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Abstract. Attribute-based encryption (ABE) is a type of public key
encryption that allows users to encrypt and decrypt messages based on
user attributes. For instance, one can encrypt a message to any user
satisfying the boolean formula (“crypto conference attendee” AND “PhD
student”) OR “IACR member”. One drawback is that encryption and key
generation computational costs scale with the complexity of the access
policy or number of attributes. In practice, this makes encryption and
user key generation a possible bottleneck for some applications.
To address this problem, we develop new techniques for ABE that split
the computation for these algorithms into two phases: a preparation
phase that does the vast majority of the work to encrypt a message or
create a secret key before it knows the message or the attribute list/access
control policy that will be used (or even the size of the list or policy).
A second phase can then rapidly assemble an ABE ciphertext or key
when the specifics become known. This concept is sometimes called “on-
line/offline” encryption when only the message is unknown during the
preparation phase; we note that the addition of unknown attribute lists
and access policies makes ABE significantly more challenging.
One motivating application for this technology is mobile devices: the
preparation work can be performed while the phone is plugged into a
power source, then it can later rapidly perform ABE operations on the
move without significantly draining the battery.

1 Introduction

Attribute-Based Encryption (ABE) was introduced by Sahai and Waters [20] as
a more expressive form of encryption where one can encrypt according to some
policy. For example, in a large corporate setting one might encrypt data to the
policy of (“Procurement” AND “Manager”) OR “Accounting”. There
are two main flavors of ABE. In Key-Policy ABE [10], a key is associated with a
boolean formula φ and a ciphertext with a set S of attributes. One can decrypt
iff the set S satisfies the formula φ. Alternatively, in Ciphertext-Policy ABE the
roles are flipped; a key is associated with a set of attributes and the ciphertext
with an access formula.

One challenge in building systems that use Attribute-Based Encryption is
that the added functionality may come with a significant cost compared to stan-
dard public key cryptography. Consider a Key-Policy ABE system. Here the
encryption time will scale with the number of attributes assigned to the cipher-
text and key generation time will scale with the size of the boolean formula



ascribed to a user’s private key. These costs could impact several applications. If
the encryption algorithm is run on a mobile device, encryption time and battery
power are of large importance. In other applications, authority servers that gen-
erate users’ private keys may become a bottleneck. In both of these scenarios, an
exacerbating factor is that the cost for operations may vary widely between each
ciphertext and key; thus forcing a system to provision for a load that matches a
worst case scenario. See [4, 18, 23] for further ABE performance cost details.

In this work, we aim to mitigate this problem by introducing methods for
online/offline encryption and key generation in Attribute-Based Encryption. By
moving the majority of the cost of an encryption and key generation into an
offline phase, a system will be able to smooth the computational (and power)
demand over a longer range of time, and thus only need the resources to handle
the average case load.

Applications for this Technology One motivating application for splitting the
work this way is that a mobile device could be programmed to automatically
do ABE preparation work whenever it is plugged into a power source, and then
when it is unplugged, ABE ciphertexts could be rapidly formed with a significant
reduction in battery consumption.

Another potential advantage of splitting work this way is that in some ap-
plications the online and offline work can be performed in different devices. One
might perform the offline work for several encryptions on a high-end server and
store these intermediate ciphertexts on a sensor device such that the small de-
vice never needs to perform a full encryption. In other applications, for security
reasons a designer might wish to limit the number of outward facing servers that
have access to the master secret key (or equivalent). Using online/offline tech-
niques he could have several servers performing offline operations, but relatively
fewer required for the final online step to generate a user’s private key. While a
corrupted offline server (without the master secret) could not break the system,
in collusion it could produce outputs that would allow an eventual key holder
to do so. Therefore, application of this idea would require further analysis and
techniques to mitigate this scenario.

Background on Online/Offline Cryptography Even, Goldreich and Micali [9] ini-
tiated online/offline techniques for signatures and Shamir and Tauman [22] in-
troduced a general method using chameleon hash functions. In the context of
signatures, one would like to perform most of the work for signing a message in
the offline phase, but without knowing what the message to be signed is. Later
in the online phase the signer will learn the message and given the offline work
should be able to sign it relatively quickly.

The focus of our investigation is on moving encryption computation offline.
In the basic encryption setting, the job is to perform most of the work for
encryption offline, before the message is known. This is one of the reasons that
stream ciphers, such as RC4, are sometimes preferred over certain block ciphers,
because they operate by generating a pseudorandom string (which can be done
offline) and then XORing it with the plaintext (in the online phase).



Let’s next consider the task of moving encryption computation offline for
Identity-Based Encryption (IBE), where neither the message nor the recipient’s
identity is known during the offline phase. Guo et al. [12] give an offline en-
cryption system for Identity-Based Encryption (and other works [17, 16, 8, 21]
proposed different variants). We illustrate the main idea as a KEM1 variant of
the Boneh-Boyen [5] IBE system. In the offline phase, one will create a cipher-
text by encrypting to a random identity x ∈ Zp with randomness s ∈ Zp. The
resulting BB-type ciphertext will have the form C1 = gs, C2 = (uxh)s and the
encapsulated key will be e(g, g)αs, where the bilinear group description G of or-
der p and g, u, h, e(g, g)α are in the public parameters. The offline algorithm will
store these ciphertext components as well as remember x and s; these together
will consist of what we call an intermediate ciphertext. In the online phase, the
encryptor will learn that she wishes to encrypt to a certain identity I ∈ Zp. To
do this, she simply adds a small “correction factor” r · (I − x) ∈ Zp to the ci-
phertext components C1, C2. The computation only takes one multiplication and
subtraction in Zp. A modified decryption algorithm with the correct private key
can then extract the required symmetric key. We note that treating the system
as a Key Encapsulation Mechanism allows us to separate the issues of learning
the identity in the online phase versus learning the message in the online phase.

The Challenge for ABE From the above description, one can see that the correc-
tion techniques critically rely on there being well-known algebraic relationships
between the Boneh-Boyen hashes of different identities. Unfortunately, these do
not exist in most initial ABE systems [10, 6, 24] as an attribute for string x would
typically be represented as either a random group element hx in the parame-
ters or as the result of a (random oracle modeled) hash function H(x). A second
challenge is that the size and structure of ciphertext descriptors is more complex
in ABE systems. For instance, in a KP-ABE system the number of attributes
associated with a ciphertext may vary widely between each encryption. If one
encrypts to a small number in each offline stage, the intermediate ciphertext may
be not useable. If one encrypts to a large or maximum number in each offline
phase, it can result in much wasted work. Using offline computation efficiently
becomes a challenge in this setting. For ciphertext-policy ABE, finding a good
solution is more challenging as the “unknown” is an complex access structure.

Our Contributions We develop new techniques for online/offline ABE encryp-
tion and key generation that tackle these challenges. The first non-trivial task
is to identity ABE constructions that have the required algebraic structure to
enable online/offline computation. Unfortunately, most existing schemes do not.
However, a few do. We first identified the recent “large universe” construction of
Lewko and Waters [14] as a candidate base scheme due to its algebraic structure

1 A key encapsulation mechanism, where the public key ciphertext encapsulates a
symmetric key which could later be used to symmetrically encrypt the plaintext.



that appears amenable to adding correction factors.2 We finally decided to use a
recent more efficient prime-order variant due to Rouselakis and Waters [19]. (We
are not aware of any other ABE schemes that can support a similarly efficient
online/offline tradeoff.)

We begin by designing online/offline encryption algorithms for Key-Policy
ABE. For our first construction we assume a set number of attributes that will be
associated with each ciphertext. In this setting we develop a correction technique
for the KP-ABE [19] system. We prove security by directly reducing to the
security of [19]. This has the advantage of simplicity in that we do not need to
revisit the guts of the prior proof. In addition, we will automatically inherenit
any future improvements in the proof for the underlying scheme.

For reasons, discussed above assuming a fixed number of attributes per ci-
phertext is undesirable. To this end we come up with a method of “pooling” work
done offline. In this system an encryptor will continuously create offline cipher-
text pieces and add these to a pool. When the encryption algorithm later needs
to encrypt to a set S of attributes, it grabs |S| pieces from the pool connecting
each one to a single attribute from S. The work per attribute is dominated by
one multiplication in Zp. We describe this as a “connect and correct” approach.

We extend our offline encryption approach to the more complex case of
Ciphertext-Policy ABE. The challenge here is that a CP-ABE ciphertext is as-
sociated with a Linear Secret Sharing Scheme (LSSS) matrix. Again, we develop
a pooling technique. However, in this application for each row of the matrix
M given online, we will need to correct each ciphertext component to an LSSS
share in the exponent and to the corresponding attribute. Finally, we show how
online/offline key generation can be derived from our encryption techniques. We
observe a symmetry between CP-ABE encryption and KP-ABE key generation
that allows us to develop an online/offline pair of algorithms for the latter.

Combining with Outsourcing for ABE We make a brief detour here to discuss
how the results of this work might be combined with prior ABE results to make
a practical overall system.

In 2011, Green, Hohenberger and Waters [11] presented a solution for out-
sourcing the decryption of ABE ciphertexts. That is, they assumed that ABE
ciphertexts might be stored in the cloud. They then showed how a user can
provide the cloud with a single translation key that allows the cloud to trans-
late any ABE ciphertext satisfied by that user’s attributes into a very short El
Gamal-style ciphertext, without the cloud being able to read any part of the
user’s messages. These transmitted ciphertexts are short (saving on bandwidth
and receiving time), but also quick to decrypt (with roughly one or two exponen-
tiations). Thus, the ability to outsource decryption to the cloud allows a mobile
device to quickly decrypt an ABE-encrypted message.

2 Interestingly, [14] aimed for a large universe construction in the standard model and
thus our use of the schemes’s additional structure is a byproduct of removing the
random oracles.



Conversely, the results of this work allow a mobile device to quickly encrypt an
ABE-encrypted message. These two results could be combined into one system,
where a mobile device would be fully ABE operational while drastically reducing
the computational costs for both decryption (with the help of the cloud) and
encryption (with the help of a preparation phase while the phone charges). We
believe that creative solutions of this sort can be implemented transparently, but
will provide noticeably better performance for users.

2 Definitions for Online/Offline ABE

We work in the key encapsulation mechanism (KEM) setting, where the attribute-
based ciphertext hides a symmetric session key that can then be used to symmet-
rically encrypt data of arbitrary length. The goal in the online/offline setting is
to allow as much precomputation of attribute-based ciphertext as possible with-
out knowing the intended access policy (ciphertext-policy) or set of attributes
(key-policy). We refer the reader to [13] for a review of access structures, linear
secret sharing schemes (LSSS) and related conventions.

Definition 1 (Online/Offline Attribute-Based KEM Specification). Let
S represent a set of attributes and A an access structure. For generality, we will
define (Ikey, Ienc) as the inputs to the extract and online encryption functions
respectively. In a KP-ABE scheme (Ikey, Ienc) := (A, S), while in a CP-ABE
scheme, we have (Ikey, Ienc) := (S,A). We define the function f as follows:

f(Ikey, Ienc) :=


1 if Ienc ∈ Ikey in KP-AB setting

1 if Ikey ∈ Ienc in CP-AB setting

0 otherwise.

An online/offline KP-AB (resp., CP-AB) key-encapsulation mechanism for ac-
cess structure space G is a tuple of the following algorithms:

Setup(λ,U)→ (PK,MK). The setup algorithm takes as input a security pa-
rameter λ and a universe description U , which defines the set of allowed
attributes in the system. It outputs the public parameters PK and the master
secret key MK.

Extract(MK, Ikey)→ SK. The extract algorithm takes as input the master se-
cret key MK and an access structure (resp., set of attributes) Ikey and outputs
a private key SK associated with the attributes.

Offline.Encrypt(PK)→ IT. The offline encryption algorithm takes as input
the public parameters PK and outputs an intermediate ciphertext IT.

Online.Encrypt(PK, IT, Ienc)→ (key,CT) The online encryption algorithm takes
as input the public parameters PK, an intermediate ciphertext IT and a set
of attributes (resp., access structure) Ienc and outputs a session key key and
a ciphertext CT.



Decrypt(SK,CT)→ key. The decryption algorithm takes as input a private key
SK for Ikey and a ciphertext CT associated with Ienc and decapsulates ci-
phertext CT to recover a session key key if S satisfies A or the error message
⊥ otherwise.

For a fixed universe description U and λ ∈ N, the KP-AB correctness prop-
erty requires that for all (PK,MK) ∈ Setup(λ,U), all S ⊆ U , all A ∈ G, all
SK ∈ Extract(MK,A), if (key,CT) ∈ Online.Encrypt(PK,Offline.Encrypt(PK), S)
and if S satisfies A, then Decrypt(SK,CT) outputs key. CP-AB correctness is
defined analogously, with the last inputs to Extract and Online.Encrypt reversed.

Security Model for Online/Offline AB-KEM Let Π = (Setup,Extract,
Offline.Encrypt,Online.Encrypt,Decrypt) be an AB-KEM for access structure space
G, and consider the following experiment for an adversary A, parameter λ and
attribute universe U :

The Online/Offline AB-KEM experiment OO-ABKEM-ExpA,Π(λ,U):

Setup. The challenger runs the Setup algorithm and gives the public parame-
ters, PK to the adversary.

Phase 1. The challenger initializes an empty table T , an empty set D and an
integer counter j = 0. Proceeding adaptively, the adversary can repeatedly
make any of the following queries:
– Create(Ikey): The challenger sets j := j + 1. It runs the key generation

algorithm on Ikey to obtain the private key SK and stores in table T the
entry (j, Ikey,SK).
Note: Create can be repeatedly queried with the same input.

– Corrupt(i): If there exists an ith entry in table T , then the challenger
obtains the entry (i, Ikey,SK) and sets D := D ∪ {Ikey}. It then returns
to the adversary the private key SK. If no such entry exists, then it
returns ⊥.

– Decrypt(i,CT): If there exists an ith entry in table T , then the challenger
obtains the entry (i, Ikey,SK) and returns to the adversary the output
of the decryption algorithm on input (SK,CT). If no such entry exists,
then it returns ⊥.

Challenge. The adversary gives a challenge value I∗enc such that for all Ikey ∈
D, f(Ikey, I

∗
enc) 6= 1. The challenger runs the algorithm Online.Encrypt(PK,

Offline.Encrypt(PK), I∗enc) to obtain (key∗,CT∗). It then randomly selects a
bit b. If b = 0, it returns (key∗,CT∗) to the adversary. If b = 1, it selects a
random session key R in the session key space and returns (R,CT∗).

Phase 2. Phase 1 is repeated with the restrictions that the adversary cannot
– trivially obtain a private key for the challenge ciphertext. That is, it

cannot issue a Corrupt query that would result in a value Ikey which
satisfies f(Ikey, I

∗
enc) = 1 being added to D.

– issue a decryption query on the challenge ciphertext CT∗.
Guess. The adversary outputs a guess b′ of b. The output of the experiment is

1 if and only if b = b′.



Definition 2 (Online/Offline AB-KEM Security). An online/offline AB-
KEM Π is CCA-secure (or secure against chosen-ciphertext attacks) for at-
tribute universe U if for all probabilistic polynomial-time adversaries A, there
exists a negligible function negl such that:

Pr[OO-ABKEM-ExpA,Π(λ,U) = 1] ≤ 1

2
+ negl(λ).

CPA Security. We say that a system is CPA-secure (or secure against chosen-
plaintext attacks) if we remove the Decrypt oracle in both Phase 1 and 2.

Selective Security. We say that a system is selectively secure if we add an Init
stage before Start where the adversary outputs the challenge I∗enc (instead of
waiting until Challenge).

3 A KP-ABE Scheme with Online/Offline Encryption

We now show how to extend the unbounded KP-ABE scheme of Rouselakis
and Waters [19, Appendix C] to be an online/offline system. We will work in a
key encapsulation mechanism (KEM) model as specified in Defintion 2, so that
we can focus on preparing for an unknown attribute set. Any plaintext can be
encrypted in a hybrid manner during the online phase by a symmetric cipher
keyed with the encapsulated key. We first show a simple system that assumes a
bound P on the maximum number of attributes that can be used to encrypt a
ciphertext. We show how to remove this bound in Section 3.2.

Setup(λ,U) The setup algorithm takes in a security parameter λ and a universe
U of attributes. chooses a bilinear group G of prime order p ∈ Θ(2λ). It also
chooses random generators g, h, u, w ∈ G and picks a random exponent α ∈ Zp.
It then sets the keys as:

PK = (G, p, g, h, u, w, e(g, g)α), MSK = (PK, α).

We assume that the universe of attributes can be encoded as elements in Zp.

Extract(MSK, (M,ρ)) The extract algorithm takes as input the master secret
key MSK and an LSSS access structure (M,ρ). Let M be an `× n matrix. The
function ρ associates rows of M to attributes. The algorithm initially chooses
random values y2, . . . , yn ∈ Zp. It then computes ` shares of the master secret
key as (λ1, λ2, . . . , λ`) := M · (α, y2, . . . , yn)T (where T denotes the transpose).
It then picks ` random exponents t1, t2, . . . , t` ∈ Zp. For i = 1 to `, it computes

Ki,0 := gλiwti Ki,1 :=
(
uρ(i)h

)−ti
Ki,2 := gti .

The private key is SK := ((M,ρ), {Ki,0,Ki,1,Ki,2}i∈[1,`]).



Offline.Encrypt(PK) The offline encryption algorithm takes in the public pa-
rameters only. Here we describe the basic system which assumes a maximum
bound of P attributes will be associated with any ciphertext. We describe more
advanced variations in Section 3.2. The algorithm first picks a random s ∈ Zp
and computes

key := e(g, g)αs C0 := gs.

Next, for j = 1 to P , it chooses random rj , xj ∈ Zp and computes

Cj,1 := grj Cj,2 := (uxjh)rjw−s.

One can view this as encrypting for a random attribute xj , where this will be
corrected in the online phase. The work done in the offline phase is roughly
equivalent to the work of the regular encryption algorithm in [19, Appendix C].

The intermediate ciphertext is IT := (key, C0, {rj , xj , Cj,1, Cj,2}j∈[1,P ]).

Online.Encrypt(PK, IT, S) The online encryption KEM algorithm takes as input
the public parameters, an intermediate ciphertext IT, and a set of attributes S =
(A1, A2, . . . , Ak≤P ). For j = 1 to k, it computes Cj,3 := (rj · (Aj − xj)) mod p.
Intuitively, this will correct to the proper attributes. It sets the ciphertext:

CT := (S,C0, {Cj,1, Cj,2, Cj,3}j∈[1,k]).

The encapsulated key is key. The dominant cost is one multiplication in Zp per
attribute in S.

Decrypt(SK,CT) The decryption algorithm in the KEM setting recovers the en-
capsulated key. It takes as input a ciphertext CT = (S,C0, {Cj,1, Cj,2, Cj,3}j∈[1,k])
for attribute set S and a private key SK = ((M,ρ), {Ki,0,Ki,1,Ki,2}i∈[1,`]) for
access structure (M,ρ). If S does not satisfy this access structure, then the al-
gorithm issues an error message. Otherwise, it sets I := {i : ρ(i) ∈ S} and
computes constants wi ∈ Zp such that

∑
i∈I wi ·Mi = (1, 0, . . . , 0), where Mi

is the i-th row of the matrix M . Then it then recovers the encapsulated key by
calculating key :=

∏
i∈I

(
e(C0,Ki,0) · e(Cj,1,Ki,1) · e(Cj,2 · uCj,3 ,Ki,2)

)wi
= e(g, g)αs (1)

where j is the index of the attribute ρ(i) in S (it depends on i). This does not
increase the number of pairing operations over [19, Appendix C], although it
adds |I| exponentiations.



Correctness If the attribute set S of the ciphertext is authorized, we have that∑
i∈I wiλi = α. Therefore, key:

:=
∏
i∈I

(
e(C0,Ki,0) · e(Cj,1,Ki,1) · e(Cj,2 · uCj,3 ,Ki,2)

)wi

=
∏
i∈I

(e(gs, gλiwti) · e(grj , (uρ(i)h)−ti) · e((uxjh)rjw−s · urj(ρ(i)−xj), gti))wi

=
∏
i∈I

(e(g, g)sλi · e(g, w)sti · e(g, u)−rjtiρ(i) ·

e(g, h)−rjti · e(g, u)ρ(i)rjti · e(g, h)rjti · e(g, w)−sti)wi

=
∏
i∈I

e(g, g)swiλi = e(g, g)sα.

Recall that in the symmetric setting e(g, u) = e(u, g), for all g, u ∈ G, although
this scheme can operate in an asymmetric setting with small alterations.

3.1 Proof of Selective Security

Discussion on Security. We shortly show that the security of our online/offline
system can be directly based on the security of the underlying Rouselakis-
Waters [19, Appendix C] system. The Rouselakis-Waters system that we reduce
security to is selectively secure based on a “q-type” assumption in prime or-
der groups. We remark that our techniques appear to be equally ammenable
to transforming the Lewko-Waters [15] system to an online/offiline system. The
Lewko-Waters system is proven selectively secure from a static assumption in
composite order groups. If such a transformation were done (as well as a reduc-
tion to their scheme), the new scheme would inherit those assumptions.

In [10, Section 9], Goyal et al. discuss how to combine delegation in their ABE
systems with the techniques of Canneti-Halevi-Katz [7] to build a CCA secure
ABE scheme from a CPA one. We believe that a similar delegation structure
exists in our schemes, so that similar techniques would likely work out (although
we do not work out the details here).

Theorem 1. The above online/offline KP-AB-KEM scheme is selectively CPA-
secure with respect to Definition 2 assuming that the scheme of Rouselakis and
Waters [19, Appendix C] is a selectively CPA-secure KP-ABE system.

Proof. To prove the theorem, we will show that any PPT attacker A with a
non-negligible advantage in the OO-ABKEM-Exp experiment against the above
scheme, which we will denoteΠOO = (Setup,Extract,Offline.Encrypt,Online.Encrypt,
Decrypt), can be used to break the selective CPA-security of the Rouselakis-
Waters scheme, which we will denote ΠRW = (SetupRW ,ExtractRW , EncryptRW ,
DecryptRW ), with a PPT simulator B.

The simulator plays the challenger and interacts with A in OO-ABKEM-Exp
with security parameter λ and the universe of attributes set to U = Zp.



Initialization Initially, B receives an attribute set S∗ = {A∗1, A∗2, . . . , A∗k} ⊆ U
from A and gives it to the RW challenger.

Setup Next, B receives the public parameters PK = (G, p, g, h, u, w, e(g, g)α)
from the RW challenger and passes them to A unchanged.

Phase 1 The secret keys are the same in both schemes, so any key generation
request from A is passed to the RW challenger to obtain the key.

Challenge B chooses two distinct, random messages m0,m1 in the RW message
space and sends them to its RW challenger, and receives back a challenge cipher-
text CT∗RW = (S∗, C, C0, {Cj,1, Cj,2}j∈[1,|S∗|]). Here C is the encrypted message
times e(g, g)αs, C0 = gs and for each attribute Aj ∈ S∗, we have Cj,1 = grj and
Cj,2 = (uAjh)rjw−s.

It then selects random values z1, . . . , z|S| ∈ Zp and computes the ciphertext
CT∗OO as (S∗, C0) followed by

C∗j,1 := Cj,1 = grj C∗j,2 := Cj,2 · u−zj = (uAjh)rjw−su−zj C∗j,3 := zj .

To see why this is a correctly formed ciphertext, one needs to recall the third
pairing of equation 1, where one must compute e(C∗j,2 · uC

∗
j,3 ,Ki,2), as well as

observe that the ciphertext is randomized to have the proper distribution. The zj
blinding will cancel out in this step. Next, B guess which message was encrypted
τB ∈ {0, 1} and computes keyguess := C/mτB . Finally, B then sends to A the
tuple (keyguess,CT∗OO).

Phase 2 B proceeds as in Phase 1.

Guess Eventually, A outputs a bit τA. If τA = 0 (meaning that A guesses
that keyguess is the key encapsulated by CT∗OO), then B outputs τB. If τA =
1 (meaning that A guesses that keyguess is a random key), then B outputs
1 − τB. The distribution for A is perfect. Thus, if A has advantage ε in the
OO-ABKEM-Exp experiment, then B breaks the RW KP-ABE system with the
same probability.

3.2 A More Advanced System: Pooling Attributes for an
Unbounded System

Previously, we presented a system that imposed a bound of P attributes asso-
ciated with any ciphertext. We presented P as if it was a system-wide bound
for all ciphertexts, for simplicity. A slightly less naive solution would involve
creating a set of intermediate ciphertexts prepared for different sizes of attribute
sets, and then pulling the “right-sized IT” off-the-shelf during the online phase
(e.g., create one IT for a set of size 1, another for a set of size 2, etc.). However,
these approaches could prove wasteful, as certain ITs may be created and stored
without being used.



Pooling Construction. Instead, we introduce the idea of “pooling” to eliminate
waste during the offline phase. The intermediate ciphertext is now comprised of
two logical types of objects: a main module and an attribute module. During
the offline phase(s), an arbitrary number of main and attribute modules are
independently created. During the online phase for attribute set S, one main
module and |S| attribute modules will be consumed. The critical feature of this
approach is that any attribute module can be attached to any main module. The
online phase uses exactly what it needs, and any modules left in the pool can be
used on subsequent ciphertexts.

Specifically, during Offline.Encrypt, a main module is computed as follows. It
picks a random s ∈ Zp and sets ITmain := (key, C0, Cw), where these values are
computed as

key := e(g, g)αs C0 := gs Cw := w−s.

During Offline.Encrypt, an attribute module is computed as follows. It picks
a random r, x ∈ Zp and sets ITatt := (r, x, C ′1, C

′
2), where these values are

computed as

C ′1 := gr C ′2 := (uxh)r.

During Online.Encrypt for an attribute set S, the algorithm selects any one
main module ITmain := (key, C0, Cw) and any |S| attribute modules ITatt,j :=
(rj , xj , C

′
j,1, C

′
j,2) available in the pool. Finally, it computes CT as (S,C0, {Cj,1,

Cj,2, Cj,3}j∈[1,|S|]), where

Cj,1 := C ′j,1 = grj Cj,2 := C ′j,2 · Cw = (uxjh)rj · w−s Cj,3 := rj · (Aj − xj).

The encapsulated key is key.

Security Discussion. The dominant cost in the online encryption algorithm is
2 modular multiplications per attribute in S. To formally capture the pooling
model, the specification and security definition in Section 2 would need to be ex-
panded to have the Offline.Encrypt algorithm keep state (e.g., the pool) between
iterations and to pass this state into Online.Encrypt as well. Since pooling does
not impact the structure or distribution of the final ciphertexts over Section 3
and the adversary in the security experiment only views final ciphertexts, it is
relatively straightforward to prove the selective security of the pooling scheme.

4 A CP-ABE Scheme with Online/Offline Encryption

We now turn our attention to developing online/offline CP-ABE systems. This
is intuitively harder than KP-ABE, because the structure of ciphertext is more
complex. We must now be able to create an intermediate ciphertext in the offline
phase that can be quickly be translated to a ciphertext for a hitherto unknown
access structure. To do this, we will use and extend the basic “correction” and



pooling concepts introduced for KP-ABE. Our online/offline system is based
on the unbounded CP-ABE scheme of Rouselakis and Waters [19, Section 4],
where again it takes a special algebraic structure to make this work, which most
other CP-ABE systems do not appear to have. As before, we are working in
the KEM model. We’ll first show a simple system that assumes a bound P on
the maximum number of rows in an LSSS access structure that will be used to
encrypt. We will subsequently discuss how to remove this bound.

Setup(λ,U) The setup algorithm chooses a bilinear group G of prime order
p ∈ Θ(2λ). It also chooses random generators g, h, u, v, w ∈ G and picks a random
exponent α ∈ Zp. It then sets the keys as:

PK = (G, p, g, h, u, v, w, e(g, g)α), MSK = (PK, α).

Again, we will view the attribute universe as consisting of elements in Zp.

Extract(MSK, S) The extract algorithm takes as input the master secret key
MSK and an attribute set S = {A1, A2, . . . , Ak} ⊆ Zp. The algorithm chooses
random values r, r1, r2, . . . , rk ∈ Zp. It then computes K0 := gαwr,K1 := gr,
and for i = 1 to k, it computes

Ki,2 := gri Ki,3 :=
(
uAih

)ri
v−r.

The private key is SK := (S,K0,K1, {Ki,2,Ki,3}i∈[1,k]).

Offline.Encrypt(PK) The offline encryption algorithm takes in the public pa-
rameters only. Here we describe the basic system which assumes a maximum
bound of P rows in any LSSS access structure used in a ciphertext. We describe
more advanced variations in Section 4.1. The algorithm first picks a random
s ∈ Zp and computes

key := e(g, g)αs C0 := gs.

Next, for j = 1 to P , it chooses random λ′j , xj , tj ∈ Zp and computes

Cj,1 := wλ
′
jvtj Cj,2 := (uxjh)−tj Cj,3 := gtj .

One can view this as encrypting for a random attribute xj with a random “share”
λ′j of s, where this will be corrected in the online phase. We remark that the
work done in the offline phase is roughly equivalent to the work of the regular
encryption algorithm in [19, Section 4].

Intermediate ciphertext is IT := (key, s, C0, {λ′j , tj , xj , Cj,1, Cj,2, Cj,3}j∈[1,P ]).

Online.Encrypt(PK, IT, (M,ρ)) The online encryption KEM algorithm takes as
input the public parameters, an intermediate ciphertext IT, and an LSSS ac-
cess structure (M,ρ), where M is an ` × n matrix and ` ≤ P . It picks random
y2, . . . , yn ∈ Zp, sets the vector y = (s, y2, . . . , yn)T (where T denotes the trans-
pose of the matrix) and computes a vector of shares of s as (λ1, . . . , λ`)

T = My.



For j = 1 to `, it computes

Cj,4 := λj − λ′j Cj,5 := tj · (ρ(j)− xj).

Intuitively, this will correct to the proper attributes and shares of s. It sets the
ciphertext as:

CT := ((M,ρ), C0, {Cj,1, Cj,2, Cj,3, Cj,4, Cj,5}j∈[1,k]).

The encapsulated key is key. The dominant cost is one multiplication in Zp per
row of M .

Decrypt(SK,CT) The decryption algorithm in the KEM setting recovers the
encapsulated key. It takes as input a ciphertext CT = ((M,ρ), C0, {Cj,1, Cj,2,
Cj,3, Cj,4, Cj,5}j∈[1,k]) for access structure (M,ρ) and a private key SK = (S, {Ki,0,
Ki,1,Ki,2}i∈[1,`]) for access structure (M,ρ). If S does not satisfy this access
structure, then the algorithm issues an error message. Otherwise, it sets I := {i :
ρ(i) ∈ S} and computes constants wi ∈ Zp such that

∑
i∈I wi ·Mi = (1, 0, . . . , 0),

where Mi is the i-th row of the matrix M . Then it then recovers the encapsulated
key by calculating key := e(g, g)αs =

e(C0,K0)

e(w
∑

i∈I Ci,4wi ,K1) ·
∏
i∈I(e(Ci,1,K1)

· 1

e(Ci,2 · uCi,5 ,Kj,2) · e(Ci,3,Kj,3))wi
(2)

where j is the index of the attribute ρ(i) in S (it depends on i). We note that
this decryption algorithm adds one pairing operation and |I|+1 exponentiations
over [19, Appendix C]. Alternatively, one could re-arrange the equation for no
additional pairings at the cost of 2|I| exponentiations.

In the full version [13], we show correctness and prove the below theorem.

Theorem 2. The above online/offline CP-AB-KEM scheme is selectively CPA-
secure with respect to Definition 2 assuming that the scheme of Rouselakis and
Waters [19, Section 4] is a selectively CPA-secure CP-ABE system.

4.1 Pooling Attributes for an Unbounded Ciphertext-Policy System

In the previous section, we presented an online/offline system that imposed a
bound of P rows on any LSSS access matrix associated with any ciphertext. As
introduced in Section 3.2, we now show how to remove this bound by creating a
“pool” from which to draw ready-made ciphertext components. As before, the
intermediate ciphertext is comprised of two logical types of objects: a main mod-
ule and an attribute module. During the offline phase(s), an arbitrary number of
main and attribute modules are independently created. During the online phase
for LSSS access structure (M,ρ), one main module and ` attribute modules will
be consumed, where M is an `×n matrix. Any attribute module can be attached
to any main module.



Specifically, during Offline.Encrypt, a main module is computed as follows.
It picks a random s ∈ Zp and sets ITmain := (key, C0), where these values are
computed as

key := e(g, g)αs C0 := gs.

During Offline.Encrypt, an attribute module is computed as follows. It picks
a random λ, x, t ∈ Zp and sets ITatt := (λ, x, t, C1, C2, C3), where these values
are computed as

C1 := wλvt C2 := (uxh)t C3 := gt.

During Online.Encrypt for an LSSS access structure (M,ρ), where M is an
` × n matrix, the algorithm selects any one main module ITmain := (key, C0)
and any ` attribute modules ITatt,j := (λj , xj , tj , Cj,1, Cj,2, Cj,3) available in the
pool. It picks random y2, . . . , yn ∈ Zp, sets the vector y = (s, y2, . . . , yn)T (where
T denotes the transpose of the matrix) and computes a vector of shares of s as
(λ1, . . . , λ`)

T = My.
Finally, it computes CT as ((M,ρ), C0, {Cj,1, Cj,2, Cj,3, Cj,4, Cj,5}j∈[1,`]), where

Cj,4 := λj − λ′j Cj,5 := tj · (ρ(j)− xj).

The encapsulated key is key. The dominant cost in the online encryption algo-
rithm is one modular multiplication per row in M . The security discussion at
the end of Section 3.2 applies here as well.

5 Online/Offline ABE Key Generation

Private key generation in ABE systems requires the master secret key MSK.
This key is so valuable that any organization granting keys might do well to
store it on only a small number of well-guarded servers. At the same time, this
could create a bottleneck in systems with many users, especially when private
keys are reissued each time period for revocation purposes. In this section, we
discuss how the key generation operation in the KP-ABE system of Section 3
and the CP-ABE system of Section 4 can operate in an online/offline fashion
as well. Thus, the bulk of the key generation work can be performed by servers
that are truly offline (or otherwise well secured). These pre-computations can be
passed to the online servers, where incoming requests can be processed quickly.

In the KP-ABE setting, a private key embeds an LSSS access structure,
whereas in the CP-ABE setting, the private key embeds a set of attributes. We
will borrow ideas from the prior two sections to deal with these objects, where
again we can employ both the “correct and connect” and “pooling” concepts.

To capture online/offline key generation, one needs to replace the Extract
algorithm with an offline algorithm that takes in the MK and produces a inter-
mediate private key (or pool of private key parts) and an online algorithm that
takes in this intermediate key (or pool) together with an access structure and
then produces the private key. The security experiment is essentially unchanged
except that the Create oracle (called in Phases 1 and 2) now calls Offline.Extract
and Online.Extract in sequence to create a private key.



5.1 Online/Offline Key Generation for KP-ABE Keys

The Setup and encryption algorithms remain the same as Section 3. We present
a pooling solution, and because the structure of the private keys change, so must
the decryption algorithm.

Offline.Extract(MSK) There are no “main” key modules. A “row” module is
computed by selecting random λ′, x, t ∈ Zp and outputting Irow := (λ′, x, t,K0,

K1,K2) where K0 := gλ
′
wt, K1 := (uxh)

−t
and K2 := gt.

Online.Extract(pool, (M,ρ)) Let M be an ` × n matrix. The algorithm initially
chooses random values y2, . . . , yn ∈ Zp. It then computes ` shares of the master
secret key as (λ1, λ2, . . . , λ`) := M ·(α, y2, . . . , yn). Next select any ` row modules
from the pool. For i = 1 to `, set Ki,3 := λi− λ′i and Ki,4 := ti · (ρ(i)− xi). The
private key is SK := ((M,ρ), {Ki,0,Ki,1,Ki,2,Ki,3,Ki,4}i∈[1,`]). The dominant
cost is one multiplication per row of M .

Decrypt(SK,CT) Using the prior steps and notation, it recovers the encapsulated
key :=

∏
i∈I
(
e(C0,Ki,0 · gKi,3) · e(Cj,1,Ki,1 · uKi,4) · e(Cj,2 · uCj,3 ,Ki,2)

)wi
=

e(g, g)αs. This adds 2|I| exponentiations over the construction in Section 3.

5.2 Online/Offline Key Generation for CP-ABE Keys

The CP-ABE system in Section 4 can be extended in a similar manner. In
that system, there will be a “main” key module which contains K0,K1 and
Kv := v−r. The attribute modules are identical to those of Section 3.2 and the
keys are assembled as in the online phase of 3.2. The decryption equation is then
key := e(C0,K0)/D, where D = e(w

∑
i∈I Ci,4wi ,K1) ·

∏
i∈I(e(Ci,1,K1) · e(Ci,2 ·

uCi,5 ,Kj,2 · uKj,4) · e(Ci,3,Kj,3))wi , resulting in e(g, g)αs.

6 Performance Analysis

We provide estimates on the performance of the proposed schemes in Figures 1
and 2. These numbers are extrapolated from operation times on a 256-bit Bareto-
Naehrig curve using version 0.3.1 of the RELIC library [3]. Times are measured
in milliseconds (averaged over 10,000 iterations) and were computed on an Intel
Core i7 processor with 16GB RAM [2]. We ignore small numbers of operations
which will be negligible by comparison, such as arithmetic in Zp.

A natural question to ask is: how much pre-processing can I do for an ABE
encryption (similarly, key generation) before I know the message I want to en-
crypt or the access structure that I want to encrypt under? It may come as
a surprise that the results are so drastic. Indeed, our estimates show that the
answer to this question is: you can do almost all of the encryption work, before
you know any of the specifics of what/to whom you are encrypting.

Indeed, our worst-case for encryption was key-policy ABE in pooling mode,
and even then over 99% of the work could be done offline. Similarly, the worst-
case for key generation was ciphertext-policy ABE in pooling mode, and even



Encryption Algorithm Bilinear Operations Est. Time Est. Time
P = 10 P = 100

KP-ABE from [19, App. C] 1ET + (3P + 2)E1 + 2PM1 .133 1.134

KP-Offline Sec. 3 1ET + (3P + 2)E1 + 2PM1 .133 1.134

KP-Online Sec. 3 0 < .001 < .001

KP-Pool-Offline Sec. 3.2 1ET + (3P + 2)E1 + PM1 .133 1.132

KP-Pool-Online Sec. 3.2 PM1 < .001 .001

CP-ABE from [19] 1ET + (5P + 1)E1 + 2PM1 .203 1.870

CP-Offline Sec. 4 1ET + (5P + 1)E1 + 2PM1 .203 1.870

CP-Online Sec. 4 0 < .001 < .001

CP-Pool-Offline Sec. 4.1 1ET + (5P + 1)E1 + 2PM1 .203 1.870

CP-Pool-Online Sec. 4.1 0 < .001 .001

Fig. 1. Performance estimates for regular and online/offline encryption algorithms. We
mapped these algorithms into the asymmetric bilinear setting, placing the ciphertexts
in G1 and keys in G2. Let Ei (resp., Mi) denote an exponentiation (reps., multiplication)
in the group Gi. The bilinear operations are the dominate cost, so we ignore minor
factors such as arithmetic in Zp. The variable P represents the size of the attribute list
(in KP-ABE) or the complexity of the access policy (in CP-ABE). The times are in
seconds. It is helpful to compare the cost of the original scheme (with a citation) to the
cost of the online phase of the given algorithms. In three of the four schemes presented,
all bilinear group operations for encryption can be shifted to the offline phase.

then over 99% of the work could be done offline. It is also worth noting that
the total computation required between the offline and online phases is nearly
identical to the work required by the original scheme. Thus, the total work
remains the same, but the vast majority of it can be shifted in time to a moment
when the device is least busy or has access to a power source.

We remark that the operation counts given here for the schemes in [19]
differ slightly from the summary given in that work. The counts from [19] were
obtained from the Charm [1] benchmarking utility, which may have performed
various optimizations, whereas ours are a strict count of operations from the
algorithms as presented in the paper [19]. We do not expect these differences to
have any significant impact on the estimates in Figures 1 and 2.

7 Conclusions

We are exploring methods to make attribute-based encryption (ABE) more ef-
ficient for deployment. To this end, we investigated how devices might quickly
encrypt ABE messages or generate user keys, even for complex policies.

We developed new “connect and correct” techniques for ABE that split the
computation for encryption and key generation into two phases: a preparation
phase that does the vast majority of the work to encrypt a message or create a
secret key before it knows the message or the attribute list/access control policy
that will be used (or even the size of the list or policy). A second phase can then
rapidly assemble an ABE ciphertext or key when the specifics become known.



Key Generation Algorithm Bilinear Operations Est. Time Est. Time
P = 10 P = 100

KP-ABE from [19, App. C] 5PE2 + 2PM2 .370 3.703

KP-Pool-Offline Sec. 5.1 5PE2 + 2PM2 .370 3.703

KP-Pool-Online Sec. 5.1 0 < .001 < .001

CP-ABE from [19] (3P + 4)E2 + (2P + 1)M2 .252 2.253

CP-Pool-Offline Sec. 5.2 (3P + 4)E2 + (P + 1)M2 .251 2.251

CP-Pool-Online Sec. 5.2 PM2 < .001 .003

Fig. 2. Performance estimates for regular and online/offline key generation algorithms.
We mapped these algorithms into the asymmetric bilinear setting, placing the cipher-
texts in G1 and keys in G2. Let Ei (resp., Mi) denote an exponentiation (reps., multi-
plication) in the group Gi. The bilinear operations are the dominate cost, so we ignore
minor factors such as arithmetic in Zp. The variable P represents the size of the at-
tribute list (in CP-ABE) or the complexity of the access policy (in KP-ABE). The
times are in seconds. It is helpful to compare the cost of the original scheme (with a
citation) to the cost of the online phase. In both schemes, our estimates show that over
99% of the work to generate a key can be shifted to the offline phase.

This concept is sometimes called “online/offline” encryption. We provided effi-
cient constructions for both key-policy and ciphertext-policy ABE systems.

We provided performance estimates that showed over 99% of the computa-
tional work could be moved to offline phase in many scenarios. We expect that
this technology could reduce battery consumption on mobile devices and help
reduce the bottleneck on a master authority server tasked with generating user
keys. Overall, it helps reduce the cost of bringing ABE into practice.
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