
Efficient Delegation of Zero-Knowledge Proofs of
Knowledge in a Pairing-Friendly Setting

Sébastien Canard1, David Pointcheval2, and Olivier Sanders1,2

1 Orange Labs, Applied Crypto Group, Caen, France
2 École normale supérieure, CNRS & INRIA, Paris, France

Abstract. Since their introduction in 1985, by Goldwasser, Micali and
Rackoff, followed by Feige, Fiat and Shamir, zero-knowledge proofs have
played a significant role in modern cryptography: they allow a party to
convince another party of the validity of a statement (proof of member-
ship) or of its knowledge of a secret (proof of knowledge). Cryptographers
frequently use them as building blocks in complex protocols since they
offer quite useful soundness features, which exclude cheating players. In
most of modern telecommunication services, the execution of these pro-
tocols involves a prover on a portable device, with limited capacities,
and namely distinct trusted part and more powerful part. The former
thus has to delegate some computations to the latter. However, since the
latter is not fully trusted, it should not learn any secret information.
This paper focuses on proofs of knowledge of discrete logarithm relations
sets (DLRS), and the delegation of some prover’s computations, without
leaking any critical information to the delegatee. We will achieve various
efficient improvements ensuring perfect zero-knowledge against the ver-
ifier and partial zero-knowledge, but still reasonable in many contexts,
against the delegatee.

1 Introduction

Zero-Knowledge Proofs of Knowledge. The past three decades have witnessed
the emergence of several new cryptographic notions. In 1985, Goldwasser, Micali
and Rackoff [16] introduced the concept of zero-knowledge interactive proofs
that enable an entity, called the prover, to convince another entity, called the
verifier, of the validity of a statement without revealing anything else beyond the
assertion of this statement. In other words, one wants to prove that a statement
is in the set of the valid statements, hence the notion of zero-knowledge proof of
membership. They were followed by Feige, Fiat and Shamir [12] with the notion
of zero-knowledge proof of knowledge (ZKPK) in which the prover convinces the
verifier not only of the validity of a statement but also that it possesses a witness
for this fact.

Since these seminal papers, many ZKPK have been introduced, such as the
Schnorr’s protocol [25], that provide efficient ways of proving knowledge of a
discrete logarithm in finite groups with known order, and even with unknown or-
der [14, 15]. In modern cryptography, these proofs of knowledge are heavily used



for authentication but also as building blocks in more complex protocols, such as
group signature schemes [1, 11, 4, 21] or Direct Anonymous Attestation (DAA)
schemes [5, 3]. Indeed, such protocols usually require to prove that some public
elements, relying on private values, are well-formed. For anonymous authentica-
tions, one classically wants to prove one’s knowledge of a secret key related to
a public key certified by a given authority, without revealing the secret key, the
public key, nor the certificate itself. They can be efficiently addressed by using
Schnorr-like interactive ZKPK. Moreover, these interactive proofs can be turned
into non-interactive proofs or signatures using the Fiat-Shamir paradigm [13,
24], in the random oracle model [2].

Discrete-Logarithm Relation Sets. More complex protocols, such as group sig-
nature schemes or DAA schemes, involve several proofs of knowledge of discrete
logarithms or of representations in a fixed or variable basis: they deal with a
Discrete-Logarithm Relation Set (or DLRS, as defined by Kiayias, Tsiounis and
Yung [20]), i.e a set of relations involving objects and free variables. Extensions
of the Schnorr’s protocol can be applied to this setting, but they require the
prover to compute many exponentiations for the first round of the protocol (the
commitments).

Pairing-Friendly Settings. Elliptic curves with or without pairing-friendly groups
have been widely used for the past few years, since they offer many new features
and provide communication-wise efficient protocols. They allow to prove com-
plex relations with still reasonable efficiency, namely when compared with the
RSA setting. Indeed, most of the recent group signature schemes [11, 17, 4, 21]
or DAA schemes [6, 10, 3] are based on groups (G1, G2 and GT ) of prime order
with a bilinear map (e : G1 ×G2 → GT ).

The main interesting feature is definitely the possibility of non-interactive
zero-knowledge proofs in the standard model, using the so-called Groth-Sahai
methodology [18]. Unfortunately, while reducing the number of interactions is
quite useful, this leads to quite costly protocols, for both the prover and the
verifier. They are currently totally impractical on constrained devices.

Delegation of Computation. However, most of these complex cryptographic prim-
itives, such as anonymous authentications and DAAs, achieve their ultimate im-
pact when implemented on portable and mobile devices. This increases the con-
trast between the important needs to embed these protocols in such lightweight
devices and their practical limitations when performing many exponentiations
or pairing evaluations. A common way to overcome this problem is to delegate
(when possible) some computations to a more powerful, but not fully trusted,
delegatee as in [5, 7, 3, 8]. Since the latter entity cannot have access to secret
values, most of the computations on the prover’s side have to be performed by
the constrained device, which reduces the benefits of server-aided cryptography.
Moreover, if the DLRS involved in the protocol contains several relations or vari-
ables, the overall computational cost may remain prohibitive. One may argue
that exponentiations in the first flow of Schnorr’s protocol are precomputable.



This is true if the basis is fixed, but when the proof is used as a building block
in a more complex construction, the basis is not always fixed or known in ad-
vance (as e.g. in DAA schemes [5, 3]). The lack of way to efficiently delegate the
prover’s side of the proof of knowledge may then prevent portable devices to get
access to all features of modern cryptography.

Although the delegatee might not be fully trusted, it may have access to some
additional information. For example, let us consider the following setting: a SIM-
card in a smartphone. This is probably the best illustration of a lightweight but
fully trusted device (the SIM-card with embedded secrets) within a more pow-
erful but partially trusted device (the smartphone with more and more powerful
processors, and even co-processors). In case of group signature or anonymous
authentication to a server, only the SIM-card knows the secret key to perform
authentication, and no information about the identity of the actual user should
leak to the server. However, while not trusted enough to learn the secret key,
since it can potentially be corrupted by a virus, the smartphone anyway already
knows its owner. As a consequence, the anonymity has to be enforced with re-
spect to the server but not to the smartphone (it has other means to learn
owner’s identity). However, the secret key should not be leaked to neither the
server nor the smartphone.

Such a SIM-card together with a smartphone issuing anonymous authentica-
tion illustrates well the relaxation on the security model that seems reasonable in
practice: during delegation of computation, some additional information can be
leaked to the helper until it does not help it to impersonate the real prover. We
will thus provide several security models in which the delegatee might be given
access to some extra knowledge. We however stress that the delegatee should re-
main unable to recover the secrets or to impersonate the prover, but still being
able to handle a significant part of the prover’s computations.

Achievements. In this paper, we provide an efficient way to delegate the prover’s
side of zero-knowledge proofs of knowledge for any DLRS in a group G1. Our
method enables a delegator to use the computational power of a delegatee to
prove knowledge of witnesses for any DLRS with significantly fewer computations
than with the classical Schnorr’s based protocol. While lifting the verification
relation into GT , and thus involving pairing computations on the verifier’s side,
no pairing computations have to be performed on the prover’s side (for both
the delegator and the delegatee). Moreover, the computations that remain to be
done by the delegator do not rely on the objects involved in the DLRS, but on
a fixed basis only, they can thus all be precomputed.

By decreasing the computational cost for the constrained devices (the del-
egator), our work improves on the efficiency of protocols using zero-knowledge
proofs of knowledge and thus enables engineers to embed complex primitives on
such devices.

More precisely, we provide two constructions in which the delegator essen-
tially computes as many exponentiations of a fixed basis as the number of secret
discrete logarithms involved in the relations, whatever the number of relations
is. We illustrate the effective gain on concrete examples.



2 Preliminaries

In this section, we provide a basic review of the tools that will be used throughout
this paper. Namely, we recall the notations of bilinear maps and zero-knowledge
proofs of knowledge together with the concept of Discrete-Logarithm Relations
Sets (DLRS) and the Schnorr’s protocol for such relations.

2.1 Pairing-Friendly Groups

Let G1,G2,GT be three groups of prime order p. In the following, we will use
additive notations for G1 and G2, but multiplicative notations for GT . Elements
of G1 will be written in uppercase (G,X, T, . . .) and elements of G2 will be

written (G̃, X̃, T̃ , . . .). Pairing-friendly settings are defined by G1,G2,GT along
with a bilinear map e : G1 ×G2 → GT with the following properties:

1. for all X ∈ G1, X̃ ∈ G2 and a, b ∈ Zp we have e([a]X, [b]X̃) = e(X, X̃)ab;

2. for X 6= 0 and X̃ 6= 0, e(X, X̃) 6= 1;
3. e is efficiently computable.

We emphasize that our protocols will work in any pairing-friendly setting: in both
the symmetric (i.e., G1 = G2) and asymmetric (i.e., G1 6= G2) cases. In the

following, the setting (p,G1,G2,GT , G, G̃, e) defines the bilinear environment,

with G1 = 〈G〉, G2 = 〈G̃〉, and GT = 〈e(G, G̃)〉. All the three groups being of
the same prime order p.

2.2 Zero-Knowledge Proofs of Knowledge

Interactive zero-knowledge proofs of knowledge have been introduced by Gold-
wasser, Micali and Rackoff [16] and formalized by Feige, Fiat and Shamir [12].
We recall here the informal definition.

Definition 1. An interactive protocol between a prover P and a verifier V is
a zero-knowledge proof of knowledge of a private witness w for P that a public
information Y satisfies a relation R if the three following properties are satisfied.

– Completeness: for an honest prover P with correct witness w and an honest
verifier V, the protocol succeeds with overwhelming probability.

– Soundness: for any prover P̃ that is accepted by a verifier V with non
negligible probability, it is possible to construct a probabilistic polynomial
time Turing machine E (called extractor) that can extract a valid witness w

by interacting with P̃.
– Zero-knowledge: for every verifier V, there exists a probabilistic polynomial-

time Turing machine S (called simulator) that just takes Y as input and
outputs a string that is indistinguishable from the transcript of the commu-
nications between an honest prover P with a valid witness w and V.

The soundness property models the fact that in order to be accepted, the prover
must actually know a valid witness, while the zero-knowledge property shows
that the real protocol with the prover that uses the witness w does not leak
more information than a simulation that does not know the witness.



P V
∀j ∈ {1, ...,m}, kj $← Zp

∀i ∈ {1, ..., r},Ki ←
∑

j∈Ji
[kj ]Avi,j

{Ki}i−−−−−−−−→
c←−−−−−−−− c

$← {0, 1}`

∀j ∈ {1, ...,m}, sj ← kj + cαj mod p
{sj}j−−−−−−−−→ ∀i ∈ {1, ..., r},

Ki + [c]Vi
?=
∑

j∈Ji
[sj ]Avi,j

Setting: A group G of prime order p and a DLRS R in G: for A1, . . . , Aw, V1, . . . , Vr ∈
G, and J1, . . . ,Jr ⊆ {1, . . . , w}, the prover P knows variables α1, . . . , αm ∈ Zp such
that Vi =

∑
j∈Ji

[αj ]Avi,j , for i = 1, . . . , r.

Fig. 1. The Extended Schnorr’s Protocol for any DLRS R

2.3 Discrete-Logarithm Relations Set

Discrete-logarithm relations sets (DLRSs) were introduced by Kiayias et al. [20]
to describe sets of relations involving secret variables that correspond to discrete
logarithms. Many cryptographic protocols [22, 10, 3] require some entity to prove
that some public elements (a ciphertext, a certificate, . . . ) relying on several
secret values, are well-formed and based on a DLRS. They thus require a proof
of knowledge for a DLRS. More formally, a DLRS can be defined as follows:

Definition 2. A DLRS R on the group G (of prime order p) with r relations
over m variables and w + r objects in G is a set of relations R1, . . . , Rr defined
over objects A1, . . . , Aw, V1, . . . , Vr ∈ G and the free variables α1, . . . , αm ∈ Zp
where Ri, for i = 1, . . . , r, is to be interpreted as: Vi =

∑
j∈Ji

[αj ]Avi,j , where
Ji ⊆ {1, . . . ,m} and vi,j ∈ {1, . . . , w} for i = 1, . . . , r and j ∈ Ji. We will write
R(α1, . . . , αm) to denote the conjunction of all the relations Ri on the variables
α1, . . . , αm.

Remark 3. The above definition is given in a group G, but it could be in any
group. In our practical applications, as we will work in pairing-friendly settings,
relations could be all in G1 but also all in G2 or in both G1 and G2. In the
following, we will describe our results in the group G1, with companion values
in G2, and we will give evidences that it can also work in the general case.

Using these notations, a prover that knows witnesses α1, . . . , αm such that
R(α1, ..., αm) = 1 will generally use the 3-flow zero-knowledge proof of knowledge
described in Figure 1 (which is easily derived from the Schnorr’s protocol [25]
for groups of known order). This protocol then corresponds to a proof of knowl-
edge for a DLRS. The completeness comes from the fact that for valid witnesses
α1, . . . , αm that satisfy, for all i, Vi =

∑
j∈Ji

[αj ]Avi,j , then for all i ∈ {1, ..., r},∑
j∈Ji

[sj ]Avi,j =
∑
j∈Ji

[kj + cαj ]Avi,j =
∑
j∈Ji

[kj ]Avi,j + [c]
∑
j∈Ji

[αj ]Avi,j = Ki + [c]Vi.



The complexity for the prover is:
∑r
i=1 #Ji multiplications by scalars in G and∑r

i=1(#Ji − 1) additions in G to get the commitments Ki for i ∈ {1, ..., r}.
For complex DLRSs, it can represent too many computations. In the next

section, we explain how to delegate such proofs of knowledge of DLRSs, where
the constrained device has to compute m scalar multiplications in G2 to prove
knowledge of α1, . . . , αm satisfying a DLRS R in G1, no matter how many rela-
tions Ri are involved in R.

3 Delegating Proofs of Knowledge

As in [5, 7, 3], we will split the prover into a trusted device which has a lim-
ited computational power and a more powerful, but untrusted, machine. As in
DAA [5] schemes, the trusted device will be called the TPM (Trusted Platform
Module) and the untrusted machine will be called the host.

3.1 Our First Protocol

We consider the following situation: the TPM knows witnesses (α1, . . . , αm) for
the DLRS R, such that R(α1, . . . , αm) = 1, and wants to use the computational
power of the host to prove knowledge of these witnesses. Since the host is not
trusted, we do not want to give (α1, . . . , αm) to it (else it would be able to
impersonate the TPM). However, we allow it to get access to more information
than a standard verifier (see Theorem 5). This is a common requirement in DAA
schemes and, more generally, in server-aided cryptography (see e.g. [8]).

Intuition. Informally, we do not want the TPM to have to compute [kj ]Avi,j
for all the pairs (i, j), as in the extended Schnorr’s protocol, then we essentially

lift them to GT , by applying pairing with G̃, and then the Ki’s become

e
(
Ki, G̃

)
= e

∑
j∈Ji

[kj ]Avi,j , G̃

 =
∏
j∈Ji

e
(
Avi,j , [kj ]G̃

)
=
∏
j∈Ji

e
(
Avi,j , Z̃j

)
.

The verification Ki
?=
∑
j∈Ji

[sj ]Avi,j − [c]Vi would then become

∏
j∈Ji

e
(
Avi,j , Z̃j

)
?= e

∑
j∈Ji

[sj ]Avi,j − [c]Vi, G̃

 .

This is the reason why the TPM can just compute Z̃j = [kj ]G̃, for k = 1, . . . ,m.

A First Note. However, it cannot directly send these values to the verifier.
Otherwise, the zero-knowledge property obtained by our protocol would not
be equivalent to the one of the initial Extended Schnorr’s protocol, from the



TPM Host Verifier

∀j ∈ {1, . . . ,m}, ∀i ∈ {1, . . . , r},
kj

$← Zp, Z̃j ← [kj ]G̃ (bi,j)j
$← (Z∗p)m, (ti,j)j

$← (Zp)m

such that
∑

k∈Ji
ti,k = 0 mod p

{Z̃j}j−−−−−−−−→ ∀i ∈ {1, . . . , r}, ∀j ∈ Ji,
Zi,j ← [b−1

i,j ]Avi,j

B̃i,j ← [bi,j ](Z̃j + [ti,j ]Ãi,j)

{Zi,j , B̃i,j}i,j−−−−−−−−−−−→
∀j ∈ {1, . . . ,m}, c←−−−−−−−− c←−−−−−−−−−−− c

$← {0, 1}`
sj ← kj + cαj mod p

{sj}j−−−−−−−−→
{sj}j−−−−−−−−−−−→ ∀i ∈ {1, . . . , r}

e
(∑

j∈Ji
[sj ]Avi,j − [c]Vi, G̃

)
?=
∏

j∈Ji
e(Zi,j , B̃i,j)

Setting: A pairing-friendly setting (p,G1,G2,GT , G, G̃, e) and a DLRS R in G1: for
A1, . . . , Aw, V1, . . . , Vr ∈ G1, and J1, . . . ,Jr ⊆ {1, . . . , w}, the TPM knows variables
α1, . . . , αm ∈ Zp such that Vi =

∑
j∈Ji

[αj ]Avi,j , for i = 1, . . . , r.
Notations: For i = 1, . . . , w, we denote ai ∈ Zp the discrete logarithms such that

Ai = [ai]G, and, for i = 1, . . . , r and j ∈ Ji, one computes Ãi,j =
[

1
avi,j

∏
k∈Ji

avi,k

]
G̃

that are added to the public parameters (see Section 3.2 for details).

Players’ inputs: The public input contains G, G̃, {Vi}i, {Ji}i, {Aj}j and the {Ãi,j}i,j ;
The TPM additionally knows {αi}i.

Fig. 2. Delegation of Proof of Knowledge of Witnesses for a DLRS

verifier’s view: from Z̃j = [ki]G̃ and sj = kj − cαj mod p, one would be able to

compute [c−1]
(
Z̃j − [sj ]G̃

)
= [c−1][cαj ]G̃ = [αj ]G̃. This might be too much

information about αj . These values are thus just sent to the host who will

compute blinded versions Zi,j ← [b−1i,j ]Avi,j and B̃i,j ← [bi,j ](Z̃j+[ti,j ]Ãi,j), with

random scalars (bi,j)i,j and (ti,j)i,j and additional elements (Ãi,j)i,j (defined in
Figure 2), so that for any i,∏

j∈Ji

e
(
Avi,j , Z̃j

)
=
∏
j∈Ji

e
(
Zi,j , B̃i,j

)
/
∏
j∈Ji

e
(
Avi,j , [ti,j ]Ãi,j

)
where the latter denominator is equal to, with ci =

∏
k∈Ji

avi,k ,

∏
j∈Ji

e

(
[avi,j ]G, [ti,j/avi,j ]

∏
k∈Ji

[avi,k ]G̃

)
= e

G,
∑

j∈Ji

ti,j

 ci

 G̃
 .

By choosing (ti,j)i,j such that
∑
j∈Ji

ti,j = 0 mod p, it is equal to 1GT
.

A Second Note. If one just uses the factors (bi,j)i,j , but not (ti,j)i,j , the values

(Zi,j)i,j and (B̃i,j)i,j would reveal to much information too. Let us consider any



pair (i, j) such that j ∈ Ji and k = vi,j : e(Zi,j , B̃i,j) = e(Ak, Z̃j), and thus(
e(Zi,j , B̃i,j)/e(Ak, [sj ]G̃)

)1/c
= e

(
Ak, [c

−1]
(
Z̃j − [sj ]G̃

))
= e

(
Ak, αjG̃

)
.

Then, e(Ak, G̃)αj would leak, which is again too much information about αj .
In the case of a singleton Ji = {j}, Vi = [αj ]Ak indeed leaks this information

too, but in case of larger sets, such information does not leak, and thus should
not leak from the proof either.

Description. These blinding factors (bi,j)i,j and (ti,j)i,j will make the protocol
zero-knowledge from the verifier’s view (as formally proven in Section 4). This
leads to the 3-flow protocol described on Figure 2, that enables the TPM to
prove knowledge of (α1, . . . , αm) with fewer computations than in the extended
Schnorr’s protocol (see Figure 1).

Example I. Let us consider the following example:

V1 = [α1]A1 . . . Vq = [α1]Aq

Vq+1 = [α2]Aq+1 . . . Vq+s = [α2]Aq+s

Vq+s+1 = [α1]Aq+s+1 + [α2]Aq+s+n+1 . . . Vq+s+n = [α1]Aq+s+n + [α2]Aq+s+2n

Using the extended Schnorr’s protocol described on Figure 1, one would require
q+s+2nmultiplications by scalars in G1 (group exponentiations) and n additions
in G1 from the TPM. With our protocol (see Figure 2), the TPM has to compute
only 2 multiplications by scalars in G2 (group exponentiations).

3.2 Additional Computations

One might have noted that the public parameters must now contain several Ãi,j
that may not be known in practice. However, in most cases, there is no need
of additional values. First, when Ji = {j} is a singleton, Ãi,j = G̃. Second,

when Ji = {α, β} is a pair, and vi,α = u and vi,β = v, then Ãi,α = [av]G̃ and

Ãi,β = [au]G̃. Thus, Ãi,α = Av and Ãi,β = Au in the case of symmetric pairing
(i.e., G1 = G2). Our above Example I involves singletons and pairs only, and

thus the Ãi,j can be easily publicly computed. However, in Section 5, we provide
another delegation protocol that does not present these limitations, and can thus
be used in more situations.

3.3 Computational Cost

Since the TPM is considered to be far less powerful than the host and the verifier,
we want to decrease its computational load even if it involves a slight increase
of work for the host and for the verifier. Let us evaluate the computational cost
for each party (see Table 1):



Table 1. Complexity Comparisons

Prover

TPM Host Verifier

Ext. Schnorr JM + (J − r)A JM + (J − r)A
Example I (q + s+ 2n)M + nA (q + s+ 2n)M + nA

Example II 7M + 2A 7M + 2A
Example III 9M + 3A 9M + 3A

Figure 2 mM2 J(M1 + 2M2 +A2)
J(M1 +A1 + P +MT )

+r(M1 + P −MT )

Example I 2M2 (q + s+ 2n)(M1 + 2M2 +A2)
(2q + 2s+ 3n)(M1 + P )
+(q + s+ 2n)A1 + nMT

Example II 2M2 7(M1 + 2M2 +A2) 12(M1 + P ) + 7A1 + 2MT

Example III 6M2 9(M1 + 2M2 +A2) 15(M1 + P ) + 9A1 + 3MT

Figure 3 mM2
J(2M1 + 2M2 +A2 +A1)

−rA1

(J + r)(M1 +A1 + P )
+(J − r)MT

Example I 2M2
(q + s+ 2n)(2M1 + 2M2 +A2)

+nA1

(2q + 2s+ 3n)(M1 +A1 + P )
+nMT

Example II 2M2 7(2M1 + 2M2 +A2) + 2A1 12(M1 +A1 + P ) + 2MT

Example III 6M2 9(2M1 + 2M2 +A2) + 3A1 15(M1 +A1 + P ) + 3MT

Generic DLRS: m secret scalars, r relations each involving Ji elements respectively for
i = 1, . . . , r, and thus globally J =

∑
Ji.

For the extended Schnorr, all computations have to be done by the TPM itself.
A,A1, A2 denote point additions in G, G1, G2 respectively;
M,M1,M2 denote point multiplications by a scalar in G, G1, G2 respectively;
MT denotes multiplication in GT ; P denotes a pairing.

– the TPM has to compute m multiplications by a scalar in G2 (one per vari-
able αi), which are moreover all precomputable. Its computational cost is
thus independent of the number of relations, which can be very useful when
a variable is involved in many relations (as in our above Example I);

– the host has to compute
∑r
i=1 #Ji multiplications by a scalar in G1 and at

most the same number of additions in G2 and twice as many multiplications
by a scalar in G2;

– the verifier has to compute
∑r
i=1 #Ji additions in G1, r+

∑r
i=1 #Ji multi-

plications by a scalar in G1, r+
∑r
i=1 #Ji pairings, and some multiplications

in GT .

3.4 More Examples

We now provide some concrete examples, with comparisons of the complexity
computations on Table 1: Extended Schnorr is the natural 3-round protocol
between a prover and a verifier, while the two other protocols are the delagated
protocols proposed above (in Section 3) and below (in Section 5). One can note
that our protocols with delagation drastically reduce the computational cost for



the TPM with respect to the Prover in the basic protocol. To this aim, one can
indeed use G2 as the efficient group and G1 as the less efficient group in the
pairing-friendly setting.

Example II. In 2007, Shacham [26] described an encryption scheme based on
the DLIN assumption. This is a Cramer-Shoup variant of the linear encryption,
where the first triple is a linear tuple used for masking the plaintext in the fourth
element, while the last element helps to verify validity with a hash proof system
(see also [19]). With the public parameters (G1, G2, G3) ∈ G3

1 and the public
key (H1, H2, C1, C2, D1, D2) ∈ G6

1 and a collision-resistant hash function H, to
encrypt a message M ∈ G1, one computes, for random scalars α1, α2 ∈ Zp:(

U1 = [α1]G1, U2 = [α2]G2, U3 = [α1 + α2]G3,
E = M + [α1]H1 + [α2]H2, V = [α1](C1 + [u]D1) + [α2](C2 + [u]D2)

)
where u = H(U1, U2, U3, E) ∈ Zp. We may need to prove, as in [9], that
(U1, U2, U3, E, V ) is a valid ciphertext. Since 2 secret variables (α1 and α2) are
involved in the 4 relations to be checked for ciphertext validity (on U1, U2, U3,
and V ), our protocol only requires 2 multiplications by a scalar from the TPM.

Example III. In [23], the authors provided a group signature with message-
dependent opening (GS-DMO) scheme secure in the random oracle model. With
the public parameters (U, V,G,H) ∈ G4

1, to issue a signature σ, one has to prove
knowledge of α, β, x, δ1, δ2, δ3 ∈ Zp such that:(

T1 = [α]U, T2 = [β]V, T3 = [α+ β]H,
0 = [x]T1 − [δ1]U, 0 = [x]T2 − [δ2]V, 0 = [x]T5 − [δ3]G

)
where T1, T2, T3, T5 ∈ G1 are part of the signature σ. Since 6 secret variables
are involved in these relations, our protocol only requires 6 multiplications by a
scalar from the TPM.

3.5 Security Properties

The protocol described on Figure 2 may actually be divided in two parts: a proof
of knowledge between P (TPM + host) and V (verifier) and a proof of knowledge
between P (TPM) and V (host). We consider the security of each part in the
following theorems, which proofs are provided in Section 4.

Theorem 4. The protocol described on Figure 2 is a 3-move zero-knowledge
proof of knowledge of the witnesses α1, ..., αm between P (TPM + host) and V
(verifier), where the description of R is the unique auxiliary input.

The first theorem essentially shows that this proof of knowledge does not leak
any information outside the host. But one may wonder if the host learns a lot
of information. This is the goal of the second theorem below that says that the
host just learns {[αi]G̃}i, which is not enough to impersonate the TPM later.



Theorem 5. The protocol described on Figure 2 is a 3-move zero-knowledge
proof of knowledge of the witnesses α1, ..., αm between P (TPM) and V (host),
where the auxiliary input contains the description of R and the additional values
{[αi]G̃}i.

3.6 Discussions

Honest Verifier Zero-Knowledge. As usual, this protocol is actually a zero-
knowledge proof of knowledge if the challenge c is selected from {0, 1}` and
the proof is repeated k times with ` logarithmically bounded in the security
parameter and 2k` super-polynomial. If one wants the soundness in one execution
only, which implies 2` to be super-polynomial, then the protocol is no longer
zero-knowledge but honest-verifier zero-knowledge only.

Precomputation. As already noticed, if computations of a party are indepen-
dent of external values, they can be prepared and stored in advance. This is the
case of the elements Z̃j computed by the TPM.

For example let us consider the Sign protocol of the DAA scheme from [3,
page 32]. The TPM has to prove knowledge of its secret key s involved in two
relations (namely K = [s]J and W = [s]S). Since the authors use the standard
Schnorr’s protocol, this leads to 2 multiplications by a scalar for the TPM, one of
which (the one involving J) has to be computed online because J is determined
by the basename submitted by the verifier. Using our protocol, the TPM only
has to compute one multiplication by a scalar, and it can even be precomputed,
since the basis G̃ is a public parameter.

We even emphasize that these precomputations (the group elements Z̃j) can
even be sent to the host. The TPM just has to store the scalars kj , or even a
seed (and some index), as off-line pre-computed coupons [15].

Extra Inputs. In the Theorem 5, we allow the host to learn the elements [αj ]G̃
for all j ∈ {1, . . . ,m}. In the DAA scheme considered above, this means that

the host can learn [s]G̃, which does not endanger the security properties.

Indeed, the non-frameability property of their scheme is based on the fact
that the adversary does not know s. However, recovering s from both [s]G and

[s]G̃ is not known to be much easier than recovering s from [s]G alone. As a
consequence, the non-frameability still holds.

However, one could argue that this additional information helps to break the
anonymity property. But as already remarked, one does not require to enforce
anonymity of the TPM with respect to the host, since the latter already knows
which TPM is inserted (or even sees the signature which is sent outside). And as
explained in [7], in DAA schemes and in server-aided version of group signatures,
the host is not adversarially-controlled in the anonymity experiment, but just
for the impersonation or frameability.



More General Relations. The protocol described on Figure 2 only considers
relations in G1. But as already said, our protocol would work the same way if all
relations were in G2, by simply swapping the role of G1 and G2 in our protocol
described in Figure 2.

However, one could have to prove knowledge of variables involved in relations
in both G1 and G2. In such a case the host would need to know a commitment
in G2 (to compute the proof for relations in G1) and one in G1 (for the relations
in G2). The computational cost for the TPM would then depend on the type
of the pairing. For pairings of Type 1 or Type 2, the computational cost will
remain the same because of the isomorphism. For pairings of Type 3 (without
any efficient isomorphism), the TPM would have to compute the values in both
groups, and thus with a multiplication by a scalar in G1 and a multiplication
by a scalar in G2 for each variable involved in both G1 and G2. In any case, the
computational cost remains independent of the number of relations.

4 Security Proofs

We now formally prove the two above theorems. Completeness and soundness will
be similar for both, but the zero-knowledge property will involve two different
simulators.

4.1 Completeness

It follows from the construction explained in Section 3.1: The verifier checks
whether

e

∑
j∈Ji

[sj ]Avi,j − [c]Vi, G̃

 ?=
∏
j∈Ji

e(Zi,j , B̃i,j).

Since, for all i ∈ {1, . . . , r}, Vi =
∑
j∈Ji

[αj ]Avi,j and for all j ∈ {1, . . . ,m}, sj =
kj + cαj mod p, then

∑
j∈Ji

[sj ]Avi,j =
∑
j∈Ji

[kj + cαj ]Avi,j =
∑
j∈Ji

[kj ]Avi,j +

[c]Vi, and one easily verifies that both sides are equal to e
(∑

j∈Ji
[kj ]Avi,j , G̃

)
,

which proves the completeness.

4.2 Soundness

Let {Zi,j , B̃i,j}i,j be the values sent to the verifier at the first flow. If the ad-
versary (trying to impersonate P (TPM + host)) can answer successfully with
probability significantly greater than 1/2`, then it can send {sj}j and {s′j}j for
two different challenges c and c′: ∀i ∈ {1, . . . , r},

e

∑
j∈Ji

[sj ]Avi,j − [c]Vi, G̃

 =
∏
j∈Ji

e(Zi,j , B̃i,j) = e

∑
j∈Ji

[s′j ]Avi,j − [c′]Vi, G̃

 ,

which leads to e
(∑

j∈Ji
[sj − s′j ]Avi,j − [c− c′]Vi, G̃

)
= 1GT

and thus, from the

non-degeneracy of the pairing,
∑
j∈Ji

[sj − s′j ]Avi,j − [c − c′]Vi = 0G1
. As a



consequence, αj = (sj−s′j)/(c−c′) for j = 1, . . . ,m, we have Vi =
∑
j∈Ji

[αj ]Avi,j
for i = 1, . . . , r. This is thus a solution to the DLRS R.

4.3 Zero-Knowledge w.r.t. the Host

For Theorem 5, we assume the host already knows (or can learn, as explained

above) Tj = [αj ]G̃, ∀j ∈ {1, . . . ,m}. The simulator operates as follows:

– it first selects c
$← {0, 1}` and {sj}j $← Zp;

– it computes: Z̃j ← [sj ]G̃− [c]Tj , for all j ∈ {1, . . . ,m};
– it then outputs {Z̃j}j , and waits for the challenge and rewinds in case of

incorrect guess of c;
– it eventually answers {sj}j .

This is statistically indistinguishable from transcripts generated during a real
protocol between the TPM and the host. Since the initial guess for c is perfectly
hidden in {Z̃j}j , the probability of successful simulation is 1/2`, which is non-
negligible for a logarithmic value `. For a larger `, it remains honest-verifier
zero-knowledge.

4.4 Zero-Knowledge w.r.t. the Verifier

For Theorem 4, the verifier just knows the public parameters: G, G̃, {Aj}j , {Vi}.
The simulator operates as follows:

– it first selects c
$← {0, 1}` and {sj}j $← Zp;

– it computes Ki ←
∑
j∈Ji

[sj ]Avi,j − [c]Vi, for all i ∈ {1, . . . , r};
– it additionally selects, for i ∈ {1, . . . , r} and j ∈ Ji, ui,j $← Z∗p and Ui,j

$←
G1\{0G1

}, such that
∑
j∈Ji

Ui,j = Ki (which conditions the last Ui,j);

– it then computes, for i ∈ {1, . . . , r} and j ∈ Ji, Zi,j = [u−1i,j ]Ui,j and B̃i,j =

[ui,j ]G̃;

– it then outputs {Zi,j , B̃i,j}i,j , and waits for the challenge and rewinds in
case of incorrect guess of c;

– it eventually answers {sj}j .

A problem can occur with the above simulation if some elements get zero while
it is not allowed. But the large order of the groups makes this problem to happen
with negligible probability only. We exclude these bad cases in the following.

In order to prove the zero-knowledge property, we need to show that our
simulated tuples are indistinguishable from the tuples generated during a real
protocol, for the verifier. In a real protocol, the verifier sees: {Zi,j , B̃i,j}, c, {sj}j ,
where Zi,j = [b−1i,j ]Avi,j = [avi,j/bi,j ]G for random non-zero scalars bi,j , and

B̃i,j = [bi,j ](Z̃j + [ti,j ]Ãi,j) = [bi,j/avi,j · (kjavi,j + ti,j
∏
k∈Ji

avi,k)]G̃ for random
scalars ti,j , such that

∑
j∈Ji

ti,j = 0 mod p.
Let us denote u′i,j = (bi,j/avi,j )·(kjavi,j +ti,j

∏
k∈Ji

avi,k), for i = 1, . . . , r and

j ∈ Ji. Then B̃i,j = [u′i,j ]G̃. Since the bi,j ’s are independent random scalars, the



u′i,j ’s are also independent random scalars, and thus follow the same distribution
as the ui,j ’s.

With such a notation and di =
∏
k∈Ji

avi,k , we have Zi,j = [(u′i,j)
−1(kjavi,j +

ti,jdi)]G. Let us denote U ′i,j = [kjavi,j +ti,jdi]G. Since the ti,j are random scalars
with the unique constraint that

∑
j∈Ji

ti,j = 0 mod p, for i = 1, . . . , r, then the
U ′i,j ’s are random elements in G1 with the constraint that, for i = 1, . . . , r,∑
j∈Ji

U ′i,j = [
∑
j∈Ji

kjavi,j ]G =
∑
j∈Ji

[sj − cαj ]Avi,j =
∑
j∈Ji

[sj ]Avi,j − [c]Vi = Ki.

As a consequence, in the real protocol execution, for i ∈ {1, . . . , r} and j ∈ Ji,
Zi,j = [(u′i,j)

−1]U ′i,j and B̃i,j = [u′i,j ]G̃, where the u′i,j ’s and U ′i,j ’s follow the
same distributions as the ui,j ’s and Ui,j ’s generated by our simulator.

5 Delegating with Weaker Assumptions

5.1 Description

As said in Section 3.2, our first protocol required the knowledge of the elements
Ãi,j . In many applications, such as our first example, this is not a strong require-
ment. However, in some other cases, this can be a problem. We thus now provide
another protocol for the same delegation from the TPM to the host, with just
a slight increase of the computations for the host, but without any additional
information. The main difference with our first protocol is that the Host now
needs to additionally compute the Hi’s which permit to blind the Ãi,j ’s. This
protocol is described on Figure 3 and the obtained efficiency is given in Table 1.

5.2 Security Results

Theorem 6. The protocol described on Figure 3 is a 3-move zero-knowledge
proof of knowledge of the witnesses α1, ..., αm between P (TPM + host) and V
(verifier), where the description of R is the unique auxiliary input.

As for Theorems 4 and 5, the first theorem essentially shows that this proof does
not leak any information outside the host, and the next one says that the host
just learns {[αi]G̃}i, which is not enough to impersonate the TPM later.

Theorem 7. The protocol in Figure 3 is a 3-move zero-knowledge proof of
knowledge of the witnesses α1, ..., αm between P (TPM) and V (host), where the

auxiliary input contains the description of R and the additional values {[αi]G̃}i.

5.3 Proofs of the Theorems

Completeness. The verifier checks, for i = 1, . . . , r, e(Hi +
∑
j∈Ji

[sj ]Avi,j −
[c]Vi, G̃) =

∏
j∈Ji

e(Zi,j , B̃i,j), where

e

Hi +
∑
j∈Ji

[sj ]Avi,j − [c]Vi, G̃

 = e

Hi +
∑
j∈Ji

[kj ]Avi,j , G̃





TPM Host Verifier

∀j ∈ {1, . . . ,m}, ∀i ∈ {1, . . . , r},
kj

$← Zp, Z̃j ← [kj ]G̃ (bi,j)j
$← (Z∗p)m, (ti,j)j

$← (Zp)m

Hi ←
∑

j∈Ji
[ti,j ]Avi,j

{Z̃j}j−−−−−−−−→ ∀i ∈ {1, . . . , r}, ∀j ∈ Ji,
Zi,j ← [b−1

i,j ]Avi,j

B̃i,j ← [bi,j ](Z̃j + [ti,j ]G̃)

{Hi}i, {Zi,j , B̃i,j}i,j−−−−−−−−−−−→
c←−−−−−−−− c←−−−−−−−−−−− c

$← {0, 1}`
∀j ∈ {1, . . . ,m},
sj ← kj + cαj mod p

{sj}j−−−−−−−−→
{sj}j−−−−−−−−−−−→ ∀i ∈ {1, . . . , r}

e
(
Hi +

∑
j∈Ji

[sj ]Avi,j − [c]Vi, G̃
)

?=
∏

j∈Ji
e(Zi,j , B̃i,j)

Setting: A pairing-friendly setting (p,G1,G2,GT , G, G̃, e) and a DLRS R in G1: for
A1, . . . , Aw, V1, . . . , Vr ∈ G1, and J1, . . . ,Jr ⊆ {1, . . . , w}, the TPM knows variables
α1, . . . , αm ∈ Zp such that Vi =

∑
j∈Ji

[αj ]Avi,j , for i = 1, . . . , r.

Players’ inputs: The public input contains G, G̃, {Vi}i, {Ji}i, {Aj}j ; The TPM knows
{αi}i.

Fig. 3. Delegation of Proof of Knowledge of Witnesses for a DLRS (without additional
information)

and ∏
j∈Ji

e(Zi,j , B̃i,j) =
∏
j∈Ji

e(Avi,j , Z̃j + [ti,j ]G̃) =
∏
j∈Ji

e(Avi,j , [kj + ti,j ]G̃)

= e

∑
j∈Ji

[ti,j ]Avi,j +
∑
j∈Ji

[kj ]Avi,j , G̃

 = e

Hi +
∑
j∈Ji

[kj ]Avi,j , G̃

 .

Soundness. The proof is similar to the one in Section 4 since everything was
on the left-hand side of the verification equation, that remains the same plus a
constant Hi.

5.4 Zero-Knowledge w.r.t. the Host

The protocol between the TPM and the host is the same as the first protocol,
and thus the security analysis is the same as in Section 4.

5.5 Zero-Knowledge w.r.t. the Verifier

As in Section 4, the verifier just knows the public parameters: G, G̃, {Aj}j , {Vi}.
The simulator operates as follows:



– it first selects c
$← {0, 1}` and {sj}j $← Zp;

– it computes Ki ←
∑
j∈Ji

[sj ]Avi,j − [c]Vi, for all i ∈ {1, . . . , r};
– it additionally selects, for i ∈ {1, . . . , r} and j ∈ Ji, ui,j $← Z∗p and Ui,j

$←
G1\{0G1

}, with no constraint;
– it then computes, for i ∈ {1, . . . , r}, Hi =

∑
j∈Ji

Ui,j −Ki and for j ∈ Ji,
Zi,j = [u−1i,j ]Ui,j and B̃i,j = [ui,j ]G̃;

– it then outputs {Hi}i, {Zi,j , B̃i,j}i,j , and waits for the challenge and rewinds
in case of incorrect guess of c;

– it eventually answers {sj}j .

As in Section 4, a problem can occur with the above simulation if some elements
gets zero while it is not allowed. But the large order of the groups makes this
problem to happen with negligible probability only. We exclude these bad cases
in the following analysis.

In a real protocol, the verifier sees: {Hi}i, {Zi,j , B̃i,j}, c, {sj}j , where Hi =∑
j∈Ji

[ti,j ]Avi,j =
∑
j∈Ji

[ti,javi,j ]G, for random scalars ti,j , Zi,j = [b−1i,j ]Avi,j =

[avi,j/bi,j ]G for random non-zero scalars bi,j , and B̃i,j = [bi,j ](Z̃j + [ti,j ]Ãi,j) =

[bi,j/avi,j · (kjavi,j + ti,j
∏
k∈Ji

avi,k)]G̃.
Let us denote u′i,j = (bi,j/avi,j )·(kjavi,j +ti,j

∏
k∈Ji

avi,k), for i = 1, . . . , r and

j ∈ Ji. Then B̃i,j = [u′i,j ]G̃. Since the bi,j ’s are independent random scalars, the
u′i,j ’s are also independent random scalars, and thus follow the same distribution
as the ui,j ’s.

With such a notation and di =
∏
k∈Ji

avi,k , we have Zi,j = [(u′i,j)
−1(kjavi,j +

ti,jdi)]G. Let us denote U ′i,j = [kjavi,j +ti,jdi]G. Since the ti,j are random scalars,
then the U ′i,j ’s are random elements in G1. Eventually,∑

j∈Ji

U ′i,j = [
∑
j∈Ji

kjavi,j + ti,jdi]G = Ki +
∑
j∈Ji

[ti,j ]Avi,j = Ki +Hi.

As a consequence, in the real protocol execution, for i ∈ {1, . . . , r}, Hi =∑
j∈Ji

Ui,j −Ki, and for j ∈ Ji, Zi,j = [(u′i,j)
−1]U ′i,j and B̃i,j = [u′i,j ]G̃, where

the u′i,j ’s and U ′i,j ’s follow the same distributions as the ui,j ’s and Ui,j ’s gener-
ated by our simulator.

Acknowledgments

This work was supported in part by the French ANR-12-INSE-0014 SIMPATIC
Project.

References

1. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In Eli Biham, editor, Advances in Cryptology – EURO-
CRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 614–629.
Springer, May 2003.



2. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference
on Computer and Communications Security, pages 62–73. ACM Press, November
1993.

3. David Bernhard, Georg Fuchsbauer, Essam Ghadafi, Nigel P. Smart, and Bogdan
Warinschi. Anonymous attestation with user-controlled linkability. Int. J. Inf.
Sec., 12(3):219–249, 2013.

4. Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bogdan Warin-
schi. Get shorty via group signatures without encryption. In Juan A. Garay and
Roberto De Prisco, editors, SCN 10: 7th International Conference on Security in
Communication Networks, volume 6280 of Lecture Notes in Computer Science,
pages 381–398. Springer, September 2010.

5. Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation.
In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick McDaniel, editors, ACM
CCS 04: 11th Conference on Computer and Communications Security, pages 132–
145. ACM Press, October 2004.

6. Ernie Brickell, Liqun Chen, and Jiangtao Li. Simplified security notions of direct
anonymous attestation and a concrete scheme from pairings. Int. J. Inf. Sec.,
8(5):315–330, 2009.

7. Sébastien Canard, Iwen Coisel, Giacomo de Meulenaer, and Olivier Pereira. Group
signatures are suitable for constrained devices. In Kyung Hyune Rhee and DaeHun
Nyang, editors, ICISC 10: 13th International Conference on Information Security
and Cryptology, volume 6829 of Lecture Notes in Computer Science, pages 133–150.
Springer, December 2010.

8. Sébastien Canard, Iwen Coisel, Julien Devigne, Cécilia Gallais, Thomas Peters, and
Olivier Sanders. Toward generic method for server-aided cryptography. In Sihan
Qing, Jianying Zhou, and Dongmei Liu, editors, ICICS, volume 8233 of Lecture
Notes in Computer Science, pages 373–392. Springer, 2013.

9. Julien Cathalo, Benôıt Libert, and Moti Yung. Group encryption: Non-interactive
realization in the standard model. In Mitsuru Matsui, editor, ASIACRYPT, volume
5912 of Lecture Notes in Computer Science, pages 179–196. Springer, 2009.

10. Liqun Chen, Dan Page, and Nigel P. Smart. On the design and implementation of
an efficient daa scheme. In Dieter Gollmann, Jean-Louis Lanet, and Julien Iguchi-
Cartigny, editors, CARDIS, volume 6035 of Lecture Notes in Computer Science,
pages 223–237. Springer, 2010.

11. Cécile Delerablée and David Pointcheval. Dynamic fully anonymous short group
signatures. In Phong Q. Nguyen, editor, Progress in Cryptology - VIETCRYPT
06: 1st International Conference on Cryptology in Vietnam, volume 4341 of Lecture
Notes in Computer Science, pages 193–210. Springer, September 2006.

12. Uriel Feige, Amos Fiat, and Adi Shamir. Zero knowledge proofs of identity. In
Alfred V. Aho, editor, STOC, pages 210–217. ACM, 1987.

13. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology – CRYPTO’86, volume 263 of Lecture Notes in Computer Science,
pages 186–194. Springer, August 1987.

14. Marc Girault. An identity-based identification scheme based on discrete logarithms
modulo a composite number (rump session). In Ivan Damg̊ard, editor, Advances in
Cryptology – EUROCRYPT’90, volume 473 of Lecture Notes in Computer Science,
pages 481–486. Springer, May 1990.



15. Marc Girault, Guillaume Poupard, and Jacques Stern. On the fly authentication
and signature schemes based on groups of unknown order. Journal of Cryptology,
19(4):463–487, October 2006.

16. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In Robert Sedgewick, editor, STOC,
pages 291–304. ACM, 1985.

17. Jens Groth. Fully anonymous group signatures without random oracles. In Kaoru
Kurosawa, editor, Advances in Cryptology – ASIACRYPT 2007, volume 4833 of
Lecture Notes in Computer Science, pages 164–180. Springer, December 2007.

18. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages 415–432. Springer, April
2008.

19. Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key en-
capsulation. In Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007,
volume 4622 of Lecture Notes in Computer Science, pages 553–571. Springer, Au-
gust 2007.

20. Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable signatures. In
Christian Cachin and Jan Camenisch, editors, Advances in Cryptology – EURO-
CRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 571–589.
Springer, May 2004.

21. Benôıt Libert, Thomas Peters, and Moti Yung. Group signatures with almost-for-
free revocation. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 571–589. Springer, August 2012.

22. Toru Nakanishi, Hiroki Fujii, Yuta Hira, and Nobuo Funabiki. Revocable group sig-
nature schemes with constant costs for signing and verifying. In Stanislaw Jarecki
and Gene Tsudik, editors, Public Key Cryptography, volume 5443 of Lecture Notes
in Computer Science, pages 463–480. Springer, 2009.

23. Kazuma Ohara, Yusuke Sakai, Keita Emura, and Goichiro Hanaoka. A group
signature scheme with unbounded message-dependent opening. In Kefei Chen,
Qi Xie, Weidong Qiu, Ninghui Li, and Wen-Guey Tzeng, editors, ASIACCS, pages
517–522. ACM, 2013.

24. David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. Journal of Cryptology, 13(3):361–396, 2000.

25. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of
Lecture Notes in Computer Science, pages 239–252. Springer, August 1990.

26. Hovav Shacham. A cramer-shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. IACR Cryptology ePrint Archive,
2007:74, 2007.


