
Cryptography Using Captcha Puzzles

Abishek Kumarasubramanian1, Rafail Ostrovsky1 ?, Omkant Pandey2, and
Akshay Wadia1

1 University of California, Los Angeles
abishekk@cs.ucla.edu,rafail@cs.ucla.edu,awadia@cs.ucla.edu

2 University of Texas at Austin
omkant@cs.utexas.edu

Abstract. A Captcha is a puzzle that is easy for humans but hard to
solve for computers. A formal framework, modelling Captcha puzzles
(as hard AI problems), was introduced by Ahn, Blum, Hopper, and Lang-
ford ([1], Eurocrypt 2003). Despite their attractive features and wide
adoption in practice, the use of Captcha puzzles for general crypto-
graphic applications has been limited.

In this work, we explore various ways to formally model Captcha puzzles
and their human component and explore new applications for Captcha.
We show that by defining Captcha with additional (strong but realistic)
properties, it is possible to broaden Captcha applicability, including us-
ing it to learning a machine’s “secret internal state.” To facilitate this, we
introduce the notion of an human-extractable Captcha, which we be-
lieve may be of independent interest. We show that this type of Captcha
yields a constant round protocol for fully concurrent non-malleable zero-
knowledge. To enable this we also define and construct a Captcha-
based commitment scheme which admits “straight line” extraction. We
also explore Captcha definitions in the setting of Universal Compos-
ability (UC). We show that there are two (incomparable) ways to model
Captcha within the UC framework that lead to different results. In
particular, we show that in the so called indirect access model, for every
polynomial time functionality F there exists a protocol that UC-realizes
F using human-extractable Captcha, while for the so-called direct ac-
cess model, UC is impossible, even with the help of human-extractable
Captcha.

The security of our constructions using human-extractable Captcha is
proven against the (standard) class of all polynomial time adversaries.

? Department of Computer Science and Mathematics, UCLA, Email:
rafail@cs.ucla.edu. Research supported in part by NSF grants CNS-0830803;
CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174; US-Israel
BSF grant 2008411, OKAWA Foundation Research Award, IBM Faculty Research
Award, Xerox Faculty Research Award, B. John Garrick Foundation Award,
Teradata Research Award, and Lockheed-Martin Corporation Research Award.
This material is also based upon work supported by the Defense Advanced Re-
search Projects Agency through the U.S. Office of Naval Research under Contract
N00014-11-1-0392. The views expressed are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government

In contrast, most previous works guarantee security only against a very
limited class of adversaries, called the conservative adversaries.

Keywords: Captcha, concurrent non-malleable zero-knowledge, universal
composability, human-extractable Captcha.

1 Introduction

Captcha is an acronym for Completely Automated Public Turing test to tell
Computers and Humans Apart. These are puzzles that are easy for humans but
hard to solve for automated computer programs. They are used to confirm the
“presence of a human” in a communication channel. As an illustration of a
scenario where such a confirmation is very important, consider the problem of
spam. To carry out their nefarious activities, spammers need to create a large
number of fake email accounts. Creating a new email account usually requires
the filling-in of an online form. If the spammers were to manually fill-in all
these forms, then the process would be too slow, and they would not be able to
generate a number of fake addresses. However, it is relatively simple to write a
script (or an automated bot) to quickly fill-in the forms automatically without
human intervention. Thus, it is crucial for the email service provider to ensure
that the party filling-in the form is an actual human, and not an automated
script. This is achieved by asking the party to solve a Captcha, which can only
be sovled by a human3. A common example of a Captcha puzzle involves the
distorted image of a word, and the party is asked to identify the word in the
image.

The definition of Captcha stipulates certain limitations on the power of
machines, in particular, that they cannot solve Captcha puzzles efficiently.
This gives rise to two distinct questions which are interesting from a crypto-
graphic point of view. Firstly, what are the underlying hard problems upon
which Captcha puzzles can be based? Von Ahn, Blum, Hopper and Lang-
ford [1] study this question formally, and provide constructions based on the
conjectured hardness of certain Artificial Intelligence problems.

The second direction of investigation, and the one which we are concerned
with in this paper, is to use Captchas as a tool for achieving general crypto-
graphic tasks. There have been only a few examples of use of Captchas in this
regard. Von Ahn, Blum, Hopper and Langford [1] use Captchas for image-based
steganography. Canetti, Halevi and Steiner construct a scheme to thwart off-line
dictionary attacks on encrypted data using Captchas. And recently, Dziem-
bowski [3] constructs a “human” key agreement protocol using only Captchas.
We continue this line of work in the current paper, and investigate the use of
Captchas in zero-knowledge and UC secure protocols. On the face of it, it is
unclear how Captchas may be used for constructing such protocols, or even
for constructing building blocks for these protocols, like commitment schemes.

3 For many more uses of Captcha, see [2]

However, motivated by current Captcha theory, we define a new extraction
property of Captchas that allows us to use them for designing these protocols.

We now give an overview of our contributions. We formally define Captchas
in Section 3, but give an informal overview of the model here to make the fol-
lowing discussion cogent. Firstly, modelling Captcha puzzles invariably involves
modelling humans who are the key tenets in distinguishing Captchas from just
another one-way function. Following [4] we model the presence of a human entity
as an oracle H that is capable of solving Captcha puzzles. A party generates a
Captcha puzzle by running a (standard) PPT generation algorithm denoted by
G. This algorithm outputs a puzzle-solution pair (z, a). All parties have access to
a “human” oracle denoted by H. To “solve” a Captcha puzzle, a party simply
queries its oracle with the puzzle and obtains the solution in response. This al-
lows us to distinguish between two classes of machines. Standard PPT machines
for which solving Captchas is a hard problem and oracle PPT machines with
oracle access to H which may solve Captchas efficiently.

The starting point of our work is the observation that if a machine must solve
a given Captcha puzzle (called challenge), it must send one or more Captcha-
queries to a human. These queries are likely to be correlated to the challenge
puzzle since otherwise they would be of no help in solving the challenge puzzle.
Access to these queries, with the help of another human, may therefore provide
us with some knowledge about the internal state of a (potentially) malicious
machine! This is formulated in our definition of an human extractable Captcha
(Definition 32). Informally, we make the following assumption about Captcha
puzzles. Consider two randomly chosen Captcha puzzles (p0, p1) of which an
adversary obtains only one to solve, say pb, where the value of b is not known to
the challenger. Then by merely looking at his queries to a human oracle H, and
with the help of a human, a challenger must be able to identify the value of b.
More precisely, we augment the human oracle H to possess this added ability.
We then model adversaries in our protocols as oracle PPT machines with access
to a Captcha solving oracle, but whose internal state can be “extracted” by
another oracle PPT machine.

It is clear that this idea, i.e.—the idea of learning something non-trivial about
a machine’s secret by looking at its Captcha-queries—connects Captcha puz-
zles with main-stream questions in cryptography much more than ever. This
work uses this feature present in Captchas to construct building blocks for zero-
knowledge protocols which admit “straight-line” simulation. It is then natural to
investigate that if we can get “straight-line” simulation, then perhaps we can an-
swer the following questions as well: construction of plain-text aware encryption
schemes [5], “straight-line” extractable commitment schemes, constant-round
fully concurrent zero-knowledge for NP [6], fully concurrent two/multi-party
computation [7–9], universal composition without trusted setup assumptions [10,
11], and so on.

Our Contribution. In section 4 (theorem 42), as the first main result of this
work, we construct a commitment scheme which admits “straight-line” extrac-

tion. That is, the committed value can be extracted by looking at the Captcha-
queries made by the committer to a human oracle.

The starting point (ignoring for a moment an important difficulty) behind our
commitment protocol is the following. The receiver R chooses two independent
Captcha puzzles (z0, z1). To commit to a bit b, the sender C will select zb using
the 1-2-OT protocol and commit to its solution ab using an ordinary (perfectly-
binding) commitment scheme. Since the committer cannot solve the puzzle itself,
it must query a human to obtain the solution. By looking at the puzzles C queries
to the human, an extractor (with the help of another human oracle) can detect
the bit being committed. Since the other puzzle z1−b is computationally hidden
from C, this should indeed be possible.

As alluded above, the main difficulty with this approach is that a cheating
sender may not query the human on any of the two puzzles, but might still be
able to commit to a correct value by obtaining solutions to some related puzzles.
This is the issue of malleability that we discuss shortly, and also in section 3.

We then use this commitment scheme as a tool to obtain new results in
protocol composition. First off, it is straightforward to see that given such a
scheme, one can obtain a constant-round concurrent zero-knowledge protocol
for all of NP. In fact, by using our commitment scheme in place of the “PRS-
preamble” [12] in the protocol of Barak, Prabhakaran, and Sahai [13], we obtain
a constant-round protocol for concurrent non-malleable zero-knowledge [13] (see
appendix D of the full version [14]).4

As a natural extension, we investigate the issue of incorporating Captcha
puzzles in the UC framework introduced by Canetti [10]. The situation turns out
to be very sensitive to the modelling of Captcha puzzles in the UC framework.
We discuss two different ways of incorporating Captcha puzzles in the UC
framework: 5

– Indirect Access Model: In this model, the environment Z is not given
direct access to a human H. Instead, the environment is given access to
H only through the adversary A. This model was proposed in the work of
Canetti et. al. [4], who constructed a UC-secure protocol for password-based
key-generation functionality. We call this model the indirect access model.

– Direct Access Model: In this model, the environment is given a direct
access to H. In particular, the queries made by Z to H are not visible to
the adversary A, in this model.

In the indirect access model, we show how to construct UC-secure protocols
for all functionalities. In section 5, as the second main result of this work, we

4 For readers familiar with concurrent non-malleability, our protocol admits “straight-
line” simulation, but the extraction of witnesses from a man-in-the-middle is not
straight-line. Also, another modification is needed to the protocol of [13]: we need
to use a constant round non-malleable commitment scheme and not that of [15]. We
can use any of the schemes presented in [16–19].

5 We assume basic familiarity with the model of universal composition, and briefly
recall it in appendix C.1 of the full version [14] .

construct a constant-round UC-puzzle protocol as defined by Lin, Pass, and
Venkitasubramaniam [20]. By the results of [20], UC-puzzles are sufficient to
obtain UC-secure protocols for general functionalities. Our protocol for UC-
puzzles is obtained by combining our commitment scheme with a “cut-and-
choose” protocol and (standard) zero-knowledge proofs for NP [21, 22].

In contrast, in the direct access model, it is easy to show that UC-secure
computation is impossible for most functionalities. A formal statement is ob-
tained by essentially reproducing the Canetti-Fischlin impossibility result for
UC-commitments [23] (details reproduced in appendix E.1 of the full version [14]
). The situation turns out to be the same for concurrent self-composition of two-
party protocols: by reproducing the steps of Lindell’s impossibility results [24,
25], concurrent self-composition in this model can be shown equivalent to univer-
sal composition. This means that secure computation of (most) functionalities in
the concurrent self-composition model is impossible even with Captcha puzzles.

On modelling Captcha puzzles in the UC framework. The fact that UC-computation
is possible in the indirect access model but concurrent self-composition is im-
possible raises the question whether indirect access model is the “right” model.
What does a positive result in this model mean? To understand this, let us com-
pare the indirect access model to the other “trusted setup” models such as the
Common-Random-String (CRS) model [26]. In the CRS-model, the simulator S
is in control of generating the CRS in the ideal world—this enables S to have a
“trapdoor” to continue its actions without having to “rewind” the environment.
We can view the indirect access model as some sort of a setup (i.e., access to H)
controlled by the simulator in the ideal world. The fact that S can see the queries
made by Z to H in the indirect-access-model, is then analogous to S controlling
the CRS in the CRS-model. The only difference between these two settings is
that the indirect-access-model does not require any trusted third party. viewed
this way, the indirect-access-model can be seen as a “hybrid” model that stands
somewhere between a trusted setup (such as the CRS model) and the plain
model.

Beyond Conservative Adversaries. An inherent difficulty when dealing with
Captcha puzzles, is that of malleability. Informally, this means that given a
challenge puzzle z, it might be possible for an algorithm A to efficiently gener-
ate a new puzzle z′ such that given the solution of z′, A can efficiently solve z.
Such a malleability attack makes it difficult to reduce the security of a crypto-
graphic scheme to the “hardness” of solving Captcha puzzles.

To overcome this, previous works [4, 3] only prove security against a very
restricted class of adversaries called conservative adversaries. Such adversaries
are essentially those who do not launch the ‘malleability’ attack: that is, they
only query H on Captcha instances that are provided to them by the system.
In both of these works, it is possible that a PPT adversary, on input a puzzle z
may produce a puzzle z′ such that the solutions of z and z′ are related. But both
works consider only restricted adversaries which are prohibited from querying H

with such a mauled puzzle z′. As noted in [4, 3], this an unreasonable restriction,
especially knowing that Captcha puzzles are in fact easily malleable.

In contrast, in this work, we prove the security of our schemes against the
standard class of all probabilistic polynomial time (ppt) adversaries. The key-
idea that enables us to go beyond the class of conservative adversaries is the
formulation of the notion of an human-extractable Captcha puzzle. Informally
speaking, an human-extractable Captcha puzzle, has the following property:
suppose that a ppt algorithm A can solve a challenge puzzle z, and makes
queries q̄ to the human H during this process; then there is a ppt algorithm
which on input the queries q̄, can distinguish with the help of the human that q̄
are correlated to z and not to some other randomly generated puzzle, say z′′.

We discuss this notion at length in section 3, and many other issues related
to formalizing Captcha puzzles. This section essentially builds and improves
upon previous works of [1, 4, 3] to give a unified framework for working with
Captcha puzzles. We view the notion of human-extractable Captcha puzzles
as an important contribution to prove security beyond the class of conservative
adversaries.

2 Preliminaries

In this work, to model “access to a human”, we will provide some parties (mod-
eled as interactive Turing machines–ITM) oracle access to a function H. An ITM
M with oracle access to H is an ordinary ITM except that it has two special
tapes: a write-only query tape and a read-only answer tape. When M writes a
string q on its query tape, the value H(q) is written on its answer tape. If q is
not a valid query (i.e., not in the domain of H), a special symbol ⊥ is written
on the output tape. Such a query and answer step is counted as one step in the
running time of M . We use the notation MH to mean that M has oracle access
to H. The reader is referred to [27, 28] for a detailed treatment of this notion.

Notation. The output of an oracle ITM MH is denoted by a triplet (out, q̄, ā)
where out, q̄, and ā denote the contents of M ’s output tape, a vector of strings
written to the query tape in the current execution, and the answer to the queries
present in q̄ respectively.

Let k ∈ N denote the security parameter, where N is the set of natural
numbers. All parties are assumed to receive 1k as an implicit input (even if not
mentioned explicitly). When we say that an (I)TM M (perhaps with access to
an oracle H) runs in polynomial time, we mean that there exists a polynomial
T (·) such that for every input, the total number of steps taken by M are at
most T (k). For two strings a and b, their concatenation is denoted by a ◦ b. The
statistical distance between two distributions X, Y is denoted ∆(X,Y).

In all places, we only use standard notations (with their usual meaning) for
describing algorithms, random variables, experiments, protocol transcripts and
so on. We assume familiarity with standard concepts such as computational
indistinguishability, negligible functions, and so on (see [27]).

Statistically Secure Oblivious Transfer We now recall the notion of a statistically
secure, two message oblivious transfer (OT) protocol, as defined by Halevi and
Kalai [29].

Definition 21 (Statistically Secure Oblivious Transfer), [29] Let `(·) be a
polynomial and k ∈ N the security parameter. A two-message, two-party protocol
〈Sot, Rot〉 is said to be a statistically secure oblivious transfer protocol for bit-
strings of length `(k) such that both the sender Sot and the receiver Rot are ppt
ITMs receiving 1k as common input; in addition, Sot gets as input two strings

(m0,m1) ∈ {0, 1}`(k) × {0, 1}`(k) and Rot gets as input a choice bit b ∈ {0, 1}.
We require that the following conditions are satisfied:

– Functionality: If the sender and the receiver follow the protocol then for

every k ∈ N, every (m0,m1) ∈ {0, 1}`(k) × {0, 1}`(k), and every b ∈ {0, 1},
the receiver outputs mb.

– Receiver security: The ensembles {Rot(1k, 0)}k∈N and {Rot(1k, 1)}k∈N are
computationally indistinguishable, where {Rot(1k, b)}k∈N denotes the (first
and only) message sent by Rot on input (1k, b). That is,

{Rot(1k, 0)}k∈N
c≡{Rot(1k, 1)}k∈N

– Sender security: There exists a negligible function negl(·) such that for every

(m0,m1) ∈ {0, 1}`(k) × {0, 1}`(k), every first message α ∈ {0, 1}∗ (from an
arbitrary and possibly unbounded malicious receiver), and every sufficiently
large k ∈ N, it holds that either

∆0(k) := ∆(Sot(1k,m0,m1, α), Sot(1k,m0, 0
`(k), α)) or,

∆1(k) := ∆(Sot(1k,m0,m1, α), Sot(1k, 0`(k),m1, α))

is negligible, where Sot(1k,m0,m1, α) denotes the (only) response of the
honest sender Sot with input (1k,m0,m1) when the receiver’s first message
is α.

Statistically secure OT can be constructed from a vareity of cryptographic
assumptions. In [29], Halevi and Kalai construct protocols satisfying the above
definition under the assumption that verifiable smooth projective hash families
with hard subset membership problem exist (which in turn, can be constructed
from a variety of standard assumptions such as the quadratic-residue problem).
[30] show the equivalence of 2-message statistically secure oblivious transfer and
lossy encryption.

3 Modeling Captcha Puzzles

As said earlier, Captcha puzzles are problem instances that are easy for “hu-
mans” but hard for computers to solve. Let us first consider the “hardness” of
such puzzles for computers. To model “hardness,” one approach is to consider an

asymptotic formulation. That is, we envision a randomized generation algorithm
G which on input a security parameter 1k, outputs a puzzle from a (discrete and
finite) set Pk called the puzzle-space. Indeed, this is the formulation that previ-
ous works [1, 3, 4] as well as our work here follow. assume that there is a fixed
polynomial `(·) such that every puzzle instance z ∈ Pk is a bit string of length
at most `(k).

Of course, not all Captcha puzzle systems satisfy such an asymptotic for-
mulation. It is possible to have a (natural) non-asymptotic formulation to define
Captcha puzzles which takes into consideration this issue and defines hardness
in terms of a “human population” [1]. However, a non-asymptotic formulation
will be insufficient for cryptographic purposes. For many puzzles, typically hard-
ness can be amplified by sequential or parallel repetition[31].

Usually, Captcha puzzles have a unique and well defined solution associated
with every puzzle instance. We capture this by introducing a discrete and finite
set Sk, called the solution-space, and a corresponding solution function Hk :
Pk → Sk which maps a puzzle instance z ∈ Pk to its corresponding solution.
Without loss of generality we assume that every element of Sk is a bit string of
length k. We will require that G generates puzzles together with their solutions.
This restriction is also required in previous works [1, 3]. To facilitate the idea
that the puzzle-generation is a completely automated process, G will not be given
“access to a human.”

With this formulation, we can view “humans” as computational devices which
can “efficiently” compute the solution function Hk. Therefore, to capture “access
to a human”, the algorithms can simply be provided with oracle access to the
family of solution functions H := {Hk}k∈N. Recall that by definition, oracle-
access to H means that algorithms can only provide an input z to some function
Hk′ in the family H, and then read its output Hk′(z); if z is not in the domain
Pk′ , the response to the query is set to a special symbol, denoted ⊥. Every query
to Hk′ will be assumed to contribute one step to the running time of the querying
algorithm. The discussion so far leads to the following definition for Captcha
puzzles.

Definition 31 (Captcha Puzzles) Let `(·) be a polynomial, and S := {Sk}k∈N
and P := {Pk}k∈N be such that Pk ⊆ {0, 1}`(k) and Sk ⊆ {0, 1}k. A Captcha
puzzle system C := (G,H) over (P,S) is a pair such that G is a randomized
polynomial time turing machine, called the generation algorithm, and H :=
{Hk}k∈N is a collection of solution functions such that Hk : Pk → Sk. Algorithm
G, on input a security parameter k ∈ N, outputs a tuple (z, a) ∈ Pk × Sk such
that Hk(z) = a. We require that there exists a negligible function negl(·) such
that for every ppt algorithm A, and every sufficiently large k ∈ N, we have that:

pinv(k) := Pr
[
(z, a)← G(1k);A(1k, z) = a

]
≤ negl(k)

where the probability is taken over the randomness of both G and A.

Turing Machines vs Oracle Turing Machines. We emphasize that the Captcha
puzzle generation algorithm G is an ordinary turing machine with no access to

any oracles. Furthermore, the security of a Captcha system holds only against
ppt adversaries A who are turing machines. It does not hold against oracle
turing machines with oracle access to H. However, we use Captcha systems
defined as above in protocols which guarantee security against adversaries who
may even have access to the oracle H. This distinction between machines which
have access to an (human) oracle and machines which don’t occurs throughout
the text.

The Issue of Malleability. As noted earlier, Captcha puzzles are usually easily
malleable [15]. That is, given a challenge puzzle z, it might be possible for an
algorithm A to efficiently generate a new puzzle z′ 6= z such that given the
solution of z′, A can efficiently solve z. It turns out that in all previous works
this creates several difficulties in the security proofs. In particular, in reducing
the “security” of a cryptographic scheme to the “hardness” of the Captcha
puzzle, it becomes unclear how to handle such an adversary.

Due to this, previous works [3, 4] only prove security against a very restricted
class of adversaries called the conservative adversaries. Such adversaries are es-
sentially those who do not query Hk on any Captcha instances other than the
ones that are provided to them by the system. To facilitate a proof against all
ppt adversaries, we develop the notion of human-extractable Captcha puzzles
below.

Human-Extractable Captcha Puzzles. The notion of human-extractable Captcha
puzzles stems from the intuition that if a ppt algorithm A can solve a random
instance z produced by G, then it must make queries q̄ = (q1, q2, . . .) to (func-
tions in) H that contain sufficient information about z. More formally, suppose
that z1 and z2 are generated by two random and independent executions of G.
If A is given z1 as input and it produces the correct solution, then the queries q̄
will contain sufficient information about z1 and no information about z2 (since
z2 is independent of z1 and never seen by A). Therefore, by looking at the
queries q̄, it should be possible with the help of the human to deduce which
of the two instances is solved by A. We say that a Captcha puzzle system is
human-extractable if there exists a ppt algorithm Extr which, by looking at the
queries q̄, can tell with the help of the human which of the two instances was
solved by A. The formal definition follows; recall the convention that output of
oracle Turing machines includes the queries q̄ they make to H and corresponding
answers ā received.

Definition 32 (Human-extractable Captcha) A Captcha puzzle system
C := (G,H) is said to be human-extractable if there exists an oracle ppt al-
gorithm ExtrH , called the extractor, and a negligible function negl(·), such that
for every oracle ppt algorithm AH , and every sufficiently large k ∈ N, we have
that:

pfail(k) := Pr

 (z0, s0)← G(1k); (z1, s1)← G(1k); b
$← {0, 1} ;

(s, q̄, ā)← AH(1k, zb); b
′ ← ExtrH(1k, (z0, z1), q̄);

s = sb ∧ b′ 6= b

 ≤ negl(k)

where the probability is taken over the randomness of G,A, and Extr.

Observe that except with negligible probability, s0 6= s1, since otherwise one
can break the hardness of C(definition 31).

We believe that the notion of human-extractable Captcha puzzles is a very
natural notion; it may be of independent interest and find applications elsewhere.
We note that while assuming the existence of human-extractable Captcha puz-
zles may be a strong assumption, it is very different from the usual extractability
assumptions in the literature such as the Knowledge-Of-Exponent (koe) assump-
tion [32, 33]. In particular, often it might be possible to empirically test whether
a given Captcha system is human-extractable. For example, one approach for
such a test is to just ask sufficiently many humans to correlate the queries q̄ to
one of the puzzles z0 or z1. If sufficiently many humans can correctly correlate
q̄ to zb with probability noticeably better than 1/2, one can already conclude
some form of weak extraction. Such weak extractability can then be amplified
by using techniques from parallel repetition. In contrast, there is no such hope
for koe assumption (and other problems with similar “non-black-box” flavor)
since they are not falsifiable [34].

In this work, we only concern ourselves with human-extractable Captcha
puzzles. Thus we drop the adjective human-extractable as convenient.

Drawbacks of Our Approach and Other Considerations. While our framework
significantly improves upon previous works [3, 4], it still has certain drawbacks
which are impossible to eliminate in an asymptotic formulation such as ours.

The first drawback is that as the value of k increases, the solution becomes
larger. It is not clear if the humans can consistently answer such a long solution.
Therefore, such a formulation can become unsuitable for even very small values
of k. The second drawback is that the current formulation enforces strict “rules”
on how a human and a Turing machine communicate via oracle access to H.
This does not capture “malicious” humans who can communicate with their
computers in arbitrary ways. It is not even clear how to formally define such
“malicious” humans for our purpose.

Finally, definition 31 enforces the condition that |Sk| is super-polynomial in
k. For many Captcha puzzle systems in use today, |Sk| may be small (e.g.,
polynomial in k or even a constant). Such Captcha puzzles are not directly
usable in our setting. Observe that if |Sk| is small, clearly A can solve a given
challenge puzzle with noticeable probability. Therefore, it makes sense to con-
sider the following weaker variant in definition 31: instead of requiring pinv to
be negligible, we can consider it to be a small constant ε. Likewise, we can also
consider weakening the extractability condition by in definition 32 by requiring
pfail to be only noticeably better than 1/2.

A subtle point to observe here is that while it might be possible to individually
amplify pinv and pfail by using parallel or sequential repetitions, it may not
be possible to amplify both at the same time. Indeed, when |Sk| is small, the
adversary A can simply ask one Captcha puzzle for every solution a ∈ Sk
multiple times and “hide” the challenge puzzle zb (in some mauled form z′b)

somewhere in this large list of queries. Such a list of queries might have sufficient
correlation with both z0 and z1 simply because the solutions of these both are
in Sk and A has asked at least one puzzle for each solution in the whole space.
In this case, even though parallel repetition may amplify pinv, extraction might
completely fail because the correlation corresponding to the challenge puzzle is
not easy to observe in A’s queries and answers.

As a consequence of this, our formulation essentially rules out the possibility
of using such “weak” Captcha puzzles for which both pinv and pfail are not
suitable. This is admittedly a strong limitation, which seems to come at the cost
of proving security beyond the class of conservative adversaries.

4 A Straight-line Extractable Commitment Scheme

In this section we present a straight-line extractable commitment scheme which
uses human-extractable Captcha puzzles. The hiding and binding properties of
this commitment scheme rely on standard cryptographic assumptions, and the
straight-line extraction property relies on the extraction property of Captcha
puzzles.

We briefly recall the notion of secure commitment schemes, with emphasis on
the changes from the standard definition and then define the notion of straight-
line extractable commitments.

Commitment Schemes. First, we present a definition of commitment schemes
augmented with Captcha puzzles. Let C := (G,H) be a Captcha puzzle sys-
tem, and let ComC := 〈CH ,R〉 be a two-party interactive protocol where (only)
C has oracle access to the solution function family H6. We say that ComC is a
commitment scheme if: both C and R are ppt (interactive) TM receiving 1k as

the common input; in addition, C receives a string m ∈ {0, 1}k. Further, we re-
quire C to privately output a decommitment string d, and R to privately output
an auxiliary string aux. The transcript of the interaction is called the commit-
ment string, denoted by c. During the course of the interaction, let q̄ and ā be
the queries and answers obtained by C via queries to the Captcha oracle H.
To denote the sampling of an honest execution of ComC , we use the following
notation: (c, (d, q̄, ā), aux)← 〈CH(1k,m),R(1k)〉.

Notice that (d, q̄, ā) is the output of oracle ITM CH as defined in section 2.
For convenience, we associate a polynomial time algorithm DCom which on input
(c, d, aux) either outputs a message m, or ⊥. It is required that for all honest
executions where C commits to m, DCom always outputs m. We say that ComC
is an ordinary commitment scheme if q̄ (and hence ā) is an empty string.

6 The reason we do not provide R with access to H, is because our construction does
not need it, and therefore we would like to avoid cluttering the notation. In general,
however, both parties can have access to H. Also, in our adversarial model, we
consider all malicious receivers to have access to the oracle H

Furthermore, our definition of a commitment scheme allows for stateful com-
mitments. In particular the output aux might be necessary for a successful de-
commitment of the committed message.

We assume that the reader is familiar with perfect/statistical binding and
computational hiding properties of a commitment scheme. Informally, straight-
line extraction property means that there exists an extractor ComExtrH which
on input the commitment string c (possibly from an interaction with a malicious
committer), aux (from an honest receiver), and q̄, outputs the committed message
m (if one exists), except with negligible probability. If m is not well defined, there
is no guarantee about the output of ComExtr.

For any commitment, we useM =M(c, aux) to denote a possible decommit-
ment message defined by the commitment string c and the receiver state aux. If
such a message is not well defined (say there could be multiple such messages or
none at all) for a particular (c, aux), then define M(c, aux) = ⊥.

Definition 41 (Straight-line Extractable Commitment) A statistically-
binding computationally-hiding commitment scheme ComC := 〈CH ,R〉 defined
over a human-extractable Captcha puzzle system C := (G,H) is said to admit
straight-line extraction if there exists a ppt algorithm ComExtrH (the extrac-

tor) and a negligible function negl(·), such that for every ppt algorithm Ĉ (a
malicious committer whose input could be arbitrary), and every sufficiently large
k ∈ N, we have that:

Pr

[
(c∗, (d∗, q̄, ā), aux)← 〈ĈH(1k, ·),R(1k)〉;M =M(c∗, aux);

m← ComExtrH(1k, q̄, (c∗, aux)) : (M 6= ⊥) ∧ (m 6=M)

]
≤ negl(k)

where the probability is taken over the randomness of Ĉ,R, and ComExtr.

The Commitment Protocol. At a high level, the receiver R of our protocol will
choose two Captcha puzzles (z0, z1) (along with their solutions s0, s1). To
commit to bit b, the sender C will select zb using the OT protocol and com-
mit to its solution sb using an ordinary (perfectly-binding) commitment scheme
〈Cpb, Rpb〉. The solution to the puzzle is obtained by querying H on zb. To
decommit, first decommit to sb which the receiver verifies; and then the receiver
accepts b as the decommitted bit if the solution it received is equal to sb. To
facilitate this task, the receiver outputs an auxiliary string aux which contains
(z0, z1, s0, s1). To commit to a k-bit string m ∈ {0, 1}k, this atomic protocol is
repeated in parallel k-times (with some minor modifications as in Figure 1)

For convenience we assume that 〈Cpb, Rpb〉 is non-interactive (i.e., C sends
only one message to R) for committing strings of length k2. The decommitment
string then consists of the committed messages and the randomness of Cpb. The
formal description of our protocol appears in figure 1.

Theorem 42 Assume that 〈Cpb, Rpb〉 is an ordinary, non-interactive, perfectly-
binding and computationally-hiding commitment scheme, C = (G,H) is a human-
extractable Captcha puzzle system, and 〈Sot, Rot〉 is a two-round statistically-
secure oblivious transfer protocol. Then, protocol ComC = 〈CH ,R〉 described in

Let k be the security parameter, C := (G,H) a human-extractable Captcha
puzzle system, 〈Cpb, Rpb〉 a non-interactive perfectly-binding commitment
scheme for strings of length k2, and 〈Sot, Rot〉 a two-message two-party OT
protocol.

Commitment. Let m = (m1, . . . ,mk) ∈ {0, 1}k be the message to be com-
mitted.

1. Captcha Generation: For every i ∈ [k], R generates a pair of indepen-
dent Captcha puzzles: (z0i , s

0
i)← G(1k) and (z1i , s

1
i)← G(1k).

2. Parallel OT: C and R perform k parallel executions of OT, where the
ith execution proceeds as follows. Party R acts as the OT-sender Sot on
input (z0i , z

1
i) and party C acts the OT-receiver Rot on input the bit mi.

At the end of the execution, let the puzzle instances obtained by C be
zm1
1 , . . . , z

mk
k .

3. Commit to Captcha Solutions: For every i ∈ [k], C queries Hk on zmi
i

to obtain the solution smi
i . Let s̄ := sm1

1 ◦ . . . ◦ smk
k , which is of length k2.

C commits to s̄ using protocol 〈Cpb, Rpb〉. Let r be the randomness used
and c be the message sent by C in this step.

4. Outputs: R sets aux = {(z0i , z1i , s0i , s1i)}ki=1, and C sets d = (s̄, r).

Decommitment. On input the commitment transcript, and strings d = (s̄, r)
and aux = {(z0i , z1i , s0i , s1i)}ki=1 do the following: parse the transcript to obtain
string c from the last step, and verify that (s̄, r) is a valid decommitment for
c. If yes, parse s̄ = a1 ◦ . . . ◦ ak and test that for every i ∈ [k], there exists a
unique bit bi such that ai = sbii . If any test fails, output ⊥; otherwise output
m = (b1, . . . , bk).

Fig. 1. Straightline Extractable Commitment Protocol 〈CH ,R〉

figure 1 is a 3-round perfectly-binding and computationally-hiding commitment
scheme which admits straight-line extraction.

Proof. A full proof may be found in Appendix A of the full version [14].

5 Constructing UC-Puzzles using Captcha

We provided a basic background in the section 1 to our results on protocol
composition, and mentioned that there are two ways in which we can incorporate
Captcha puzzles in the UC-framework: the indirect access model, and the direct
access model. This section is about constructing UC puzzles [20] in the indirect
access model. Recall that in the indirect access model, the environment Z is not
given direct access to a human (or the solution function family of the Captcha
system) H; instead, Z must access H exclusively through the adversary A. This
allows the simulator to look at the queries of Z, which in turn allows for a
positive result. Due to space constraints, we shall assume basic familiarity with

the UC-framework [10], and directly work with the notion of UC-puzzles. A more
detailed review of the UC framework, and concurrent composition, is given in
appendix C of the full version [14] .

Lin, Pass and Venkitasubramaniam [20] defined the notion of a UC puzzle,
and demonstrated that to obtain universal-composition in a particular model
(e.g., the CRS model), it suffices to construct a UC puzzle in that model. We
will adopt this approach, and construct a UC puzzle using Captcha. We recall
the notion of a UC-puzzle with necessary details, and refer the reader to [20]
for an extensive exposition. Our formulation directly incorporates Captcha
puzzles in the definition and hence does not refer to any setup T ; other than
this semantic change, the description here is essentially identical to that of [20].

The UC-puzzle is a protocol which consists of two parties—a sender S, and
a receiver R, and a PPT-relation R. Let C := (G,H) be a Captcha puzzle
system. Only the sender will be given oracle access to H, and the resulting
protocol will be denoted by 〈SH , R〉. Informally, we want that the protocol be
sound : no efficient receiver R∗ can successfully complete an interaction with S
and also obtain a “trapdoor” y such that R(TRANS, y) = 1, where TRANS is the
transcript of that execution. We also require statistical UC-simulation: for every
efficient adversary A participating as a sender in many executions of the protocol
with multiple receivers R1, . . . , Rm, and communicating with an environment Z
simultaneously, there exists a simulator Sim which can statistically simulate the
view of A for Z and output trapdoors to all successfully completed puzzles at
the same time.

Formally, we consider a concurrent execution of the protocol 〈SH , R〉 for
an adversary A. In the concurrent execution, A exchanges messages with a
puzzle-environment Z and participates as a sender concurrently in m = poly(k)
(puzzle)-protocols with honest receivers R1, . . . , Rm. At the onset of a execution,
Z outputs a session identifier sid that all receivers receive as input. Thereafter,
Z is allowed to exchange messages only with the adversary A. In particular, for
any queries to the Captcha solving oracle, Z cannot query H; instead, it can
send its queries to A, who in turn, can query H for Z, and report the answer
back to Z. We compare a real and an ideal execution.

Real Execution. The real execution consists of the adversary A, which in-
teracts with Z, and participates as a sender in m concurrent interactions of
〈SH , R〉. Further, the adversary and the honest receivers have access to H which
they can query and receive the solutions over secure channels. The environment
Z does not have access to H; it can query H, by sending its queries to A, who
queries H with the query and reports the answers back to Z. Without loss of
generality, we assume that after every interaction, A honestly sends TRANS to
Z, where TRANS is the transcript of execution. Let realHA,Z(k) be the random
variable that describes the output of Z in the real execution.

Ideal Execution. The ideal execution consists of a ppt machine (the simula-
tor) with oracle access to H, denoted SimH . On input 1k, SimH interacts with

the environment Z. At the end of the execution, the environment produces an
output. We denote the output of Z in the ideal execution by the random variable
idealSimH ,Z(k).

Definition 51 (UC-Puzzle, adapted from [20]) Let C := (G,H) be a Captcha
puzzle system. A pair (〈SH , R〉,R) is called UC-puzzle for a polynomial time
computable relation R and the Captcha puzzle system C, if the following con-
ditions hold:

– Soundness. There exists a negligible function negl(·) such that for every
ppt receiver A, and every sufficiently large k, the probability that A, after
an execution with the sender SH on common input 1k, outputs y such that
y ∈ R(TRANS) where TRANS is the transcript of the message exchanged in
the interaction, is at most negl(k).

– Statistical Simulation. For every ppt adversary A participating in a
concurrent puzzle execution, there exists an oracle ppt machine called the
simulator, SimH , such that for every ppt environment Z and every suf-
ficiently large k, the random variables realHA,Z(k) and idealSimH ,Z(k) are
statistically close over k ∈ N, and whenever Sim sends a message of the form
TRANS to Z, it outputs y in its special output tape such that y ∈ R(TRANS).

The UC-puzzle System. Due to space constraints, here we only sketch the con-
struction of our UC-puzzle, and defer the details to the full version [14]. A
straightforward approach that does not quite work is to use our extractable
commitment from Figure 1. That is, the sender of the UC puzzle picks random
string s, which will serve as the trapdoor, and commits to it using our extractable
commitment. Although this scheme allows extraction of the trapdoor s, it is not
clear how, given a transcript and a purported trapdoor, it can be verified in
PPT whether it is the correct trapdoor or not. Further, a malicious sender may
commit to an invalid string (by using incorrect Captcha solution, for example).
The receiver can not detect this and will accept, while there is no well-defined
trapdoor for such a transcript. Moreover, we can not use the standard trick
of using zero-knowledge to enforce correct sender behaviour because checking
validity of Captcha solutions is not a PPT process.

We solve the first problem by making the sender additionally send z := f(s)
to the receiver, where f(·) is a one-way function. The idea is to make it easy to
verify the trapdoor, by simply checking if z is the image of the trapdoor under
f(·). However, for this to work, we must ensure that the pre-image of z and the
string committed in the extractable commitment are the same.

To solve this problem, we use the following modified commitment scheme
in the above protocol to commit to the trapdoor: to commit to a string s, the
sender commits s twice, first using our straight line extractable commitment
from Figure 1, and then using any non-interactive perfectly binding scheme
〈Cpb, Rpb〉 (which can be constructed from, for eg., one-way functions). Using
this, we tackle the aforementioned problem in two steps:

1. First, the committer proves that the commitment is ‘well-formed’: that is,
the string committed in both the commitments is the same. This is done by
using secret sharing and cut-and-choose.

2. Thereafter, the committer gives a zero-knowledge proof that the string com-
mitted using the commitment scheme 〈Cpb, Rpb〉 is the same as the pre-
image of z under f(·).

The first step ensures that the string committed using the commitment
scheme of Figure 1 is the same as that committed by 〈Cpb, Rpb〉. As 〈Cpb, Rpb〉
is in the plain model and does not involve Captcha, we can give a proof of
correctness using standard zero-knowledge. For full details, please refer to the
full version [14].

6 Conclusion

Open Questions and Future Work. Our work presents a basic technique us-
ing human-extractable Captcha puzzles to enable straight-line extraction and
shows how to incorporate it into the framework of protocol composition to obtain
new and interesting feasibility results. However, many other important questions
remain to be answered. For examples, can we obtain zero-knowledge proofs for
NP in 3 or less rounds?7 Can we obtain plain-text aware encryption-schemes?
What about non-interactive non-malleable commitments without setup [15, 35,
36, 17]?

One interesting direction is to consider improving upon the recent work of
Goyal, Jain, and Ostrovsky on generating a password-based session-keys in the
concurrent setting [37]. One of the main difficulties in [37] is to get a control on
the number of times the simulator rewinds any given session. They accomplish
this by using the technique of precise-simulation [38, 39]. However, since we ob-
tain straight-line simulation, it seems likely that our techniques could be used
to improve the results in [37]. The reason we are not able to do this is that our
techniques are limited to only simulation—they do not yield both straight-line
simulation and extraction, whereas [37] needs a control over both.

Another interesting direction is to explore the design of extractable Captcha
puzzles. In general, investigating the feasibility and drawbacks of the asymptotic
formulation for Captcha puzzles presented here and in [1, 4, 3] is an interesting
question in its own right. We presented a discussion of these details in section
3, however they still present numerous questions for future work.

References

1. Ahn, L.V., Blum, M., Hopper, N.J., Langford, J.: Captcha: Using hard AI prob-
lems for security. In: EUROCRYPT. (2003) 294–311

7 By using standard techniques, e.g., coin-tossing using our commitment scheme along
with Blum’s protocol [22], we can obtain a 5-round (concurrent) zero-knowledge
protocol. But we do not know how to reduce it to 3 rounds.

2. : The Official CAPTCHA Site www.captcha.net.
3. Dziembowski, S.: How to pair with a human. In: SCN. (2010) 200–218
4. Canetti, R., Halevi, S., Steiner, M.: Mitigating dictionary attacks on password-

protected local storage. In: ADVANCES IN CRYPTOLOGY, CRYPTO, Springer-
Verlag (2006)

5. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: EUROCRYPT.
(1994) 92–111

6. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: STOC. (1998)
409–418

7. Lindell, Y.: Bounded-concurrent secure two-party computation without setup as-
sumptions. In: STOC. (2003) 683–692

8. Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation in a con-
stant number of rounds. In: FOCS. (2003)

9. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: STOC. (2004) 232–241

10. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS. (2001) 136–145

11. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC. (2002) 494–503

12. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: FOCS. (2002) 366–375

13. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: FOCS, IEEE Computer Society (2006) 345–354

14. Kumarasubramanian, A., Ostrovsky, R., Pandey, O., Wadia, A.: Cryptography
using captcha puzzles. Cryptology ePrint Archive, Report 2012/689 (2012) http:

//eprint.iacr.org/.
15. Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. SIAM J. on Com-

puting 30(2) (2000) 391–437
16. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-

graphic protocols. In: STOC. (2005) 533–542
17. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-

cations. In: CRYPTO. (2008) 57–74
18. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way

function. In: STOC. (2011) 705–714
19. Goyal, V.: Constant round non-malleable protocols using one way functions. In:

STOC. (2011) 695–704
20. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent

security: universal composability from stand-alone non-malleability. In: STOC.
(2009) 179–188

21. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their valid-
ity and a methodology of cryptographic protocol design (extended abstract). In:
FOCS. (1986) 174–187

22. Blum, M.: How to prove a theorem so no one else can claim it. In: International
Congress of Mathematicians. (1987) 1444–1451

23. Canetti, R., Fischlin, M.: Universally composable commitments. In: CRYPTO.
(2001) 19–40

24. Lindell, Y.: General composition and universal composability in secure multi-party
computation. In: In 44th FOCS. (2003) 394–403

25. Lindell, Y.: Lower bounds and impossibility results for concurrent self composition.
Journal of Cryptology 21 (2008) 200–249 10.1007/s00145-007-9015-5.

26. Blum, M., Santis, A.D., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM J. Comput. 20(6) (1991) 1084–1118

27. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press (2001)

28. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press (2009)

29. Halevi, S., Kalai, Y.: Smooth projective hashing and two-message oblivious trans-
fer. Journal of Cryptology (2010) 1–36 10.1007/s00145-010-9092-8.

30. Hemenway, B., Ostrovsky, R.: Lossy trapdoor functions from smooth homomorphic
hash proof systems. Electronic Colloquium on Computational Complexity (ECCC)
16 (2009) 127

31. Canetti, R., Halevi, S., Steiner, M.: Hardness amplification of weakly verifiable
puzzles. In: TCC, Springer-Verlag (2004) 17–33

32. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
CRYPTO. (1998) 408–423

33. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In: CRYPTO. (2004) 273–289

34. Naor, M.: On cryptographic assumptions and challenges. In: CRYPTO. (2003)
96–109

35. Crescenzo, G.D., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable com-
mitment. In: STOC. (1998) 141–150

36. Crescenzo, G.D., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive
non-malleable commitment. In: EUROCRYPT. (2001) 40–59

37. Goyal, V., Jain, A., Ostrovsky, R.: Password-authenticated session-key generation
on the internet in the plain model. In: CRYPTO. (2010) 277–294

38. Micali, S., Pass, R.: Local zero knowledge. In: STOC. (2006) 306–315
39. Pandey, O., Pass, R., Sahai, A., Tseng, W.L.D., Venkitasubramaniam, M.: Precise

concurrent zero knowledge. In: EUROCRYPT. (2008) 397–414

A

B

C

C

D

E

E

