ε, where the statistical distance ∆(D1, D2) between two distributions
D1, D2 over a finite domain X is given by ∆(D1, D2) = 1

2

∑
x∈X |D1(x)−D2(x)|.

Lemma 4 (Leftover Hash Lemma [HILL99]). Let H be a family of pairwise
hash functions from X to Y . Suppose that h ← H and x ← X are chosen
uniformly and independently. Then, (h, h(x)) is 1

2

√
|Y |/|X|-uniform over H×X.

From the LHL one can deduce the following Lemma for finite sums modulo an
integer M , as proved in [DGHV10]:

Lemma 5. Set x1, . . . , xm ← ZM uniformly and independently, set s1, . . . , sm ←
{0, 1}, and set y =

∑m
i=1 si · xi mod M . Then (x1, . . . , xm, y) is 1/2

√
M/2m-

uniform over Zm+1
M .

Proof. We consider the following hash function family H from {0, 1}m to ZM .
Each member h ∈ H is parameterized by the elements (x1, . . . , xm) ∈ ZmM . Given
s ∈ {0, 1}m, we define h(s) =

∑m
i=1 si · xi ∈ ZM . The hash function family is

clearly pairwise independent. Therefore by Lemma 4, (h, h(x)) is 1/2
√
M/2m-

uniform over Zm+1
M . ut


