
Packed Ciphertexts in LWE-based Homomorphic
Encryption

Zvika Brakerski1, Craig Gentry2, and Shai Halevi2

1 Stanford University
2 IBM Research

Abstract. In this short note we observe that the Peikert-Vaikuntanathan-Waters
(PVW) method of packing many plaintext elements in a single Regev-type ci-
phertext, can be used for performing SIMD homomorphic operations on packed
ciphertext. This provides an alternative to the Smart-Vercauteren (SV) ciphertext-
packing technique that relies on polynomial-CRT. While the SV technique is only
applicable to schemes that rely on ring-LWE (or other hardness assumptions in
ideal lattices), the PVW method can be used also for cryptosystems whose security
is based on standard LWE (or more broadly on the hardness of “General-LWE”).
Although using the PVW method with LWE-based schemes leads to worse asymp-
totic efficiency than using the SV technique with ring-LWE schemes, the simplicity
of this method may still offer some practical advantages. Also, the two techniques
can be used in tandem with “general-LWE” schemes, suggesting yet another
tradeoff that can be optimized for different settings.

Acknowledgments The first author is sponsored by DARPA under agreement number
FA8750-11-C-0096. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

The second and third authors are sponsored by DARPA and ONR under agree-
ment number N00014-11C-0390. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA, or the U.S. Government. Distribution Statement “A”
(Approved for Public Release, Distribution Unlimited).

1 Introduction

Homomorphic Encryption (HE) [Gen09] supports arbitrarily computation on encrypted
data, even by parties that do not have the secret decryption key. Despite rapid recent
advances [BV11b,BV11a,BGV12,Bra12], HE is still quite expensive. In a nutshell,
this is because security considerations dictate that the ciphertexts be large, making
homomorphic operations slow (as they have to manipulate these large ciphertexts).

The main technique for dealing with this problem is to work with packed ciphertexts,
namely ciphertexts that encrypt a vector of plaintext values, not just a single value.
Homomorphic operations are applied to these vectors component-wise in a SIMD
fashion (Single Instruction Multiple Data). Smart and Vercauteren described a ciphertext-
packing technique based on polynomial-CRT [SV11], and Gentry et al. [GHS12a] used
that technique to achieve a nearly optimal homomorphic evaluation (upto polylogarithic
factors). These techniques rely on working over polynomial rings, and their security is
based on the assumed hardness of problems in ideal lattices (such as ring-LWE [LPR10]).

Although Brakerski et al. [BV11a,BGV12,Bra12] describe also how to apply ho-
momorphic operations to the Regev cryptosystem [Reg09] (whose security is based
on standard LWE), and Peikert et al. [PVW08] show how to pack many plaintext ele-
ments in one Regev ciphertext, so far the literature does not contain a description of
how to use PVW packed ciphertexts to perform SIMD-type operations. Applying basic
homomorphic operations to PVW packed ciphertexts is straightforward, but applying
the re-linearizion technique from [BV11a] (which is needed to get more than a constant-
degree homomorphism) takes some care. In this short note we describe how this is done,
and discuss some practical considerations regarding using this technique.

1.1 Overview

Recall that in Regev’s cryptosystem [Reg09] there is a system parameter q ∈ Z, plain-
texts are bits, and secret keys and ciphertexts are vectors in Zn. Decryption of ciphertext
c with secret key s is done by taking the inner product, reducing modulo q to the in-
terval [−q/2,+q/2), then outputting 0 if the result is smaller than q/4 in magnitude
and outputting 1 otherwise. In a few more details, the integer z = 〈s, c〉 is of the form
z = k · q + b · q2 + e, where b is the plaintext bit and k, e, are small integers (and where
〈·, ·〉 denotes inner-product).

Homomorphic operations for Regev’s cryptosystem. It is well known that Regev’s
cryptosystem supports additive homomorphism (for “appropriate choice” of parameters),
just by adding the ciphertext vectors modulo q. Moreover, Brakerski and Vaikuntanathan
observed in [BV11a] that it can be made to support also multiplicative homomorphism,
using tensor products.3 For two vectors c1, c2, denote by c1 ⊗ c2 the tensor product of
c1 and c2 (arranged as a vectors). That is, c1 ⊗ c2 has dimension n2, with each entry
obtained as a product of one entry from c1 by one entry from c2. It is easy to see that for
four vectors s1, s2, c1, c2, we always have 〈s1, c1〉 · 〈s2, c2〉 = 〈s1 ⊗ s2, c1 ⊗ c2〉.

Given two ciphertext vectors c1, c2, that encrypt the bits b1, b2 (relative to secret
key s), we construct a product ciphertext by first computing c1 ⊗ c2 (over the integers),
then scaling down by a (2/q)-factor and rounding to the nearest integer vector. Namely,
c∗ ←

⌈
2
q · (c1 ⊗ c2)

⌋
. It can be seen that for “appropriate choice” of parameters, if

zi = 〈s, ci〉 is of the form zi = ki · q + bi · q2 + ei for i = 1, 2 (with s, ki and ei small
enough), then z∗ = 〈s⊗ s, c∗〉 is of the form z∗ = k∗ · q + b1b2 · q2 + e∗ where k∗, e∗

3 The observation in [BV11a] was initially made about a slightly different scheme that encodes
the plaintext in the least significant bit, but here we use the variant of Brakerski [Bra12] that
recovers the original form of Regev’s cryptosystem.

also rather small. Hence the product ciphertext c∗ can be decrypted using the tensor
product s⊗ s to the product of the plaintext bits b1b2.

Of course, using only tensor product would have led to dimension explosion: the
dimension of c∗ is n2, if two such ciphertexts are multiplied then the dimension becomes
n4, etc. To overcome this problem, Brakerski and Vaikuntanathan introduced in [BV11a]
a re-linearization technique that shrinks the dimension from n2 back to n. In fact that
technique is more general: given any two keys s and s′, one can generate a key-switching
gadget that can be added to the public key, allowing conversion of ciphertexts relative to
s′ to ciphertexts relative to s. (Roughly speaking, the key-switching gadget consists of
an encryption of s under s′, which is a matrix because encrypting each entry in s takes a
vector). Re-linearization is then obtained by putting in the public key a switching gadget
from (s⊗ s) to s.

Packing Regev ciphertexts. In [PVW08], Peikert et al. observed (roughly) that the same
Regev ciphertext vector c can be used to encrypt many bits, by having many secret-key
vectors. Decrypting the i’th bit is done by applying the same decryption procedure as
above, using the i’th secret-key. Putting all these secret keys si as the rows of a matrix S,
we have a ciphertext c encrypting a plaintext bit vector b if the integer vector z = S · c
is of the form z = k · q + b · q2 + e for some small integer vector k and e.

Computing on packed ciphertexts. Since a packed Regev ciphertext as above is essen-
tially the same as a standard ciphertext (except viewed relative to several different keys),
then the basic homomorphic operation still work as before, i.e., homomorphic addition
by adding ciphertexts (mod q) and homomorphic multiplication via tensor products.

Applying re-linearization to packed ciphertexts takes a little care, however. Although
for each i we can put in the public key a switching gadget from (si ⊗ si) to si , this will
still not give us what we need: If c∗ is a packed high-dimension ciphertext that for each
i encrypts the product bib′i relative to the high-dimension key si ⊗ si, then using all the
(si ⊗ si)-to-si gadgets will only yield a collection of non-packed ciphertexts, the i’th of
which encrypts bib′i relative to si. Instead, we need a single key-switching gadget, that
simultaneously does all the translations (si ⊗ si)-to-si.

To this end, we recall that a (si ⊗ si)-to-si key-switching gadget is roughly an
encryption of (si⊗ si) under si. We thus will use packed ciphertexts also for this gadget,
obtaining a single matrix that encrypts (si ⊗ si) under si, simultaneously for all the i’s.
This gives us exactly what we need, letting us translate a packed ciphertext relative to
the keys (si ⊗ si) to another packed ciphertext relative to the si’s.

Other homomorphic operations. The above techniques are sufficient to implement
SIMD-type homomorphic computation, where we compute the same function over many
different inputs at once. However, we would like to use the techniques of Gentry et al.
from [GHS12a] to also get efficient evaluation of a single copy. For that purpose, we
need to be able to move plaintext elements between slots. For example, we need a way
to transform a ciphertext that encrypts a vector b into another ciphertext that encrypts a
cyclic shift of b (or any other known permutation of the entries of b).

Moving elements between slots turns out to be very easy for this ciphertext packing
method: To implement a permutation π over the slots of the plaintext vector, all we

need is a packed ciphertext matrix, encrypting the sπ(i) under si simultaneously for all i.
This is an advantage of the PVW packing method over the SV packing method using
polynomial-CRT: In the SV method, plaintext slots movements are implemented using
automorphisms, but only a small set of permutations can be implemented this way, hence
additional work is needed to implement general permutations from this limited set (see
details in [GHS12a]). In the PVW method, any permutation can be implemented directly
by adding to the public key a corresponding key-switching gadget.

2 Background

Notations. We denote scalars by lower-case letters (a, b, . . .), vectors by lower-case bold
letters (a,b, . . .), and matrices by upper-case bold letters (A,B, . . .). We denote the
Euclidean, l1, and l∞ norms of a vector by ‖v‖, ‖v‖1, ‖v‖∞, respectively.

For an integer q we identify Zq with the set of representatives from the interval
[− q2 ,+

q
2), and denote by [a]q the reduction of a modulo q into this interval.4 By dac we

denote the rounding of the rational a to the nearest integer, and dacq is a shorthand for
[dac]q . These notations are extended to vectors and matrices in the natural way.

2.1 Learning with errors (LWE)

The LWE problem was introduced by Regev [Reg09] as a generalization of “learning
parity with noise”. This problem has parameters the security parameter n, another
integer q ≥ poly(n), and a probability distribution χ on Zq, that outputs integers of
magnitude much smaller than q with overwhelming probability. (Typically, χ is a discrete
Gaussian distribution with zero mean and standard deviation q/β for some parameter
β = poly(n).)

The search version of this problem is to discover a “hidden” vector s given polyno-
mially many samples of the form (ai, bi), where the ai’s are chosen at random in Znq ,
some “error terms” ei ← χ are drawn from χ, and the bi’s are set as bi = [〈s,ai〉+ ei]q .

The decision variant of the LWE problem is to distinguish a sequence of such pairs
{(ai, [〈s,ai〉+ ei]q)}i from a sequence of uniform random pairs in Znq ×Zq . As defined
by Regev, the hidden vector s is chosen uniformly at random in Znq , but Applebaum et
al. proved in [ACPS09] that this is equivalent (in terms of hardness) to the variant where
s is chosen from the error distribution, s← χn. It is this latter variant that we use for
homomorphic encryption.

Evidence for the hardness of the LWE problem follows from results of Regev [Reg09]
who gave quantum reductions from approximation of certain problems on n-dimensional
lattices in the worst case to solving LWE with some Gaussian error distributions, and
Peikert [Pei09] who gave classical reductions for some other problems with similar
parameters.

4 The only exception is Z2, which we identify with {0, 1} rather than {−1, 0}.

2.2 Regev’s Cryptosystem

Regev described in [Reg09] a public-key encryption scheme whose security relies on
the hardness of decision-LWE. To simplify the presentation, here we describe this cryp-
tosystem as a symmetric (shared-key) encryption scheme. (Since this scheme supports
homomorphic computation, one can use generic transformations to obtain a public-key
scheme, see, e.g., [Rot11].) Below we also assume for simplicity that q is even, and
concentrate on the case where the plaintext space is Z2 = {0, 1}. The extensions to
larger plaintext spaces and arbitrary moduli q are straightforward. Also, below we denote
the security parameter by n′ and let n = n′ + 1.

In this symmetric-key variant, the secret key is the LWE hidden vector, chosen (say)
as s′ ← χn

′
. Encrypting a bit σ is done by choosing a vector a ∈ Zn′

q uniformly at
random and a small error term e← χ, setting b = [σ q2 − 〈s

′,a〉+ e]q, and outputting
(b,a). To decrypt, compute d = [b + 〈s′,a〉]q and output 1 if d has magnitude more
than q/4 and 0 otherwise. Decryption succeeds because the error term e had magnitude
smaller than q/4 (as it is chosen from the error distribution) and we have d = [σ q2 + e]q .

Considering the n-vectors s = (1|s′) and c = (b|a), the integer d is just the
inner product 〈s, c〉 modulo q, and decryption can be expressed using the formula
σ = d [〈s, c〉]q / (q/2) c2. Also, since s′ was chosen from the error distribution χ and
therefore has entries much smaller than q, then the integer 〈s, c〉 (without reduction
modulo q) has magnitude at most q/2 · ‖s′‖ � q2. It follows that a valid encryption of
the bit σ relative to s is a vector c such that the inner product of s and c is of the form

〈s, c〉 = kq + σ
q

2
+ e,

where k, e are of magnitude much smaller than q.
For the basic Regev cryptosystem we only need |e| < q/4 and the size of k does

not matter. However for the homomorphic operations that are described below we need
k, e� q. Typically q is set to be super-polynomial (or even sub-exponential) in n, and
e, k are bounded by some polynomial in n.

2.3 Homomorphic Computation

Let c1, c2 be two valid encryptions of the bits b1, b2, respectively, relative to the same
key s. By the above, this means that we have 〈s, ci〉 = kiq+bi

q
2 +ei for small ki, ei. It

therefore follows that their sum, c′ = [c1+c2]q , satisfies 〈s, c′〉 = k′q+(σ1⊕σ2) q2+e
′,

where e′ = e1+e2 and k′ is either k1+k2 or k1+k2±1. Hence c′ is a valid encryption
of the bit σ1 ⊕ σ2. More interesting is the observation from [BV11a,Bra12] that Regev’s
scheme also supports multiplication via tensor products. Let c∗ = c1 ⊗ c2 denote the
dimension-n2 vector whose entries are all the products of one entry from c1 and one
from c2 (without any modular reduction), and similarly denotes s∗ = s⊗ s. Then over
the rationals we have:〈
s∗, 2

q · c
∗
〉
= 2

q · 〈s, c1〉 · 〈s, c2〉 = 2
q ·
(
k1q + b1(q/2) + e1

)
·
(
k2q + b2(q/2) + e2

)
= (2k1k2 + k1b2 + k2b1) · q + b1b2 · (q/2)

+ (2k1 + b1)e2 + (2k2 + b2)e1 +
2e1e2
q︸ ︷︷ ︸

e′′

Note that the error term e′′ above is only polynomially (in n) larger than e1, e2 them-
selves, because k1, k2 are bounded by poly(n).

Rounding 2
qc
∗ to an integer vector we have

⌈
2
qc
∗
⌋
= 2

qc
∗ + e for some rounding-

error vector e with ‖e‖∞ ≤ 1
2 . Hence we get〈

s∗,
⌈
2
qc
∗
⌋〉

=
〈
s∗, 2

qc
∗
〉
+ 〈s∗, e〉 = k′′q + b1b2(q/2) + e∗,

where e∗ = (2k1+ b1)e2+(2k2+ b2)e1+
2e1e2
q + 〈s∗, e〉 and k′′ is some integer. Since

both s∗ = s ⊗ s and e have small entries than the added term 〈s∗, e〉 is insignificant,
and we have |e∗| ≤ poly(n) · (|e1| + |e2|) � q. Finally, reducing the rounded vector
modulo q we get a vector c′′ =

⌈
2
qc
∗
⌋
q

satisfying

〈s∗, c′′〉 = k∗q + b1b2(q/2) + e∗,

for the same small error term e∗ are above. The factor k∗ can be bounded by

k∗ ≤ 1+
| 〈s∗, c′′〉 |

q
≤ 1+

‖s∗‖ · ‖c′′‖
q

(?)

≤ 1+
‖s‖2 · nq/2

q
= 1+

‖s‖2 · n
2

� q.

(1)
The Inequality (?) follow since ‖s∗‖ = ‖s ⊗ s‖ = ‖s‖2, and c′′ is an n2-vector with
entries of magnitude no larger than q/2. We conclude that c′′ is a valid encryption of the
bit b1b2 relative to key s∗ = s⊗ s.

Key-switching. The multiplication-via-tensoring technique from above comes with the
unpleasant side-effect that the dimension of product ciphertext is squared. To overcome
this problem, Brakerski and Vaikuntanathan introduced in [BV11a] a key-switching
technique. They added to the public key a gadget to enable mapping ciphertexts relative
to the high-dimension s∗ into ciphertexts that encrypt the same thing relative to the
lower-dimension s. Below we describe a variant similar to the key-switching technique
of Gentry et al. [GHS12b], which is a little easier to explain (and more efficient to
implement) than the variants from [BV11a,Bra12].

On a high level, the s∗-to-s key-switching gadget is a (slightly twisted) encryption
of s∗ under s. In more detail, for each entry s∗[i] we put in the public key a rational
“ciphertext” vector wi (say, with ` = Θ(log q) bits of precision to the right of the
binary point). This vector satisfies the equality 〈s,wi〉 = kiq + s∗[i] + ei over the
rationals, where the factor ki is an integer and the magnitude of the error term is bounded
by |ei| ≤ poly(n)/q. It can be shown that assuming hardness of decision-LWE with
modulus 2`q (and a circular-security assumption), these vectors wi are pseudo-random.
Putting all these vectors as the columns of a matrix, we get an n-by-n2 rational matrix W
such that over the rationals

s×W = kq + s∗ + e,

with k an integer vector and ‖e‖∞ ≤ poly(n)/q.
Given the n2-dimension vector c∗ satisfying 〈s∗, c∗〉 = k′q+ b(q/2)+ e′ (for small

integers k′, e′ � q and a bit b), we multiply c∗ by W, then round and reduce mod q,

getting c = dWc∗cq . We can express c as c = Wc∗ + e∗ + k∗q, with e∗ the rounding
error and k∗ the integer factor from reduction modulo q. Then we have

〈s, c〉 = 〈s, Wc∗ + e∗ + k∗q〉 = sWc∗ + 〈s, e∗〉+ 〈s,k∗〉 q
= (〈k, c∗〉 q + 〈s∗, c∗〉+ 〈e, c∗〉) + 〈s, e∗〉+ 〈s,k∗〉 q
= (〈s,k∗〉+ 〈s∗,k〉+ k′︸ ︷︷ ︸

k̃

)q + b(q/2) + 〈e, c∗〉+ 〈s, e∗〉+ e′︸ ︷︷ ︸
ẽ

The magnitude of the error term ẽ can be bounded by noticing the following:

– e∗ is the rounding error, so ‖e∗‖∞ ≤ 1
2 , and therefore | 〈s, e∗〉 | < ‖s‖1 � q;

– We have ‖e‖∞ ≤ poly(n)/q and ‖c∗‖∞ ≤ q/2, hence | 〈e, c∗〉 | ≤ n2 · ‖e‖∞ ·
‖c∗‖∞ = poly(n)� q.

It thus follows that |ẽ| ≤ | 〈s, e∗〉 |+ | 〈e, c∗〉 |+ e′ � q. As for the size of the factor k̃,
here we have similarly to Equation (1):

k̃ ≤ 1 +
| 〈s, c〉 |
q

≤ 1 +
‖s‖ · ‖c‖

q
≤ 1 +

‖s‖ · q
√
n/2

q
= 1 +

‖s‖ ·
√
n

2
� q.

Summing up, we obtained a dimension-n ciphertext vector c satisfying 〈s, c〉 = k̃q +
b(q/2) + ẽ with k̃, ẽ� q, so this is a valid encryption of b relative to s.

2.4 Packed Ciphertexts in Regev’s Cryptosystem

As described above, we need a dimension-(n′+1) ciphertext to encrypt a single plaintext
bit. Peikert et al. observed in [PVW08] that this ciphertext-expansion ratio can be reduced
by packing many plaintext bits in a single ciphertext. Specifically, we can encrypt m′

plaintext bits in a ciphertext of dimension n′ +m′. Below we denote m = n′ +m′.
To this end, we choose m′ (rather than one) secret vectors of dimension n′, s′i ←

χn
′
, and store them as the rows of an m′-by-n′ secret matrix S′. Rather than using a

dimension-(n′ + 1) secret-key vector s = (1|s′) as before, we now use an m′-by-m
secret-key matrix S = (I|S′), where I is the m′-by-m′ identity matrix.

Recall that for simplicity we describe this cryptosystem as a symmetric encryption
scheme. To encrypt a vector of bits b ∈ {0, 1}m′

, we choose a random vector a ∈ Zn′

q

and a random error vector x← χm, set d = [b · q2 −S′a+x]q and output the ciphertext
vector c = (d|a) ∈ Zmq . To decrypt the m-ciphertext c, we multiply it by S modulo q,
then for each entry of the result output 1 if that entry has magnitude larger than q/4
and 0 otherwise. This works because Sc = d + S′a = b · q2 + x (mod q), and the
entries of x are all much smaller than q. Decryption can be expressed using the formula
b = d [Sc]q / (q/2) c2. Also, a valid ciphertext relative to S is a vector c such that Sc
is of the form

Sc = k · q + b · q
2
+ e,

where ‖k‖∞ and ‖e‖∞ are of much smaller than q. In other words, the same vector c is
a valid ciphertext relative to all the rows of S, encrypting the i’th bit of b relative to the
i’th row of S.

3 Computing on Packed Ciphertexts

The techniques from Section 2 can be combined “right out of the box” to provide
homomorphic evaluation of polynomial of constant degree on packed ciphertexts: Let
c1, c2 ∈ Zmq be two packed ciphertexts, encrypting the bit vectors b1,b2 ∈ {0, 1}m

′
,

respectively, relative to the secret key S ∈ Zm′×m
q . Denote the i’th row of S by si, then

for all i we have that c1, c2 encrypt the i’th bits of b1,b2, respectively, relative to si.
Just like in Section 2.3, this means that for all i, the vector c′ = [c1 + c2]q is a

valid ciphertext relative to si, encrypting the XOR of the i’th bits of b1 and b2. In
other words, c′ is a valid encryption of the vector [b1 + vb2]2, relative to the secret
key S. Similarly, setting c′′ =

⌈
2
qc1 ⊗ c2

⌋
q
, we get that for all i, the vector c′′ is a valid

ciphertext relative to s∗i = si ⊗ si, encrypting the product of the i’th bits of b1 and b2.
In other words, denoting by S∗ the m′ ×m2 matrix with the s∗i ’s as rows, the vector c′′

is a valid ciphertext relative to S∗, encrypting the bitwise product b1 � b2 ∈ {0, 1}m
′
.

3.1 Key-Switching with Packed Ciphertexts

Performing key-switching/relinearization on packed ciphertext takes some care. Clearly,
one can put in the public key key-switching gadgets Wi that for each i enable switching
from s∗i back to si. However, this will only let us convert the single high-dimension
ciphertext c′′ (which is a valid ciphertext relative to all the s∗i ’s) into a collection of
m′ low-dimension ciphertexts, the i’th of which is valid with respect to si. Instead, we
would like to have a single gadget that lets us convert the single ciphertext c′′ into a
single low-dimension ciphertext which is valid relative to all the si’s.

Recalling that a key-switching gadget from one key to another is roughly an encryp-
tion of the first key under the second, we use our ability to pack many plaintext into
one ciphertext to “encrypt all the keys s∗i in a single ciphertext” relative to the si’s: Our
key-switching gadget from S∗ to S will be a rational matrix W such that SW ≡ S∗+E
(mod q) for a sufficiently small error matrix E. In more detail, denoting m = n′ +m′,
then for a secret key S = (I|S′) ∈ Zm′×m and an “extended secret key” S∗ ∈ Zm′×m2

,
we choose the key-switching matrix W ∈ Qm×m2

as follows:
Let ` = dlog qe, and let χ be an error distribution (over Z) for which the decision-

LWE problem with modulusQ = 2`q is hard, and such that with overwhelming probabil-
ity, elements drawn from χ are much smaller in magnitude than q. Say |e| ≤ poly(n)�
q whp for e← χ. Note that we require hardness relative to the larger modulus Q, even
though the error is much smaller than the small modulus q. Since Q ≈ q2 then all the
known hardness results for LWE carry also to this case. (However, since we have larger
modulus-to-noise ratio than we would need a larger dimension n′ to get the same level
of concrete security.)

For each j ∈ {1, 2, . . . ,m2}, we denote the j’th column of the matrix S∗ by
s̃j ∈ Zm′

. The j’th column of W is set by drawing a random vector aj ∈ Zn′

Q uniformly
at random, drawing an error vector ej ← χm

′
, computing dj = [2`s̃j − S′aj + ej]Q,

then dividing by 2` and outputting the rational column vector (with ` bits of precision),
wj = (dj |aj)T /2` ∈ Qm.

Let us denote by kj ∈ Zm the integer vector containing the factors of the reduction
modulo Q from above, so dj = [2`s̃j − S′aj + ej]Q = 2`s̃j − S′aj + ej + kQ. We
thus have for every column wj :

Swj =
(I|S′) · (dj |aj)T

2`
=

dj + S′aj
2`

=
(2`s̃j − S′aj + ej + kQ) + S′aj

2`

= kjq + s̃j +
ej

2`
≡ s̃j ± poly(n)/q (mod q)

In other words, multiplying S by the rational matrix W (without any modular reduction),
we have

SW = Kq + S∗ +E, (2)

for some integer matrix K and an error matrix E satisfying ‖E‖∞ ≤ poly(n)/q � 1
(whp).

Functionality of W. Given a valid high-dimension ciphertext c∗ relative to the secret
key S∗, we key-switch it to S by multiplying by W, then rounding and reducing
mod q. Namely, we set c = dWc∗cq . This yields a valid low-dimension ciphertext that
encrypt the same thing, but relative to S. Namely, if S∗c∗ = k∗q + b(q/2) + e∗ for
a bit vector b and integer vectors k∗, e∗ of magnitude much smaller than q, then also
Sc = kq + b(q/2) + e for the same b and where also the magnitude of k, e is much
smaller than q. The analysis is identical to that in Section 2.3.

Of course, there is nothing special about S∗ and S above. For every two secret-key
matrices S1,S2 we can similarly generate a key-switching gadget W [S1 → S2] to
enable switching ciphertext relative to S1 into ciphertexts relative to S2.

Security of W. It is immediate to show that when S2 is drawn according to the error
distribution χ and independently from S1, then the key-switching matrix W [S1 → S2]
is pseudo-random, assuming the hardness of decision-LWE relative to error distribution
χ and modulus Q = 2`q. To see this, it is enough to observe that each vector (dj |aj)
(before the division by 2`) is pseudorandom in ZQ.

Lemma 1. If the decision LWE problem with error distribution χ and modulus Q = 2`q
is hard, then for a random secret key S2 ← χm

′×m, the key-switching matrix W [S1 →
S2] as above is indistinguishable from a uniformly random matrix with all the entries
drawn independently at random from [−q/2, q/2) with ` bits of precision to the right of
the binary point. The indistinguishability holds even if the distinguisher gets as input the
old secret key S1.

Of course, the above lemma does not hold when S1,S2 are related, as in our case
where each row of S∗ is the tensor product of the corresponding row of S with itself.
This issue is routinely addresses in one of two ways: One option is to construct a leveled
HE scheme, where we choose many independent secret key matrices Sk, k = 1, 2, . . .,
then put in the public key only the key-switching gadgets W [S∗k → Sk+1]. This requires
that we switch to a new key after every multiplication, hence the multiplication depth
of the circuits that we can handle is bounded by the number of key-switching gadgets
in the public key. The other common option of dealing with this issue is to use related

S1,S2 anyway, call it circular security, then wave our hands emphatically, saying that
we think that the scheme remains secure nonetheless. (Indeed, there are no attacks in the
literature that use this relation between S1,S2 to break the scheme.)

3.2 Moving Values Between Plaintext Slot

Using the techniques thus far we can implement SIMD-type homomorphic operations
on packed ciphertexts, where the same function is applied to m′ different inputs at once.
However, Gentry et al. pointed out in [GHS12a] that more is needed if we are to apply
these techniques for efficient evaluation of (wide enough) circuits on just one input. To
take advantage of internal parallelism opportunities within a circuit, we must also be
able to move values between different plaintext slots, so as to move a value from the
output of one gate in level i of the circuit to the input of another gate in level i+ 1.

Specifically, following [GHS12a] we seek an efficient procedure for permuting
the plaintext slots according to any given permutation. Below we denote by π(b) the
permutation according to π of the entries of the vector b (i.e., the vector whose π(i)’th
entry equals the i’th entry of b). Similarly, for a matrix S we denote by π(S) the
permutation of the rows of S according to π. What we seek, therefore, is a transformation
that given a ciphertext c encrypting a binary vector b ∈ {0, 1}m′

relative to S, outputs
another ciphertext c′ encrypting the permuted vector π(b) relative to the same S.

The technique from above for key-switching can be easily adopted to this purpose.
Indeed, it follows from the decryption formula that if c is a valid encryption of b relative
to S, then the same c is also a valid encryption of π(b) relative to π(S). All we need,
therefore, is to switch c from the key π(S) back to the key S, which we can do if we
have in the public key a key-switching gadget W =W [π(S)→ S]. Namely, permuting
the plaintext slots according to π is done by setting c′ = dWscq .

3.3 Discussion

In this note we described a very simple method of computing on packed ciphertext in the
PVW variant of Regev’s cryptosystem. This provides an efficiency boost for LWE-based
HE schemes, similar to the boost that we get by using the techniques of [SV11,GHS12a]
in RLWE-based schemes.

We stress, however, that schemes over polynomial rings still offer much better
asymptotic efficiency than schemes over the ring of integers. The size of ciphertexts in
both cases is roughly the same (upto a constant factor), since ciphertexts in polynomial-
ring schemes consist of a constant number of ring elements, each element represented by
O(n) integers. However, the tensor product multiplication increases the ciphertext size
over the integers to O(n2) integers, whereas over polynomial rings we still only need
O(n) integers to describe even the product ciphertext. Even more, the re-linearizion
gadget over the integers is a O(n)-by-O(n2) matrix, which takes O(n3) integers to
represent. In the polynomial-ring setting, this matrix is still only an O(1)-by-O(1)
matrix over the ring, so it still only takes O(n) integers to represent. As a consequence,
whereas in the polynomial-ring setting [GHS12a] were able to reduce the overhead of
homomorphic evaluation to only polylogarithmic factor (for wide enough circuits), using

the same techniques over the integers (with the ciphertext-packing tools from the current
paper) would yield a quasi-quadratic overhead.

On the other hand, the security of the integer schemes is based on the hardness of
standard LWE, which is arguably better understood than the hardness of ring-LWE (or
the NTRU problem) which underly the security of schemes over polynomial rings. In
addition, the techniques that we described in this note are perhaps more flexible and less
“algebraically heavy” than their polynomial-ring counterparts.

For example, for polynomial-ring schemes, the number of plaintext slots in each
ciphertext is determined by the algebra of the underlying ring, and thus not every number
of slots is achievable. For example, Gentry et al reported in [GHS12b] on homomorphic
evaluation of the AES circuit, that used only 16 plaintext slots (for the 16 bytes in the
AES state). However, security considerations dictated that the ring be very large, which
resulted in several hundred unused plaintext slots. In contrast, the number of plaintext
slots in PVW ciphertext packing is a free parameter that can be set to any desired value.

Perhaps the main advantage of the packed-ciphertext computation techniques for
integer-based schemes over their counterparts for polynomial-ring schemes is the sim-
plicity of implementing data movement over plaintext slots. In polynomial rings, these
operations are implemented using automorphism, but only a small set of permutations
(determined by the ring algebra) can be implemented this way. In [GHS12a] it was shown
how to implement any data movement pattern using the small set that we get from the
ring algebra, but that procedure requires a logarithmic number of basic automorphisms
to implement a given data-movement pattern. In contrast, the technique from Section 3.2
lets us directly implement any data-movement pattern, just by putting in the public key
the corresponding key-switching gadget. Hence if we know ahead of time the circuit
that we want to evaluate homomorphically (e.g., the AES circuit), we can prepare the
corresponding gadgets to enable computing the data-movement patterns of that circuit
directly. Of course, if we do not know the circuit ahead of time, we can put in the public
key the gadgets for just a few permutations, and then use the techniques from [GHS12a]
to implement arbitrary patterns, incurring the same logarithmic slowdown.

Another thing which is easier to do in integer-based schemes than in polynomial-
based scheme is to gradually reduce the dimension as the computation progresses: Fresh
ciphertexts in all these schemes must have a very large modulus/noise ratio to enable
computation, which implies that we need fairly high dimension (or fairly high ring-size)
to get security. However, larger noise (and hence smaller modulus/noise ratio) is used as
the computation progresses, so from a security standpoint it is permissible to switch to
lower dimension (or smaller ring), thus speeding up further homomorphic operations.
Recently, it was shown in [GHPS12] how to do this for schemes in polynomial rings,
but this operation is highly constrained by the relevant algebra. Specifically, if the
dimension of the initial ring is some m, then it is only possible to switch to other rings
of dimension that divides m. In particular it means that the first time we can perform this
transformation is when it is safe to switch to a ring of size m/2 (or less), which means
that at least half the computation has to be done relative to the original large ring. In
contrast, switching to a lower dimension is nearly trivial in LWE-based schemes: All
we need is key-switching from the initial dimension-n key to a lower-dimension key,

exactly as is done for re-linearization (with the noise magnitude in the key-switching
gadget increased to provide adequate security relative to the lower dimension).

Finally, we mention that the techniques described in this note can also be used in
conjunction with HE schemes over polynomial rings (with security based on the “general
LWE” problem), as suggested, e.g., in [BGV12]. This setting offers a tradeoff, with
schemes over the integers on one end and schemes over large polynomial rings on the
other. In the middle we have schemes over smaller polynomial rings, in which ciphertexts
are low-dimension vectors over these rings. (For example, the ring may have dimension
n/ log n, and then ciphertexts and secret key can have dimension O(log n) over that
ring.) This opens yet another avenue for tradeoffs and optimizations, for example we
can choose the ring with best algebraic properties, even if it is too small to provide the
security level that we seek, then use slightly longer vectors over that ring to recover
security. In this context, it is possible to use both ciphertext packing techniques: pack
many plaintext values relative to each secret-key vector using the polynomial-CRT
techniques, and use many secret key vectors to reduce the ciphertext expansion ratio as
described in this work.

References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In
CRYPTO’09, volume 5677 of Lecture Notes in Computer Science, pages 595–618.
Springer, 2009.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomor-
phic encryption without bootstrapping. In Shafi Goldwasser, editor, Innovations in
Theoretical Computer Science – ITCS’12, pages 309–325. ACM, 2012. Available at
http://eprint.iacr.org/2011/277.

[Bra12] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from
Classical GapSVP. In Advances in Cryptology - CRYPTO 2012, volume 7417 of
Lecture Notes in Computer Science, pages 868–886. Springer, 2012. Available at
http://eprint.iacr.org/2012/078.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, FOCS, pages 97–106. IEEE, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In Advances in Cryptology -
CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 505–524.
Springer, 2011.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC’09, pages
169–178. ACM, 2009.

[GHPS12] Craig Gentry, Shai Halevi, Chris Peikert, and Nigel Smart. Ring switching in bgv-style
homomorphic encryption. In SCN’12, volume 7485 of Lecture Notes in Computer
Science, pages 19–37. Springer, 2012. Full version at http://eprint.iacr.
org/2012/240.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel Smart. Fully homomorphic encryption with
polylog overhead. In EUROCRYPT, volume 7237 of Lecture Notes in Computer
Science, pages 465–482. Springer, 2012. Full version at http://eprint.iacr.
org/2011/566.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel Smart. Homomorphic evaluation of the AES
circuit. In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 850–
867. Springer, 2012. Full version at http://eprint.iacr.org/2012/099.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, volume 6110 of Lecture Notes in Computer
Science, pages 1–23. Springer, 2010.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In STOC’09, pages 333–342. ACM, 2009.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In CRYPTO’08, volume 5157 of Lecture Notes in
Computer Science, pages 554–571. Springer, 2008.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), 2009.

[Rot11] Ron Rothblum. Homomorphic encryption: From private-key to public-key. In TCC’11,
volume 6597 of Lecture Notes in Computer Science, pages 219–234. Springer, 2011.

[SV11] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations.
Manuscript at http://eprint.iacr.org/2011/133, 2011.

