
Verifiable Elections That Scale for Free

Melissa Chase1, Markulf Kohlweiss2, Anna Lysyanskaya3, and
Sarah Meiklejohn4

1 Microsoft Research Redmond
melissac@microsoft.com

2 Microsoft Research Cambridge
markulf@microsoft.com

3 Brown University
anna@cs.brown.edu

4 UC San Diego
smeiklej@cs.ucsd.edu

Abstract. In order to guarantee a fair and transparent voting process,
electronic voting schemes must be verifiable. Most of the time, however, it
is important that elections also be anonymous. The notion of a verifiable
shuffle describes how to satisfy both properties at the same time: ballots
are submitted to a public bulletin board in encrypted form, verifiably
shuffled by several mix servers (thus guaranteeing anonymity), and then
verifiably decrypted by an appropriate threshold decryption mechanism.
To guarantee transparency, the intermediate shuffles and decryption re-
sults, together with proofs of their correctness, are posted on the bulletin
board throughout this process.
In this paper, we present a verifiable shuffle and threshold decryption
scheme in which, for security parameter k, L voters, M mix servers, and
N decryption servers, the proof that the end tally corresponds to the
original encrypted ballots is only O(k(L + M + N)) bits long. Previ-
ous verifiable shuffle constructions had proofs of size O(kLM + kLN),
which, for elections with thousands of voters, mix servers, and decryp-
tion servers, meant that verifying an election on an ordinary computer
in a reasonable amount of time was out of the question.
The linchpin of each construction is a controlled-malleable proof (cm-
NIZK), which allows each server, in turn, to take a current set of ci-
phertexts and a proof that the computation done by other servers has
proceeded correctly so far. After shuffling or partially decrypting these
ciphertexts, the server can also update the proof of correctness, obtain-
ing as a result a cumulative proof that the computation is correct so far.
In order to verify the end result, it is therefore sufficient to verify just
the proof produced by the last server.

1 Introduction

Electronic voting is one of the most compelling applications of cryptography [3].
An approach popular in cryptographic literature is voting via a verifiable shuf-
fle [22, 11, 16, 17, 19], which consists of L voters V1, . . . , VL,M mix servers S1, . . . ,

SM (that are needed for the election to be anonymous) and N threshold decryp-
tion servers D1, . . . , DN (that are responsible for setting up the system and,
in the end, tallying the results). This approach requires a secure rerandomiz-
able encryption scheme, in which given the public key and a ciphertext c for
some message m, one can efficiently find a random ciphertext c′ for the same
message m. Further, it requires that there be a threshold realization of the cryp-
tosystem [13, 24, 6]; i.e., the secret key can be split up into “shares” such that
each server can use its share to partially decrypt a ciphertext, and the correct
decryption can be obtained by putting all the decryption shares together.

On a high level, once the decryption servers set up the system, a verifiable
election works in the following three phases [21, 4]: first, each voter Vi submits to

a public bulletin board a ciphertext c
(0)
i containing his or her encrypted ballot

(in one variation [22, 23, 2], a trusted device submits this ciphertext on the user’s
behalf, so that the user does not know the randomness that went into forming
the encryption and thus is unable to demonstrate that he voted a certain way).
Next, in the ballot processing phase, each mix server Si in turn takes as input the

set of encrypted ballots (c
(i−1)
1 , . . . , c

(i−1)
L) and randomizes and permutes (i.e.,

shuffles) them, posting to the public bulletin board the ciphertexts (c
(i)
1 , . . . , c

(i)
L)

together with a zero-knowledge proof πi that this was done correctly. Finally,

in the tallying phase, on input (c
(M)
1 , . . . , c

(M)
L), each decryption server Di pub-

licly outputs its decryption shares (d
(i)
1 , . . . , d

(i)
L), together with a zero-knowledge

proof π′i that this was done correctly. The tally is now publicly computable by
putting together the decryption shares for each ciphertext.

How much data does an elections monitor have to process in order to verify
the tally? Suppose the monitor observes and verifies every step of both mixing
and decrypting. This means verifying that, in the ballot processing step, the mix
servers correctly formed LM ciphertexts, and then that the decryption servers
correctly computed LN decryption shares. This multiplicative blow-up is very
unfortunate if these algorithms are used on a large scale; indeed, the very vision
of universally verifiable elections is that it should be easy for anyone, including
the voters themselves, to participate in guaranteeing both the anonymity and the
correctness of the election. This means that it should scale well as the number
of mix and decryption servers grows. Can the work of the elections monitors be
reduced to O(k(L+M +N)) for security parameter k?

(Note that a verifiable shuffle has the attractive property that the set of
ballots output in the end is the same as the set of ballots that were encrypted and
submitted to the bulletin board. In particular, this allows for write-in candidates.
If an election is simply binary, then an encrypted tally can be computed if the
underlying cryptosystem is additively homomorphic, and the resulting ciphertext
can be decrypted by the decryption servers.)

In a recent result [7], we (referred to ask CKLM in what follows to distin-
guish between our current and prior work) proposed an idea for overcoming this
blow-up as far as the ballot processing phase was concerned. Before, all known
aggregation results [1, 15] required complex interactions between shuffling au-
thorities and, for non-interactive verification, were based on the Fiat-Shamir [14]

heuristic and thus the random oracle model. The crucial observation of CKLM is
that the monitor does not need to verify every step of the shuffle: it is sufficient

to just verify the last set of ciphertexts (c
(M)
1 , . . . , c

(M)
L), as long as the proof πM

produced by the last mix server SM attests to the fact that these were correctly

computed from the original ballots (c
(0)
1 , . . . , c

(0)
L). Of course, the last mix server

SM does not have the witness to this statement: it knows only the random-

ness it used to randomize and shuffle the ciphertexts (c
(M−1)
1 , . . . , c

(M−1)
L). To

nevertheless allow πM to suffice for the entire shuffle, CKLM proposed a cryp-
tographic tool, called controlled-malleable proofs (cm-NIZKs), that allows each
server Si to build on the proof πi−1 that attests to the validity of the cipher-

texts (c
(i−1)
1 , . . . , c

(i−1)
L) in order to obtain the proof πi attesting to the validity

of (c
(i)
1 , . . . , c

(i)
L); importantly, cm-NIZKs allow πi to be the same size as πi−1.

As a result, the proof πM suffices, and the elections monitor need not verify
any of the intermediate ciphertexts and proofs. CKLM then gave a construc-
tion of cm-NIZKs by taking advantage of certain convenient properties of GS
proofs [20].

The CKLM result came with a significant caveat that made it almost irrele-
vant in practice as far as verifiable shuffles are concerned: they used permutation
matrices to represent the statement that there exists a permutation and a ran-

domization that, when applied to (c
(i−1)
1 , . . . , c

(i−1)
L), result in (c

(i)
1 , . . . , c

(i)
L). A

permutation matrix is L × L, and so, by necessity, each proof πi was Θ(L2k)
bits, for the security parameter k. The elections monitor would thus have to
read Θ(k(L2 + M)) bits in order to verify the correctness of a shuffle, rather
than Θ(LMk) bits when using, for example, the verifiable shuffle of Groth and
Lu [19], which does require the monitor to check intermediate ciphertexts and
proofs (hence the factor of M), but in which each proof is only of size Θ(Lk) be-
cause Groth and Lu represent a permutation as a list rather than a matrix. The
CKLM solution is therefore asymptotically superior only in the case where there
are more mix servers than voters. In recent follow-up work, CKLM extended
their results [8] in a way that would allow permutations to be represented as
lists rather than matrices, but the extension does not apply for the scenario at
hand because it can only tolerate a constant number of mix servers. A natural
question, therefore, is the following: Is it possible to combine the CKLM tech-
niques with the Groth-Lu techniques to get a cm-NIZK for the correctness of
a shuffle of size Θ(k(L + M))? In this paper, we answer it in the affirmative,
obtaining a verifiable shuffle construction in which elections monitors only read
Θ(k(L+M)) bits to verify that the ballot processing step was done correctly.

Next, we focus on the application of cm-NIZKs to the verification of threshold
decryption (i.e., the tallying phase). In a näıve approach, each decryption server

Di, on input the ciphertexts (c
(M)
1 , . . . , c

(M)
L), outputs the decryption shares

(d
(i)
1 , . . . , d

(i)
L) and the proofs (π

(i)
1 , . . . , π

(i)
L) that these decryption shares were

correct. It is natural to ask whether, by taking turns processing these cipher-
texts and using cm-NIZK techniques, it is possible to achieve compact verifi-
able threshold decryption, in which each server builds on the decryption share

and proof of the previous server to arrive, at the end, at the vector of decryp-
tions (m1, . . . ,mL) for the original L ciphertexts and a single vector of proofs

(π
(N)
1 , . . . , π

(N)
L) that attests to the correct decryption and requires Θ(k(L+N))

bits to verify. In this paper we answer this question in the affirmative as well.
Rather than have each decryption server produce its own decryption share and
proof of correctness, we instead have the decryption servers pass around a single
cumulative share, along with a malleable proof of correctness. When one au-
thority receives the share and proof from the previous authority, it can therefore
fold in its own share, and update, or “maul”, the proof to obtain a new proof of
correctness that takes into account this new share.

To the best of our knowledge, the question of compact verifiable threshold de-
cryption has not been previously considered: the standard approach in threshold
cryptography [13, 24, 6] is that, on input the ciphertext and a share of the secret
key, each decryption server computes a share of the decryption and a proof that
this share was computed correctly. These shares are then publicly output, and
the decryption can be computed; one can verify that the decryption is correct by
verifying the proofs. In a t-out-of-N threshold cryptosystem, t+1 correct shares
are sufficient, while no malicious coalition of t servers can break the security of
the cryptosystem or cause incorrect decryption. An advantage of this approach is
that no communication need be required between servers; in the public bulletin
board model of electronic voting, however, this is not as important as compact
verification. Our approach, instead, has the decryption servers communicate via
the public bulletin board. Each server, in turn, takes as input the cumulative
decryptions and their proofs of correctness so far (if any), carries out its share
of the decryption, and outputs the resulting cumulative decryption shares and
the resulting cumulative cm-NIZK proof of their correctness. The overall process
results in the correct decryption if no server fails to produce a valid proof.

2 Definitions and Notation

In this section, we present building blocks and definitions for our voting scheme.
First, we recall the malleable proof system due to CKLM [7] used by both our
shuffle and threshold decryption constructions. Then, we give the CKLM defi-
nition of a verifiable shuffle, which takes into account that one proof is used to
prove correctness of the entire shuffle. Next, we give a new definition, analogous
to the definition for the shuffle, of compact threshold encryption; here, the mal-
leable proof is used to prove correct partial decryption. Finally, in order to show
that these two notions fit together, we present a simple definition of a secure
voting scheme.

2.1 Controlled malleable proofs (cm-NIZKs)

As defined by CKLM, a controlled malleable proof for a relation R and transfor-
mation class T consists of four algorithms (CRSSetup,P,V,ZKEval): CRSSetup
generates a common reference string crs, the prover P takes as input the crs,

the instance x, and a witness w for the truth of the statement (x,w) ∈ R and
outputs a proof π, and the verifier V takes as input the crs, an instance x, and
a proof π and either accepts or rejects the proof.

These three algorithms constitute a regular non-interactive proof (which we
define formally in the full version of the paper [9]); such a proof is further called
zero knowledge (NIZK) if there exists a PPT simulator (S1, S2) such that an
adversary can’t distinguish between proofs formed by the prover and proofs
formed by the simulator, and a proof of knowledge (NIZKPoK) if there exists
a PPT extractor (E1, E2) that can produce a valid witness from any accepting
proof.

The fourth algorithm, specific to malleable proof systems, is ZKEval, which,
on input crs, a transformation T = (Tinst, Twit) (in some transformation class T),
an instance x, and a proof π, outputs a mauled proof π′ for instance Tinst(x).
The main definition of CKLM for controlled malleable proofs then reconciles
malleability with extractability (specifically, simulation-sound extractability [12,
18]) and requires that, for any instance x, if an adversary can produce a valid
proof π that x ∈ LR then an extractor can extract from π either a witness
w such that (x,w) ∈ R or a previously proved instance x′ and transformation
T ∈ T such that x = Tinst(x

′). Intuitively this guarantees that any proof that
the adversary produces is either generated from scratch using a valid witness,
or formed by applying a transformation from the class T to an existing proof.
They define this formally as follows:

Definition 2.1. [7] Let (CRSSetup,P,V,ZKEval) be a NIZKPoK system for an
efficient relation R, with a simulator (S1, S2) and an extractor (E1, E2). Let
T be an allowable set of unary transformations for the relation R such that
membership in T is efficiently testable. Let SE 1 be an algorithm that, on input
1k, outputs (crs, τs, τe) such that (crs, τs) is distributed identically to the output
of S1. Let A be given, and consider the following game:

– Step 1. (crs, τs, τe)
$←− SE 1(1k).

– Step 2. (x, π)
$←− AS2(crs,τs,·)(crs, τe).

– Step 3. (w, x′, T)← E2(crs, τe, x, π).

The proof system satisfies controlled-malleable simulation-sound extractability
(CM-SSE, for short) with respect to T if for all PPT algorithms A there exists a
negligible function ν(·) such that the probability (over the choices of SE 1, A, and
S2) that V(crs, x, π) = 1 and (x, π) 6∈ Q (where Q is the set of queried statements
and their responses) but either (1) w 6= ⊥ and (x,w) /∈ R; (2) (x′, T) 6= (⊥,⊥)
and either x′ /∈ Qx (the set of queried instances), x 6= Tinst(x

′), or T /∈ T ; or
(3) (w, x′, T) = (⊥,⊥,⊥) is at most ν(k).

In addition, CKLM define the notion of strong derivation privacy for such
proofs, in which simulated proofs are indistinguishable from those formed via
transformation. This is defined formally as follows:

Definition 2.2. [7] For a malleable NIZK (CRSSetup,P,V,ZKEval) with an
associated simulator (S1, S2), a given adversary A, and a bit b, let pAb (k) be the
probability of the event that b′ = 0 in the following game:

– Step 1. (σsim, τs)
$←− S1(1k).

– Step 2. (state, x1, π1, . . . , xq, πq, T)
$←− A(σsim, τs).

– Step 3. If V(σsim, xi, πi) = 0 for some i, (x1, . . . , xq) is not in the domain of
Tinst, or T /∈ T , abort and output ⊥. Otherwise, form

π
$←−
{
S2(σsim, τs, Tinst(x1, . . . , xq)) if b = 0
ZKEval(σsim, T, {xi, πi}i) if b = 1.

– Step 4. b′
$←− A(state, π).

The proof system is strongly derivation private if for all PPT algorithms A there
exists a negligible function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

Putting these two definitions together, if a proof system is CM-SSE, strongly
derivation private, and zero knowledge, then CKLM call it a cm-NIZK.

2.2 Compactly verifiable shuffles

In a compact verifiable shuffle, as defined by CKLM, a single (malleable) proof
is used to prove the correctness of an entire multi-step shuffle. Formally, a com-
pact verifiable shuffle (Setup,ShuffleKg,Shuffle,Verify) is parameterized by a re-
randomizable encryption scheme (EncKg,Enc,Dec): Setup generates parameters
params; ShuffleKg outputs key pairs (pk j , sk j) chosen from a hard relation Rpk

that are used by mix servers as a stamp of participation; Shuffle takes the original
ciphertexts {ci, πi}i, the shuffled ciphertexts {c′i}i and proof thus far (π, {pk j}j),
and a pair of keys (pkm, skm) ∈ Rpk , and outputs ({c′′i }i, π′, {pk j}j ∪ {pkm});
and Verify ensures that the shuffle has been performed correctly.

Before giving the compact verifiability definition, we recall the relation that
is proved by the shuffle. Instances are of the form (pk , {ci}i, {c′i}i, {pk j}j), where
pk is a public key produced by EncKg, {ci}i are ciphertexts produced by Enc
through the voting process, {c′i}i are the shuffled ciphertexts, and {pk j}j are
the public keys for Rpk that are used to identify the mix servers that have
participated in the shuffle thus far. Witnesses are of the form (ϕ, {Ri}i, {sk j}j),
where ϕ is a permutation, {Ri}i are re-randomization factors, and {sk j}j are
the secret keys for the mix servers. Then the relation R is defined by

((pk , {ci}i, {c′i}i, {pk j}j), (ϕ, {Ri}i, {sk j}j)) ∈ R
⇔{c′i}i = {ReRand(pk , ϕ(ci);Ri)}i ∧ ∀j(pk j , sk j) ∈ Rpk .

Definition 2.3. [7] Let (Setup,ShuffleKg,Shuffle,Verify) be a verifiable shuffle
with respect to an encryption scheme (EncKg,Enc,Dec). For an adversary A
and a bit b ∈ {0, 1}, let pAb (k) be the probability that b′ = 0 in the following
experiment:

– Step 1. params
$←− Setup(1k), (pk , sk)

$←− EncKg(params), and (T = {pk i}i,
{sk i}i)

$←− ShuffleKg(1k).

– Step 2. A gets params, pk, T , and access to the following two oracles:
an initial shuffle oracle that, on input ({ci, πi}i, pk `) for pk ` ∈ T , out-
puts ({c′i}i, π, {pk `}`) (if all the proofs of knowledge πi verify), where π is
a proof that the {c′i}i constitute a valid shuffle of the {ci}i performed by
the user corresponding to pk ` (i.e., the user who knows sk `); and a shuffle
oracle that, on input ({ci, πi}i, {c′i}i, π, {pk j}j , pkm) for pkm ∈ T , outputs
({c′′i }i, π′, {pk j}j ∪ {pkm}).

– Step 3. Eventually, A outputs a tuple ({ci, πi}i, {c′i}i, π, T ′ = {pk j}j).
– Step 4. If Verify(params, ({ci, πi}i, {c′i}i, π, {pk j}j)) = 1 and T ∩T ′ 6= ∅ then

continue; otherwise simply abort and output ⊥. If b = 0 give A {Dec(sk , c′i)}i,
and if b = 1 then give A ϕ({Dec(sk , ci)}i), where ϕ is a random permutation.

– Step 5. A outputs a guess bit b′.

Then the shuffle is compactly verifiable if for all PPT algorithms A there exists
a negligible function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

In addition to defining such a shuffle, CKLM also provide a generic construc-
tion using a hard relation [10], a proof of knowledge, and a cm-NIZK. Since
we use this generic construction as a template for our shuffle construction in
Section 3, for completeness we provide an outline of it in the full version of the
paper.

2.3 Threshold encryption

As discussed in the introduction, the previous model for threshold encryption
had each participant generate a share and proof of correctness separately; the
proofs of correctness would then be verified separately, and the shares would
all be combined at the end to produce the decrypted ciphertext. As we now
assume that the participants compute a single share and proof cumulatively (by
computing their own shares and then folding them into a single one that gets
passed around and mauling the accompanying proof appropriately), the model
must be changed to reflect these differences.

With this in mind, we define a threshold encryption scheme to be a tuple of
four algorithms (EncKg,Enc,ShareDec,ShareVerify). The first, EncKg, generates
a public encryption key pk , a verification key vk that is used to check the validity
of a share, and a set of secret key shares {sk i}i. The next, Enc, performs regular
public-key encryption. The next, ShareDec, takes in a share sk i of the secret key,
a ciphertext c, and the decryption share/proof thus far. It first computes its own
partial decryption of c, and then folds this value into the cumulative share and
outputs this new share; it also mauls the proof to take into account that the
value it has folded in is correct, and thus the new share is the correct cumulative
share for the participants thus far. Finally, ShareVerify takes in the cumulative
share and proof and verifies that the share is indeed correct. In this paper we
focus on n-out-of-n threshold decryption, in which all n parties must participate

in the decryption; our results should generalize to the t-out-of-n case as well,
but we leave that as an open problem.

There are a number of desirable properties of a threshold encryption scheme.
Functionally, we require completeness, which says that if everyone is behav-
ing honestly then the scheme works as it should; i.e., the proofs of correct-
ness verify and the ciphertexts decrypt correctly. Completeness therefore re-
quires that the threshold encryption scheme also yields a regular encryption
scheme: the Dec algorithm would take as input sk := {sk j}j and compute the
cumulative shares; it would then output the final cumulative share, which by
completeness is equal to the message m. This essentially means Dec(sk , c) =
ShareDec(pk , vk , sk , c, (⊥,⊥,⊥)).

In terms of security properties, we would first like our scheme to satisfy
IND-CPA security; to capture this, we can use the usual IND-CPA security
experiment, in which an adversary A outputs message (m0,m1) such that |m0| =
|m1| and is asked to guess which one of them a challenge ciphertext c∗ encrypts.
In addition to IND-CPA security, in the threshold setting we would also like to
guarantee that partial decryption shares do not reveal anything about the secret
key shares, even in the face of malicious participants (which also means that
these malicious participants should not be able to recover the message without
a sufficient number of collaborators). To capture this requirement, which we call
share simulatability, we have the following definition:

Definition 2.4. Let (EncKg,Enc,ShareDec,ShareVerify) be a threshold encryp-
tion scheme with N decryption participants. For an adversary A and a bit b, let
pAb (k) be the probability of the event that b′ = 0 in the following game:

– Step 1. {1, . . . , N} ⊃ S $←− A(1k, N).

– Step 2. (pk , vk , {sk i}i)
$←− K(1k, N, S).

– Step 3. b′
$←− ASD(pk , vk , {sk i}i∈S),

where (K,SD) are defined as (EncKg,ShareDec) if b = 0 and the following algo-
rithms if b = 1:

Procedure K(1k, n, S) Procedure SD(t := (i, c, s, I, π))

(pk , vk ′, {sk ′j}Nj=1)
$←− EncKg(1k, N) m← Dec({sk j}Nj=1, c)

(vk , {sk j}j∈S , τ)
$←− SimKg(pk , vk ′, N, S) (s′, π′)

$←− SimShareDec(pk , vk , τ, t,m)
output (pk , vk , {sk j}j∈S ∪ {sk ′j}j∈[N]\S) output (s′, I ∪ {i}, π′)

Then the threshold encryption scheme is share simulatable if there exist PPT
algorithms SimKg and SimShareDec as used above such that for all PPT algo-
rithms A there exists a negligible function ν(·) such that |pA0 (k)−pA1 (k)| < ν(k).

As SimShareDec can therefore simulate the decryption process without access
to the secret key, we can argue that the shares produced by ShareDec do not
reveal anything more than what an honest decryption would reveal. Finally, we
require that the proof of correctness is meaningful; i.e., that it is hard for an

adversary to produce a ciphertext c, a message m and an accepting proof π such
that m 6= Dec(sk , c). More formally:

Definition 2.5. Let (EncKg,Enc,ShareDec,ShareVerify) be a threshold encryp-
tion scheme with N decryption participants. For an adversary A, define the
following game:

– Step 1. (pk , vk , {sk i}i)
$←− EncKg(1k, N).

– Step 2. (c,m, π)
$←− A(pk , vk , {sk i}i),

Then the threshold encryption scheme is sound if for all PPT algorithms A there
exists a negligible function ν(·) such that the probability that ShareVerify(pk , vk , c,
(m, [N], π)) = 1 but m 6= Dec({sk i}i, c) is at most ν(k).

Putting everything together, we say that a threshold encryption scheme is
secure if it satisfies IND-CPA security, share simulatability, and soundness.

2.4 Compactly verifiable voting

In order for ballots to be cast and elections to be publicly verifiable, verifiable
voting schemes use a public space (in practice, an append-only authenticated
storage system) commonly referred to as a bulletin board. To describe an election,
we break it up into several phases, which we describe here. To ease exposition, we
implicitly assume that all parties are informed and agree about when a particular
phase ends and the next one starts; e.g., by a particular symbol being written
on the bulletin board.

– Setup. All authorities meet and jointly compute the public parameters of
the election, while also keeping some correlated secrets private. All public
parameters are published on the bulletin board.

– Voting. Each voter now uses these public parameters to encrypt his vote v
and produce a ballot. All ballots are written on the bulletin board.

– Ballot processing. Next, once all ballots have been cast, they are examined
to weed out invalid or duplicate ballots, and a set of mix authorities shuffle
the remaining valid ballots.

– Tallying. Finally, a set of decryption authorities work together to decrypt
the shuffled ballots. After decryption, the actual count of the votes can be
performed publicly.

This multi-phase model of elections is inspired by the work of Juels et al. [21]
and Bernhard et al. [4], although with some crucial modifications: unlike the
former, we do not address coercion resistance, and unlike the latter we consider
both shuffling and threshold decryption.

As far as security is concerned, there are a wide variety of properties we
might want a voting scheme to satisfy; e.g., keeping users’ votes private, coercion
resistance, end-to-end verifiability, etc. In this paper, we focus mainly on this

first property. As did Benaloh [3], we observe that we can provide voter privacy
only up to a certain point; for example, if the election consisted of only one vote
(or only one vote not controlled by some adversary), then voter privacy would
be quite difficult to enforce! We therefore follow Benaloh’s approach in requiring
that votes can be private only in elections in which different assignments of
honest votes still lead to the same outcome. To capture this property formally,
we say that an election with N decryption authorities, L voters, and M mix

authorities satisfies basic vote privacy if, for a random bit b
$←− {0, 1}, no PPT

adversary A can win the following game with more than negligible advantage:

– Setup. First, a random bit b
$←− {0, 1} is chosen. Then, A picks the decryption

authorities to corrupt as [N] ⊃ S
$←− A(1k). Then, params

$←− Setup(1k),

({pk i}i, {sk i}i)
$←− ShuffleKg(params), (pk , vk , {dk j}j)

$←− EncKg(params).
At the end of the setup phase (params, pk , vk) are added to the bulletin
board, and A gets to see {dk j}j∈S and T := {pk i}i.

– Voting. Proceeding adaptively, the adversary can either provide his own
ballot B, or a vote pair (v0, v1). For the former, the ballot is simply added
to the bulletin board, while for the latter he gets back the ballot Bb (i.e., the
ballot corresponding to either v0 or v1), which is also added to the bulletin
board. At the end of the phase (i.e., once there are L votes on the board), A
automatically loses if the election outcome differs between b = 0 and b = 1.

– Ballot processing. In this phase, in addition to access to the bulletin board,
we give the adversary access to two shuffle oracles: an initial shuffle oracle
that, on input pk ` for pk ` ∈ T , writes ({c′i}i, π, {pk `}`) on the bulletin board
(if all the ballots on the bulletin board are valid), where π is a proof that
the {c′i}i constitute a valid shuffle of the initial ballots {Bi}i performed by
the user corresponding to pk ` (i.e., the user who knows sk `); and a reg-
ular shuffle oracle that, on input ({c′i}i, π, {pk j}j , pk `) for pk ` ∈ T , adds
both ({c′i}i, π, {pk j}j) (if it cannot be found there already) and the shuffled
({c′′i }i, π′, {pk j}j ∪ {pk `}) to the bulletin board. The phase ends when the
final shuffle ({c′i}i, π, {pk j}j) such that |{pk j}j | = M and {pk j}j ∩ T 6= ∅ is
written to the bulletin board, either by the shuffle oracle or by the adversary.

– Tallying. The adversary can ask for decryption shares for the shuffled {c′i}i
through an oracle that, on input (j, k, sk, I, φk), computes (s′k, I∪{j}, φ′k)

$←−
ShareDec(pk , vk , dk j , c

′
k, (sk, I, φk)) and posts both (sk, I, φk) (if it cannot be

found there already; sk = ⊥ and I = ∅ denotes an initial decryption) and
the share (s′k, I ∪ {j}, φ′k) with its new contribution. The phase ends when,
for every i, 1 ≤ i ≤ L, the final decryption share (si, [N], φi) is written to
the bulletin board, either by the share decryption oracle or by the adversary.

– Winning the game. The adversary outputs b′, and wins if b′ = b.

While the above definition explicitly captures vote privacy, we could also
attempt to extend it to deal with verifiability by requiring that, if π and φi verify
for all i, then the expected outcome (based on the vi and the decryption of ci in
the adversary’s ballots) should match the real outcome. While the soundness of

the proofs used in our construction in Section 5 should guarantee that this holds,
we focus solely on privacy in this work and leave a formal proof of verifiability
as an interesting open problem.

3 A Compactly Verifiable Shuffle

In this section, we show how to achieve a compactly verifiable shuffle, as defined
in Definition 2.3, with parameter size O(L) and proof size O(L + M) by using
the verifiable shuffle due to Groth and Lu [19]. To do this, we use the following
outline: first, we show that an adapted version of the Groth-Lu construction is
what CKLM call CM-friendly, meaning that a pairing-based cm-NIZK can be
constructed based on it. We then observe that, once we have a cm-NIZK, we can
plug it into the generic construction of CKLM to obtain a compactly verifiable
shuffle.

In the definition of CM-friendliness as proposed by CKLM [7, Definition 4.3],
they assigned the property of CM-friendliness to a relation and transformation;
in the case of a shuffle, this relation and the set of transformations describe the
permutation and randomization of ciphertexts, as we saw formally in Section 2.2.
We propose a useful weakening of this definition that shifts the assignation of
CM-friendliness from the relation to its specific instantiation using a sound proof
system; as we will see, this allows the definition to accomodate computationally
sound proofs (i.e., arguments) as well as the perfectly sound proofs that the
previous definition required. We capture the previous definition as perfect CM-
friendliness.

Due to space constraints, we present here only an informal version of our
definition; the formal definition can be found in the full version of the paper.

Definition 3.1. (Informal.) For sets S and S′ of pairing product equations

and a PPT setup algorithm params
$←− CRSSetup(1k) that specifies some group

G, we say that (S, S′,CRSSetup) is a CM-friendly instantiation for a relation
R and transformation class T if the following six properties hold: (1) repre-
sentable statements: any instance and witness of R can be represented as a set
of group elements; (2) representable transformations: any transformation in T
can be represented as a set of group elements; (3) provable statements: prov-
ing satisfaction of S constitutes a computationally sound proof for the state-
ment “(x,w) ∈ R” using the above representations for x and w; (4) provable
transformations: proving satisfaction of S′ constitutes a computationally sound
proof for the statement “Tinst(x

′) = x for T ∈ T ” using the above representa-
tions for x and T ; (5) transformable statements: for any T ∈ T the statement
“(x,w) ∈ R” (phrased using S as above) can be transformed into the state-
ment “(Tinst(x), Twit(w)) ∈ R”; and (6) transformable transformations: for any
T, T ′ ∈ T , the statement “Tinst(x

′) = x for T ∈ T ” (phrased using S′ as above)
can be transformed using valid transformations into the statement “T̂x(x′) = x̂
for T̂ ∈ T ” where T̂ = T ′ ◦ T and x̂ = T̂x(x). We say that (S, S′,CRSSetup)
is a perfect CM-friendly instantiation if the probabilities in the third and fourth

properties are zero. A relation and transformation class (R, T) are (perfectly)
CM-friendly, if they have a (perfect) CM-friendly instantiation.

To instantiate the shuffle relation and transformations from Section 2.2, we
combine the proof of hard relation instances of CKLM and an adapted version
of the Groth-Lu protocol for the permutation proof. We omit the proof that the
{pk j}j are the public keys for Rpk in our exposition as it is unchanged from the
original CKLM shuffle.

Our adapted version Groth-Lu protocol is slightly less efficient than theirs
and achieves a weaker notion of zero knowledge (theirs is perfect whereas ours is
computational) but a stronger notion of soundness (theirs achieves the slightly
non-standard notion of Lco-soundness, whereas ours is computationally sound).
These tradeoffs seem necessary, as it is not clear how to accomodate the def-
inition of CM-friendliness (or of a cm-NIZK or compact shuffle) to allow for
Lco-soundness.

Following Groth and Lu, the instantiation we use for the shuffle encryption
scheme is Boneh-Boyen-Shacham (BBS) encryption [5], which uses a prime-order
bilinear group setting (p,G,GT , g, e) with public keys of the form pk := (f, h)

for f := gα and h := gβ (for random α, β
$←− Fp) and ciphertexts of the form

c := (u, v, w) for u := fr, v := hs, and w := gr+sm (for the message m and

r, s
$←− Fp). Using this, we can show how to satisfy CM-friendliness, starting

with CRSSetup(1k):

– CRSSetup(1k): First generate a prime-order bilinear group (p,G,GT , e, g). To

allow for a shuffle over L ciphertexts, pick x1, . . . , xL
$←− Fp and set gi := gxi

and γi := gx
2
i for all i. Output crs := (p,G,Gt, e, g, {gi}i, {γi}i).

With this in place, we now describe how the six properties of CM-friendliness
are met; in what follows, we highlight the involvement of the permutation by
using ϕ(gi) in place of gϕ(i) (and similarly for other variables):

1. Representable statements. Because we are using BBS encryption, instances
will use pk = (f, h), ci = (ui, vi, wi), and c′i = (u′i, v

′
i, w
′
i). We represent the

witness as follows: to represent ϕ, we use ({ai}i, {bi}i), where ai = ϕ(gi) and
bi = ϕ(γi) for all i, 1 ≤ i ≤ L, and to represent Ri we use (fr

′
i , hs

′
i , gr

′
i , gs

′
i)

for random r′i, s
′
i

$←− Fp.
2. Representable transformations. We represent T(ϕ,{Ri}i) = (Tinst, Twit) in the

same form as witnesses; i.e., ({ai}i, {bi}i) for ϕ and (fr
′
i , hs

′
i , gr

′
i , gs

′
i) for all

Ri.
3. Provable statements. To prove that, under the public key pk = (f, h), the

set of ciphertexts {(u′i, v′i, w′i)}i is a shuffle of {(ui, vi, wi)}i using the per-
mutation represented by ({ai}i, {bi}i) and re-randomization represented by

{(fr′i , hs′i , gr′i , gs′i)}i, we use the set S of pairing product equations defined

as follows:

(1)

L∏
i=1

e(ai, u
′
i) =

L∏
i=1

e(ai, f
r′i)e(gi, ui), (2)

L∏
i=1

e(bi, u
′
i) =

L∏
i=1

e(bi, f
r′i)e(γi, ui),

(3)

L∏
i=1

e(ai, v
′
i) =

L∏
i=1

e(ai, h
s′i)e(gi, vi), (4)

L∏
i=1

e(bi, v
′
i) =

L∏
i=1

e(bi, h
s′i)e(γi, vi),

(5)

L∏
i=1

e(ai, w
′
i) =

L∏
i=1

e(ai, g
r′igs

′
i)e(gi, wi),

(6)

L∏
i=1

e(bi, w
′
i) =

L∏
i=1

e(bi, g
r′igs

′
i)e(γi, wi),

(7)

L∏
i=1

aig
−1
i = 1, (8)

L∏
i=1

biγ
−1
i = 1, (9) e(ai, ai) = e(g, bi) for all i, 1 ≤ i ≤ L,

(10) e(fr′i , g) = e(f, gr
′
i) for all i, and (11) e(hs′i , g) = e(h, gs

′
i) for all i.

4. Provable transformations. To prove Tinst(x
′) = x for T ∈ T , we use the

same equations from the above set S. We must additionally prove that the
transformation does not change pk or {ci}i; to do this, we form an aug-
mented set S′, which consists of all the equations in S as well as equa-
tions to check that these values stay fixed. More formally, if we represent X
as (pk , {(ui, vi, wi)}i, {(u′i, v′i, w′i)}i) and X ′ as (pk ′, {(Ui, Vi,Wi)}i, {U ′i , V ′i ,
W ′i}i), then our extra checks ensure that pk = pk ′ and ui = Ui, vi = Vi,
wi = Wi for all i, 1 ≤ i ≤ L. We can then run the checks in S using Tinst as
the witness and XT := (pk , {(u′i, v′i, w′i)}i, {(U ′i , V ′i ,W ′i)}i) as the instance.

5. Transformable statements. CKLM already show how to permute variables
by a permutation ϕ and multiply re-randomization factors into ciphertexts
using valid transformations; we therefore assume these operations exist and
are valid. To change the statement (x,w) ∈ R into (Tinst(x), Twit(w)) ∈ R
for X = (pk , {(ui, vi, wi)}i, {(u′i, v′i, w′i)}i), W = (({ai}i, {bi}i), {Ri}i), and
T = (ϕ′, {R′i}i), we therefore begin by permuting the values {(u′i, v′i, w′i)}i,
{ai}i, and {bi}i by ϕ′; this operation affects Equations 1 through 9 in S. We
then multiply the additional randomness {R′i}i into Equations 1 through 6,
as well as Equations 10 and 11.

6. Transformable transformations. To change the statement Tinst(x
′) = x into

T ′inst◦Tinst(x′) = T ′inst(x), we leave the additional checks in S′ (i.e., the checks
that ensure that pk and {ci}i go unchanged) as they are. We then transform
S as we did above using the values (ϕ′, {R′i}i) specified in T ′inst, so that we
permute the values {(u′i, v′i, w′i)}i, {ai}i, and {bi}i by ϕ′ and multiply the
additional randomness into Equations 1 through 6 and 10 and 11.

Due to space constraints, a proof of the following theorem can be found in
the full version of the paper:

Theorem 3.1. If both the Permutation Pairing and Simultaneous Pairing as-
sumptions hold, then (S, S′,CRSSetup) as defined above is a CM-friendly instan-
tiation for the shuffle relation R (defined in Section 2.2) and the transformation
class T consisting of all valid shuffles.

Now that we have a CM-friendly instantiation for the shuffle relation, we
can use the results of CKLM to construct a cm-NIZK for this relation. As we
slightly weakened the notion of CM-friendliness, we argue in the full version
of the paper that their results still carry through to produce a cm-NIZK; we
mention here that our proof is nearly identical, as the notion of soundness used
for cm-NIZKs is already computational.

Armed with our cm-NIZK, we now plug it into the generic verifiable shuffle
construction of CKLM , which they already proved secure. We can even use
the same representation of mix server keys as CKLM, which means pk j := gαj

and sk j := hαj for αj
$←− Fp and h := gβ for some β

$←− Fp. As for the size,
looking at the construction above we see that the CRS must contain the gi and
γi elements for all i (and adding in the parameters for Rpk adds only the single
group element h), which means the parameters are of size O(L). For the proofs,
Equations 9, 10, and 11 in S are required for every i, so the size of the proof
is also O(L). In addition, a constant number of equations is required to check
that (pk j , sk j) ∈ Rpk for every value of j; if the number of mix authorities is M ,
then this adds a proof component of size O(M) and thus our total proof size is
O(L+M).

4 Threshold Decryption

In this section, we provide our construction of a threshold encryption scheme that
satisfies the notions of security defined in Section 2.3; i.e., IND-CPA security,
share simulatability, and soundness. We provide first a construction using a
generic malleable NIZK proof of knowledge (NIZKPoK), and then describe in
the full version of the paper [9]how to instantiate this proof system concretely.

4.1 Our construction

In threshold decryption, the statement that each participant i wants to prove is
that the share s he produces is a correct partial decryption of some ciphertext c.
Formally, we represent instances as x = (vk c, c, s), where c is a ciphertext, and s
is the cumulative decryption share produced by the combined user represented
in vk c, and witnesses as (t, open), where t is a secret token (in our case, a
bijection applied to the cumulative secret key) used to prove correctness of partial
decryption, and vk c = Com(t; open) for some commitment scheme Com. The
statement we want to prove is then

((vk c, c, s),(t, open)) ∈ R⇔
∃sk c : vk c = Com(t; open) ∧ t = F (sk c) ∧ s = Dec(sk c, c), (1)

where F is the bijection between cumulative secret keys and tokens.
Transformations for this relation correspond to a new set of users J folding in

their shares. This means we represent transformations as T = (ŝ, t̂, ôpen), where
Tinst(vk c, c, s) := (vk c ·Com(t̂; ôpen), c, s · ŝ) and Twit(t, open) = (t · t̂, open · ôpen);
the transformation is considered allowable if ŝ is a valid share using the token t̂;
i.e., ŝ was computed using the secret key ŝk corresponding to t̂.

Our concrete instantiation uses BBS encryption [5], which is multiplicatively
homomorphic; this is why we multiply both the shares and the tokens to combine
them. We also use a commitment scheme Com and a strongly derivation-private
malleable NIZK proof of knowledge (CRSSetup,P,V,ZKEval). We will see later
how to instantiate the NIZK concretely; for the commitment scheme (which we
use to commit to the two components of t) we can use the instantiation of Groth-
Sahai commitments under Decision Linear, which are almost identical to BBS
encryption (and thus also multiplicatively homomorphic). We thus usually keep
these parameters implicit.

– EncKg(1k): Generate crs
$←− CRSSetup(1k) and par

$←− ComSetup(1k); these

are defined over a shared bilinear group (p,G,GT , e, g). Pick random α, β
$←−

Fp, set f := gα and h := gβ , and set pk := (f, h). Next, to allow N par-

ties to partake in decryption, compute a1, b1, . . . , aN−1, bN−1
$←− Fp and

aN := −1/α −
∑
i ai and bN := −1/β −

∑
i bi. Next, for all i, set t1i :=

gai , t2i := gbi , and form commitments Ai
$←− Com(t1i; open1i) and Bi

$←−
Com(t2i; open2i) using random openings. Set vk ′ := {(Ai, Bi)}i and sk i :=
(ai, bi, t1i, t2i, open1i, open2i) for all i, 1 ≤ i ≤ n. Output pk , vk := (crs, par,
vk ′), and {sk i}i.

– Enc(pk ,m): Parse pk = (f, h) and pick random r, s
$←− Fp. Set u := fr,

v := hs, w := gr+sm, and output c := (u, v, w).

– Dec({sk i}ni=1, c): Parse c = (u, v, w) and sk i = (ai, bi, t1i, t2i, open1i, open2i)
for all i, and compute a :=

∑
i ai and b :=

∑
i bi. Output m := ua · vbw. (By

definition, a = −1/α and b = −1/β, so this is just standard BBS decryption
with a reconstructed key.)

– ShareDec(pk , vk , sk j , c, (s, I, π)): Parse sk j = (aj , bj , t1j , t2j , open1j , open2j).
If (s, I, π) = (⊥,⊥,⊥), then this is the initial decryption. Compute the

share sj := uajvbjw and π
$←− P(crs, (vk j , c, sj), (t1j , t2j , open1j , open2j)),

and output (sj , {j}, π).
Otherwise, define vk c :=

∏
i∈I vk ′i and check that V(crs, (pk , vk c, c, s), π) = 1;

abort and output ⊥ if not. Otherwise continue and compute sj := uajvbj

and s′ := s · sj ; then set T := (sj , (t1j , t2j), (open1i, open2i)). Compute π′
$←−

ZKEval(crs, T, (vk c, c, s), π), and output (s′, I ′ := I ∪ {j}, π′).
– ShareVerify(pk , vk , c, (s, I, π)): Parse vk = (crs, par, vk ′) and output V(crs,

(pk ,
∏
i∈I vk ′i, c, s), π).

As the security of both BBS encryption and our cm-NIZK come from Decision
Linear, we obtain the following theorem.

Theorem 4.1. If Decision Linear holds in G then we can instantiate the above
construction to obtain a secure threshold decryption scheme, as defined in Sec-
tion 2.3.

To prove this, we must prove that four properties are satisfied: completeness,
IND-CPA security, soundness, and share simulatability. The first of these, com-
pleteness, follows directly by inspection; similarly, for IND-CPA security, as we
use BBS encryption, IND-CPA follows directly from their result and holds under
Decision Linear.

For the latter two, we prove them using the security of the commitment
scheme and NIZK. Interestingly, while the proof system is required to be mal-
leable, strongly derivation private, and zero knowledge, for soundness we require
not the strong notion of CM-SSE for cm-NIZKs, but instead regular extractabil-
ity (i.e., we require the proof to be a proof of knowledge). Intuitively, the reason
for this is that in the soundness game the adversary is not provided with simu-
lated proofs, and we can therefore always expect to be able to extract a witness
(rather than just a transformation as we do with CM-SSE).

Lemma 4.1. If (CRSSetup,P,V,ZKEval) is extractable and Com is binding, the
threshold encryption scheme describe above is sound, as defined in Definition 2.5.

Lemma 4.2. If (CRSSetup,P,V,ZKEval) is zero knowledge and strongly deriva-
tion private, and Com is hiding, the threshold encryption scheme described above
is share simulatable, as defined in Definition 2.4.

Due to space constraints, the proofs of these lemmas and the concrete im-
plementation of the cm-NIZK, using Groth-Sahai proofs, can be found in the
full version of the paper. For our concrete instantiation, we mention here that
we follow the same outline as in Section 3 to show that R has a CM-friendly
instantiation. In fact, as we encode x, w, and T directly without relying on any
computational assumptions, we can achieve perfect CM-friendliness.

5 A Secure Voting Scheme

In this section, we bring together the components constructed in the previ-
ous two sections to construct an electronic voting scheme from a compactly
verifiable shuffle (Setup,ShuffleKg,Shuffle,Verify), a secure threshold decryption
scheme (EncKg,Enc,ShareDec,ShareVerify), and a simulation-sound extractable
proof (CRSSetup,P,V).

– Setup. The voting authorities jointly compute the parameters params
$←−

Setup(1k) and threshold keys (pk , vk , {dk j}j)
$←− EncKg(params). The mix

authorities compute the shuffling keys ({pk i}i, {sk i}i)
$←− ShuffleKg(params),

and the values params, pk , and vk are added to the bulletin board.

– Voting. Each voter i forms ci
$←− Enc(pk , vi) (using some randomness ri) and

proves knowledge of his vote by computing πi
$←− P(crs, (pk , c), (vi, ri)). The

resulting ballot (ci, πi) is added to the bulletin board.

– Ballot processing. The mix authority with public key pkk picks the most
recent valid shuffle ({c′i}i, π, {pk j}j); e.g., the one with the most public keys,
or the one that has used the correct sequence of public keys (if an order has

been imposed). It performs ({c′′i }i, π′)
$←− Shuffle(params, {ci, πi}i, {c′i}i, π,

{pk j}j , (pkk, skk)) and posts ({c′′i }i, π′, {pk j}j∪{pkk}) to the bulletin board.
The ballot processing phase ends once there is a valid sequence of shuffle
proofs with sufficiently many mix authorities.

– Tallying. Let ({c′i}i, π, {pk j}j) be the completed shuffle. Each decryption au-
thority looks for the valid decryption shares (si, I, φi) with the largest set I.

The k-th decryption authority performs (s′i, I ∪ {k}, φ′i)
$←− ShareDec(pk , vk ,

dkk, ci, (si, I, φi)) for all i and posts (s′i, I ∪ {k}, φ′i) on the bulletin board.

Theorem 5.1. The voting scheme outlined above satisfies basic voter privacy,
as defined in Section 2.4.

To prove this, we proceed through a series of game transformations; due to
space constraints, the transformations and proofs of their indistinguishability
can be found in the full version of the paper.

Acknowledgments

We thank Stephan Neumann for spurring our interest in the application of mal-
leable proofs to threshold decryption. Anna Lysyanskaya was supported by NSF
grants 1012060, 0964379, 0831293, and by a Sloan Foundation fellowship, and
Sarah Meiklejohn was supported by a MURI grant administered by the Air Force
Office of Scientific Research.

References

1. M. Abe. Universally verifiable mix-net with verification work indendent of the
number of mix-servers. In Proceedings of EUROCRYPT 1998, volume 1403 of
Lecture Notes in Computer Science, pages 437–447. Springer, 1998.

2. B. Adida and C. A. Neff. Efficient receipt-free ballot casting resistant to covert
channels. Cryptology ePrint Archive, Report 2008/207, 2008. http://eprint.

iacr.org/2008/207.
3. J. D. C. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University,

1987.
4. D. Bernhard, V. Cortier, O. Pereira, B. Smyth, and B. Warinschi. Adapting Helios

for provable ballot privacy. In V. Atluri and C. Dı́az, editors, ESORICS, volume
6879 of Lecture Notes in Computer Science, pages 335–354. Springer, 2011.

5. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Proceedings of
Crypto 2004, volume 3152 of LNCS, pages 41–55. Springer-Verlag, 2004.

6. R. Canetti and S. Goldwasser. An efficient threshold public key cryptosystem
secure against adaptive chosen ciphertext attack. In J. Stern, editor, EUROCRYPT
’99, volume 1592 of LNCS, pages 90–106. Springer Verlag, 1999.

7. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof
systems and applications. In Proceedings of Eurocrypt 2012, pages 281–300, 2012.

8. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Succinct malleable
NIZKs and an application to compact shuffles. Cryptology ePrint Archive, Report
2012/506, 2012. http://eprint.iacr.org/2012/506.

9. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Verifiable elections
that scale for free. Cryptology ePrint Archive, 2012. http://eprint.iacr.org/.

10. I. Damg̊ard. On sigma protocols. http://www.daimi.au.dk/~ivan/Sigma.pdf.
11. I. Damg̊ard, J. Groth, and G. Salomonsen. The theory and implementation of an

electronic voting system. In Proceedings of Secure Electronic Voting (SEC), pages
77–100, 2003.

12. A. de Santis, G. di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust
non-interactive zero knowledge. In Proceedings of Crypto 2001, volume 2139 of
LNCS, pages 566–598. Springer-Verlag, 2001.

13. Y. Desmedt and Y. Frankel. Threshold cryptography. In CRYPTO ’89, volume
435 of LNCS, pages 307–315. Springer-Verlag, 1990.

14. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. In Proceedings of Crypto 1986, volume 263 of LNCS, pages
186–194. Springer-Verlag, 1986.

15. J. Furukawa and H. Imai. An efficient aggregate shuffle argument scheme. In S. Di-
etrich and R. Dhamija, editors, Financial Cryptography, volume 4886 of Lecture
Notes in Computer Science, pages 260–274. Springer, 2007.

16. J. Groth. A verifiable secret shuffle of homomorphic encryptions. In Proceedings
of PKC 2003, volume 2567 of LNCS, pages 145–160. Springer-Verlag, 2003.

17. J. Groth. Non-interactive zero-knowledge arguments for voting. In ACNS, volume
3531 of LNCS, pages 467–482. Springer-Verlag, 2005.

18. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In Proceedings of Asiacrypt 2006, volume 4284 of LNCS, pages
444–459. Springer-Verlag, 2006.

19. J. Groth and S. Lu. A non-interactive shuffle with pairing-based verifiability. In
Proceedings of Asiacrypt 2007, volume 4833 of LNCS, pages 51–67. Springer-Verlag,
2007.

20. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In Proceedings of Eurocrypt 2008, volume 4965 of LNCS, pages 415–432. Springer-
Verlag, 2008.

21. A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic elections. In
D. Chaum, M. Jakobsson, R. L. Rivest, P. Y. A. Ryan, J. Benaloh, M. Kutylowski,
and B. Adida, editors, Towards Trustworthy Elections, volume 6000 of Lecture
Notes in Computer Science, pages 37–63. Springer, 2010.

22. C. A. Neff. A verifiable secret shuffle and its application to e-voting. In Proceedings
of ACM CCS 2001, pages 116–125. ACM press, Nov. 2001.

23. D. Sandler, K. Derr, and D. S. Wallach. Votebox: A tamper-evident, verifiable
electronic voting system. In USENIX Security Symposium, pages 349–364, 2008.

24. V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ci-
phertext attack. In Proceedings of Eurocrypt 1998, volume 1403 of LNCS, pages
1–16. Springer-Verlag, 1998.

