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Abstract. In this paper, we revisit the security of factoring-based sig-
nature schemes built via the Fiat-Shamir transform and show that they
can admit tighter reductions to certain decisional complexity assump-
tions such as the quadratic-residuosity, the high-residuosity, and the φ-
hiding assumptions. We do so by proving that the underlying identifi-
cation schemes used in these schemes are a particular case of the lossy
identification notion recently introduced by Abdalla et al. at Eurocrypt
2012. Next, we show how to extend these results to the forward-security
setting based on ideas from the Itkis-Reyzin forward-secure signature
scheme. Unlike the original Itkis-Reyzin scheme, our construction can be
instantiated under different decisional complexity assumptions and has a
much tighter security reduction. Finally, we show that the tighter secu-
rity reductions provided by our proof methodology can result in concrete
efficiency gains in practice, both in the standard and forward-security
setting, as long as the use of stronger security assumptions is deemed
acceptable. All of our results hold in the random oracle model.

1 Introduction

A common paradigm for constructing signature schemes is to apply the Fiat-
Shamir transform [9] to a secure three-move canonical identification protocol. In
these protocols, the prover first sends a commitment to the verifier, which in turn
chooses a random string from the challenge space and sends it back to the prover.
Upon receiving the challenge, the prover sends a response to the verifier, which
decides whether or not to accept based on the conversation transcript and the
public key. To obtain the corresponding signature scheme, one simply makes the
signing and verification algorithms non-interactive by computing the challenge as
the hash of the message and the commitment. As shown by Abdalla et al. in [1],
the resulting signature scheme can be proven secure in the random oracle model
as long as the identification scheme is secure against passive adversaries and the
commitment has large enough min-entropy. Unfortunately, the reduction to the
security of the identification scheme is not tight and loses a factor qh, where qh
denotes the number of queries to the random oracle.

If one assumes additional properties about the identification scheme, one can
avoid impossibility results such as those in [10,27,31] and obtain a signature
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scheme with a tighter proof of security. For instance, in [22], Micali and Reyzin
introduced a new method for converting identification schemes into signature
schemes, known as the “swap method”, in which they reverse the roles of the
commitment and challenge. More precisely, in their transform, the challenge is
chosen uniformly at random from the challenge space and the commitment is
computed as the hash of the message and the challenge. Although they only
provided a tight security proof for the modified version of Micali’s signature
scheme [20], their method generalizes to any scheme in which the prover can
compute the response given only the challenge and the commitment, such as the
factoring-based schemes in [8,9,12,24,25]. This is due to the fact that the prover
in these schemes possesses a trapdoor (such as the factorization of the modulus
in the public key) which allows it to compute the response. On the other hand,
their method does not apply to discrete-log-based identification schemes in which
the prover needs to know the discrete log with respect to the commitment when
computing the response, such as in [30].

In 2003, Katz and Wang [17] showed that tighter security reductions can be
obtained even with respect to the Fiat-Shamir transform, by relying on a proof
of membership rather than a proof of knowledge. In particular, using this idea,
they proposed a signature scheme with a tight security reduction to the hard-
ness of the DDH problem. They also informally mentioned that one could obtain
similar results based on the quadratic-residuosity problem by relying on a proof
that shows that a set of elements in Z∗N are all quadratic residues. This result
was recently extended to other settings by Abdalla et al. [3], who presented three
new signature schemes based on the hardness of the short exponent discrete log
problem [28,32], on the worst-case hardness of the shortest vector problem in
ideal lattices [18,29], and on the hardness of the Subset Sum problem [14,23].
Additionally, they also formalized the intuition in [17] by introducing the notion
of lossy identification schemes and showing that any such schemes can be trans-
formed into a signature scheme via the Fiat-Shamir transform while preserving
the tightness of the reduction.

Tight security from lossy identification. In light of these recent results,
we revisit in this paper the security of factoring-based signature schemes built
via the Fiat-Shamir transform. Even though the swap method from [22] could
be applied in this setting (resulting in a slightly different scheme), our first con-
tribution is to show that these signature schemes admit tight security reductions
to certain decisional complexity assumptions such as the quadratic-residuosity,
the high-residuosity [26], and the φ-hiding [6] assumptions. We do so by showing
that the underlying identification schemes used in these schemes are a particular
case of a lossy identification scheme [3]. As shown in Section 4.1 in the case of
the Guillou-Quisquater signature scheme [12], our tighter security reduction can
result in concrete efficiency gains with respect to the swap method. However,
this comes at the cost of relying on a stronger security assumption, namely the
φ-hiding [6] assumption.

Tighter reductions for forward-secure signatures. Unlike the swap
method of Micali and Reyzin, the prover in factoring-based signature schemes
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built via the Fiat-Shamir transform does not need to know the factorization of
the modulus in order to be able to compute the response. Using this crucial
fact, the second main contribution of this paper is to extend our results to the
forward-security setting. To achieve this goal, we first introduce in Section 3 the
notion of lossy key-evolving identification schemes and show how the latter can
be turned into forward-secure signature schemes using a generalized version of
the Fiat-Shamir transform. As in the case of standard signature schemes, this
transformation does not incur a loss of factor of qh in the security reduction.
Nevertheless, we remark that the reduction is not entirely tight as we lose a
factor T corresponding to the total number of time periods.

After introducing the notion of lossy key-evolving identification schemes, we
show in Section 4.2 that a variant of the Itkis-Reyzin forward-secure signature
scheme [15] (which can be seen as an extension of the Guillou-Quisquater scheme
to the forward-security setting) admits a much tighter security reduction, albeit
to a stronger assumption, namely the φ-hiding assumption.

Concrete security. As in the case of standard signature schemes, the tighter
security reductions provided by our proof methodology can result in concrete
efficiency gains in practice. More specifically, as we show in Section 5, our variant
of the Itkis-Reyzin scheme outperforms the original scheme for most concrete
choices of parameters.

Generic factoring-based signatures and forward-secure signatures.
As an additional contribution, we show in Section 6 that all the above-mentioned
schemes can be seen as straightforward instantiations of a generic factoring-based
forward-secure signature scheme. This enables us to not only easily prove the
security properties of these schemes, but to also design a new forward-secure
scheme based on a new assumption, the 2t-strong-residuosity.

Organization. After recalling some definitions in Section 2, we introduce the
notion of key-evolving lossy identification scheme and show how to transform
such a scheme into a forward-secure signature scheme in Section 3. Then, in
Section 4, we apply our security proof methodology to two cases: the Guillou-
Quisquater scheme and its extension to the forward-secure case (i.e., our variant
of the Itkis-Reyzin scheme). In Section 5, we compare this second scheme with
the original Itkis-Reyzin scheme and the MMM scheme by Malkin, Micciancio
and Miner [19]. Finally, we introduce our generic lossy key-evolving identification
scheme and show various instantiations of it in Section 6.

2 Definitions

2.1 Notation and Conventions

Let N denote the set of natural numbers. If n ∈ N, then {0, 1}n denotes the set of
n-bit strings, and {0, 1}∗ is the set of all bit strings. The empty string is denoted
⊥. If x is a string then |x| denotes its length, and if S is a set then |S| denotes its

size. If S is finite, then x
$← S denotes the assignment to x of an element chosen
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uniformly at random from S. If A is an algorithm, then y ← A(x) denotes the
assignment to y of the output of A on input x, and if A is randomized, then

y
$← A(x) denotes that the output of an execution of A(x) with fresh coins

assigned to y. Unless otherwise indicated, an algorithm may be randomized. We
denote by k ∈ N the security parameter. Let P denote the set of primes and P`e
denote the set of primes of length `e. All our schemes are in the random oracle
model [5].

2.2 Complexity Assumptions

The security of the signature schemes being analyzed in this paper will be based
on decisional assumptions over composite-order groups: the e-residuosity as-
sumption, the φ-hiding assumption and a new assumption called the strong-
2t-residuosity. We also need to recall the strong-RSA assumption to be able to
compare our scheme with the Itkis-Reyzin scheme [15].

Let N be the product of distinct large primes p1 and p2. We call such N an
RSA modulus. Informally, the e-residuosity assumption states that the prob-
lem of deciding whether a given element y in Z∗N is an e-residue or not is in-
tractable without knowing the factorization of N . Remember that an element
y ∈ Z∗N is said to be an e-residue if there exists an element x ∈ Z∗N such that
y = xe mod N . If e = 2, this assumption is called the quadratic-residuosity
assumption. Furthermore, if we extend it to N = e2, with e an RSA modu-
lus, this is called the high-residuosity assumption [26]. Likewise, the φ-hiding
assumption, introduced by Cachin, Micali, and Stadler in [6], states that it is
hard for an adversary to tell whether a prime number e divides the order of the
group Z∗N or not. Next, we introduce the strong-2t-residuosity assumption
that states that it is hard for an adversary to decide whether a given element y
in Z∗N is a 2t-residue or is even not a 2-residue, when 2t divides p1−1 and p2−1.
Finally, the strong-RSA assumption states that, given an element y ∈ Z∗N , it
is hard for an adversary to find an integer e ≥ 2 and an element x ∈ Z∗N such
that y = xe mod N .

For each of these assumptions, the underlying problem is said to be (t, ε)-
hard, if no adversary running in time at most t is able to solve the problem
with probability at least ε. Formal descriptions of the assumptions can be found
in the full version [2].

2.3 Forward-Secure Signature Schemes

A forward-secure signature scheme is a key-evolving signature scheme in which
the secret key is updated periodically while the public key remains the same
throughout the lifetime of the scheme [4]. Each time period has a secret signing
key associated with it, which can be used to sign messages with respect to that
time period. The validity of these signatures can be checked with the help of a
verification algorithm. At the end of each time period, the signer in possession
of the current secret key can generate the secret key for the next time period via
an update algorithm. Moreover, old secret keys are erased after a key update.
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Formally, a key-evolving signature scheme is defined by a tuple of algorithms
FS = (KG,Sign,Ver,Update) and a message space M, providing the following

functionality. Via (pk , sk)
$← KG(1k , 1T ), a user can run the probabilistic key

generation algorithm KG to obtain a pair (pk , sk1) of public and secret keys for
a given security parameter k and a given total number of periods T . sk1 is the
secret key associated with time period 1. Via sk i+1 ← Update(sk i), the user in
possession of the secret key sk i associated with time period i ≤ T can generate
a secret key sk i+1 associated with time period i+ 1. By convention, skT+1 = ⊥.

Via 〈σ, i〉 $← Sign(sk i,M ), the user in possession of the secret key sk i associated
with time period i ≤ T can generate a signature 〈σ, i〉 for a message M ∈ M
for period i. Finally, via d ← Ver(pk , 〈σ, i〉,M ), one can run the deterministic
verification algorithm to check if σ is a valid signature for a message M ∈ M
for period i and public key pk , where d = 1 if the signature is correct and 0
otherwise. For correctness, it is required that for all honestly generated keys
(sk1, . . . , skT ) and for all messages M ∈ M, Ver(pk ,Sign(sk i,M ),M ) = 1 holds
with all but negligible probability.

Informally, a key-evolving signature scheme is existentially forward-se-
cure under adaptive chosen-message attack (EUF-CMA), if it is infeasible for
an adversary —also called forger— to forge a signature σ∗ on a message M ∗ for
a time period i∗, even with access to the secret key for a period i > i∗ (and
thus to all the subsequent secret keys; this period i is called the breakin period)
and to signed messages of his choice for any period (via a signing oracle), as
long as he has not requested a signature on M ∗ for period i∗ to the signing
oracle. This notion is a generalization of the existential unforgeability under
adaptive chosen-message attacks (EUF-CMA for signature schemes) [11] to key-
evolving signature scheme and a slightly stronger variant of the definition in [4].
In particular, we do not restrict the adversary to only perform signing queries
with respect to the current time period.

In the remainder of the paper, we also use a stronger notion: forward secu-
rity (SUF-CMA). In this notion, the forger is allowed to produce a signature σ∗

on a message M ∗ for a period i∗, such that the triple (M ∗, i∗, σ∗) is different from
all the triples produced by the signing oracle. More formally, a key-evolving sig-
nature scheme is (t, qh, qs, ε)-(existentially)-forward-secure if no adversary run-
ning in time at most t and making at most qh queries to the random oracle
and qs queries to the signing oracle can break the (existential) forward security
with probability at least ε. All the formal security notions and the comparison
with [4], together with other security notions (used for detailed comparisons),
can be found in the full version [2].

3 Lossy Key-Evolving Identification and Signature
Schemes

In this section, we present a new notion, called lossy key-evolving identification
scheme, which combines the notions of lossy identification schemes [3], which
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can be transformed to tightly secure signature scheme, and key-evolving identi-
fication schemes [4], which can be transformed to forward-secure signature via a
generalized Fiat-Shamir transform (not necessarily tight, and under some con-
ditions). Although this new primitive is not very useful for practical real-world
applications, it is a tool that will enable us to construct forward-secure signa-
tures with tight reductions, via the generalized Fiat-Shamir transform described
in Section 3.2.

3.1 Lossy Key-Evolving Identification Scheme

The operation of a key-evolving identification scheme is divided into time periods
1, . . . , T , where a different secret is used in each time period, and such that the
secret key for a period i+1 can be computed from the secret key for the period i.
The public key remains the same in every time period. In this paper, a key-
evolving identification scheme is a three-move protocol in which the prover first
sends a commitment cmt to the verifier, then the verifier sends a challenge
ch uniformly at random, and finally the prover answers by a response rsp.
The verifier’s final decision is a deterministic function of the conversation with
the prover (the triple (cmt , ch, rsp)), of the public key, and of the index of the
current time period.

Informally, a lossy key-evolving identification scheme has T+1 kinds of public
keys: normal public keys, which are used in the real protocol, and i-lossy public
keys, for i ∈ {1, . . . , T}, which are such that no prover (even not computationally
bounded) should be able to make the verifier accept for the period i with non-
negligible probability. Furthermore, for each period i, it is possible to generate a
i-lossy public key, such that the latter is indistinguishable from a normal public
key even if the adversary is given access to any secret key for period i′ > i.

More formally, a lossy key-evolving identification scheme ID is defined by a
tuple (KG, LKG,Update,Prove, `c,Ver) such that:

• KG is the normal key generation algorithm which takes as input the security
parameter k and the number of periods T and outputs a pair (pk , sk1)
containing the public key and the prover’s secret key for the first period.

• LKG is the lossy key generation algorithm which takes as input the security
parameter k and the number of periods T and a period i and outputs a pair
(pk , sk i+1) containing a i-lossy public key pk and a prover’s secret key for
period i+ 1 (skT+1 = ⊥).

• Update is the deterministic secret key update algorithm which takes as input
a secret key sk i for period i and outputs a secret key sk i+1 for period i+ 1
if sk i is a secret key for some period i < T , and ⊥ otherwise. We write
Updatej the function Update composed j times with itself (Updatej(sk i) is
a secret key sk i+j for period i+ j, if i+ j ≤ T ).

• Prove is the prover algorithm which takes as input the secret key for the
current period, the current conversation transcript (and the current state
st associated with it, if needed) and outputs the next message to be sent to
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the verifier, and the next state (if needed). We suppose that any secret key
sk i for period i always contains i, and so i is not an input of Prove.

• `c is a polynomial; `c(k) (often simply denoted `c) is the length of the
challenge sent by the verifier.

• Ver is the deterministic verification algorithm which takes as input the con-
versation transcript and the period i and outputs 1 to indicate acceptance,
and 0 otherwise.

A randomized transcript generation oracle TrID
pk ,ski,k is associated to each ID,

k , and (pk , sk i). Tr
ID
pk ,ski,k takes no inputs and returns a random transcript of an

“honest” execution for period i. More precisely, the transcript generation oracle
TrID

pk ,ski,k is defined as follows:

function TrID
pk ,ski,k

(cmt , st)
$← Prove(sk i) ; ch

$← {0, 1}`c ; rsp
$← Prove(sk i, cmt , ch, st)

return (cmt , ch, rsp)
An identification scheme is said to be lossy if it has the following properties:
(1) Completeness of normal keys. ID is said to be complete, if for ev-

ery period i, every security parameter k and all honestly generated keys

(pk , sk1)
$← KG(1k ), Ver(pk , cmt , ch, rsp, i) = 1 holds with probability 1

when (cmt , ch, rsp)
$← TrID

pk ,ski,k (), with sk i = Updatei−1(sk1).

(2) Simulatability of transcripts. Let (pk , sk1) be the output of KG(1k ) for
a security parameter k , and sk i be the output of Updatei−1(sk1). Then, ID
is said to be ε-simulatable if there exists a probabilistic polynomial time

algorithm T̃r
ID
pk ,i,k with no access to any secret key, which can generate tran-

scripts {(cmt , ch, rsp)} whose distribution is statistically indistinguishable

from the transcripts output by TrID
pk ,ski,k , where ε is an upper-bound for

the statistical distance. When ε = 0, then ID is said to be simulatable.

(3) Indistinguishability of keys. Consider the two following experiments

Expind-keys-real
ID,k ,i (Di) and Expind-keys-lossy

ID,k ,i (Di) (i ∈ {1, . . . , T}):

Expind-keys-real
ID,k ,i (Di)

(pk , sk1)
$← KG(1k , 1T )

sk i+1
$← Updatei(sk1)

return Di(pk , sk i+1)

Expind-keys-lossy
ID,k ,i (Di)

(pk , sk i+1)
$← LKG(1k , 1T , i)

return Di(pk , sk i+1)

D is said to (t, ε)-solve the key-indistinguishability problem for period i
if it runs in time t and∣∣∣Pr

[
Expind-keys-real

ID,k ,i (Di) = 1
]
− Pr

[
Expind-keys-lossy

ID,k ,i (Di) = 1
]∣∣∣ ≥ ε.

Furthermore, we say that ID is (t, ε)-key-indistinguishable, if, for any i, no
algorithm (t, ε)-solves the key-indistinguishability problem for period i.

(4) Lossiness. Let Ii be an impersonator for period i (i ∈ {1, . . . , T}), st be its

state. We consider the experiment Explos-imp-pa
ID,k ,i (Ii) played between Ii and

a hypothetical challenger:
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KG(1k , 1T )

(pk , sk1)
$← KG(1k , 1T )

return (pk , sk1)

Update(sk i)

sk ← Update(sk i)
return sk

Sign(sk i,M )

(cmt , st)
$← Prove(sk i)

ch ← H(〈cmt ,M , i〉)
rsp

$← Prove(sk i, cmt , ch, st)
σ ← (cmt , rsp)
return 〈σ, i〉

Ver(pk , 〈σ, i〉,M )

(cmt , rsp)← σ
ch ← H(〈cmt ,M , i〉)
d← Ver(pk , cmt , ch, rsp, i)
return d

Fig. 1. Generalized Fiat-Shamir transform for forward-secure signature

Explos-imp-pa
ID,k ,i (Ii)

(pk , sk i+1)
$← LKG(1k , 1T , i) ; (cmt , st)

$← Ii(pk , sk i+1)

ch
$← {0, 1}`c ; rsp

$← Ii(ch, st)
return Ver(pk , cmt , ch, rsp, i)

Ii is said to ε-solve the impersonation problem with respect to i-lossy

public keys if Pr
[

Explos-imp-pa
ID,k ,i (Ii) = 1

]
≥ ε. Furthermore, ID is said to be

ε-lossy if, for any period i ∈ {1, . . . , T}, no (computationally unrestricted)
algorithm ε-solves the impersonation problem with respect to i-lossy keys.

We remark that, for T = 1, a key-evolving lossy identification scheme be-
comes a standard lossy identification scheme1, described in [3].

Finally, we say that ID is response-unique if for all normal public keys pk
or for all lossy keys pk , for all periods i ∈ {1, . . . , T}, for all messages M , for all
bit strings cmt2, and for all challenges ch, there exists at most one response rsp
such that Ver(pk , cmt , ch, rsp, i) = 1.

3.2 Generalized Fiat-Shamir Transform

The forward-secure signature schemes considered in this paper are built from
a key-evolving identification scheme via a straightforward generalization of the
Fiat-Shamir transform [9], depicted in Fig. 1. More precisely, the signature for
period i is just the signature obtained from a Fiat-Shamir transform with secret
key sk i = Updatei−1(sk1) (with the period i included in the random oracle
input).

Let FS [ID] = (KG,Sign,Ver) be the signature scheme obtained via this gen-
eralized Fiat-Shamir transform. The following theorem is a generalization of (a
special case of) Theorem 1 in [3], where we assume perfect completeness.

1 Contrary to the definition of lossiness given in [3], the impersonator I1 does not have

access to an oracle T̃r
ID
pk,1,k in Explos-imp-pa

ID,k,1 (I1). However, we remark that this has

no impact on the security definition as the execution of T̃r
ID
pk,1,k does not require any

secret information.
2 Not necessarily a correctly generated commitment, but any bit string.
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Theorem 1. Let ID = (KG, LKG,Update,Prove, `c,Ver) be a key-evolving lossy
identification scheme whose commitment space has min-entropy at least β (for
every period i), let H be a random oracle, and let FS [ID] = (KG,Sign,Ver) be the
signature scheme obtained via the generalized Fiat-Shamir transform. If ID is εs-
simulatable, complete, (t′, εk )-key-indistinguishable, and ε`-lossy, then FS [ID] is
(t, qh, qs, ε)-existentially-forward-secure in the random oracle model for:

ε = T (εk + (qh + 1)ε`) + qsεs + (qh + 1)qs/2
β

t ≈ t′ − (qs tSim−Sign + (T − 1) tUpdate)

where tSim−Sign denotes the average time of a query to the simulated transcript

function T̃r
ID
pk ,i,k and tUpdate denotes the average time of a query to Update. Fur-

thermore, if ID is response-unique, FS [ID] is also (t, qh, qs, ε)-forward-secure.

Actually, if we choose T = 1 in the previous theorem, we get a slightly
improved special case of Theorem 1 in [3], since the forward security for T = 1
is exactly the strong unforgeability for a signature scheme. The proof of this
theorem can be found in the full version [2] and is very similar to the proof
in [3], except that we need to guess the period i∗ of the signature output by the
adversary, in order to choose the correct lossy key. That is why we lose a factor
T in the reduction.

Remark 2. As in the standard Fiat-Shamir transform, the signature obtained
via the generalized transform consists of a commitment-response pair. However,
in all schemes proposed in this paper, the commitment can be recovered from
the challenge and the response. Hence, since the challenge is often shorter than
the commitment, it is generally better to use the challenge-response pair as the
signature in our schemes. Obviously, this change does not affect the security of
our schemes.

4 Tighter Security Reductions for Guillou-Quisquater-like
Schemes

In this section, we prove tighter security reductions for the Guillou-Quisquater
scheme (GQ, [12]) and for a slight variant of the Itkis-Reyzin scheme (IR, [15]),
which can also be seen as a forward-secure extension of the GQ scheme. We
analyze the practical performance of this new scheme in the next section of this
article. Detailed proofs for these schemes are available in the full version [2].

4.1 Guillou-Quisquater Scheme

Let us describe the identification scheme corresponding to the GQ signature
scheme, before presenting our tight reduction and comparing it with the swap
method.
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Prover Verifier
Input: sk i = (N, e, S) Input: pk = (N, e, U)

R
$← Z∗N

Y ← Re mod N Y -
c� c

$← {0, . . . , c− 1}
Z ← R · Sc mod N Z -

if Z /∈ Z∗N or Ze 6= Y · Uc

return reject
return accept

Fig. 2. Description of the GQ identification scheme (U = Se mod N).

Scheme. Let N be a product of two distinct `N -bit primes p1, p2 and let e be a
`e-bit prime, coprime with φ(N) = (p1−1)(p2−1), chosen uniformly at random.
Let S be an element chosen uniformly at random in Z∗N and let U = Se mod N .
Let c = 2`e . The public key is pk = (N, e, U) and the secret key is sk = (N, e, S).

The goal of the identification scheme is to prove U is a e-residue. The iden-
tification scheme is depicted in Fig. 2 and works as follows. First, the prover
chooses a random element R ∈ Z∗N , computes Y ← Re mod N . It sends Y to
the verifier, which in turn chooses c ∈ {0, . . . , c−1} and returns it to the prover.
Upon receiving c, the prover computes Z ← R · Sc mod N and sends this value
to the verifier. Finally, the verifier checks whether Z ∈ Z∗N and Ze = Y ·Uc and
accepts only in this case3.

Security. The previous proofs of the GQ schemes looses a factor qh in the
reduction. In this paragraph, we prove the previously described identification
scheme ID is a lossy identification scheme, under the φ-hiding assumption. This
yields a security proof of the strong unforgeability of the GQ scheme, with a
tight reduction to this assumption.

The algorithm LKG chooses e and N = p1p2 such that e divides p1 − 1,
instead of being coprime with φ(N), and chooses U uniformly at random among
the non-e-residue modulo N . In the full version [2], we show that if U is chosen
uniformly at random in Z∗N , it is not an e-residue with probability 1− 1/e and
that it is possible to efficiently check whether U is an e-residue or not if the
factorization of N is known: U is a e-residue if and only if, for any k ∈ {1, 2}, e
does not divide pk − 1 or U (pk−1)/e = 1 mod pk.

The proof that ID is complete follows immediately from the fact that,
if U = Se mod N , an honest execution of the protocol will always result in
acceptance as Ze = (R · Sc)e = Re · (Se)c = Y · Uc .

The simulatability of ID follows from the fact that, given pk = (N, e, U), we
can easily generate transcripts whose distribution is perfectly indistinguishable
from the transcripts output by an honest execution of the protocol. This is

3 The test Z ∈ Z∗N can be replaced by the less expensive test Z mod N 6= 0, as
explained in the full version [2].
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done by choosing Z uniformly at random in Z∗N and c uniformly at random in
{0, . . . , c− 1}, and setting Y = Ze/Uc .

Let us prove the key indistinguishability. The distribution of normal pub-
lic keys is indistinguishable from the one where e divides φ(N) and U is chosen
uniformly at random, according to the φ-hiding assumption. And in this latter
distribution, U is not a e-residue with probability 1 − 1/e, so this distribution
is statistically close to the distribution of lossy keys. Therefore, ID is key indis-
tinguishable.

To show that ID is lossy, we note that, when the public key is lossy, for
every element Y chosen by the adversary, there exists only one value of c ∈
{0, . . . , c − 1} for which there exists a response Z which is considered valid by
the verifier. To see why, assume for the sake of contradiction that there exist two
different values c1 and c2 in {0, . . . , c−1} for which there exists a valid response.
Denote by Z1 and Z2 one of the valid responses in each case. Without loss of
generality, assume that c1 < c2. Since Ze1 = Y · Uc1 and Ze2 = Y · Uc2 , we have
that (Z2/Z1)e = Uc2−c1 . As c2 − c1 is a positive number smaller than 2`e , it is
coprime with e (since e is a prime and e ≥ 2`e). Therefore, according to Bezout
theorem, there exists two integers u, v such that: ue+ v(c1 − c2) = 1. So:

U = Uue+v(c1−c2) = (Uu)e(Uc2−c1)v = (Uu(Z2/Z1)v)e

and U is a e-residue, which is impossible. This means that the probability that
a valid response Zi exists in the case where U is not a e-residue is at most 1/c.
It follows that ID is 1/c-lossy.

Comparison with the swap method. Applying the swap method [22] to the
GQ identification scheme can also provide a signature with a tight reduction, to
the RSA problem. However, in this case, the signing algorithm needs to compute
the e-root of the output of the random oracle modulo N . Therefore, instead
of requiring two exponentiation modulo N with a `e-bit exponent, the signing
algorithm requires one such exponentiation and one exponentiation modulo N
with a `N -bit exponent. And our signing algorithm will be `N/(2`e) faster, for
the same parameters and the same security level, if we consider the φ-hiding
problem is as hard as the RSA problem. Furthermore, the swap method cannot
be directly extended to the forward-secure extension of the GQ scheme, described
in the next section, because the prover has to know the factorization of N .

A slight variant of the scheme. We can also chooses e uniformly at random
among the `e-bit primes (without forcing that e is coprime with φ(N) in KG),
because, with high probability, such a prime number will be coprime with φ(N).

4.2 Variant of the Itkis-Reyzin Scheme

Scheme. The idea of this forward-secure extension of the GQ scheme consists
in using a different e for each period. More precisely, let e1, . . . , eT be T distinct
`e-bit primes chosen uniformly at random. Let fi = ei+1 . . . eT , fT = 1 and
E = e1 . . . eT . Let S be an element chosen uniformly at random in Z∗N and let
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U = SE mod N . Let Si = SE/ei and S′i = SE/fi . Then the public key is pk =
(N, e1, . . . , eT , U) and the secret key for period i is sk i = (N, ei, . . . , eT , Si, S

′
i).

We remark we can easily compute sk i+1 from sk i, since Si+1 = S′
fi+1

i mod N
and S′i+1 = S′

ei+1

i mod N .
For period i, the identification scheme works exactly as the previous one with

public key pk = (N, ei, U) and secret key sk = (N, ei, Si).
For the sake of simplicity, in this naive description of the scheme, we store

the exponents e1, . . . , eT in the public key and in the secret key. Therefore, the
keys are linear in T , the number of periods. It is possible to have constant-size
key, either by using fixed exponents, or by computing the exponents using a
random oracle. This will be discussed in Section 5.1.

Security. The security proof is similar to the one for the previous scheme, with
the main difference being the description of the lossy key generation algorithm
LKG. More precisely, on input (1k , 1T , i), the algorithm LKG generates ei and
N = p1p2 such that ei divides p1 − 1, instead of being coprime with φ(N), and
chooses U ′ uniformly at random among the non-ei-residues modulo N . Then it
chooses T − 1 distinct random `e-bit primes e1, . . . , ei−1, ei+1, . . . , eT , and sets
U = U ′ei+1···eT mod N , Si+1 = U ′ei+2···eT mod N and S′i+1 = U ′ei+1 mod N .
The public key is pk = (N, e1, . . . , eT , U) and the secret key for period i + 1 is
sk i+1 = (N, ei+1, . . . , eT , Si+1, S

′
i+1) (or ⊥ if i = T ). We remark that, since U ′

is a non-ei-residue, U is also a non-ei-residue and so the public key pk is i-lossy.

5 Analysis of our Variant of the Itkis-Reyzin Scheme

In this section, we analyze our variant of the IR scheme and compare it with the
original IR scheme [15] and the MMM scheme [19].

5.1 Computation of the exponents e1, . . . , eT

As explained before, storing the exponents e1, . . . , eT in the keys is not a good
idea since the key size becomes linear in T . Since we need e1, . . . , eT to be random
primes to be able to do the reduction of key indistinguishability to the φ-hiding
assumption, we can use a second random oracle H′ which outputs prime numbers
of length `e, and set ei = H′(i).

An implementation of a random oracle for prime numbers using a classical
random oracle is presented in the full version [2]. The construction is close to the
construction of a PRF mapping to prime numbers in [13]. The idea is to hash
the input value concatenated to a counter and to increment the counter until we
get a prime number. One can prove that it behaves like a random oracle uniform
over all primes, and that we can program it efficiently (property which is needed
for the security reductions).

We finally remark that, we can always store ei in the secret key for period i.
The secret key length is increased only by a small amount and the signing algo-
rithm becomes faster, since it does not need to recompute ei.
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Table 1. Choice of parameters

k qh qs `e εp `N

80 280 230 123 2−80 ≥ 1248
128 2128 246 171 2−128 ≥ 3248

5.2 Choice of Parameters

In order to be able to compare the original IR scheme with our scheme, we need to
choose various parameters. In Table 1, we show our choice of parameters for two
security levels: k = 80 bits and k = 128 bits. When choosing these parameters,
we considered a value of T = 220, as it enables to update the key every hour
for up to 120 years (please refer to the full version [2] for more details). In both
cases, εp denotes the maximum error probability of the probabilistic primality
test used in the random oracle for primes numbers H′, whereas qh and qs specify
the maximum number of queries to the random oracle and to the signing oracle,
respectively, in the forward-security game. In the sequel, all the parameters are
fixed except the length `N of the modulus.

5.3 Comparison with Existing Schemes

Comparison with the Itkis-Reyzin scheme. In this section, we compare the
original IR scheme without optimization with our scheme (in which ei is stored
in the secret key sk i, as in the IR scheme). The original IR scheme is very close
to our scheme. The only differences are that the IR scheme requires that the
factors p1 and p2 of the modulus N are safe primes4 and that IR signatures for
period i contain the used exponent ei. Therefore the IR verification algorithm
does not need to recompute the exponent, and is faster. In order to prevent an
adversary from using an exponent for the breakin period to sign messages for
an older period, the exponent has to be in a different set for each period. The
security of the scheme comes from the strong-RSA assumption. Unfortunately,
we cannot use such an optimization with our security reduction for our scheme,
because we need to know which exponent the adversary will use to make the key
lossy for this exponent. However, we remark in the full version [2] that the other
optimizations of the original IR scheme can also be applied to our scheme.

Let us now compare the two schemes with the same security parameters
(k , `e, `N ), before analyzing the exact security. We first remark that for the same
security parameters, our key generation algorithm is slightly faster since it does
not require safe primes; and our signing and key update algorithms are as fast
as the IR ones. The key and signature lengths of the signatures are nearly the
same as the IR ones (IR signatures are only `e-bits longer than our signatures).
The real difference is the verification time since our verification algorithm needs
to recompute the ei, contrary to the IR scheme. Verification consists of two

4 A safe prime p is an odd prime such that (p − 1)/2 is also prime. This assumption
is needed for the security reduction of the IR scheme.
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Table 2. Time of verification algorithm (using parameters of Table 1)

exponentiation prime generation verification orig.a verification newb

k `N mul.c msd mul.c msd mul.c msd mul.c msd

k `N
3
2
`e `N

2 n/a ( 3
2
kp +

2 `e) `e
3

n/a 3 `e `N
2 n/a 3 `e `N

2 +
( 3
2
kp +

2 `e) `e
3

n/a

80 1248 0.29 · 109 0.15 0.68 · 109 0.26 0.58 · 109 0.30 1.26 · 109 0.56
80 1920 0.68 · 109 0.34 0.68 · 109 0.26 1.36 · 109 0.68 2.04 · 109 0.94
80 6848 8.65 · 109 3.09 0.68 · 109 0.26 17.3 · 109 6.18 1.26 · 109 6.44
128 3248 2.71 · 109 1.19 2.67 · 109 0.82 5.42 · 109 2.38 8.09 · 109 3.10

a verification time of the original scheme (also equal to the signature time for both
schemes), estimated using the time of the two exponentiations.

b verification time of our scheme, estimated using the time of the two exponentiations
and of the prime generation.

c approximate theoretical complexity (see the full version [2]).
d time on an Intel Core i5 750 (2.67 GHz), using GMP version 5.0.4 (http://gmplib.
org, a pseudo-random number generator is used as a random oracle.

exponentiations (modulo N with a `e-bit exponent) for the original scheme and
two exponentiations and an evaluation of the random prime oracle (roughly
equivalent to a random prime generation) for our scheme.

Let us now focus on the exact security of the two schemes. As explained by
Kakvi and Kiltz in [16], the best known attacks against the φ-hiding problems
are the factorization of N . Let us also consider it is true for the strong RSA
problem (since it just strengthens our result if it is not the case). As shown in
the full version [2], with our choice of parameters, if we want k = 80 bits of
security, we need to choose a modulo length `N such that the factorization is
k + log2(T ) = 100-bit hard (for our scheme) and k + log2(Tqh) = 180-bit hard
(for the original scheme). This corresponds to about `N ≈ 1920 and `N ≈ 6848
respectively, according to Ecrypt II [7]. In this case, according to Table 2, our
verification algorithm is about 6 times faster (0.94ms vs 6.18ms) and our signing
algorithm is about 9 times faster (0.68ms vs 6.18ms). And our scheme generates
3.5 times shorter signatures.

Comparison with the MMM scheme. The MMM scheme [19] is one of the
most efficient generic constructions of forward-secure signatures (from any sig-
nature scheme), to the best of our knowledge. Furthermore, it does not require
to fix the number of periods T . However, in the security proof, we have to bound
the number of periods T the adversary can use (as query for the oracles Sign
and Breakin). Its forward security can be reduced to the strong unforgeability
of the underlying signature scheme with a loss of a factor T .

If we want to compare the MMM scheme with our variant of the IR scheme,
the fairest solution is to instantiate the MMM scheme with the GQ scheme. Then
we can use our tight reduction of the GQ scheme to the φ-hiding problem, to
prove that the resulting MMM scheme is forward-secure with a relatively tight

http://gmplib.org
http://gmplib.org
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(losing only a factor T ) reduction to the φ-hiding problem. In this setting, the
MMM scheme and our scheme have approximatively the same proven security.
And the comparison of the MMM scheme with our scheme is roughly the same
as the comparison in [19] between the IR scheme and the MMM scheme (which
did not take into account the tightness of the reduction).

Very roughly, we can say that the MMM key generation and key update
algorithms are faster (about T times faster). However, MMM private keys are
longer. And, even if MMM public keys are shorter (more than 30 times for
k = 80, `N = 1248), in most cases, it is not really useful since signatures with
the MMM scheme are about four times longer than signatures with our scheme
(4`N +(log(k)+log T )k compared to `N +k), and also about twice as long as the
sum of the length of a public key of our scheme and a signature. Therefore, since
the public key is used for verification, the total memory needed to store input
data needed for the verification of a signature with the MMM scheme is still
twice the amount of the one needed with our scheme. Furthermore, our scheme
outperforms the MMM scheme with respect to verification time (considering
Table 2, since the MMM verification algorithm verifies two classical GQ signa-
tures). This means that, if verification time, signing time, and signature size are
critical (for example, if verification or signing has to be performed on a smart-
card), our scheme is better than the MMM scheme. And, even more generally,
if key updates are not performed often and if T can be bounded by a reasonable
constant (for example, if keys are updated each day and are expected to last 3
years, T = 210, and key update time is not really a problem), our scheme is also
better than the MMM scheme.

6 Generic Factoring-Based Forward-Secure Signature
Scheme

In this section, we show that all our previous results on the GQ scheme and
its forward-secure extension can be generalized and applied to several other
schemes. To do so, we first introduce a new generic factoring-based key-evolving
lossy identification scheme and then show that several factoring-based signature
and forward-secure signature schemes can be seen as simple instantiations of this
generic scheme.

6.1 Generic Factoring-Based Forward-Secure Signature Scheme

Let ` be a security parameter, let N be a product of large primes, and let
e1, . . . , eT be T integers and E be the least common multiple of e1, . . . , eT . Let
S1, . . . , S` be a set of elements in Z∗N

` and let U1, . . . , U` ∈ Z∗N
` be the set of

elements containing the corresponding E-powers. That is, for each j ∈ {1, . . . , `},
Uj = SEj mod N . The public key is pk = (N, e1, . . . , eT , U1, . . . , U`) (as for our
variant of the IR scheme, we can use a random oracle to avoid storing the
exponents in the keys, as explained in Section 5.1). Let fi be the least common

multiple of ei+1, . . . , eT for each i ∈ {1, . . . , T} (fT = 1) and let Sj,i = S
E/ei
j
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Prover Verifier
sk i = (N, e1, . . . , eT , pk = (N, e1, . . . , eT ,

S1,i, . . . , S`,i, . . . ) U1, . . . , U`)

for j = 1, . . . , `

Rj
$← Z∗N

Yj ← Rei
j mod N Y1, . . . , Y` -

c1, . . . , c`� c1, . . . , c`
$← {0, . . . , c− 1}`

for j = 1, . . . , `
Zj ← Rj · S

cj
j,i mod N Z1, . . . , Z` -

for j = 1, . . . , `
if Zj /∈ Z∗N or Zei

j 6= Yj · U
cj
j

return reject
return accept

Fig. 3. Description of the generic identification scheme ID for proving that the elements
U1, . . . , U` in pk are all ei-residues (for each j ∈ {1, . . . , `}, Uj = Se

j,i mod N).

and S′j,i = S
E/fi
j , for each 1 ≤ i ≤ T and each 1 ≤ j ≤ `. Then, the secret key

for period 1 ≤ i ≤ T is sk i = (i,N, ei, . . . , eT , S1,i, . . . , S`,i, S
′
1,i, . . . , S

′
`,i). We

remark that it is possible to compute sk i+1 from sk i by computing: Sj,i+1 =

S
′fi/ei+1

j,i mod N and S′j,i+1 = S
′fi/fi+1

j,i mod N .

The identification scheme is depicted in Fig. 3 and is a straightforward exten-
sion of the one of our variant of the IR scheme in Section 4.2. For period i, its goal
is to prove that the elements U1, . . . , U` are all ei-residues, and works as follows.
First, the prover chooses an element Rj ∈ Z∗N and computes Yj ← Reij mod N ,
for j ∈ {1, . . . , `}. It then sends Y1, . . . , Y` to the verifier, which in turn chooses
c1, . . . , c` ∈ {0, . . . , c−1}` and returns it to the prover. Upon receiving c1, . . . , c`,
the prover computes Zj ← Rj ·S

cj
j,i mod N for j ∈ {1, . . . , `} and sends these val-

ues to the verifier. Finally, the verifier checks whether Zj ∈ Z∗N and Zeij = Yj ·U
cj
j

for j ∈ {1, . . . , `} and accepts only if this is the case. The corresponding factoring-
based forward-secure signature scheme is depicted in Fig. 4.

In the full version [2], we prove that the previous scheme is existentially
forward-secure, under the following condition:

Condition 3. There exists a normal key generation algorithm KG and a lossy
key generation algorithm LKG which takes as input the security parameter and
the period i and outputs a pair (pk , sk ′i+1) such that, for every i ∈ {1, . . . , T}:

• (pk , sk ′i+1) is indistinguishable from a pair (pk , sk i+1) generated by KG and
i calls to Update (to get sk i+1 from sk1);

• for all c ∈ {0, . . . , c− 1}, none of U1, . . . , U` is a e′(e, c, N)-residue, where
e′(e, c, N) is:

e′(e, c, N) = gcd
i∈{1,...,m}

e ∧ (pkii − p
ki−1
i )

c ∧ e ∧ (pkii − p
ki−1
i )

e′i,
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KG(1k , 1T )

Generate N, e1, . . . , eT
E ← lcm(e1, . . . , eT )
for i = 1, . . . , T
fi ← lcm(ei+1, . . . , eT )

for j = 1, . . . , `

Sj
$← Z∗N

Sj,1 ← S
E/e1
j mod N

S′j,1 ← S
E/f1
j mod N

Uj ← SE
j mod N

pk ← (N, e1, . . . , eT ,
U1, . . . , U`)

sk1 ← (1, N, e1, . . . , eT ,
S1,1, . . . , S`,1,
S′1,1, . . . , S

′
`,1)

return (pk , sk1)

Update(sk ,M )

(i,N, e1, . . . , eT ,
S1,i, . . . , S`,i,
S′1,i, . . . , S

′
`,i)← sk

if i = T then
return ⊥

fi ← lcm(ei+1, . . . , eT )
fi+1 ← lcm(ei+2, . . . , eT )
for j = 1, . . . , `

Sj,i+1 ← S
′fi/ei+1

j,i

S′j,i+1 ← S
′fi/fi+1

j,i

sk i+1 ← (i+ 1, N, ei+1, . . . , eT ,
S1,i+1, . . . , S`,i+1,
S′1,i+1, . . . , S

′
`,i+1)

return sk i+1

Ver(pk , 〈σ, i〉,M )

(N, e1, . . . , eT ,
U1, . . . , U`)← pk

((Y1, . . . , Y`), (Z1, . . . , Z`))← σ
(c1, . . . , c`)← H(〈(Y1, . . . , Y`),M , i〉)
for j = 1, . . . , `

if Zj /∈ Z∗N or Zei
j 6= Yj · U

cj
j then

return reject
return accept

Sign(sk ,M )

(i,N, ei, . . . , eT ,
S1,i, . . . , S`,i,
S′1,i, . . . , S

′
`,i)← sk

for j = 1, . . . , `

Rj
$← Z∗N

Yj ← Rei
j mod N

(c1, . . . , c`)← H(〈(Y1, . . . , Y`),M , i〉)
for j = 1, . . . , `
Zj ← Rj · S

cj
j mod N

σ ← ((Y1, . . . , Y`), (Z1, . . . , Z`))
return 〈σ, i〉

Fig. 4. Factoring-based forward-secure signature scheme

with N = pk11 . . . pkmm the prime decomposition of N and e′i the greatest
divisor of e coprime with pkii −p

ki−1
i , and where a∧b is the greatest common

divisor (gcd) of a and b.

The second part of the condition ensures that the scheme is 1/c`-lossy.

6.2 Some Instantiations

In addition to the GQ scheme and our variant of the IR scheme, there are other
possible instantiations of our generic scheme.

Quadratic-Residuosity-Based Signature Scheme. The case where e =
c = 2 and T = 1 is an important instantiation of the generic scheme as it
coincides with the quadratic-residuosity-based scheme informally suggested by
Katz and Wang in [17]. This scheme is existentially unforgeable based on the



18 Michel Abdalla, Fabrice Ben Hamouda, and David Pointcheval

hardness of the quadratic-residuosity problem as long as ` is large enough to
make the term qh/2

`
negligible.

2t-Root Signature Scheme by Ong and Schnorr. The case where e = c =
2t, ` = 1, and T = 1 coincides with the 2t-root identification scheme by Ong
and Schnorr [25]. If N = p1p2 is an RSA modulus such that 2t divides p1 − 1
and p2− 1, this scheme is existentially unforgeable based on the hardness of the
strong-2t-residuosity problem as long as t is large enough to make the term qh/2

t

negligible.

Paillier Signature Scheme. The case where ` = 1, T = 1, and e = p1p2
is an RSA modulus, N = e2 = p21p

2
2 and c ≤ min(p1, p2) coincides with the

Paillier signature scheme [26]. This scheme is existentially unforgeable based on
the hardness of the high-residuosity problem of [26].

2t-Root Forward-Secure Signature Scheme. The case in which ei =
2t(T−i+1) with t a positive integer and c = 2i is a generalization of the quadratic-
residuosity-based scheme and the 2t-root scheme. In this case, fi = ei, and we
do not need to store S′1,i. If N = p1p2 is an RSA modulus such that 2tT di-
vides p1 − 1 and p2 − 1, this scheme is existentially forward-secure based on the
hardness of a variant of the strong-2tT -assumption, as long as the exponents t
and ` are large enough to make the term qh/2

t` negligible. Although this scheme
appears to be new, it is of limited interest as its public key and secret key sizes
are linear in the number T of time periods.

Proof details for the above instantiations can be found in the full version [2].
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